DATA SHEET MOS INTEGRATED CIRCUIT µPD30111 TM VR4111 64-/32-BIT MICROPROCESSOR DESCRIPTION The µPD30111 (VR4111) is one of NEC's VR Series RISC (Reduced Instruction Set Computer) microprocessors TM and is a high-performance 64-/32-bit microprocessor employing the MIPS RISC architecture. TM The VR4111 uses the high-performance, super power-saving VR4110 as the CPU core, and has many peripheral functions such as a DMA controller, software modem interface, serial interface, keyboard interface, IrDA interface, touch panel interface, real-time clock, A/D converter, and D/A converter. Configured with these functions, the VR4111 is suitable for high-speed battery-driven portable information systems. The external memory bus width can be selected from 32 bits and 16 bits, realizing high-speed data transfer. Detailed function descriptions are provided in the following user’s manual. Be sure to read it before designing. • VR4111 User's Manual (U13137E) FEATURES • Employs 64-bit MIPS architecture • Conforms to MIPS III instruction set (deleting FPU, LL, LLD, SC, and SCD instructions) • Optimized 5-stage pipeline • Supports MIPS16 instruction set • Supports high-speed product-sum operation instructions • Supports four types of operating modes, enabling more effective power-consumption management • Internal maximum operating frequency: 70 MHz • On-chip clock generator • Address space physical: 32 bits virtual: 40 bits Integrates 32 double entry TLBs • High-capacity instruction/data separated cache memories Instruction: 16 Kbytes Data: 8 Kbytes • DRAM interface and mask ROM interface to support flash memory • Keyboard interface and touch panel interface • 4-channel DMA controller • Serial interface (NS16550 compatible) • IrDA interface for infrared communication • Software modem interface • A/D and D/A converters to support digital voice I/O • Supports ISA bus subset • Power supply voltage: internal 2.3 to 2.7 V, external 3.0 to 3.6 V • Package: 224-pin fine-pitch FBGA APPLICATIONS • Battery-driven portable information systems • Embedded controllers, etc. ORDERING INFORMATION Part Number Package µPD30111S1-70-3C 224-pin fine-pitch BGA (16 × 16 mm) Internal Maximum Operating Frequency 70 MHz The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. U13211EJ2V0DS00 (2nd edition) Date Published August 1999 N CP(K) Printed in Japan The mark shows major revised points. µPD30111 PIN CONFIGURATION • 224-pin fine pitch BGA (16 × 16 mm) µPD30111S1-70-3C Bottom view Top view 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 V U T R P N M L K J H G F E D C B A 2 A B C D E F G H J K L M N P R T U V Index mark Data Sheet U13211EJ2V0DS00 µPD30111 Pin No. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Power Supply 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V Pin Name VDD3 SHB# BUSCLK HLDACK# IOCHRDY MEMW# ADD23 VDD3 ADD18 ADD15 ADD8 ADD7 VDD2 DCD#/GPIO15 TXD/CLKSEL2 IRDOUT# IRING VDD3 DATA1 IOR# IOW# LEDOUT# FIRCLK HLDRQ# ZWS# ADD24 ADD21 ADD12 ADD6 GND2 DSR# IRDIN FIRDIN#/SEL BATTINH/BATTINT# OFFHOOK MUTE DATA2 DATA0 GND3 GND3 GND3 IOCS16# MEMR# ADD22 ADD20 ADD17 ADD13 ADD5 RXD DTR#/CLKSEL0 Pin No. C15 C16 C17 C18 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 E1 E2 E3 E4 E15 E16 E17 E18 F1 F2 F3 F4 F15 F16 F17 F18 G1 G2 G3 G4 G15 G16 G17 G18 H1 H2 H3 H4 Power Supply 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V Pin Name RTS#/CLKSEL1 GND3 ILCSENSE AFERST# DATA5 DATA3 DATA6 GND3 MEMCS16# ADD25 GND3 ADD19 ADD16 ADD14 VDD3 GND3 ADD4 CTS# GND3 GND3 SDI SDO DATA9 DATA4 DATA7 DATA10 OPD# HSPSCLK FS HC0 DATA13 DATA8 DATA11 DATA14 KPORT3 HSPMCLK TELCON KPORT1 VDD2 DATA12 DATA15 GND3 KPORT7 KPORT2 KPORT0 KPORT5 DATA16/GPIO16 GND2 DATA18/GPIO18 VDD3 Pin No. H15 H16 H17 H18 J1 J2 J3 J4 J15 J16 J17 J18 K1 K2 K3 K4 K15 K16 K17 K18 L1 L2 L3 L4 L15 L16 L17 L18 M1 M2 M3 M4 M15 M16 M17 M18 N1 N2 N3 N4 N15 N16 N17 N18 P1 P2 P3 P4 P15 P16 Power Supply 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 2.5 V 2.5 V Pin Name GND3 KPORT6 KPORT4 VDD2 DATA20/GPIO20 DATA17/GPlO17 DATA22/GPlO22 DATA19/GPIO19 KSCAN9/GPIO41 VDD3 GND2 KSCAN11/GPIO43 DATA23/GPIO23 DATA26/GPIO26 DATA25/GPIO25 DATA21/GPIO21 KSCAN7/GPIO39 KSCAN10/GPIO42 KSCAN5/GPIO37 KSCAN8/GPIO40 DATA27/GPIO27 DATA31/GPIO31 DATA29/GPIO29 DATA24/GPIO24 KSCAN3/GPIO35 KSCAN6/GPIO38 KSCAN0/GPIO32 KSCAN4/GPIO36 DATA30/GPIO30 VDD3 GND3 DATA28/GPIO28 KSCAN2/GPIO34 MIPS16EN GND3 KSCAN1/GPIO33 VDD2 ADD3 ADD10 GND2 GND3 VDD3 VDDP GND3 ADD9 ADD0 ADD2 ADD11 VDD2 (VDDPD) GNDP Remark # indicates active low. Data Sheet U13211EJ2V0DS00 3 µPD30111 Pin No. P17 P18 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 T1 T2 T3 T4 T5 Power Supply 3.3 V 2.5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V Pin Name CLKX2 GND2 (GNDPD) ADD1 POWER GND3 GND3 AUDIOIN DVDD MRAS2#/ULCAS# MRAS1# ROMCS1# RSTOUT GND3 GPIO49 DDIN/GPIO45 GPIO12 GND3 CVDD RTCX2 CLKX1 POWERON RSTSW# GND3 PIUVDD ADIN0 Pin No. T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 Power Supply 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V Pin Name AVDD LCAS# ROMCS2# RD# WR# DBUS32/GPIO48 DDOUT/GPIO44 GPIO11 GPIO8 GND3 GND3 GPIO0 RTCX1 MPOWER RTCRST# AGND TPX1 TPY0 ADIN1 DGND UCAS# ROMCS3# LDCRDY DRTS#/GPIO46 GPIO13 Remark # indicates active low. 4 Data Sheet U13211EJ2V0DS00 Pin No. U13 U14 U15 U16 U17 U18 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 Power Supply 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V Pin Name GPIO9 GPIO6 GPIO5 GPIO1 GPIO2 CGND VDD3 PIUGND TPX0 TPY1 ADIN2 AUDIOOUT MRAS3#/UUCAS# MRAS0# ROMCS0# VDD3 LCDCS# DCTS#/GPIO47 GPIO14 GPIO10 GPIO7 GPIO4 GPIO3 VDD3 µPD30111 PIN IDENTIFICATION ADD (0:25): ADIN (0:2): AFERST#: AGND: AUDIOIN: AUDIOOUT: AVDD: BATTINH: BATTINT: BUSCLK: CGND: CLKSEL (0:2): CLKX1: CLKX2: CTS#: CVDD: DATA (0:31): DBUS32: DCD#: DCTS#: DDIN: DDOUT: DGND: DRTS#: DSR#: DTR#: DVDD: FIRCLK: FIRDIN#: FS: GND2, GND3: GNDP, GNDPD: GPIO (0:49): HC0: HLDACK#: HLDRQ#: HSPMCLK: HSPSCLK: ILCSENSE: IOCHRDY: IOCS16#: IOR#: IOW#: IRDIN: IRDOUT#: IRING: Address Bus General Purpose Input for A/D AFE Reset GND for A/D Audio Input Audio Output VDD for A/D Battery Inhibit Battery Interrupt Request System Bus Clock GND for Oscillator Clock Select Clock X1 Clock X2 Clear to Send VDD for Oscillator Data Bus Data Bus 32 Data Carrier Detect Debug Serial Clear to Send Debug Serial Data Input Debug Serial Data Output GND for D/A Debug Serial Request to Send Data Set Ready Data Terminal Ready VDD for D/A FIR Clock FIR Data Input Frame Synchronization Ground Ground for PLL General Purpose I/O Hardware Control 0 Hold Acknowledge Hold Request HSP Codec Master Clock HSP Codec Serial Clock Input Loop Current Sensing I/O Channel Ready I/O Chip Select 16 I/O Read I/O Write IrDA Data Input IrDA Data Output Input Ring KPORT (0:7): KSCAN (0:11): LCAS#: LCDCS#: LCDRDY: LEDOUT#: MEMCS16#: MEMR#: MEMW#: MIPS16EN: MPOWER: MRAS(0:3)#: MUTE: OFFHOOK: OPD#: PIUGND: PIUVDD: POWER: POWERON: RD#: ROMCS(0:3)#: RSTOUT: RSTSW#: RTCRST#: RTCX1: RTCX2: RTS#: RxD: SDI: SDO: SEL: SHB#: TELCON: TPX (0:1): TPY (0:1): TxD: UCAS#: ULCAS#: UUCAS#: VDD2, VDD3: VDDP, VDDPD: WR#: ZWS#: Key Code Data Input Key Scan Line Lower Column Address Strobe LCD Chip Select LCD Ready LED Output Memory Chip Select 16 Memory Read Memory Write MIPS16 Enable Main Power DRAM Row Address Strobe Mute Off Hook Output Power Down GND for Touch Panel Interface VDD for Touch Panel Interface Power Switch Power On State Read ROM Chip Select System Bus Reset Output Reset Switch Real-time Clock Reset Real-time Clock X1 Real-time Clock X2 Request to Send Receive Data HSP Serial Data Input HSP Serial Data Output IrDA Module Select System Hi-Byte Enable Telephone Control Touch Panel X I/O Touch Panel Y I/O Transmit Data Upper Column Address Strobe Lower Byte of Upper Column Address Strobe Upper Byte of Upper Column Address Strobe Power Supply Voltage VDD for PLL Write Zero Wait State Remark # indicates active low. Data Sheet U13211EJ2V0DS00 5 µPD30111 INTERNAL BLOCK DIAGRAM AND EXAMPLE OF CONNECTION OF EXTERNAL BLOCKS 32.768 kHz 18.432 MHz CODEC OSB OSB PLL GIU HSP LCD module LCD panel 480 × 240 KIU RTC µPD16666 µ PD16661 AFE LED DSU VR4110 CPU core 70 MHz PC card PCMCIA /buffer AIU ICU D/A PMU PIU ROM/flash memory Touch panel CMU A/D DCU EDO DRAM BCU SIU DMAU FIR VR4111 RS-232C driver IR driver 48 MHz CPU CORE INTERNAL BLOCK DIAGRAM Virtual address bus Internal data bus Control (o) Control (i) Bus interface Data cache (8 Kbytes) Instruction cache (16 Kbytes) Address/data (o) TLB Address/data (i) Clock generator Internal clock 6 CP0 Data Sheet U13211EJ2V0DS00 CPU µPD30111 CONTENTS 1. PIN FUNCTIONS................................................................................................................................ 10 1.1 Pin Functions........................................................................................................................................... 10 1.2 Pin Status in Specific Status .................................................................................................................. 18 1.3 Types of Pin I/O Circuits and Recommended Connection of Unused Pins ....................................... 21 1.4 Pin I/O Circuits......................................................................................................................................... 24 2. INTERNAL BLOCKS............................................................................................................................. 25 2.1 VR4110 CPU Core..................................................................................................................................... 25 2.2 Clock Generator....................................................................................................................................... 25 2.3 BCU (Bus Control Unit)........................................................................................................................... 25 2.4 RTC (Real-Time Clock Unit).................................................................................................................... 26 2.5 DSU (Deadman's Switch Unit) ................................................................................................................ 26 2.6 ICU (Interrupt Control Unit) .................................................................................................................... 26 2.7 PMU (Power Management Unit).............................................................................................................. 26 2.8 DMAAU (Direct Memory Access Address Unit) .................................................................................... 26 2.9 DCU (Direct Memory Access Control Unit) ........................................................................................... 26 2.10 CMU (Clock Mask Unit) ........................................................................................................................... 26 2.11 GIU (General Purpose I/O Unit) .............................................................................................................. 26 2.12 AIU (Audio Interface Unit)....................................................................................................................... 26 2.13 KIU (Keyboard Interface Unit) ................................................................................................................ 26 2.14 PIU (Touch Panel Interface Unit)............................................................................................................ 27 2.15 DSIU (Debug Serial Interface Unit)......................................................................................................... 27 2.16 SIU (Serial Interface Unit) ....................................................................................................................... 27 2.17 FIR (Fast IrDA Interface Unit) ................................................................................................................. 27 2.18 HSP (Host Signal Processing Unit)........................................................................................................ 27 2.19 LED (LED Unit)......................................................................................................................................... 27 3. INTERNAL ARCHITECTURE ............................................................................................................... 28 3.1 Pipeline..................................................................................................................................................... 28 3.2 CPU Registers.......................................................................................................................................... 29 3.3 Outline of Instruction Set........................................................................................................................ 30 3.3.1 MIPS III instruction set ................................................................................................................. 30 3.3.2 MIPS16 instruction set ................................................................................................................. 32 3.4 System Control Coprocessor (CP0) ...................................................................................................... 33 3.5 Data Format and Addressing ................................................................................................................. 35 3.6 Virtual Storage ......................................................................................................................................... 36 3.4.1 3.7 CP0 registers ............................................................................................................................... 33 3.6.1 Virtual address space .................................................................................................................. 36 3.6.2 Address translation ...................................................................................................................... 39 Physical Address Space ......................................................................................................................... 41 3.7.1 ROM address space .................................................................................................................... 42 3.7.2 Internal I/O space......................................................................................................................... 44 3.7.3 DRAM address space .................................................................................................................. 45 3.8 Cache........................................................................................................................................................ 47 3.9 Exception Processing ............................................................................................................................. 48 Data Sheet U13211EJ2V0DS00 7 µPD30111 4. INITIALIZATION INTERFACE............................................................................................................... 51 4.1 Reset Function......................................................................................................................................... 51 4.1.1 RTC reset..................................................................................................................................... 51 4.1.2 RSTSW ........................................................................................................................................ 52 4.1.3 Deadman’s SW ............................................................................................................................ 53 4.1.4 Software shutdown....................................................................................................................... 54 4.1.5 HALTimer shutdown..................................................................................................................... 55 4.2 CPU Core Registers after Reset ............................................................................................................. 55 4.3 Power-On Sequence................................................................................................................................ 56 5. BCU (BUS CONTROL UNIT) .............................................................................................................. 58 6. DMAAU (DMA ADDRESS UNIT) ........................................................................................................ 59 7. DCU (DMA CONTROL UNIT) ............................................................................................................. 60 8. CMU (CLOCK MASK UNIT)................................................................................................................ 61 9. ICU (INTERRUPT CONTROL UNIT) .................................................................................................. 61 10. PMU (POWER MANAGEMENT UNIT) ............................................................................................... 63 10.1 Power Mode.............................................................................................................................................. 63 11. RTC (REAL-TIME CLOCK UNIT) ....................................................................................................... 65 12. DSU (DEADMAN'S SW UNIT) ............................................................................................................ 66 13. GIU (GENERAL-PURPOSE I/O UNIT) ............................................................................................... 67 14. PIU (TOUCH PANEL UNIT) ................................................................................................................ 68 15. SIU (SERIAL INTERFACE UNIT) ....................................................................................................... 69 16. AIU (AUDIO INTERFACE UNIT)......................................................................................................... 72 17. KIU (KEYBOARD INTERFACE UNIT)................................................................................................ 73 18. DSIU (DEBUG SERIAL INTERFACE UNIT)....................................................................................... 74 19. LED (LED CONTROL UNIT) ............................................................................................................... 75 20. HSP (MODEM INTERFACE UNIT) ..................................................................................................... 76 21. FIR (FAST IrDA INTERFACE UNIT)................................................................................................... 77 22. INSTRUCTION SET ............................................................................................................................ 78 22.1 MIPS III Instruction .................................................................................................................................. 78 8 Data Sheet U13211EJ2V0DS00 µPD30111 22.1.1 Instruction formats ....................................................................................................................... 78 22.1.2 MIPS III instruction set list............................................................................................................ 78 22.1.3 Instruction execution time ............................................................................................................ 83 22.2 MIPS16 Instruction .................................................................................................................................. 84 23. ELECTRICAL SPECIFICATIONS....................................................................................................... 88 24. PACKAGE DRAWING ...................................................................................................................... 128 25. RECOMMENDED SOLERING CONDITIONS .................................................................................. 129 APPENDIX DIFFERENCES BETWEEN VR4111 AND VR4102 ............................................................... 130 Data Sheet U13211EJ2V0DS00 9 µPD30111 1. PIN FUNCTIONS Remark # indicates active low. 1.1 Pin Functions (1) System bus interface signals (1/2) Signal Name I/O Function ADD (0:25) Output This is a 26-bit address bus. Used to specify addresses of the VR4111, DRAM, ROM, LCD, and system bus (ISA). DATA (0:15) I/O This is a 16-bit data bus. Used to transfer data from the VR4111 to DRAM, ROM, LCD, and system bus, and vice versa. DATA (16:31)/ GPIO (16:31) I/O This function differs depending on how the DBUS32 pin is set. • When DBUS32 = 1 It is the higher 16 bits of the 32-bit data bus. This bus is used for transmitting and receiving data between the VR4111 and the DRAM and ROM. • When DBUS32 = 0 It is a general-purpose I/O (GPIO) port. LCDCS# Output This is the LCD chip select signal. This signal is active when the VR4111 is performing LCD access using the ADD/DATA bus. RD# Output Active when the VR4111 is reading data from the LCD, DRAM, or ROM. WR# Output Active when the VR4111 is writing data to the LCD, DRAM, or ROM. LCDRDY Input This is the LCD ready signal. Set this signal as active when the LCD controller is ready to be accessed from the VR4111. ROMCS (2:3)# Output This function differs depending on how the DBUS32 pin is set. • When DBUS32 = 1 It is the chip select signal for expansion ROM/DRAM. • When DBUS32 = 0 It is a ROM chip select signal. ROMCS (0:1)# Output This is the ROM chip select signal. UUCAS#/ MRAS3# Output This function differs depending on how the DBUS32 pin is set. • When DBUS32 = 1 This signal is active when a valid column address is output via the ADD bus during access of DATA (24:31) in the 32-bit data bus. This signal also becomes active if the bus that accesses the LCD is 32 bits wide, and if a valid address is output to the ADD bus when DATA (24:31) is accessed. • When DBUS32 = 0 This is the DRAM's RAS signal. This signal is active when a valid row address is output via the ADD bus for the DRAM connected to the highest address. ULCAS#/ MRAS2# Output This function differs depending on how the DBUS32 pin is set. • When DBUS32 = 1 This signal is active when a valid column address is output via the ADD bus during access of DATA (16:23) in the 32-bit data bus. This signal also becomes active if the bus that accesses the LCD is 32 bits wide, and if a valid address is output to the ADD bus when DATA (16:23) is accessed. • When DBUS32 = 0 This is the DRAM's RAS signal. This signal is active when a valid row address is output via the ADD bus for the DRAM connected to the next-highest address. 10 Data Sheet U13211EJ2V0DS00 µPD30111 (2/2) Signal Name I/O Function MRAS (0:1)# Output This is the DRAM's RAS-only signal. UCAS# Output This is the DRAM's CAS signal. This signal is active when a valid column address is output via the ADD bus during access of DATA (8:15) in the DRAM. This signal also becomes active if the bus that accesses the LCD is 32 bits wide, and if a valid address is output to the ADD bus when DATA (8:15) is accessed. LCAS# Output This is the DRAM's CAS signal. This signal is active when a valid column address is output via the ADD bus during access of DATA (0:7) in the DRAM. This signal also becomes active if the bus that accesses the LCD is 32 bits wide, and if a valid address is output to the ADD bus when DATA (0:7) is accessed. BUSCLK Output This is the system bus clock. It is used to output the clock that is supplied to the controller on the system bus. The frequency to be output is determined according to the state of pins CLKSEL2/TxD, CLKSEL1/RTS#, and CLKSEL0/DTR#. (See (5) RS-232C interface signals) SHB# Output This is the system bus high-byte enable signal. During system bus access, this signal is active when the higher bytes are valid on the data bus. IOR# Output This is the system bus I/O read signal. It is active when the VR4111 accesses the system bus to read data from an I/O port. IOW# Output This is the system bus I/O write signal. It is active when the VR4111 accesses the system bus to write data to an I/O port. MEMR# Output This is the system bus memory read signal. It is active when the VR4111 accesses the system bus to read data from memory. MEMW# Output This is the system bus memory write signal. It is active when the VR4111 accesses the system bus to write data to memory. ZWS# RSTOUT Input This is the system bus zero wait state signal. Set this signal as active to enable the controller on the system bus to be accessed by the VR4111 without a wait interval. Output This is the system bus reset signal. It is active when the VR4111 resets the system bus controller. MEMCS16# Input This is a dynamic bus sizing request signal. Set this signal as active when system bus memory accesses data in 16-bit width mode. IOCS16# Input This is a dynamic bus sizing request signal. Set this signal as active when system bus I/O accesses data in 16-bit width mode. IOCHRDY Input This is the system bus ready signal. Set this signal as active when the system bus controller is ready to be accessed by the VR4111. HLDRQ# Input This is a hold request signal for the system bus and DRAM bus that is sent from an external bus master. HLDACK# Output This is a hold acknowledge signal for the system bus and DRAM bus that is sent to an external bus master. Data Sheet U13211EJ2V0DS00 11 µPD30111 (2) Clock interface signals Signal Name I/O Function RTCX1 Input This is the 32.768-kHz oscillator's input pin. It is connected to one side of a crystal resonator. RTCX2 Output This is the 32.768-kHz oscillator's output pin. It is connected to one side of a crystal resonator. CLKX1 Input This is the 18.432-MHz oscillator's input pin. It is connected to one side of a crystal resonator. CLKX2 Output FIRCLK Input This is the 18.432-MHz oscillator's output pin. It is connected to one side of a crystal resonator. This is the 48-MHz clock input pin. Fix this at high level when FIR is not used. (3) Battery monitor interface signals Signal Name BATTINH/ BATTINT# I/O Function Input This function differs depending on the state of the MPOWER pin. • When MPOWER = 0 BATTINH function Enables or disables starting of power application. 1: Enables starting 0: Disables starting • When MPOWER = 1 BATTINT# function This is an interrupt signal that is output when remaining battery power is low during normal operations. The external agent checks the remaining battery power and asserts the signal at this pin if voltage sufficient for operations cannot be supplied. (4) Initialization interface signals Signal Name I/O Function MPOWER Output Indicates that the VR4111 is operating. POWERON Output Signal indicating that VR4111 is to start activation. It is asserted active when start cause is detected, and deasserted inactive after BATTINH/BATTINT# signal check has been completed. POWER Input Start signal of the VR4111. RSTSW# Input Reset signal of the VR4111. RTCRST# Input Signal resetting RTC. When power is supplied to system for the first time, the external circuit should assert this pin active for about 600 ms. 12 Data Sheet U13211EJ2V0DS00 µPD30111 (5) RS-232C interface signals Signal Name I/O Function RxD Input This is a receive data signal. It is used when the RS-232C controller sends serial data to the VR4111. CTS# Input This is the transmit enable (clear-to-send) signal. This signal is asserted when the RS232C controller is ready to receive transmission of serial data. DCD#/ GPIO15 Input This is a carrier detection signal. Assert this signal active when valid serial data is being received. It is also used when detecting a power-on factor for the VR4111. When this is not used as the DCD# signal, this can be used as an interrupt detection I/O signal for the GIU unit. DSR# Input This is the data set ready signal. Assert this signal active to set up transmission and reception of serial data between the RS-232C controller and the VR4111. TxD/CLKSEL2, RTS#/CLKSEL1, DTR#/CLKSEL0 I/O This function differs depending on the operating status. • During normal operation (output) These signals are used to perform serial communication. TxD: This is a transmit data signal. It is used when the VR4111 sends serial data to the RC-232C controller. RTS#: This is a transmit request signal. This signal is asserted when the VR4111 is ready to receive serial data from the RS-232C controller. DTR#: This is a terminal equipment ready signal. This signal is asserted when the VR4111 is ready to transmit or receive serial data. • At RTC reset (input) These signals (CLKSEL (0:2)) are used to set the operating frequency of the CPU core and the BUSCLK output frequency. These signals are sampled when the RTCRST# signal goes high. CLKSEL (2:0) CPU core operating frequency (MHz) BUSCLK output frequency (MHz) RFU RFU 011 69.3 5.77 010 65.4 5.45 001 62.0 5.17 000 49.1 6.13 1xx Note Do not set CLKSEL2 to 1. Note Remark x: don’t care Data Sheet U13211EJ2V0DS00 13 µPD30111 (6) IrDA interface signals Signal Name IRDIN FIRDIN#/SEL I/O Function Input This is the IrDA serial data input signal. It is used when the IrDA controller sends the serial data to the VR4111. Both FIR and SIR can be used. However, if the IrDA controller used is made by HP, this signal should be used only for SIR. I/O This function differs according to the IrDA controller used. For details, see 15 SIU (SERIAL INTERFACE UNIT). • When an HP's controller is used FIRDIN#: FIR receive data input signal • When a TEMIC's controller is used SEL: FIR/SIR switch signal output signal • When a SHARP's controller is used Usage is prohibited. IRDOUT# Output This is the IrDA serial data output signal. It is used when the VR4111 sends serial data to the IrDA controller. (7) Debug serial interface signals Signal Name DDOUT/GPIO44 DDIN/GPIO45 I/O Function Output This is the debug serial data output signal. It is used when the VR4111 sends serial data to an external debug serial controller. When this pin is not used as the DDOUT signal, it can be used as a general-purpose output port. I/O This is the debug serial data input signal. It is used when an external debug serial controller sends serial data to the VR4111. When this pin is not used as the DDIN signal, it can be used as a general-purpose output port. DRTS#/GPIO46 Output DCTS#/GPIO47 I/O This is a transmission request signal. The VR4111 asserts this signal before sending serial data. When this pin is not used as the DRTS# signal, it can be used as a general-purpose output port. This is a transmit acknowledge signal. The VR4111 asserts this signal when it is ready to receive transmitted serial data. When this pin is not used as the DCTS# signal, it can be used as a general-purpose output port. (8) Keyboard interface signals Signal Name KPORT (0:7) KSCAN (0:11)/ GPIO (32:43) 14 I/O Function Input This is a keyboard scan data input signal. It is used to scan for pressed keys on the keyboard. Output These signals are used as keyboard scan data output signals and a general-purpose output port. The scan line is set as active when scanning for pressed keys on the keyboard. Pins that are not used for the key scan operation can be used as a general-purpose output port. Data Sheet U13211EJ2V0DS00 µPD30111 (9) Audio interface signals Signal Name AUDIOIN AUDIOOUT I/O Input Output Function This is an audio input signal. This is an audio output signal. Analog signals that have been converted via the on-chip 10-bit D/A converter are output. (10) Touch panel/general-purpose A/D interface signals Signal Name I/O Function TPX (0:1) I/O These are I/O signals that are used for the touch panel. They use the voltage applied to the X coordinate and the voltage input to the Y coordinate to detect which coordinates on the touch panel are being pressed. TPY (0:1) I/O These are I/O signals that are used for the touch panel. They use the voltage applied to the Y coordinate and the voltage input to the X coordinate to detect which coordinates on the touch panel are being pressed. ADIN (0:2) Input This is a general-purpose A/D input signal. (11) General-purpose I/O signals Signal Name I/O Function GPIO (0:3) I/O These are maskable activation factor input signals. After start-up, they are used as ordinary GPIO pins. GPIO (4:8) I/O These are general-purpose I/O pins. GPIO (9:12) I/O These are maskable activation factor input signals. After start-up, they are used as ordinary GPIO pins. GPIO (13:14) I/O These are general-purpose I/O pins. GPIO (16:31)/ DATA (16:31) I/O See (1) System bus interface signals in this section. GPIO (32:43)/ KSCAN (0:11) Output See (8) Keyboard interface signals in this section. GPIO44/DDOUT Output See (7) Debug serial interface signals in this section. I/O See (7) Debug serial interface signals in this section. GPIO46/DRTS# Output See (7) Debug serial interface signals in this section. GPIO47/DCTS# I/O See (7) Debug serial interface signals in this section. GPIO48/DBUS32 I/O See (14) Initialization signals in this section. GPIO45/DDIN GPIO49 Output This function differs depending on the operating status. • During normal operation It can be used as a general-purpose output port. • At RTC reset This pin functions as an input pin. Input a low level to this pin. This signal is sampled when the RTCRST# signal goes high. Data Sheet U13211EJ2V0DS00 15 µPD30111 (12) HSP modem interface signals Signal Name I/O Function IRING Input This signal is asserted active when detecting the RING signal. ILCSENSE Input Handset detect signal OFFHOOK Output On-hook relay control signal MUTE Output Modem speaker mute control signal AFERST# Output CODEC reset signal SDI Input Serial input signal from CODEC FS Input Frame synchronization signal from CODEC SDO Output HSPSCLK Input Serial output signal to CODEC Operation clock input of modem interface block for CODEC TELCON Output Handset relay control signal HC0 Output CODEC control signal HSPMCLK Output Clock output to CODEC OPD# Output This signal is asserted active when the power supply of CODEC or DAA is ON. (13) LED interface signal Signal Name LEDOUT# I/O Output Function This is an output signal for lighting LEDs. (14) Initialization signals Signal Name DBUS32/ GPIO48 MIPS16EN 16 I/O I/O Input Function This function differs depending on the operating status. • During normal operation (output) This can be used as a general-purpose output port. • At RTC reset (input) This can be used as the data-bus width switch signal. This signal is sampled when the RTCRST# signal goes high. 1: Data bus is used in 32-bit width mode 0: Data bus is used in 16-bit width mode This signal enables or disables use of the MIPS16 instruction. This signal is sampled when the RTCRST# signal goes high. 1: Enable use of the MIPS16 instruction 0: Disables use of the MIPS16 instruction Data Sheet U13211EJ2V0DS00 µPD30111 (15) Dedicated VDD and GND signals Signal Name Power Supply Function VDDP 2.5 V VDD dedicated for the PLL analog block. GNDP 2.5 V GND dedicated for the PLL analog block. VDDPD 2.5 V VDD dedicated for the PLL digital block. The function is the same as VDD2. GNDPD 2.5 V GND dedicated for the PLL digital block. The function is the same as GND2. CVDD 3.3 V VDD dedicated for the oscillator. CGND 3.3 V GND dedicated for the oscillator. DVDD 3.3 V VDD dedicated for the D/A converter. The voltage applied to this pin becomes the maximum value for AUDIOOUT's analog output. DGND 3.3 V GND dedicated for the D/A converter. The voltage applied to this pin becomes the minimum value for AUDIOOUT's analog output. AVDD 3.3 V VDD dedicated for the A/D converter. The voltage applied to this pin becomes the maximum voltage value for the AD interface signal. AGND 3.3 V GND dedicated for the A/D converter. The voltage applied to this pin becomes the minimum voltage value detectable by the AD interface signals. PIUVDD 3.3 V VDD dedicated for the touch panel interface. PIUGND 3.3 V GND dedicated for the touch panel interface. VDD2 2.5 V Normally, VDD of 2.5 V. GND2 2.5 V Normally, GND of 2.5 V. VDD3 3.3 V Normally, VDD of 3.3 V. GND3 3.3 V Normally, GND of 3.3 V. Caution The VR4111 has two types of power supplies. There are no restrictions as to the sequence in which these power supplies are applied. However, do not apply one type of power for more than one second while the other power supply is not applied. Data Sheet U13211EJ2V0DS00 17 µPD30111 1.2 Pin Status in Specific Status (1/3) After Reset by RTCRST After Reset by Deadman's SW or RSTSW In Suspend Mode In Hibernate Mode or on Shutdown by HAL Timer During Bus Hold ADD (0:25) 0 0 Note 1 0 Hi-Z DATA (0:15) 0 0 Note 1 0 Hi-Z DATA (16:31)/ GPIO (16:31) 0/ Hi-Z 0/ Hi-Z Note 1 0/ Hi-Z Hi-Z/ Note 1 LCDCS# Hi-Z 1 1 Hi-Z 1 RD# Hi-Z 1 1 Hi-Z Hi-Z WR# Hi-Z 1 1 Hi-Z Hi-Z – – – – – ROMCS (2:3)# Hi-Z Note 2 Note 2 Note 2 Note 2 ROMCS (0:1)# Hi-Z 1 1 Hi-Z 1 UUCAS#/MRAS3# Note 3 Note 4 0 0 Hi-Z ULCAS#/MRAS2# Note 3 Note 4 0 0 Hi-Z MRAS (0:1)# 1 Note 4 0 0 Hi-Z UCAS# 0 Note 4 0 0 Hi-Z LCAS# 0 Note 4 0 0 Hi-Z BUSCLK 0 0 Note 1 0 Note 5 SHB# Hi-Z 1 1 Hi-Z Hi-Z IOR# Hi-Z 1 1 Hi-Z Hi-Z IOW# Hi-Z 1 1 Hi-Z Hi-Z MEMR# Hi-Z 1 1 Hi-Z Hi-Z MEMW# Hi-Z 1 1 Hi-Z Hi-Z – – – – – Hi-Z 1 0 Hi-Z Note 6 Signal Name LCDRDY ZWS# RSTOUT Notes 1. The previous Fullspeed mode state is retained. 2. When these pins are used as chip select signals of ROM/expansion ROM, their function is the same as that of ROMCS (0:1)#. When they are used as RAS signals of the expansion DRAM, their function is the same as that of MRAS (0:1)#. 3. When DBUS32 = 1: Outputs low level. When DBUS32 = 0: Outputs high level. 4. Reset by RSTSW# signal: This pin outputs low level (self-refresh function). Reset by deadman's switch: This pin outputs high level. 5. Bus hold from suspend mode: The previous Fullspeed mode state is retained. Bus hold from full speed mode or standby mode: Outputs clocks. 6. Normal operation is performed. Remark 0: Low-level output, 1: High-level output, Hi-Z: High impedance 18 Data Sheet U13211EJ2V0DS00 µPD30111 (2/3) After Reset by RTCRST After Reset by Deadman's SW or RSTSW In Suspend Mode In Hibernate Mode or on Shutdown by HAL Timer During Bus Hold IOCS16# – – – – – MEMCS16# – – – – – IOCHRDY – – – – – HLDRQ# – – – – – HLDACK# Hi-Z 1 Note 1 Hi-Z Note 1 RTCX1 – – – – – RTCX2 – – – – – CLKX1 – – – – – CLKX2 – – – – – FIRCLK – – – – – BATTINH/ BATTINT# – – – – – MPOWER 0 1 1 0 1 POWERON 0 0 0 0 0 POWER – – – – – RSTSW# – – – – – RTCRST# – – – – – RxD – – – – – TxD/CLKSEL2 Hi-Z 1 1 1 Note 1 RTS#/CLKSEL1 Hi-Z 1 1 1 Note 1 CTS# – – – – – DCD#/GPIO15 – – – – – Hi-Z 1 1 1 Note 1 DSR# – – – – – IRDIN – – – – – IRDOUT# 0 0 0 0 Note 1 FIRDIN#/SEL Hi-Z Hi-Z Note 2 Hi-Z Note 2 DDIN/ –/ Hi-Z –/ Note 2 –/ Note 2 –/ Note 2 –/ Note 2 Note 3 1/ 1 1/ Note 2 1/ Note 2 1/ Note 2 1/ Note 2 Note 3 1/ 1 1/ Note 2 1/ Note 2 1/ Note 2 1/ Note 2 Note 3 –/ Hi-Z –/ Note 2 –/ Note 2 –/ Note 2 –/ Note 2 Signal Name DTR#/CLKSEL0 Note 3 GPIO45 DDOUT/ GPIO44 DRTS#/ GPIO46 DCTS#/ GPIO47 Notes 1. Normal operation is performed. 2. The previous Fullspeed mode state is retained 3. Whether these pins are used as function pins or output port pins can be selected by software. Remark 0: Low-level output, 1: High-level output, Hi-Z: High impedance Data Sheet U13211EJ2V0DS00 19 µPD30111 (3/3) After Reset by RTCRST After Reset by Deadman's SW or RSTSW In Suspend Mode In Hibernate Mode or on Shutdown by HAL Timer During Bus Hold – – – – – Hi-Z/ Hi-Z Hi-Z/ Note 2 Note 2/ Note 2 Hi-Z/ Note 2 Note 3 AUDIOOUT 0 0 Note 2 0 Note 3 TPX (0:1) 1 1 Note 2 1 Note 3 TPY (0:1) Hi-Z Hi-Z Note 2 Hi-Z Note 3 ADIN (0:2) – – – – – AUDIOIN – – – – – Hi-Z Hi-Z Note 2 Hi-Z Note 3 – – – – – – – – – – Hi-Z Hi-Z Note 2 Hi-Z Note 2 Hi-Z Hi-Z Note 2 Hi-Z Note 2 AFERST# 0 0 Note 2 0 Note 2 SDI – – – – – FS – – – – – SDO 0 0 Note 2 0 Note 2 – – – – – Hi-Z Hi-Z Note 2 Hi-Z Note 2 0 0 Note 2 0 Note 2 0 0 Note 2 0 Note 2 OPD# 0 0 Note 2 0 Note 2 LEDOUT# 1 Note 3 Note 3 Note 3 Note 3 DBUS32/ GPIO48 Hi-Z/ Hi-Z Hi-Z/ Note 2 Note 2/ Note 2 Hi-Z/ Note 2 Note 2/ Note 2 MIPS16EN Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Note 6 Note 2 Note 2 Note 2 Note 2 Signal Name KPORT (0:7) KSCAN (0:11)/ Note 1 GPIO (32:43) GPIO (0:14) IRING ILCSENSE OFFHOOK MUTE Note 4 Note 4 Note 4 HSPSCLK Note 4 TELCON Note 4 HC0 HSPMCLK Note 4 Note 5 Note 5 GPIO49 Notes 1. Whether these pins are used as function pins or output port pins can be selected by software. 2. The previous Fullspeed mode state is retained. 3. Normal operation is performed. 4. Be sure to set the BSC bit of the HSPINT register (0x0C00 0020) to 1 at initialization. 5. This pin functions as an output port after RTC reset has been cleared. 6. This pin functions as an input pin. Input a low level to this pin. Remark 0: Low-level output, 1: High-level output, Hi-Z: High impedance 20 Data Sheet U13211EJ2V0DS00 µPD30111 1.3 Types of Pin I/O Circuits and Recommended Connection of Unused Pins (1/3) Signal Name Internal Process External Process Drive Capacity I/O Circuit Type ADD (0:25) Slew rate buffer – 120 pF A DATA (0:15) – – 40 pF A DATA (16:31)/ GPIO (16:31) – Note 1 40 pF A LCDCS# Slew rate buffer – 40 pF A RD# Slew rate buffer Note 2 120 pF A WR# Slew rate buffer Note 2 120 pF A – Note 3 – A ROMCS (2:3)# Slew rate buffer Note 4 40 pF A ROMCS (0:1)# Slew rate buffer – 40 pF A UUCAS#/MRAS3# Slew rate buffer Note 2 120 PF A ULCAS#/MRAS2# Slew rate buffer Note 2 120 pF A MRAS (0:1)# Slew rate buffer Note 2 40 pF A UCAS# Slew rate buffer Note 2 120 pF A LCAS# Slew rate buffer Note 2 120 pF A BUSCLK Slew rate buffer – 40 pF A SHB# Slew rate buffer Note 2 40 pF A IOR# Slew rate buffer Note 2 40 pF A IOW# Slew rate buffer Note 2 40 pF A MEMR# Slew rate buffer Note 2 40 pF A MEMW# Slew rate buffer Note 2 40 pF A Note 5 Note 3 – A RSTOUT Slew rate buffer Pull-up 40 pF A IOCS16# Note 5 Note 3 – A MEMCS16# Note 5 Note 3 – A IOCHRDY Note 5 Note 3 – A LCDRDY ZWS# Notes 1. The DATA (16:31) pins of the VR4111 function as GPIO (16:31) when the width of the data bus is set to 16 bits. When using these pins as GPIO (16:31), pull them up/down so that an intermediate level is not input to them. 2. Externally pull up these pins when the bus hold function is used. 3. Do not input an intermediate level to these pins. 4. Externally pull up these pins when they are used as the RAS signals of the extension DRAM. 5. An intermediate level can be input to these pins while the MPOWER pin outputs a low level. Data Sheet U13211EJ2V0DS00 21 µPD30111 (2/3) Signal Name Internal Process External Process Drive Capacity I/O Circuit Type HLDRQ# Note 1 Note 2 – A HLDACK# Slew rate buffer – 40 pF A RTCX1 – Oscillator – – RTCX2 – Oscillator – – CLKX1 – Oscillator – – CLKX2 – Oscillator – – FIRCLK – Note 3 – A Schmitt-triggered input – – B MPOWER – – 40 pF A POWERON – – 40pF A POWER Schmitt-triggered input – – B RSTSW# Schmitt-triggered input – – B RTCRST# Schmitt-triggered input – – B RxD – – – A TxD/CLKSEL2 – Pull-up/pull-down 40 pF A RTS#/CLKSEL1 – Pull-up/pull-down 40 pF A CTS# – – – A Schmitt-triggered input Pull-up – B DTR#/CLKSEL0 – Pull-up/pull-down 40 pF A DSR# – – – A IRDIN – Pull-up – A IRDOUT# – – 40 pF A FIRDIN#/SEL – Pull-up/pull-down 40 pF A DDIN/GPIO45 – – 40 pF A DDOUT/GPIO44 – – 40 pF A DRTS#/GPIO46 – – 40 pF A DCTS#/GPIO47 – – 40 pF A BATTINH/ BATTINT# DCD#/GPIO15 Notes 1. An intermediate level can be input to these pins while the MPOWER pin outputs a low level. 2. When bus hold function is used: Pull up this pin. 3. When FIR unit is used: Connect an oscillator to this pin. When bus hold function is not used: Connect this pin to VDD. When FIR unit is not used: Fix this pin to VDD. 22 Data Sheet U13211EJ2V0DS00 µPD30111 (3/3) Signal Name Internal Process External Process Drive Capacity I/O Circuit Type Schmitt-triggered input, pull-down – – B KSCAN (0:11)/ GPIO (32:43) – – 40 pF A AUDIOOUT – Note 1 – F TPX (0:1) – – 120 pF or higher C TPY1 – – 120 pF or higher D TPY0 – – 120 pF or higher C ADIN (0:2) – – – E AUDIOIN – – – E GPIO (0:14) Schmitt-triggered input, Note 2 Note 2 40 pF B IRING Schmitt-triggered input Pull-down – B ILCSENSE – Pull-down – A OFFHOOK – – 40 pF A MUTE – – 40 pF A AFERST# – – 40 pF A SDI – Pull-up/pull-down – A FS – Pull-up/pull-down – A SDO – – 40 pF A HSPSCLK – – – A TELCON – – 40 pF A HC0 – – 40 pF A HSPMCLK – – 40 pF A OPD# – – 40 pF A LEDOUT# – – 40 pF A DBUS32/ GPIO48 – Pull-up/pull-down 40 pF A MIPS16EN – Pull-up/pull-down 40 pF A GPIO49 – Pull-down – A KPORT (0:7) Notes 1. The output level of the AUDIOOUT pin fluctuates with the external impedance. Connect an operational amplifier with input characteristics of high impedance to this pin. 2. Connecting an internal pull-up/pull-down resistor to the GPIO (0:14) pins can be selected by software. When the internal pull-up/pull-down resistor is not used, connect an external pull-up/pull-down resistor to these pins. Data Sheet U13211EJ2V0DS00 23 µPD30111 1.4 Pin I/O Circuits Type D Type A VDD Data VDD Data P-ch P-ch IN/OUT IN/OUT Output disable Output disable N-ch N-ch P-ch + − Input enable N-ch Vref Type B VDD Pullup enable P-ch VDD Data Input enable N-ch P-ch IN/OUT Type E Open drain Output disable P-ch N-ch + IN N-ch − Vref Type F Pulldown enable N-ch Analog output voltage Type C VDD Data P-ch IN/OUT Output disable N-ch P-ch + − N-ch Vref 24 Data Sheet U13211EJ2V0DS00 OUT µPD30111 2. INTERNAL BLOCKS For the internal block configuration, see the figure on page 6. 2.1 VR4110 CPU Core (1) CPU The CPU processes integer instructions and consists of a 64-bit register file, a 64-bit integer data bus, and a sum-of-products operation unit. (2) Coprocessor 0 (CP0) The CP0 has a memory management unit (MMU) and an exception processing function. The MMU translates addresses and checks whether an access is made between different types (user, supervisor, or kernel) of memory segments. Translation of virtual addresses to physical addresses is performed by TLB (high-speed translation lookaside buffer). (3) Instruction cache The instruction cache has a 16-Kbyte capacity, consisting of direct mapping, virtual index, and physical tag type. (4) Data cache The data cache has an 8-Kbyte capacity, consisting of direct mapping, virtual index, physical tag, and write back type. (5) CPU bus interface The CPU bus interface controls data transfer between the VR4110 CPU core and BCU, which is one of the peripheral units. As the bus interface for the VR4110 CPU core, two 32-bit address/data multiplexed buses for input and output, clock signals, and interrupt control signals are used. 2.2 Clock Generator The following clock inputs are oscillated to generate and supply clocks to internal units. • 32.768-kHz clock for RTC. The 32.768-kHz clock generated by the crystal resonator is oscillated by the internal oscillator, and supplied to the RTC unit. • 18.432-MHz clock for serial interface, touch panel interface, and reference operating clock of the VR4111. The 18.432-MHz clock generated by the crystal resonator is oscillated by the internal oscillator, multiplied by PLL (phase-locked loop), to generate the pipeline clock (PClock). The internal bus clock (TClock) is generated from PClock. 2.3 BCU (Bus Control Unit) The BCU internally transfers data with the VR4110 CPU core via SysAD bus (internal). It also controls the LCD controller, DRAM, ROM (flash memory or mask ROM), and PCMCIA controller connected to the system bus, and transfers data with the above devices via ADD and DATA buses. Data Sheet U13211EJ2V0DS00 25 µPD30111 2.4 RTC (Real-Time Clock Unit) The RTC has a precise counter that operates with a 32.768-kHz clock supplied from the clock generator. It also has several counters and compare registers for various interrupts. 2.5 DSU (Deadman's Switch Unit) The DSU is used to check whether the processor is operating normally. If the software does not clear the register of this unit at specific intervals, the system is shut down. 2.6 ICU (Interrupt Control Unit) The ICU controls interrupt requests generated from the external and internal sources of the VR4111, and reports an interrupt request, if any, to the VR4110 CPU core. 2.7 PMU (Power Management Unit) The PMU outputs signals necessary for controlling the power of the entire system, including the VR4111. It also controls the PLL of the VR4110 CPU core and the internal clocks (PClock, TClock, and MasterOut) in the powersaving mode. 2.8 DMAAU (Direct Memory Access Address Unit) The DMAAU controls three types of DMA transfer addresses. 2.9 DCU (Direct Memory Access Control Unit) The DCU controls addresses of three types of DMA transfers. 2.10 CMU (Clock Mask Unit) The CMU controls supply of the clocks (TClock or MasterOut) from the VR4110 CPU core to the internal peripheral units. 2.11 GIU (General Purpose I/O Unit) GIU controls forty-nine GPIO pins. 2.12 AIU (Audio Interface Unit) AIU performs microphone-input sampling and audio-signal output by controlling the internal A/D and D/A converters. 2.13 KIU (Keyboard Interface Unit) The KIU has 8/10/12 scan lines and eight detection lines to detect input of 64/80/96 keys. It can also detect roll over of 2 or 3 keys by adding diodes. 26 Data Sheet U13211EJ2V0DS00 µPD30111 2.14 PIU (Touch Panel Interface Unit) PIU performs touch detection of the touch panel by controlling the internal A/D converter. 2.15 DSIU (Debug Serial Interface Unit) The DSIU is a serial interface for debugging and supports a transfer rate of up to 115 kbps. 2.16 SIU (Serial Interface Unit) The SIU is a serial interface that is compatible with NS16550 and conforms to the RS-232C Standards, and supports a transfer rate of up to 1.15 Mbps. In addition, an IrDA serial interface that supports a transfer rate of 4 Mbps using the FIR unit is also included, though this IrDA serial interface is exclusively used with the RS-232C interface. 2.17 FIR (Fast IrDA Interface Unit) The FIR unit is a unit to perform IrDA communication of 0.576 Mbps to 4 Mbps. This unit operates with a dedicated 48-MHz clock input. 2.18 HSP (Host Signal Processing Unit) The HSP unit is a unit for realizing a software modem. This unit controls interfacing between the CPU core and the CODEC devices. 2.19 LED (LED Unit) The LED unit is a unit for controlling the lighting of external LEDs. Data Sheet U13211EJ2V0DS00 27 µPD30111 3. INTERNAL ARCHITECTURE 3.1 Pipeline Each instruction is executed in the following five steps: (1) IF Instruction fetch (2) RF Register fetch (3) EX Execution (4) DC Data cache fetch (5) WB Write back The VR4111 has a five-stage pipeline. It takes five clocks to execute each instruction, but instructions can be executed in parallel. The pipeline clock, PClock, is determined by the setting of the CLKSEL (0:2) pins. The following figure outlines the pipeline. Figure 3-1. Pipeline of VR4111 (5-Stage) PClock (internal) IF RF EX DC WB IF RF EX DC WB IF RF EX DC WB IF RF EX DC WB IF RF EX DC Current CPU cycle 28 Data Sheet U13211EJ2V0DS00 WB µPD30111 3.2 CPU Registers Figure 3-2 shows the CPU registers of the VR4111. The bit width of these registers is determined by the operation mode of the processor (32 bits in 32-bit mode or 64 bits in 64-bit mode). Of the 32 general-purpose registers, the following two have a special function. • Register r0: The contents of this register are always 0. To discard the result of an operation, describe this register as the target of an instruction. When the value 0 is necessary, this register can also be used as a source register. • Register r31: This is a link register used by link instructions, such as the Jump and Link (JAL) instruction. r31 can be used by other instructions. However, be careful that use of the register by a link instruction will not coincide with use of the register for other operations. The two multiplication/division registers (HI and LO) store the result of a multiplication or sum-of-products operation, or the quotient (LO) and remainder (HI) resulting from division. Because the VR4111 does not support floating-point instructions, it is not provided with the 32 floating-point TM TM general-purpose registers (FGR) found in the VR4300 and VR4400 . The VR4111 does not have a program status word (PSW). The function of PSW is substituted by the status registers and cause registers incorporated in the system control coprocessor (CP0). Remark The load link bit (LL bit) used with synchronization instructions (LL and SC) for multiprocessor supported by the VR4300 and VR4400 is not provided in the VR4111 (refer to 3.3.1 (2) Deletion of multiprocessor instructions). Figure 3-2. CPU Registers General-purpose registers 63 32 31 r0 = 0 Multiplication/division registers 0 63 r1 32 31 0 HI r2 63 32 31 0 LO · · · · r29 r30 63 r31= LinkAddress Program counter 32 31 0 PC When the MIPS16 instruction set (refer to 3.3.2) is used, eight of the above general registers can be used. The special instruction of MIPS16 implicitly uses some general-purpose registers and the special registers. The register set for the MIPS16 instruction set is shown below. Data Sheet U13211EJ2V0DS00 29 µPD30111 Table 3-1. Register Set When MIPS16 Instruction Set Is Used (a) General registers MIPS16 Instruction Register No. 32-Bit Instruction Register No. Symbol Description 0 16 s0 General-purpose register 1 17 s1 General-purpose register 2 2 v0 General-purpose register 3 3 v1 General-purpose register 4 4 a0 General-purpose register 5 5 a1 General-purpose register 6 6 a2 General-purpose register 7 7 a3 General-purpose register – 24 t8 MIPS16 condition code register. BTEQZ, BTNEZ, CMP, CMPI, SLT, SLTU, SLTI, and SLTIU instructions are implicitly referenced. – 29 sp Stack pointer register – 31 ra Return address register (b) Special registers Symbol Description PC Program counter. The PC-relative Add instruction and Load instruction can access this register. HI The higher word of the multiply or divide result is inserted. LO The lower word of the multiply or divide result is inserted. Remark The symbols are the general assembler symbols. 3.3 Outline of Instruction Set Basically, the instruction set of the VR4111 conforms to the MIPS I, II, and III instruction sets. In addition, the MIPS16 instruction set whose instruction code length is fixed to 16 bits is supported. For details of each instruction set, refer to VR4111 User’s Manual. 3.3.1 MIPS III instruction set The MIPS III instruction set is different in the V R4111 compared to in other processors in the VR Series in the TM following four points. Note that the difference between the VR4100 and VR4111 is that the VR4111 can manage operations including peripheral functions by using power mode instructions (refer to (4)). (1) Deletion of floating-point (FPU) instructions Because the VR4111 does not have a floating-point unit, it does not support FPU instructions. If an FPU instruction is encountered, therefore, a reserved instruction exception occurs. If it is necessary to use an FPU instruction, emulate the instruction in software in an exception handler. 30 Data Sheet U13211EJ2V0DS00 µPD30111 (2) Deletion of multiprocessor instructions The VR4111 does not support a multiprocessor operating environment. If a synchronization support instruction (LL or SC instruction) defined by MIPS II and III ISA is encountered, a reserved instruction exception occurs. In addition, the load link bit (LL bit) is also unavailable. The VR4111 executes all load/store instructions in the programmed sequence. Therefore, the SYNC instruction is treated as a NOP instruction. (3) Addition of sum-of-products instructions The VR4111 has a dedicated sum-of-products operation core in the CPU and additional integer sum-ofproducts operation instructions, in order to execute sum-of-products operation at high speeds. Note that these instructions are not correctly executed with any other processors in the VR Series. The operations by the sum-of-products instructions are as follows: (a) MADD16 (Multiply and Add 16-bit Integer) This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register rt. Both the operands are treated as signed 16-bit integers. Bits 62 through 15 of both the operands must be sign-extended. The result of the multiplication is added to a 64-bit value combining special registers HI and LO. The lower word (64 bits) of the result is loaded to special register LO, and the higher word is loaded to HI. An integer overflow exception does not occur. Figure 3-3 outlines the operation of the MADD16 instruction. Figure 3-3. Operation of MADD16 Instruction 31 15 Higher rs 63 rt Lower 31 HI LO MUL ADD General-purpose register file (b) DMADD16 (Doubleword Multiply and Add 16-bit register) This instruction multiplies the contents of general-purpose register rs by the contents of general-purpose register rt. Both the operands are treated as signed 16-bit integers. Bits 62 through 15 of both the operands must be sign-extended. The result of the multiplication is added to the value of special register LO. The result of the addition is treated as a signed integer. The 64-bit result is loaded to special register LO. An integer overflow exception does not occur. This operation is defined in the 64-bit mode and 32-bit kernel mode. If this instruction is encountered in the 32-bit user/supervisor mode, a reserved instruction exception occurs. Data Sheet U13211EJ2V0DS00 31 µPD30111 (4) Addition of power mode instructions The VR4111 supports three power modes to lower the power consumption, and therefore, has dedicated instructions that set these modes. Note that the power mode instructions are not correctly executed by any other processors in the VR Series. The operations of the power mode instructions are as follows: (a) Standby This instruction places the processor in the Standby mode from the Fullspeed mode. When instruction execution has proceeded to the WB stage, and the SysAD bus (internal) has entered the idle status, the internal clock is fixed to high level, and the pipeline operation is stopped. In the Standby mode, the PLL, clocks related to timers/interrupts, and interface clocks to the peripheral function blocks (TClock and MasterOut) operate normally. When the processor is in the Standby mode it is returned to the Fullspeed mode by any interrupt including an internally generated timer interrupt. (b) Suspend This instruction places the processor in the Suspend mode from the Fullspeed mode. When instruction execution has proceeded to the WB stage, and the SysAD bus has entered the idle status, the internal clock and TClock are fixed to high level, and the pipeline operation and interfacing to the peripheral function blocks are stopped. In the Suspend mode, the PLL, clocks related to timers/interrupts, and MasterOut operate normally. The processor remains in the Suspend mode until it accepts an interrupt. When the processor accepts an interrupt, it returns to the Fullspeed mode. (c) Hibernate This instruction places the processor in the Hibernate mode from the Fullspeed mode. When instruction execution has proceeded to the WB stage, and the SysAD bus has entered the idle status, all the clocks are fixed to high level, and the pipeline operation is stopped. The processor remains in the Hibernate mode until either the POWER pin is asserted active or the WakeUp timer interrupt occurs. The processor returns to the Fullspeed mode when the POWER pin is asserted active, when the WakeUp Timer interrupt occurs, or when the DCD# pin is asserted active. The CPU and peripheral units, including clock-related units, stop their operations in Hibernate mode. 3.3.2 MIPS16 instruction set MIPS16 is an instruction set using 16-bit instructions. By using this instruction set, the memory capacity can be substantially reduced and the system cost can be lowered. MIPS16 is compatible with the MIPS I, II, and III instruction sets, and can be used with the existing instruction codes. Moreover, the instruction length can be changed between 32 bits and 16 bits. Caution The 16-bit instruction codes can be executed only by a processor that supports the MIPS16 instruction set. At present, the MIPS16 instruction set is supported only by products employing the VR4110 core. Therefore, the VR4111 can execute a program using the existing 32-bit instructions without any modification, but the other processors (such as the VR4100 and TM VR4102 ) cannot execute a VR4111 program including the 16-bit instructions. 32 Data Sheet U13211EJ2V0DS00 µPD30111 3.4 System Control Coprocessor (CP0) CP0 supports memory management, address translation, exception processing, and privilege operations. CP0 has the registers shown in Table 3-2, and a 32-entry TLB. The basic configuration of the CP0 registers of the VR4111 is the same as that of the VR4300 and VR4400. However, because the number of entries of TLB, page size, cache size, physical address space, and system interface differ between the VR4111 and VR4300/VR4400, the bit configuration and settings differ. For details, refer to VR4111 User's Manual. 3.4.1 CP0 registers All the CP0 registers that can be used with the VR4111 are shown below. Writing to or reading from an unused register (RFU) is undefined. In the 32-bit mode, the higher 32 bits of 64-bit registers are masked. Figure 3-4. CP0 Registers and TLB Registers used for memory management system Registers used for exception processing Entry Lo0 2* Entry Hi 10* Index 0* Context 4* BadVAddr 8* Random 1* Count 9* Compare 11* Page mask 5* Status 12* Cause 13* Wired 6* EPC 14* Watch Lo 18* PRId 15* Watch Hi 19* X context 20* Config 16* Parity error 26* Cache error 27* Entry Lo1 3* 31 TLB ("Safe" entry) 0 127/255 LLAddr 17* 0 Tag Lo 28* Tag Hi 29* Error EPC 30* Remark "*" indicates the register number. Data Sheet U13211EJ2V0DS00 33 µPD30111 Table 3-2. CP0 Registers No. Register Description 0 Index Programmable pointer to TLB array 1 Random Dummy random pointer to TLB array (read-only) 2 Entry Lo0 Latter half of TLB entry for even-number VPN 3 Entry Lo1 Latter half of TLB entry for odd-number VPN 4 Context Pointer to virtual PTE table of kernel in 32-bit mode 5 Page mask Specifies page size 6 Wired Number of wired TLB entries 7 – RFU (Reserved for Future Use) 8 BadVAddr Indicates virtual address at which error occurs last 9 Count Timer count 10 Entry Hi First half of TLB entry (including ASID) 11 Compare Timer compare value 12 Status Sets operation status 13 Cause Indicates cause of last exception 14 EPC Exception program counter 15 PRld Processor revision ID 16 Config Sets memory system mode 17 LLAddr RFU 18 Watch Lo Lower bits of memory reference trap address 19 Watch Hi Higher bits of memory reference trap address 20 X context Pointer to virtual PTE table of kernel in 64-bit mode 21 to 25 – RFU Note 26 Parity error 27 Cache error Error and status register of cache 28 Tag Lo Cache tag register, low 29 Tag Hi Cache tag register, high (reserved register) 30 Error EPC Error exception program counter 31 – RFU Note Parity bit of cache Note These errors are defined to maintain compatibility between the VR4100 and VR4111, and are not used by the hardware of the VR4111. 34 Data Sheet U13211EJ2V0DS00 µPD30111 3.5 Data Format and Addressing The VR4111 uses the following four data formats: • Double word (64 bits) • Word (32 bits) • Half word (16 bits) • Byte (8 bits) The byte ordering is set by the BE bit of the config register. With the current VR4111, set little endian. The byte ordering (endian) can be inverted during operation by setting the RE bit of the status register. However, be sure not to set this to 1 with the current VR4111. Figure 3-5. Byte Address in Word: Little Endian 31 24 23 Higher address Lower address 16 15 8 7 0 Word address 15 14 13 12 12 11 10 9 8 8 7 6 5 4 4 3 2 1 0 0 Remarks 1. The least significant byte is the lowest address. 2. A word is addressed by the address of the least significant byte. Figure 3-6. Byte Address in Double Word: Little Endian Word Half word 63 Higher address Lower address 32 31 Byte 16 15 0 8 7 Double word address 23 22 21 20 19 18 17 16 16 15 14 13 12 11 10 9 8 8 7 6 5 4 3 2 1 0 0 Remarks 1. The least significant byte is the lowest address. 2. A word is addressed by the address of the least significant byte. Data Sheet U13211EJ2V0DS00 35 µPD30111 3.6 Virtual Storage The VR4111 has a virtual storage management mechanism using TLB. Virtual addresses are used for address management by software or address calculation of the pipeline. To access memories for program fetch and data access, and internal I/O and external I/O, physical addresses translated by TLB are used. Note that part of the virtual address space is not translated by TLB, but is translated to physical addresses by merely changing specific addresses. If only this part of the address space is used, the VR4111 can be treated in the same manner as a CPU that operates with physical addresses. 3.6.1 Virtual address space The VR4111 has two operation modes, 32-bit mode and 64-bit mode, and three types of operating modes: user mode, supervisor mode, and kernel mode. The virtual address space in each mode is shown below. Figure 3-7. User Mode Address Space Note 32 bits 64 bits 0xF F F F F F F F F F F F F F F F 0xF F F F F F F F Address error Address error 0000 0x 0 0 0 0 0100 0x 7 F F F F F F F 0x 0 0 0 0 00FF FFFF FFFF 0x 8 0 0 0 2 Gbytes w/TLB mapping 0x 0 0 0 0 0000 0000 0000 1 Tbyte w/TLB mapping useg 0x 0 0 0 0 0000 0000 xuseg 0000 Note In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63. For details, refer to VR4111 User's Manual. 36 Data Sheet U13211EJ2V0DS00 µPD30111 Figure 3-8. Supervisor Mode Address Space Note 32 bits 64 bits 0xF F F F F F F F 0xF F F F F F F F F F F F F F F F Address error Address error 0xE 0 0 0 0 0 0 0 0xDF F F F F F F 0xF F F F F F F F E 0 0 0 0 0 0 0 0xF F F F F F F F DF F F F F F F 0.5 Gbytes w/TLB mapping 0.5 Gbytes w/TLB mapping sseg 0xC 0 0 0 0 0 0 0 0xB F F F F F F F csseg 0xF F F F F F F F C 0 0 0 0 0 0 0 0xF F F F F F F F B F F F F F F F Address error 0x 4 0 0 0 0x 4 0 0 0 Address error 0100 0000 0000 00FF FFFF FFFF 1 Tbyte w/TLB mapping 0x 8 0 0 0 0 0 0 0 0x 7 F F F F F F F xsseg 0x 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x 3 F F F F F F F F F F F F F F F Address error 2 Gbytes w/TLB mapping 0x 0 0 0 0 0x 0 0 0 0 0100 0000 0000 00FF FFFF FFFF 1 Tbyte w/TLB mapping suseg 0x 0 0 0 0 0000 0x 0 0 0 0 0000 0000 xsuseg 0000 Note In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63. For details, refer to VR4111 User's Manual. Data Sheet U13211EJ2V0DS00 37 µPD30111 Figure 3-9. Kernel Mode Address Space 32 bitsNote 1 64 bits 0xF F F F F F F F 0xF F F F F F F F F F F F F F F F 0.5 Gbytes w/TLB mapping kseg3 0xE 0 0 0 0 0 0 0 0xDF F F F F F F ksseg 0xC 0 0 0 0 0 0 0 0xB F F F F F F F ckseg 0.5 Gbytes w/TLB mapping cksseg 0.5 Gbytes w/o TLB mapping Uncacheable ckseg1 0.5 Gbytes w/o TLB mapping CacheableNote 2 ckseg0 0xF F F F F F F F F 0 0 0 0 0 0 0 0xF F F F F F F F DF F F F F F F 0xF F F F F F F F C 0 0 0 0 0 0 0 0xF F F F F F F F B F F F F F F F 0.5 Gbytes w/TLB mapping 0.5 Gbytes w/TLB mapping 0xF F F F F F F F A 0 0 0 0 0 0 0 0xF F F F F F F F 9 F F F F F F F 0xF F F F F F F F 8 0 0 0 0 0 0 0 0xF F F F F F F F 7 F F F F F F F Address error 0.5 Gbytes w/o TLB mapping Uncacheable kseg1 0xA 0 0 0 0 0 0 0 0x 9 F F F F F F F 0xC 0 0 0 0xC 0 0 0 00FF 8000 0000 00FF 7FFF FFFF 0xC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0xB F F F F F F F F F F F F F F F 0.5 Gbytes w/o TLB mapping CacheableNote 2 kseg0 0x 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x 7 F F F F F F F F F F F F F F F w/TLB mapping xkseg w/o TLB mapping (For details, refer to Figure 3-10.) xkphys Address error 0x 8 0 0 0 0 0 0 0 0x 7 F F F F F F F 0x 4 0 0 0 0x 4 0 0 0 0100 0000 0000 00FF FFFF FFFF 1 Tbyte w/TLB mapping xksseg 0x 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x 3 F F F F F F F F F F F F F F F 2 Gbytes w/TLB mapping Address error kuseg 0x 0 0 0 0 0x 0 0 0 0 0100 0000 0000 00FF FFFF FFFF 1 Tbyte w/TLB mapping 0x 0 0 0 0 0000 0x 0 0 0 0 0000 0000 xkuseg 0000 Notes 1. In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63. For details, refer to VR4111 User's Manual. 2. Whether this area is used as a cache area is specified by the K0 field of the config register. 38 Data Sheet U13211EJ2V0DS00 µPD30111 Figure 3-10. Details of xkphys Area 0xB F F F F F F F F F F F F F F F Address error 0xB 8 0 0 0xB 8 0 0 0001 0000 0000 0000 FFFF FFFF 0xB 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0xB 7 F F F F F F F F F F F F F F 4 Gbytes w/o TLB mapping Cacheable Address error 0xB 0 0 0 0xB 0 0 0 0001 0000 0000 0000 FFFF FFFF 0xB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0xA F F F F F F F F F F F F F F F 4 Gbytes w/o TLB mapping Cacheable Address error 0xA 8 0 0 0xA 8 0 0 0001 0000 0000 0000 FFFF FFFF 0xA 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0xA 7 F F F F F F F F F F F F F F 4 Gbytes w/o TLB mapping Cacheable Address error 0xA 0 0 0 0xA 0 0 0 0001 0000 0000 0000 FFFF FFFF 0xA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x 9 F F F F F F F F F F F F F F F 4 Gbytes w/o TLB mapping Cacheable Address error 0x 9 8 0 0 0x 9 8 0 0 0001 0000 0000 0000 FFFF FFFF 0x 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x 9 7 F F F F F F F F F F F F F F 4 Gbytes w/o TLB mapping Cacheable Address error 0x 9 0 0 0 0x 9 0 0 0 0001 0000 0000 0000 FFFF FFFF 0x 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x 8 F F F F F F F F F F F F F F F 4 Gbytes w/o TLB mapping Uncacheable Address error 0x 8 8 0 0 0x 8 8 0 0 0001 0000 0000 0000 FFFF FFFF 0x 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x 8 7 F F F F F F F F F F F F F F 4 Gbytes w/o TLB mapping Uncacheable Address error 0x 8 0 0 0 0x 8 0 0 0 0001 0000 0000 0000 FFFF FFFF 0x 8 0 0 0 0000 0000 0000 4 Gbytes w/o TLB mapping Uncacheable 3.6.2 Address translation Virtual addresses are translated into physical addresses by the internal TLB (Translation Lookaside Buffer) in page units. The TLB has a full-associative configuration and has 64 entries at the virtual address side and 32 entries at the physical address side. The page size is variable from 1 Kbyte to 256 Kbytes. If a TLB entry is not found, a TLB refill exception occurs in the 32-bit mode, and an XTLB refill exception occurs in the 64-bit mode. Change the contents of the TLB in software. The following figure outlines address translation. Data Sheet U13211EJ2V0DS00 39 µPD30111 Figure 3-11. Outline of Address Translation y+8 y+1 y ASID x+1 x x–1 VPN 0 Offset <1> A virtual address page number (VPN) is compared with a VPN in TLB. Virtual address <2> If the two VPNs match, a page frame number (PFN) indicating the higher bits of a physical address is output to the selector. <1> 31 <3> If the lowest 1 bit of VPN is 0, an even page is selected; if it is 1, an odd page is selected. The selected page is output to the higher bits of the physical address. <4> The offset is output to the lower bits of the physical address without going through TLB. 0 TLB <2> Selector x = 10, 12, 14, 16, 18 y = 31 (in 32-bit mode) 63 (in 64-bit mode) <3> <4> Physical address x x–1 31 0 The TLB entry is read or written by loading/storing between the TLB entry indicated by the index register and the random register, entry Hi, entry Lo1, entry Lo0, and page mask registers. How the TLB is manipulated is illustrated below. Figure 3-12. Outline of TLB Manipulation Page mask register Entry Hi register Entry Lo1 register Entry Lo0 register Index register Random register 40 Data Sheet U13211EJ2V0DS00 µPD30111 3.7 Physical Address Space Using a 32-bit address, the processor physical address space encompasses 4 Gbytes. The VR4111 uses this 4Gbyte address space as shown in Figure 3-13. Figure 3-13. VR4111 Physical Address Space 0xFFFF FFFF Mirror image of 0x0000 0000 to 0x1FFF FFFF area 3.5 Gbytes 0x2000 0000 0x1FFF FFFF ROM area (including boot ROM) 128 Mbytes 0x1800 0000 0x17FF FFFF System bus I/O area (ISA I/O) 64 Mbytes 0x1400 0000 0x13FF FFFF System bus memory area (ISA memory) 64 Mbytes 0x1000 0000 0x0FFF FFFF RFU 48 Mbytes 0x0D00 0000 0x0CFF FFFF 0x0C00 0000 0x0BFF FFFF 0x0B00 0000 0x0AFF FFFF 0x0A00 0000 0x09FF FFFF Internal I/O area 1 16 Mbytes Internal I/O area 2 16 Mbytes LCD/high-speed system bus memory area 16 Mbytes RFU 96 Mbytes 0x0400 0000 0x03FF FFFF DRAM area 64 Mbytes 0x0000 0000 Data Sheet U13211EJ2V0DS00 41 µPD30111 3.7.1 ROM address space The ROM address space differs depending on the bit width of the memory data bus and the capacity of the ROM being used. • The bit width of the memory data bus is specified by the setting of the DBUS32 pin. • The ROM capacity is set via the ROM64 bit of the BCUCNTREG1 register or the EXT_ROM64 bit of the BCUCNTREG3 register. The physical addresses of the ROM space are listed below. Table 3-3. ROM Addresses (When Using 16-Bit Data Bus) Physical Address ADD (25:0) When Using 32-Mbit ROM (DBUS32 = 0, ROM64 = 0) When Using 64-Mbit ROM (DBUS32 = 0, ROM64 = 1) 0x1FFF FFFF to 0x1FC0 0000 0x3FF FFFF to 0x3C0 0000 BANK 3 (ROMCS3#) BANK 3 (ROMCS3#) 0x1FBF FFFF to 0x1F80 0000 0x3BF FFFF to 0x380 0000 BANK 2 (ROMCS2#) 0x1F7F FFFF to 0x1F40 0000 0x37F FFFF to 0x340 0000 BANK 1 (ROMCS1#) 0x1F3F FFFF to 0x1F00 0000 0x33F FFFF to 0x300 0000 BANK 0 (ROMCS0#) 0x1EFF FFFF to 0x1E80 0000 0x2FF FFFF to 0x280 0000 RFU 0x1E7F FFFF to 0x1E00 0000 0x27F FFFF to 0x200 0000 BANK 0 (ROMCS0#) 0x1DFF FFFF to 0x1800 0000 0x1FF FFFF to 0x000 0000 RFU 42 Data Sheet U13211EJ2V0DS00 BANK 2 (ROMCS2#) BANK 1 (ROMCS1#) µPD30111 Table 3-4. ROM Addresses (When Using 32-Bit Data Bus) (a) When using 32-Mbit expansion ROM Physical Address ADD (25:0) When Using 32-Mbit ROM (DBUS32 = 1, ROM64 = 0, EXT_ROM64 = 0 ) When Using 64-Mbit ROM (DBUS32 = 1, ROM64 = 1, EXT_ROM64 = 0 ) 0x1FFF FFFF to 0x1F80 0000 0x3FF FFFF to 0x380 0000 BANK 1 (ROMCS1#) BANK 1 (ROMCS1#) 0x1F7F FFFF to 0x1F00 0000 0x37F FFFF to 0x300 0000 BANK 0 (ROMCS0#) 0x1EFF FFFF to 0x1E80 0000 0x2FF FFFF to 0x280 0000 BANK 3 (ROMCS3#) 0x1E7F FFFF to 0x1E00 0000 0x27F FFFF to 0x200 0000 BANK 2 (ROMCS2#) 0x1DFF FFFF to 0x1D80 0000 0x1FF FFFF to 0x180 0000 0x1D7F FFFF to 0x1D00 0000 0x17F FFFF to 0x100 0000 0x1CFF FFFF to 0x1800 0000 0x0FF FFFF to 0x000 0000 Note BANK 0 (ROMCS0#) Note Note RFU BANK 3 (ROMCS3#) Note BANK 2 (ROMCS2#) RFU (b) When using 64-Mbit expansion ROM Physical Address ADD (25:0) When Using 32-Mbit ROM (DBUS32 = 1, ROM64 = 0, EXT_ROM64 = 1 ) When Using 64-Mbit ROM (DBUS32 = 1, ROM64 = 1, EXT_ROM64 = 1 ) 0x1FFF FFFF to 0x1F80 0000 0x3FF FFFF to 0x380 0000 BANK 1 (ROMCS1#) BANK 1 (ROMCS1#) 0x1F7F FFFF to 0x1F00 0000 0x37F FFFF to 0x300 0000 BANK 0 (ROMCS0#) 0x1EFF FFFF to 0x1E00 0000 0x2FF FFFF to 0x200 0000 BANK 3 (ROMCS3#) 0x1DFF FFFF to 0x1D00 0000 0x1FF FFFF to 0x100 0000 BANK 2 (ROMCS2#) 0x1CFF FFFF to 0x1C00 0000 0x0FF FFFF to 0x000 0000 0x1BFF FFFF to 0x1800 0000 – Note Note RFU BANK 0 (ROMCS0#) Note BANK 3 (ROMCS3#) Note BANK 2 (ROMCS2#) RFU Note Can be used exclusively from the expansion DRAM. Data Sheet U13211EJ2V0DS00 43 µPD30111 3.7.2 Internal I/O space The VR4111 has two types of internal I/O spaces. Each of these spaces in the internal I/O space are described below. Table 3-5. Internal I/O Space 1 Physical Address Internal I/O 0x0BFF FFFF to 0x0C00 0080 RFU 0x0C00 007F to 0x0C00 0060 FIR2 0x0C0 0005F to 0x0C00 0040 FIR 0x0C00 003F to 0x0C00 0020 HSP (software modem interface) 0x0C00 001F to 0x0C00 0000 SIU (16550) Table 3-6. Internal I/O Space 2 44 Physical Address Internal I/O 0x0BFF FFFF to 0x0B00 0300 RFU 0x0B00 02FF to 0x0B00 02E0 GIU2 0x0B00 02DF to 0x0B00 02C0 PMU2 0x0B00 02BF to 0x0B00 02A0 PIU2 0x0B00 029F to 0x0B00 0280 RFU 0x0B00 027F to 0x0B00 0260 A/D test 0x0B00 025F to 0x0B00 0240 LED 0x0B00 023F to 0x0B00 0220 RFU 0x0B00 021F to 0x0B00 0200 ICU2 0x0B00 01FF to 0x0B00 01E0 RFU 0x0B00 01DF to 0x0B00 01C0 RTC2 0x0B00 01BF to 0x0B00 01A0 DSIU 0x0B00 019F to 0x0B00 0180 KIU 0x0B00 017F to 0x0B00 0160 AIU 0x0B00 015F to 0x0B00 0140 RFU 0x0B00 013F to 0x0B00 0120 PIU1 0x0B00 011F to 0x0B00 0100 GIU1 0x0B00 00FF to 0x0B00 00E0 DSU 0x0B00 00DF to 0x0B00 00C0 RTC1 0x0B00 00BF to 0x0B00 00A0 PMU 0x0B00 009F to 0x0B00 0080 ICU1 0x0B00 007F to 0x0B00 0060 CMU 0x0B00 005F to 0x0B00 0040 DCU 0x0B00 003F to 0x0B00 0020 DMAAU 0x0B00 001F to 0x0B00 0000 BCU Data Sheet U13211EJ2V0DS00 µPD30111 3.7.3 DRAM address space The DRAM address space differs depending on the bit width of the memory data bus and the capacity of the DRAM being used. • The bit width of the memory data bus is specified by the setting of the DBUS32 pin. • The DRAM capacity is set via the DRAM64 bit of BCUCNTREG1 register or EXT_DRAM64 bit of BCUCNTREG3 register. The physical addresses of the DRAM space are listed in Tables 3-7 and 3-8. Table 3-7. DRAM Addresses (When Using 16-Bit Data Bus) Physical Address When Using 16-Mbit DRAM (DBUS32 = 0, DRAM64 = 0) When Using 64-Mbit DRAM (DBUS32 = 0, DRAM64 = 1) 0x03FF FFFF to 0x0200 0000 RFU RFU 0x01FF FFFF to 0x0180 0000 BANK 3 (MRAS3#/UUCAS#) 0x017F FFFF to 0x0100 0000 BANK 2 (MRAS2#/ULCAS#) 0x00FF FFFF to 0x0080 0000 BANK 1 (MRAS1#) 0x007F FFFF to 0x0060 0000 BANK 3 (MRAS3#/UUCAS#) 0x005F FFFF to 0x0040 0000 BANK 2 (MRAS2#/ULCAS#) 0x003F FFFF to 0x0020 0000 BANK 1 (MRAS1#) 0x001F FFFF to 0x0000 0000 BANK 0 (MRAS0#) Data Sheet U13211EJ2V0DS00 BANK 0 (MRAS0#) 45 µPD30111 Table 3-8. DRAM Addresses (When Using 32-Bit Data Bus) (a) When using 16-Mbit expansion DRAM Physical Address When Using 16-Mbit DRAM (DBUS32 = 1, DRAM64 = 0, EXT_DRAM64 = 0) When Using 64-Mbit DRAM (DBUS32 = 1, DRAM64 = 1, EXT_DRAM64 = 0) 0x03FF FFFF to 0x0280 0000 RFU RFU Note 0x027F FFFF to 0x0240 0000 BANK 3 (ROMCS3#) 0x023F FFFF to 0x0200 0000 BANK 2 (ROMCS2#) Note BANK 1 (MRAS1#) 0x01FF FFFF to 0x0180 0000 0x017F FFFF to 0x0100 0000 0x00FF FFFF to 0x00E0 0000 Note BANK 3 (ROMCS3#) BANK 0 (MRAS0#) 0x00DF FFFF to 0100C0 0000 0x00BF FFFF to 0x00A0 0000 Note BANK 2 (ROMCS2#) 0x009F FFFF to 0x0080 0000 0x007F FFFF to 0x0060 0000 BANK 1 (MRAS1#) 0x005F FFFF to 0x0040 0000 0x003F FFFF to 0x0020 0000 BANK 0 (MRAS0#) 0x001F FFFF to 0x0000 0000 (b) When using 64-Mbit expansion DRAM Physical Address When Using 16-Mbit DRAM (DBUS32 = 1, DRAM64 = 0, EXT_DRAM64 = 1) 0x03FF FFFF to 0x0300 0000 RFU Note BANK 3 (ROMCS3#) Note 0x02FF FFFF to 0x0280 0000 0x027F FFFF to 0x0200 0000 BANK 2 (ROMCS2#) Note BANK 3 (ROMCS3#) BANK 1 (MRAS1#) 0x01FF FFFF to 0x0180 0000 0x017F FFFF to 0x0100 0000 Note BANK 2 (ROMCS2#) 0x00FF FFFF to 0x0080 0000 0x007F FFFF to 0x0060 0000 BANK 0 (MRAS0#) BANK 1 (MRAS1#) 0x005F FFFF to 0x0040 0000 0x003F FFFF to 0x0020 0000 BANK 0 (MRAS0#) 0x001F FFFF to 0x0000 0000 Note Can be used exclusively from the expansion ROM. 46 When Using 64-Mbit DRAM (DBUS32 = 1, DRAM64 = 1, EXT_DRAM64 = 1) Data Sheet U13211EJ2V0DS00 µPD30111 3.8 Cache (1) Instruction cache The instruction cache has the following features: • On-chip cache memory • Capacity: 16 Kbytes • Direct mapping mode • Virtual index address • Physical tag check • 4-word (16-byte) cache line Figure 3-14. Format of Instruction Cache 150 149 0 128 127 1,023 V PTag Data 1 22 128 0 PTag: Physical tag (bits 31 to 10 of physical address) V: Valid bit Data: Cache data Data Sheet U13211EJ2V0DS00 47 µPD30111 (2) Data cache The data cache has the following features: • On-chip cache memory • Capacity: 8 Kbytes • Write back • Direct mapping mode • Virtual index address • Physical tag check • 4-word (16-byte) cache line Figure 3-15. Format of Data Cache 152 151 150 0 W V D PTag Data 1 1 1 22 128 128 127 149 511 0 W: Write back bit V: Valid bit D: Dirty bit PTag: Physical tag (bits 31 to 10 of physical address) Data: Cache data 3.9 Exception Processing The VR4111 enters the kernel mode in which interrupts are disabled when an exception occurs, and executes an exception handler from a fixed exception vector address. To restore from the exception, the program counter, operating mode, and interrupt enable information must be restored to the original status. Save this information when the interrupt occurs. When an interrupt occurs, the EPC register holds the address of the instruction that has caused the exception, or the address of the instruction immediately before if the exception has occurred in the branch delay slot. This means that the EPC register stores the address from which execution is to be started after the exception has been processed. After reset and on occurrence of NMI, the EPC register holds a restart address. 48 Data Sheet U13211EJ2V0DS00 µPD30111 Table 3-9. Types of Exceptions Exception Cold reset Symbol Description – This exception occurs if the ColdReset# (internal) and Reset# (internal) signals are simultaneously asserted active (for details, refer to Figures 4-1 through 4-5). As a result, the instruction execution is stopped, and the handler on the reset vector is executed. The internal status, except some bits of the status registers, is undefined. Soft reset – This exception occurs if the Reset# (internal) signal is asserted active. As a result, the instruction execution is stopped, and the handler on the reset vector is executed. The internal status before soft reset is retained. However, the current VR4111 does not support soft reset. NIMI – This exception occurs if the NMI (internal) signal is asserted active. TLB refill TLBL/TLBS This exception occurs if there is no TLB entry that matches an address to be referenced in the 32-bit mode. Expanded addressing TLB non-coincidence TLBL/TLBS This exception occurs if there is no TLB entry that matches an address to be referenced in the 64-bit mode. TLB invalid TLBL/TLBS This exception occurs if the TLB entry that matches the virtual address to be referenced is invalid (V bit = 0). TLB modify Mod This exception occurs if the TLB entry that matches the virtual address to be referenced is valid but is disabled from being written (D bit = 0) when the store instruction is executed. Bus error IBE/DBE This exception occurs when the external agent indicates an error of data on the SysCmd bus by using an external interrupt to the bus interface (bus timeout, bus parity error, or invalid physical memory address or access type). Address error AdEL/AdES This exception occurs if an attempt is made to execute the LH, SH, LW, SW, LD, or SD instruction to the half word/word/double word not located at the half word/word/double word boundary, or if an attempt is made to reference a virtual address that cannot be accessed. Integer overflow Ov This exception occurs if a 2's complement overflow occurs as a result of addition or subtraction. Trap Tr This exception occurs if the condition is true as a result of executing the trap instruction. System call Sys This exception occurs if the SYSCALL instruction is executed. Breakpoint Bp This exception occurs if the BREAK instruction is executed. Reserved instruction RI This exception occurs if an instruction with an undefined op code (bits 31 to 26) or SPECIAL instruction with an undefined op code (bits 5 to 0) is executed. Coprocessor non-usable CpU This exception occurs if the coprocessor instruction is executed when the corresponding coprocessor enable bit is not set. Interrupt Int This exception occurs if one of the eight interrupt sources becomes active. Cache error Watch – WATCH This exception occurs if a parity error is detected in the internal cache or system interface. This exception occurs if an attempt is made to reference a physical address set by the watch Lo/Hi register with the load/store instruction. The exception vectors and their offset values in the 64-bit and 32-bit modes are shown below. Data Sheet U13211EJ2V0DS00 49 µPD30111 Table 3-10. Base Address of Exception Vector in 64-Bit Mode (Virtual Address) Vector Base Address Vector Offset Cold reset, soft reset, NMI 0xFFFF FFFF BFC0 0000 (BEV bit is automatically set to 1.) 0x0000 Cache error 0xFFFF FFFF A000 0000 (BEV = 0) 0xFFFF FFFF BFC0 0200 (BEV = 1) 0x0100 TLB refill, EXL = 0 0xFFFF FFFF 8000 0000 (BEV = 0) 0xFFFF FFFF BFC0 0200 (BEV = 1) 0x0000 XTLB refill, EXL = 0 Other than above 0x0080 0x0180 Table 3-11. Base Address of Exception Vector in 32-Bit Mode (Virtual Address) Vector Base Address Vector Offset Cold reset, soft reset, NMI 0xBFC0 0000 (BEV bit is automatically set to 1.) 0x0000 Cache error 0xA000 0000 (BEV = 0) 0xBFC0 0200 (BEV = 1) 0x0100 TLB refill, EXL = 0 0x8000 0000 (BEV = 0) 0xBFC0 0200 (BEV = 1) 0x0000 XTLB refill, EXL = 0 0x0180 Other than above 50 0x0080 Data Sheet U13211EJ2V0DS00 µPD30111 4. INITIALIZATION INTERFACE Remark # in a signal name indicates active low. 4.1 Reset Function The VR4111 can be reset in the following five ways. For details, refer to the VR4111 User's Manual. 4.1.1 RTC reset Assert the RTCRST# pin active on power application. The status of each of the TxD/CLKSEL2, RTS#/CLKSEL1, DTR#/CLKSEL0, DBUS32/GPIO48, MIPS16EN, and GPIO49 pins is sampled at the rising edge of the RTCRST# signal, and is internally initialized by the VR4111. RTC reset does not save the status information at all, and completely initializes the internal status of the processor. Because the DRAM does not enter the self-refresh mode, the contents of the DRAM after RTC reset are not guaranteed. After reset, the processor serves as the master of the system bus, the sequence of the cold reset exception is executed, and accessing the reset vector in the ROM space is started. Because only part of the internal status of the VR4111 is reset, completely initialize the processor by software. Figure 4-1. RTC Reset RTCRST# (input) POWER (input) POWERON (output) MPOWER (output) ColdReset# (internal) Reset# (internal) Hi-Z RSTOUT (output) Undefined PLL (internal) BUSCLK (output) RTC (internal, 32 kHz) Undefined Stable oscillation Stable oscillation > 32 ms > 4 BUSCLK 16 ms >2s 350 ms 16 MasterClockNote Note MasterClock is the basic clock in the CPU core. Data Sheet U13211EJ2V0DS00 51 µPD30111 4.1.2 RSTSW Assert the RSTSW# pin active. Reset by RSTSW initializes all the internal statuses except the RTC timer and the PMU. Because the DRAM does not enter the self-refresh mode, the contents of the DRAM after RSTSW reset are not guaranteed. After reset, the processor serves as the master of the system bus, the sequence of the cold reset exception is executed, and accessing the reset vector in the ROM space is started. Because only part of the internal status of the VR4111 is reset, completely initialize the processor by software. Figure 4-2. RSTSW RSTSW# (input) MRAS (0:3)# (output) UCAS#/LCAS# (output) POWER (input) L MPOWER (input) H ColdReset# (internal) Reset# (internal) Stable oscillation Stable oscillation Undefined PLL (internal) RTC (internal, 32 kHz) Stable oscillation 16 ms > 3 RTC Note 52 MasterClock is the basic clock in the CPU core. Data Sheet U13211EJ2V0DS00 16 MasterClockNote µPD30111 4.1.3 Deadman’s SW The VR4111 is reset if the Deadman’s SW is not cleared within a specific time after the Deadman’s SW was enabled. For the setting of the Deadman’s SW, see 12. DSU (Deadman’s SW Unit). Reset by Deadman’s SW initializes all the internal statuses except the RTC timer and PMU. Because the DRAM does not enter the self-refresh mode, the contents of the DRAM after Deadman’s SW reset are not guaranteed. After reset, the processor serves as the master of the system bus, the sequence of the cold reset exception is executed, and accessing the reset vector in the ROM space is started. Because only part of the internal status of the VR4111 is reset, completely initialize the processor by software. Figure 4-3. Deadman's SW RSTSW# (input) H POWER (input) L MPOWER (output) H ColdReset# (internal) Reset# (internal) Stable oscillation Stable oscillation Undefined PLL (internal) RTC (internal, 32 kHz) Stable oscillation 16 ms 16 MasterClockNote Note MasterClock is the basic clock in the CPU core. Data Sheet U13211EJ2V0DS00 53 µPD30111 4.1.4 Software shutdown When the software executes the HIBERNATE instruction, the VR4111 places the DRAM in the self-refresh mode, deasserts the MPOWER pin inactive, and enters the reset status. Reset by software shutdown initializes all the internal statuses except the RTC timer and the PMU. After reset, the processor serves as the master of the system bus, the sequence of the cold reset exception is executed, and accessing the reset vector in the ROM space is started. Because only part of the internal status of the VR4111 is reset, completely initialize the processor by software. Figure 4-4. Software Shutdown MRAS (0:3)#/ UCAS#/LCAS# (output) POWER (input) POWERON (output) MPOWER (output) ColdReset# (internal) Reset# (internal) Undefined PLL (internal) Stop RTC (internal, 32 kHz) Stable oscillation > 32 ms Stable oscillation 16 ms Note 1 16 MasterClockNote 2 Notes 1. Wait time until starting. This value can be changed by a setting of the PMUWAITREG register. For details, refer to VR4111 User’s Manual. 2. MasterClock is the basic clock in the CPU core. 54 Data Sheet U13211EJ2V0DS00 µPD30111 4.1.5 HALTimer shutdown The VR4111 enters the reset status if the HALTimer is not cleared (the HALTIMERRST bit of the PMUCNTREG register is set to 1) by software within 4 seconds after RTC reset has been cleared. Reset by HALTimer initializes all the internal statuses except the RTC timer and PMU. After reset, the processor serves as the master of the system bus, the sequence of the cold reset exception is executed, and accessing the reset vector in the ROM space is started. Because only part of the internal status of the VR4111 is reset, completely initialize the processor by software. Figure 4-5. HALTimer Shutdown MRAS (0:3)#/ UCAS#/LCAS# (output) POWER (input) POWERON (output) MPOWER (output) ColdReset# (internal) Reset# (internal) Undefined PLL (internal) Stop RTC (internal, 32 kHz) Stable oscillation Stable oscillation > 32 ms 4s 16 ms Note 1 16 MasterClockNote 2 Notes 1. Wait time until starting. This value can be changed by a setting of the PMUWAITREG register. For details, refer to VR4111 User’s Manual. 2. MasterClock is the basic clock in the CPU core. 4.2 CPU Core Registers after Reset Each of the CPU core registers is reset as follows: • The TS and SR bits of the status register are cleared to 0. • The ERL and BEV bits of the status register are set to 1. • The upper-limit value (31) is set to the random register. • The wired register is initialized to 0. • Bits 31 through 28 of the config register are cleared to 0, and bits 22 through 3 are set to 0x04800. The other bits are undefined. • The values of the registers other than above are undefined. Data Sheet U13211EJ2V0DS00 55 µPD30111 4.3 Power-On Sequence The causes that change the status of the VR4111 from the Hibernate mode or shutdown status to the Fullspeed mode are called power-on factors. The power-on factors include asserting the POWERON pin active, asserting the DCD# pin active, alarm from the WakeUp timer, and asserting the GPIO (0:3), GPIO (9:12) pins active. When a power-on factor occurs, the VR4111 asserts the POWERON pin active to inform the external circuit that power to the VR4111 is about to be turned ON. Three RTC clocks after the POWERON pin has been asserted active, the VR4111 checks the status of the BATTINH/BATTINT# pin. When the BATTINH/BATTINT# pin is low, the VR4111 deasserts the POWERON pin inactive one RTC clock after checking the BATTINH or GPIO9 pin status, and is not started. If the BATTINH/BATTINT# pin is high, the VR4111 deasserts the POWERON pin inactive three RTC clocks after the checking, asserts the MPOWER pin active, and is started. Figure 4-6 shows the timing chart where the VR4111 is started. Figure 4-7 shows the timing chart where the VR4111 is not started because the BATTINH/BATTINT# pin is low. Figure 4-6. Start Sequence of VR4111 (If Started) POWERON (output) MPOWER (input) ColdReset# (internal) Reset# (internal) BATTINH/BATTINT# (input) PLL (internal) Stop RTC (internal, 32 kHz) Detection of power-on factor 56 Checks status of BATTINH/BATTINT# pin CPU starts Data Sheet U13211EJ2V0DS00 Undefined status Stable oscillation µPD30111 Figure 4-7. Start Sequence of VR4111 (If Not Started) POWERON (output) MPOWER (output) L ColdReset# (internal) Reset# (internal) L L BATTINH/BATTINT# (input) PLL H (internal) RTC (internal, 32 kHz) Detection of power-on factor Checks status of BATTINH/BATTINT# pin CPU does not start Data Sheet U13211EJ2V0DS00 57 µPD30111 5. BCU (BUS CONTROL UNIT) The BCU transfers data received via the VR4110 CPU core and SysAD bus (internal) inside the VR4111. It also controls an external LCD controller, DRAM, ROM (flash memory or mask ROM), and PCMCIA controller via a system bus, and transfers data received via these devices ADD bus and DATA bus. For the charts of the timing between the VR4111 and each external device controlled by the BCU, see 23. ELECTRICAL SPECIFICATIONS. Table 5-1. BCU Registers Physical Address Symbol Function 0x0B00 0000 BCUCNTREG1 BCU control register 1 0x0B00 0002 BCUCNTREG2 BCU control register 2 0x0B00 000A BCUSPEEDREG BCU access cycle change register 0x0B00 000C BCUERRSTREG BCU bus error status register 0x0B00 000E BCURFCNTREG BCU refresh control register 0x0B00 0010 REVIDREG Peripheral unit revision ID register 0x0B00 0012 BCURFCOUNTREG BCU refresh cycle count register 0x0B00 0014 CLKSPEEDREG Clock specify register 0x0B00 0016 BCUCNTREG3 BCU control register 3 58 Data Sheet U13211EJ2V0DS00 µPD30111 6. DMAAU (DMA ADDRESS UNIT) The DMAAU controls the addresses for the DMA operations between AIU/IrDA 4-Mbps communication module (FIR) and memory. The DMA start address of each DMA channel can be specified in the range of 0x0000 0000 to 0x01FF FFFE as a half-word address. The DMA space of each DMA channel is secured in a 2-Kbyte block that starts from the address generated by masking the lower ten bits of the DMA start address to zero. The DMA operation is not guaranteed if the DMA space overlaps that of other peripheral units. Table 6-1. DMAAU Registers Physical Address Symbol Function 0x0B00 0020 AIUIBALREG DMA base lower address register for AIU input 0x0B00 0022 AIUIBAHREG DMA base higher address register for AIU input 0x0B00 0024 AIUIALREG DMA lower address register for AIU input 0x0B00 0026 AIUIAHREG DMA higher address register for AIU input 0x0B00 0028 AIUOBALREG DMA base lower address register for AIU output 0x0B00 002A AIUOBAHREG DMA base higher address register for AIU output 0x0B00 002C AIUOALREG DMA lower address register for AIU output 0x0B00 002E AIUOAHREG DMA higher address register for AIU output 0x0B00 0030 FIRBALREG DMA base lower address register for FIR 0x0B00 0032 FIRBAHREG DMA base higher address register for FIR 0x0B00 0034 FIRALREG DMA lower address register for FIR 0x0B00 0036 FIRAHREG DMA higher address register for FIR Data Sheet U13211EJ2V0DS00 59 µPD30111 7. DCU (DMA CONTROL UNIT) The DCU controls the DMA operation. It controls the DMA requests from the internal peripheral I/O units (AIU and FIR) and the acknowledge signal from the BCU that performs bus arbitration, and enables or disables the DMA operation. Table 7-1. DCU Registers Physical Address Symbol Function 0x0B00 0040 DMARSTREG DMA reset register 0x0B00 0042 DMAIDLEREG DMA sequencer status register 0x0B00 0044 DMASENREG DMA sequencer enable register 0x0B00 0046 DMAMSKREG DMA mask register 0x0B00 0048 DMAREQREG DMA request register 0x0B00 004A TDREG Transfer direction set register 60 Data Sheet U13211EJ2V0DS00 µPD30111 8. CMU (CLOCK MASK UNIT) The CMU is used to specify whether the CPU core supplies the clock to each peripheral unit. By supplying the clock only to the necessary peripheral units, the power consumption can be reduced. Table 8-1. CMU Register Physical Address 0x0B00 0060 Symbol Function CMUCLKMSK CMU clock mask register 9. ICU (INTERRUPT CONTROL UNIT) The ICU receives an interrupt request signal from each peripheral unit and generates an interrupt request signal (Int0, Int1, Int2, Int3, or NMI) to the CPU core. Table 9-1. ICU Registers Physical Address Symbol Function 0x0B00 0080 SYSINT1REG System interrupt register 1 (level 1) 0x0B00 0082 PIUINTREG PIU interrupt register (level 2) 0x0B00 0084 AIUINTREG AIU interrupt register(level 2) 0x0B00 0086 KIUINTREG KIU interrupt register (level 2) 0x0B00 0088 GIUINTLREG GIU interrupt lower address register (level 2) 0x0B00 008A DSIUINTREG DSIU interrupt register (level 2) 0x0B00 008C MSYSINT1REG System interrupt mask register 1 (level 1) 0x0B00 008E MPIUINTREG PIU interrupt mask register (level 2) 0x0B00 0090 MAIUINTREG AIU interrupt mask register (level 2) 0x0B00 0092 MKIUINTREG KIU interrupt mask register (level 2) 0x0B00 0094 MGIUINTLREG GIU interrupt mask lower address register (level 2) 0x0B00 0096 MDSIUINTREG DSIU interrupt mask register (level 2) 0x0B00 0098 NMIREG Battery interrupt select register 0x0B00 009A SOFTINTREG Software interrupt register 0x0B00 0200 SYSINT2REG System interrupt register 2 (level 1) 0x0B00 0202 GIUINTHREG GIU interrupt higher address register (level 2) 0x0B00 0204 FIRINTREG FIR interrupt register (level 2) 0x0B00 0206 MSYSINT2REG System interrupt mask register 2 (level 1) 0x0B00 0208 MGIUINTHREG GIU interrupt mask higher address register (level 2) 0x0B00 020A MFIRINTREG FIR interrupt mask register (level 2) Data Sheet U13211EJ2V0DS00 61 µPD30111 Figure 9-1. ICU Configuration Level 2 Level 1 siuint hspint ledint dozepiuint buserrint SOFTINTREG 5 FIRINTREG 7 5 AND/OR MFIRINTREG 4 DSIUINTREG 4 AND/OR SYSINT1REG MDSIUINTREG SYSINT2REG 16 GIUINTLREG 16 AND/OR NMI (battintNote) MGIUINTLREG 16 GIUINTHREG 16 AND/OR MGIUINTHREG 6 3 Int3 (hspint) 17 KIUINTREG 3 AND/OR AND/OR MKIUINTREG 7 Int2 (rtclong2int) AIUINTREG 7 AND/OR MAIUINTREG 17 6 Int1 (rtclong1int) PIUINTREG 6 AND/OR Int0 (All interrupts except for battintNote and rtclongint.) MPIUNTREG etimerint rtclong1int MSYSINT1REG MSYSINT2REG Interrupt indication register rtclong2int powerint Interrupt mask register battint AND/OR logic (Checks masking of each bit and summarizes interrupt request of each register.) tclkint Note For battint, whether NMI or Int0 is used can be specified by NMIREG. If NMI is selected, the CPU core cannot mask this interrupt, however, MSYSINT1REG in the ICU can set the mask. 62 Data Sheet U13211EJ2V0DS00 µPD30111 10. PMU (POWER MANAGEMENT UNIT) The PMU manages and controls power to the internal and external circuits of the VR4111 as follows: • Controls shutdown • Controls reset • Controls power-on • Controls low-power consumption mode (power mode) PMU also set the start cause via the GPIO (0:3), (9:12) pins and DCD# pin. Table 10-1. PMU Registers Physical Address Symbol Function 0x0B00 00A0 PMUINTREG PMU interrupt/status register 0x0B00 00A2 PMUCNTREG PMU control register 0x0B00 00A4 PMUINT2REG PMU interrupt/status register 2 0x0B00 00A6 PMUCNT2REG PMU control register 2 0x0B00 00A8 PMUWAITREG PMU wait count register 10.1 Power Mode The VR4111 supports the following four power modes: • Fullspeed mode • Standby mode • Suspend mode • Hibernate mode Figure 10-1 illustrates the transition of the power modes. To change the mode from Fullspeed to Standby, Suspend, or Hibernate, execute the STANDBY, SUSPEND, or HIBERNATE instruction. To change the mode from Standby, Suspend, or Hibernate to Fullspeed, either generate an interrupt, or execute a reset operation. Table 10-2 outlines each power mode. Data Sheet U13211EJ2V0DS00 63 µPD30111 Figure 10-1. Power Mode Transition Standby mode Suspend mode (2) (3) (1) (4) Fullspeed mode (6) (5) Hibernate mode (1) STANDBY instruction, pipeline flash, SysAD idle, PClock high level (2) All interrupts (3) (4) SUSPEND instruction, pipeline flash, SysAD idle, PClock high level, TClock high level, DRAM self refresh start POWER RSTSW Elapsed Time RTCLong1 RTCLong2 KeyTouch PenTouch GPIO (9:14) GPIO (0:3) DCD# (GPIO, SIU) BATTINTR (5) HIBERNATE instruction, pipeline flash, SysAD idle, PClock high level, TClock high level, MasterOut high level, DRAM self refresh start (6) POWER Elapsed Time DCD# GPIO (0:3) GPIO (9:12) Table 10-2. Outline of Power Mode Mode Fullspeed Internal Peripheral Unit RTC ICU DCU On On On Pipe Line Others Note Selectable Note On Standby On On On Suspend On On Off Off Off Hibernate On Off Off Off Off Off Off Off Off Off Off Note Refer to 8. CMU (CLOCK MASK UNIT). 64 Data Sheet U13211EJ2V0DS00 Selectable Off µPD30111 11. RTC (REAL-TIME CLOCK UNIT) The RTC unit consists of the following three types of timers. • RTCLong timer (two timers) This is a 24-bit programmable down counter that counts down at a cycle of 32.768 kHz. It can generate an interrupt request at intervals of up to 512 seconds. • ElapsedTime timer (one timer) This is a 48-bit up counter that counts up at a cycle of 32.768 kHz. When this counter counts up to about 272 years, it returns to 0. This counter consists of an 48-bit comparator (ECMPHREG, ECMPLREG, ECMPMREG) and a 48-bit alarm time register (ETIMELREG, ETIMEMREG, ETIMEHREG). By comparing these, an interrupt request can be generated at specific time. • TClock count timer (one timer) This is a 25-bit programmable counter that counts down at each TClock cycle. Interrupt requests can be generated with a cycle of up to 2 seconds by setting the CLKSEL (0:2) pins. This timer is used for performance evaluation. Table 11-1. RTC Registers Physical Address Symbol Function 0x0B00 00C0 ETIMELREG Elapsed Time timer lower register 0x0B00 00C2 ETIMEMREG Elapsed Time timer middle register 0x0B00 00C4 ETIMEHREG Elapsed Time timer higher register 0x0B00 00C8 ECMPLREG Elapsed Time timer compare lower register 0x0B00 00CA ECMPMREG Elapsed Time timer compare middle register 0x0B00 00CC ECMPHREG Elapsed Time timer compare higher register 0x0B00 00D0 RTCL1LREG RTCLong 1 timer lower register 0x0B00 00D2 RTCL1HREG RTCLong 1 timer higher register 0x0B00 00D4 RTCL1CNTLREG RTCLong 1 timer count lower register 0x0B00 00D6 RTCL1CNTHREG RTCLong 1 timer count higher register 0x0B00 00D8 RTCL2LREG RTCLong 2 timer lower register 0x0B00 00DA RTCL2HREG RTCLong 2 timer higher register 0x0B00 00DC RTCL2CNTLREG RTCLong 2 timer count lower register 0x0B00 00DE RTCL2CNTHREG RTCLong 2 timer count higher register 0x0B00 01C0 TCLKLREG TClock counter lower register 0x0B00 01C2 TCLKHREG TClock counter higher register 0x0B00 01C4 TCLKCNTLREG TClock counter count lower register 0x0B00 01C6 TCLKCNTHREG TClock counter count higher register 0x0B00 01CE RTCINTREG RTC interrupt register Data Sheet U13211EJ2V0DS00 65 µPD30111 12. DSU (DEADMAN'S SW UNIT) The DSU automatically detects a runaway of the VR4111 and resets the VR4111. By stopping a runaway at the earliest stage by using the DSU, destruction of data can be minimized. The DSU can be set for a cycle of up to 15 seconds in units of 1 second. Set the DSWCLR bit of the DSUCLRREG register to 1 within this time by means of software. If the bit is not set within this time, the VR4111 enters the reset status (refer to 4. INITIALIZATION INTERFACE). Table 12-1. DSU Registers Physical Address Symbol Function 0x0B00 00E0 DSUCNTREG DSU control register 0x0B00 00E2 DSUSETREG DSU cycle set register 0x0B00 00E4 DSUCLRREG DSU clear register 0x0B00 00E6 DSUTIMREG DSU elapsed time register 66 Data Sheet U13211EJ2V0DS00 µPD30111 13. GIU (GENERAL-PURPOSE I/O UNIT) The GIU controls the GPIO and DCD# pins. The GPIO pins constitute a general-purpose I/O port. GIU can assign the interrupt request signal function for these pins. As a trigger, the edge of the input signal (rising or falling edge), high level, or low level can be selected. Use the PMUCNTREG register of PMU, however, to specify the power-on factor via the GPIO (0:3), GPIO (9:12), or DCD# pin. Table 13-1. GIU Registers Physical Address Symbol Function 0x0B00 0100 GIUIOSELL GPIO input/output setting lower register 0x0B00 0102 GIUIOSELH GPIO input/output setting higher register 0x0B00 0104 GIUPIODL GPIO input/output data lower register 0x0B00 0106 GIUPIODH GPIO input/output data higher register 0x0B00 0108 GIUINTSTATL GPIO interrupt lower register 0x0B00 010A GIUINTSTATH GPIO interrupt higher register 0x0B00 010C GIUINTENL GPIO interrupt enable lower register 0x0B00 010E GIUINTENH GPIO interrupt enable higher register 0x0B00 0110 GIUINTTYPL GPIO interrupt trigger setting lower register 0x0B00 0112 GIUINTTYPH GPIO interrupt trigger setting higher register 0x0B00 0114 GIUINTALSELL GPIO interrupt level setting lower register 0x0B00 0116 GIUINTALSELH GPIO interrupt level setting higher register 0x0B00 0118 GIUINTHTSELL GPIO interrupt hold setting lower register 0x0B00 011A GIUINTHTSELH GPIO interrupt hold setting higher register 0x0B00 011C GIUPODATL GPIO output data lower register 0x0B00 011E GIUPODATH GPIO output data higher register 0x0B00 02E0 GIUUSEUPDN GPIO pull-up/pull-down enable register 0x0B00 02E2 GIUTERMUPDN GPIO pull-up/pull-down setting register Table 13-2. Outline of GPIO pins Pin Name Interrupt Request Detection Clock (Internal) Input Buffer Type GPIO (49:32) – – GPIO (31:16) TClock Normal GPIO15 (DCD#) MasterOut Normal GPIO (14:9) MasterOut Normal GPIO (8:4) TClock Schmitt GPIO (3:0) RTC Schmitt Caution Pin GPIO15 cannot be used as a general-purpose I/O pin because its function is fixed to DCD# signal input. Data Sheet U13211EJ2V0DS00 67 µPD30111 14. PIU (TOUCH PANEL UNIT) The PIU uses an on-chip 10-bit A/D converter and detects the X and Y coordinates of pen contact locations on the touch panel, and scans the general-purpose A/D input port. Since the touch panel control circuit and the A/D converter (conversion precision: 10 bits) are both on-chip, the touch panel can be connected directly to the VR4111. Figure 14-1. PIU Peripheral Block Diagram VR4111 Battery, etc. ADIN2 I/O Buffer ADIN1 1 ADC AIU 4 ADIN0 Touch panel Selector 4 AUDIOIN TPY1 TPY0 I/O Buffer TPX1 PIU TPX0 Table 14-1. PIU Registers Physical Address Symbol Function 0x0B00 0122 PIUCNTREG PIU control register 0x0B00 0124 PIUINTREG PIU interrupt register 0x0B00 0126 PIUSIVLREG PIU data sampling cycle set register 0x0B00 0128 PIUSTBLREG PIU A/D converter wait time set register 0x0B00 012A PIUCMDREG PIU A/D command register 0x0B00 0130 PIUASCNREG PIU A/D port scan register 0x0B00 0132 PIUAMSKREG PIU A/D scan mask register 0x0B00 013E PIUCIVLREG PIU wait time count register 0x0B00 02A0 PIUPB00REG PIU page 0 buffer 0 register 0x0B00 02A2 PIUPB01REG PIU page 0 buffer 1 register 0x0B00 02A4 PIUPB02REG PIU page 0 buffer 2 register 0x0B00 02A6 PIUPB03REG PIU page 0 buffer 3 register 0x0B00 02A8 PIUPB10REG PIU page 1 buffer 0 register 0x0B00 02AA PIUPB11REG PIU page 1 buffer 1 register 0x0B00 02AC PIUPB12REG PIU page 1 buffer 2 register 0x0B00 02AE PIUPB13REG PIU page 1 buffer 3 register 0x0B00 02B0 PIUAB0REG PIU A/D scan buffer 0 register 0x0B00 02B2 PIUAB1REG PIU A/D scan buffer 1 register 0x0B00 02B4 PIUAB2REG PIU A/D scan buffer 2 register 0x0B00 02B6 PIUAB3REG PIU A/D scan buffer 3 register 0x0B00 02BC PIUPB04REG PIU page 0 buffer 4 register 0x0B00 02BE PIUPB14REG PIU page 1 buffer 4 register 68 Data Sheet U13211EJ2V0DS00 µPD30111 15. SIU (SERIAL INTERFACE UNIT) The SIU is a serial interface that conforms to the RS-232C communication standard and is equipped with two onechannel interfaces, one for transmission and one for reception. The SIU is functionally compatible with the NS16550, and supports a transfer rate up to 1.152 Mbps. This unit also has an infrared communication function that corresponds to SIR. Table 15-1. SIU Registers Physical Address 0x0C00 0000 0x0C00 0001 0x0C00 0002 LCR7 R/W Symbol Function 0 R SIURB Receive buffer register (Read) W SIUTH Transmission hold register (Write) 1 R/W SIUDLL Division ratio lower byte register 0 R/W SIUIE Interrupt enable register 1 R/W SIUDLM Division ratio higher byte register – R SIUIID Interrupt identification register (Read) W SIUFC FIFO control register (Write) 0x0C00 0003 – R/W SIULC Line control register 0x0C00 0004 – R/W SIUMC Modem control register 0x0C00 0005 – R/W SIULS Line status register 0x0C00 0006 – R/W SIUMS Modem status register 0x0C00 0007 – R/W SIUSC Scratch register 0x0C00 0008 – R/W SIUIRSEL Serial communication select register 0x0C00 0009 – R/W SIURESET SIU reset register 0x0C00 000A – R/W SIUCSEL SIU echo-back control register Remark LCR7 is bit 7 of the SIULC register. Data Sheet U13211EJ2V0DS00 69 µPD30111 Figure 15-1. SIU Peripheral Block Diagram CPU core BCU siuout piad piwrdata Interrupt request signal (to ICU) Control signal (to DCU) SIU Internal External IRDIN IRDOUT# IrDA module 70 RxD TxD RS-232C connector Data Sheet U13211EJ2V0DS00 µPD30111 Figure 15-2. Example of Connection between VR4111 and IrDA Module (a) When HP product used VR4111 IRDIN IRDOUT# FIRDIN#/SEL (b) When TEMIC product used IrDA module VR4111 RxDA IRDIN RxD IRDOUT# TxD FIRDIN#/SEL SEL TxD RxDB IrDA module (c) When SHARP product used VR4111 IrDA module IRDIN RxD IRDOUT# TxD FIRDIN#/SEL NC Remark NC: No connection Data Sheet U13211EJ2V0DS00 71 µPD30111 16. AIU (AUDIO INTERFACE UNIT) The AIU supports speaker output and microphone input operations. It has 10-bit A/D and D/A converters, and functions as the digital voice I/O interface. DMA operation is supported for both input and output operations. Table 16-1. AIU Registers Physical Address Symbol Function 0x0B00 0160 MDMADATREG Mic input DMA data register 0x0B00 0162 SDMADATREG Speaker output DMA data register 0x0B00 0166 SODATREG Speaker output data register 0x0B00 0168 SCNTREG Speaker output control register 0x0B00 016A SCNVRREG D/A conversion rate setting register 0x0B00 0170 MIDATREG Mic input data register 0x0B00 0172 MCNTREG Mic input control register 0x0B00 0174 MCNVRREG A/D conversion rate setting register 0x0B00 0178 DVALIDREG Data valid indicate register 0x0B00 017A SEQREG Sequencer operation enable register 0x0B00 017C INTREG AIU interrupt register 72 Data Sheet U13211EJ2V0DS00 µPD30111 17. KIU (KEYBOARD INTERFACE UNIT) The KIU includes 12 scan lines and 8 detection lines to enable detection when 64, 80, or 96 keys are pressed. The number of scan lines can be selected from 8, 10, and 12. The 12 scan lines can be used as a general-purpose output port by setting the following registers. Table 17-1. KIU Registers Physical Address Symbol Function 0x0B00 0180 KIUDAT0 KIU data 0 register 0x0B00 0182 KIUDAT1 KIU data 1 register 0x0B00 0184 KIUDAT2 KIU data 2 register 0x0B00 0186 KIUDAT3 KIU data 3 register 0x0B00 0188 KIUDAT4 KIU data 4 register 0x0B00 018A KIUDAT5 KIU data 5 register 0x0B00 0190 KIUSCANREP KIU key scan control register 0x0B00 0192 KIUSCANS KIU sequencer status register 0x0B00 0194 KIUWKS KIU key scan wait time setting register 0x0B00 0196 KIUWKI KIU key scan interval setting register 0x0B00 0198 KIUINT KIU interrupt register 0x0B00 019A KIURST KIU reset register 0x0B00 019C KIUGPEN KIU general-purpose output enable register 0x0B00 019E SCANLINE KIU scan line control register Data Sheet U13211EJ2V0DS00 73 µPD30111 18. DSIU (DEBUG SERIAL INTERFACE UNIT) The DSIU is a dedicated serial interface unit that is used during debugging. It supports a data transfer rate of up to 115.2 kbps. In addition to the DDIN and DDOUT I/O pins, it supports the DCTS# and DRTS# pins that are used for hardware flow control. These pins can be used as a general-purpose output port when the DSIU is not used. Table 18-1. DSIU Registers Physical Address Symbol Function 0x0B00 01A0 PORTREG General-purpose port switch register 0x0B00 01A2 MODEMREG Modem control register 0x0B00 01A4 ASIM00REG Asynchronous mode 0 register 0x0B00 01A6 ASIM01REG Asynchronous mode 1 register 0x0B00 01A8 RXB0RREG Extend receive buffer register 0x0B00 01AA RXB0LREG Receive buffer register 0x0B00 01AC TXS0RREG Extend transmit shift register 0x0B00 01AE TXS0LREG Transmit shift register 0x0B00 01B0 ASIS0REG Communication state register 0x0B00 01B2 INTR0REG DSIU interrupt register 0x0B00 01B6 BPRM0REG Baud rate generator prescaler mode register 0x0B00 01B8 DSIURESETREG DSIU reset register 74 Data Sheet U13211EJ2V0DS00 µPD30111 19. LED (LED CONTROL UNIT) LED switches LEDs on and off at a regular interval. This operation can be executed in Standby, Suspend, or Hibernate mode, and the interval time can be programmed. Table 19-1. LED Registers Physical Address Symbol Function 0x0B00 0240 LEDHTSREG LED ON time setting register 0x0B00 0242 LEDLTSREG LED OFF time setting register 0x0B00 0248 LEDCNTREG LED control register 0x0B00 024A LEDASTCREG LED auto stop time setting register 0x0B00 024C LEDINTREG LED interrupt register Data Sheet U13211EJ2V0DS00 75 µPD30111 20. HSP (MODEM INTERFACE UNIT) HSP interfaces between the modem software of the CPU core and the external circuits. This unit uses PC-TEL’s NEC56K, and it has the following main functions. • Controls CODEC devices and performs serial/parallel conversion of CODEC transmitted/received data • Controls signal lines in the data access arrangement block (DAA), such as relay or hook Table 20-1. HSP Registers Physical Address R/W Symbol Function 0x0C00 0020 R/W HSPINIT HSP initialization register 0x0C00 0022 R/W HSPDATA (7:0) HSP data register (lower) 0x0C00 0023 R/W HSPDATA (15:8) HSP data register (higher) 0x0C00 0024 W HSPINDEX HSP index register 0x0C00 0028 R HSPID (7:0) HSP ID register 0x0C00 0029 R HSPPCS (7:0) HSP I/O address program confirmation register W HSPPCTEL (7:0) HSP signature check port Figure 20-1. Block Connection Example IRING ILCSENSE OFFHOOK TELCON VR4111 (HSP) SDO HSPMCLK AFERST# HC0 FS SDI HSPSCLK Lines DAA TXAN TXAP RXA CODEC MUTE 76 Data Sheet U13211EJ2V0DS00 Speaker 3 4 µPD30111 21. FIR (FAST IrDA INTERFACE UNIT) FIR supports the IrDA 1.1 high-speed infrared communication physical layer standard. For infrared communication corresponding to IrDA 1.0, use the SIU instead. However, the pins interfacing the IrDA module are common pins. Table 21-1. FIR Registers Physical Address Symbol Function 0x0C00 0040 FRSTR FIR reset register 0x0C00 0042 DPINTR DMA page interrupt register 0x0C00 0044 DPCNTR DMA page control register 0x0C00 0050 TDR Transmitted data register 0x0C00 0052 RDR Received data register 0x0C00 0054 IMR Interrupt mask register 0x0C00 0056 FSR FIFO set-up register 0x0C00 0058 IRSR1 IR set-up register 1 0x0C00 005C CRCSR CRC set-up register 0x0C00 005E FIRCR FIR control register 0x0C00 0060 MIRCR MIR control register 0x0C00 0062 DMACR DMA control register 0x0C00 0064 DMAER DMA enable register 0x0C00 0066 TXIR Transmission indication register 0x0C00 0068 RXIR Reception indication register 0x0C00 006A IFR Interrupt flag register 0x0C00 006C RXSTS Reception status register 0x0C00 006E TXFL Transmission frame length register 0x0C00 0070 MRXF Maximum reception flame length register 0x0C00 0074 RXFL Reception frame length register Data Sheet U13211EJ2V0DS00 77 µPD30111 22. INSTRUCTION SET The VR4111 has two types of instructions: 32-bit instructions (MIPS III) and 16-bit instructions (MIPS16). 22.1 MIPS III Instruction Each instruction of the MIPS III consists of 1 word (32 bits) located at a word boundary. Three instruction formats are available as shown in Figure 22-1. By employing the three simplified instruction formats, the decoding of instructions is simplified. Complicated operations and addressing modes that are not frequently used are realized by the compiler. 22.1.1 Instruction formats The instruction formats of the MIPS III are shown below. Figure 22-1. MIPS III CPU Instruction Format 31 I-type (immediate) 26 25 op 31 J-type (jump) 21 20 rs 16 15 rt immediate 26 25 0 op 31 R-type (register) 0 target 26 25 op 21 20 rs op 6-bit instruction code rs 5-bit source register number 16 15 rt 11 10 rd 6 5 sa rt 5-bit target (source/destination) register number, or branch condition immediate 16-bit immediate value, branch displacement, or address displacement target 26-bit unconditional branch target address rd 5-bit destination register number sa 5-bit shift funct 6-bit function field 0 funct 22.1.2 MIPS III instruction set list All the MIPS III instructions of the V R4111 are classified into three sets: the instruction set common to all the VR TM Series processors (ISA: Instruction Set Architecture), the instruction set executed by the VR4000 Series (extended ISA), and the system control coprocessor instruction set. Each instruction set is listed below. 78 Data Sheet U13211EJ2V0DS00 µPD30111 Table 22-1. CPU Instruction Set: ISA (1/3) Instruction Description Load/store instruction LB LBU LH LHU LW LWL LWR SB SH SW SWL SWR op 3-operand type instruction ADD ADDU SUB SUBU SLT SLTU AND OR XOR NOR Shift instruction SLL SRL SRA SLLV SRLV SRAV base rt offset LB LBU LH LHU LW LWL LWR SB SH SW SWL SWR Load Byte Load Byte Unsigned Load Halfword Load Halfword Unsigned Load Word Load Word Left Load Word Right Store Byte Store Halfword Store Word Store Word Left Store Word Right AIU immediate instruction ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI Format op rs rt rs rt rd rt, rs, immediate rt, rs, immediate rt, rs, immediate rt, rs, immediate rt, rs, immediate rt, rs, immediate rt, rs, immediate rt, rs, immediate sa ADD ADDU SUB SUBU SLT SLTU AND OR XOR NOR Add Add Unsigned Subtract Subtract Unsigned Set On Less Than Set On Less Than Unsigned And Or Exclusive Or Nor op offset ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI Add Immediate Add Immediate Unsigned Set On Less Than Immediate Set On Less Than Immediate Unsigned And Immediate Or Immediate Exclusive Or Immediate Load Upper Immediate op rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rs Shift Left Logical Shift Right Logical Shift Right Arithmetic Shift Left Logical Variable Shift Right Logical Variable Shift Right Arithmetic Variable Data Sheet U13211EJ2V0DS00 rt rd rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt sa SLL SRL SRA SLLV SRLV SRAV funct funct rd, rt, sa rd, rt, sa rd, rt, sa rd, rt, rs rd, rt, rs rd, rt, rs 79 µPD30111 Table 22-1. CPU Instruction Set: ISA (2/3) Instruction Description Multiplication/division instruction MULT MULTU DIV DIVU MFHI MFLO MTHI MTLO op SYNC SYSCALL BREAK Coprocessor instruction (1) LWCz SWCz Coprocessor instruction (2) MTCz MFCz CTCz CFCz 80 rs, rt rs, rt rs, rt rs, rt rd rd rs rs J JAL op rs rt sa JR JALR rs rt rs rs rs rs, rd BEQ BNE BLEZ BGTZ sub rt funct offset rs, rt, offset rs, rt, offset rs, offset rs, offset offset BLTZ BGEZ BLTZAL BGEZAL Branch On Less Than Zero Branch On Greater Than Or Equal To Zero Branch On Less Than Zero And Link Branch On Greater Than Or Equal To Zero And Link SPECIAL target target rd Branch On Equal Branch On Not Equal Branch On Less Than Or Equal To Zero Branch On Greater Than Zero REGIMM funct target Jump Register Jump And Link Register Special instruction sa MULT MULTU DIV DIVU MFHI MFLO MTHI MTLO op Branch instruction (2) BLTZ BGEZ BLTZAL BGEZAL rd Jump Jump And Link Branch instruction (1) BEQ BNE BLEZ BGTZ rt op Jump instruction (2) JR JALR rs Multiply Multiply Unsigned Divide Divide Unsigned Move From HI Move From LO Move To HI Move To LO Jump instruction (1) J JAL Format rd rs, offset rs, offset rs, offset rs, offset sa funct SYNC SYSCALL BREAK Synchronize System Call Breakpoint op rs rt rd Load Word To Coprocessor z Store Word From Coprocessor z op sa LWCz SWCz rs Move To Coprocessor z Move From Coprocessor z Move Control To Coprocessor z Move Control From Coprocessor z Data Sheet U13211EJ2V0DS00 rt rd funct rt, offset (base) rt, offset (base) sa MTCz MFCz CTCz CFCz funct rt, rd rt, rd rt, rd rt, rd µPD30111 Table 22-1. CPU Instruction Set: ISA (3/3) Instruction Description Coprocessor instruction (3) COPz COPz Format CO cofun Coprocessor z Operation Coprocessor instruction (4) COPz COPz BCzT BCzF BC br cofun offset Branch On Coprocessor z True Branch On Coprocessor z False BCzT BCzF offset offset Table 22-2. CPU Instruction Set: Extended ISA (1/2) Instruction Load/store instruction LD LDL LDR LWU SD SDL SDR AIU immediate instruction DADDI DADDIU 3-operand type instruction DADD DADDU DSUB DSUBU Shift instruction DSLL DSRL DSRA DSLLV DSRLV DSRAV DSLL32 DSRL32 DSRA32 Multiplication/division instruction (1) DMULT DMULTU DDIV DDIVU Description op Format base rt offset LD LDL LDR LWU SD SDL SDR Load Doubleword Load Doubleword Left Load Doubleword Right Load Word Unsigned Store Doubleword Store Doubleword Left Store Doubleword Right op rs rt immediate Doubleword Add Immediate Doubleword Add Immediate Unsigned op rs DADDI DADDIU rt rd rs rt sa rd rs Doubleword Multiply Doubleword Multiply Unsigned Doubleword Divide Doubleword Divide Unsigned Data Sheet U13211EJ2V0DS00 rt rd funct rd, rs, rt rd, rs, rt rd, rs, rt rd, rs, rt sa DSLL DSRL DSRA DSLLV DSRLV DSRAV DSLL32 DSRL32 DSRA32 Doubleword Shift Left Logical Doubleword Shift Right Logical Doubleword Shift Right Arithmetic Doubleword Shift Left Logical Variable Doubleword Shift Right Logical Variable Doubleword Shift Right Arithmetic Variable Doubleword Shift Left Logical+32 Doubleword Shift Right Logical+32 Doubleword Shift Right Arithmetic+32 op rt, rs, immediate rt, rs, immediate DADD DADDU DSUB DSUBU Doubleword Add Doubleword Add Unsigned Doubleword Subtract Doubleword Subtract Unsigned op rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) rt, offset (base) funct rd, rt, sa rd, rt, sa rd, rt, sa rd, rt, sa rd, rt, sa rd, rt, sa rd, rt, sa rd, rt, sa rd, rt, sa sa DMULT DMULTU DDIV DDIVU funct rs, rt rs, rt rs, rt rs, rt 81 µPD30111 Table 22-2. CPU Instruction Set: Extended ISA (2/2) Instruction Multiplication/division instruction (2) MADD16 DMADD16 Description op Branch instruction (1) BEQL BNEL BLEZL BGTZL Branch instruction (2) BLTZL BGEZL BLTZALL BGEZALL Exception instruction TGE TGEU TLT TLTU TEQ TNE Exception immediate instruction TGEI TGEIU TLTI TLTIU TEQI TNEI 82 rs rt immediate Multiply and Add 16-bit Integer Doubleword Multiply and Add 16-bit Integer Jump instruction JALX Format MADD16 rs, rt DMADD16 rs, rt op target Jump And Link Exchange op JALX rs rt offset BEQL BNEL BLEZL BGTZL Branch On Equal Likely Branch On Not Equal Likely Branch On Less Than Or Equal To Zero Likely Branch On Greater Than Zero Likely REGIMM rs sub rs rt BLTZL BGEZL BLTZALL BGEZALL REGIMM rs sub Trap If Greater Than Or Equal Immediate Trap If Greater Than Or Equal Immediate Unsigned Trap If Less Than Immediate Trap If Less Than Immediate Unsigned Trap If Equal Immediate Trap If Not Equal Immediate Data Sheet U13211EJ2V0DS00 rd rs, offset rs, offset rs, offset rs, offset sa TGE TGEU TLT TLTU TEQ TNE Trap If Greater Than Or Equal Trap If Greater Than Or Equal Unsigned Trap If Less Than Trap If Less Than Unsigned Trap If Equal Trap If Not Equal rs, rt, offset rs, rt, offset rs, offset rs, offset offset Branch On Less Than Zero Likely Branch On Greater Than Or Equal To Zero Likely Branch On Less Than Zero And Link Likely Branch On Greater Than Or Equal To Zero And Link Likely SPECIAL target funct rs, rt rs, rt rs, rt rs, rt rs, rt rs, rt immediate TGEI TGEIU TLTI TLTIU TEQI TNEI rs, immediate rs, immediate rs, immediate rs, immediate rs, immediate rs, immediate µPD30111 Table 22-3. System Control Coprocessor (CP0) Instruction Set Instruction Description System control coprocessor instruction (1) MFC0 MTC0 DMFC0 DMTC0 COP0 COP0 COP0 rd 0 MFC0 MTC0 DMFC0 DMTC0 CO rt, rd rt, rd rt, rd rt, rd funct TLBR TLBWI TLBWR TLBP ERET CO funct STANDBY SUSPEND HIBERNATE Standby Suspend Hibernate System control coprocessor instruction (4) CACHE rt Read Indexed TLB Entry Write Indexed TLB Entry Write Random TLB Entry Probe TLB For Matching Entry Exception Return System control coprocessor instruction (3) STANDBY SUSPEND HIBERNATE sub Move From Coprocessor 0 Move To Coprocessor 0 Doubleword Move From Coprocessor 0 Doubleword Move To Coprocessor 0 System control coprocessor instruction (2) TLBR TLBWI TLBWR TLBP ERET Format CACHE base sub Cache Operation offset CACHE sub, offset (base) 22.1.3 Instruction execution time In principle, the VR4111 executes one instruction in one cycle, but some instructions take two cycles or more. (1) The data loaded by a load instruction cannot be used in the delay slot. If an instruction that uses load data is placed in the delay slot, the pipeline stalls. A store instruction stalls by the delay slot if it is followed by a load instruction or MFC0. If a branch instruction whose condition is satisfied or a jump instruction is executed, the instruction at the destination address is executed after the delay slot. Table 22-4. Number of Delay Slot Cycles Instruction Category Necessary Number of Cycles (PCycle) Load 1 Store 1 Jump 1 Branch 1 Data Sheet U13211EJ2V0DS00 83 µPD30111 (2) The number of cycles indicated in the table below is necessary for executing an integer multiplication/division or sum-of-products operation instructions. These instructions can be executed in parallel with other instructions, except those that access the HI/LO registers that store the result of an operation, and multiplication/division or sum-of-products operation instructions. Table 22-5. Number of Execution Cycles of Integer Multiplication/Division Instructions Instruction Category Necessary Number of Cycles (PCycle) MULT 1 MULTU 1 DIV 35 DIVU 35 DMULT 4 DMULTU 4 DDIV 67 DDIVU 67 MADD16 1 DMADD16 1 22.2 MIPS16 Instruction MIPS16 instructions are 16 bits long and located at a half-word boundary. Therefore, instruction that is extended by the Extend instruction with immediate, and the JAL and JALX instructions are 32 bits long. There are 13 types of instruction formats available as shown in Figure 22-2. Whether execution of the MIPS16 instructions is enabled or disabled is specified by the MIPS16EN pin on power application, and is indicated by config register CP0. Figure 22-2 shows the formats of the MIPS16 instructions, and Table 22-6 lists the MIPS16 instruction set. 84 Data Sheet U13211EJ2V0DS00 µPD30111 Figure 22-2. MIPS16 Instruction Format 0 11 10 15 I-type op immediate 11 10 15 RI-type op rx 11 10 15 RR-type op rx RRI RRI-type RRR-type RRI-A-type I8-type rx I8 I8_MOVR32-type I8_MOV32R-type I64-type RI64-type 0 0 5 4 r32[4:0] 0 4 3 r32[2:0, 4:3] rz 0 funct I64 F 8 7 11 10 15 shamt ry funct I64 0 2 1 8 7 11 10 15 immediate immediate funct I8 F ry 8 7 11 10 15 0 3 5 4 funct I8 F 8 7 11 10 15 4 ry 8 7 11 10 15 rz 5 0 2 1 ry rx SHIFT immediate 5 4 8 7 11 10 15 Shift-type 0 ry rx RRR-A funct 5 4 8 7 11 10 15 ry rx RRR 0 5 4 8 7 11 10 15 immediate 8 7 11 10 15 0 8 7 immediate 8 7 funct 0 5 4 ry immediate JAL, JALX-type 27 26 25 31 JAL X 21 20 0 16 15 immediate 20:16 immediate 25:21 immediate 15:0 op 5-bit major operation code rx 3-bit source/destination register specification ry 3-bit source/destination register specification rz 3-bit source/destination register specification immediate or imm 4-bit, 5-bit, 8-bit, or 11-bit immediate value, branch displacement, or address displacement funct or F Function field shamt 3-bit shift quantity Data Sheet U13211EJ2V0DS00 85 µPD30111 Table 22-6. MIPS16 Instruction Set (1/2) Instruction Description Format Load/Store instructions LB LBU LH LHU LW Load Bye Load Byte Unsigned Load HaIfword Load Halfword Unsigned Load Word LWU LD Load Word Unsigned Load Doubleword SB SH SW Store Byte Store Halfword Store Word SD Store Doubleword LB LBU LH LHU LW LW LW LWU LD LD LD SB SH SW SW SW SD SD SD ry, ry, ry, ry, ry, rx, rx, ry, ry, ry, ry, ry, ry, ry, rx, ra, ry, ry, ra, offset offset offset offset offset offset offset offset offset offset offset offset offset offset offset offset offset offset offset (rx) (rx) (rx) (rx) (rx) (pc) (sp) (rx) (rx) (pc) (sp) (rx) (rx) (rx) (sp) (sp) (rx) (sp) (sp) LI ADDIU ADDIU ADDIU ADDIU ADDIU DADDIU DADDIU DADDIU DADDIU DADDIU SLTI SLTIU CMPI rx, ry, rx, sp, rx, rx, ry, ry, ry, ry, sp, rx, rx, rx, immediate rx, immediate immediate immediate pc, immediate sp, immediate rx, immediate immediate pc, immediate sp, immediate immediate immediate immediate immediate ADDU SUBU DADDU DSUBU SLT SLTU CMP NEG AND OR XOR NOT MOVE MOVE rz, rx, rz, rx, rz, rx, rz, rx, rx, ry rx, ry rx, ry rx, ry rx, ry rx, ry rx, ry rx, ry ry, r32 r32,rz ALU immediate instructions LI ADDIU Load Immediate Add Immediate Unsigned DADDIU Doubleword Add Immediate Unsigned SLTI SLTIU CMPI Set on Less Than Immediate Set on Less Than Immediate Unsigned Compare Immediate 2-/3-operand type instructions ADDU SUBU DADDU DSUBU SLT SLTU CMP NEG AND OR XOR NOT MOVE 86 Add Unsigned Subtract Unsigned Doubleword Add Unsigned Doubleword Subtract Unsigned Set on Less Than Set on Less Than Unsigned Compare Negate And Or Exclusive Or Not Move Data Sheet U13211EJ2V0DS00 ry ry ry ry µPD30111 Table 22-6. MIPS16 Instruction Set (2/2) Instruction Description Format Special instructions EXTEND BREAK Extend Breakpoint EXTEND BREAK immediate Multiply Multiply Unsigned Divide Divide Unsigned Move from HI Move from LO Doubleword Multiply Doubleword Multiply Unsigned Doubleword Divide Doubleword Divide Unsigned MULT MULTU DIV DIVU MFHI MFLO DMULT DMULTU DDlV DDIVU rx, rx, rx, rx, rx rx rx, rx, rx, rx, JAL JALX JR Jump and Link Jump and Link Exchange Jump Register JALR BEQZ BNEZ BTEQZ BTNEZ B Jump and Link Register Branch on Equal to Zero Branch on Not Equal to Zero Branch on T Equal To Zero Branch on T Not Equal To Zero Branch Unconditional JAL JALX JR JR JALR BEQZ BNEZ BTEQZ BTNEZ B target target rx ra ra, rx rx, immediate rx, immediate immediate immediate immediate Shift Left Logical Shift Right Logical Shift Right Arithmetic Shift Left Logical Variable Shift Right Logical Variable Shift Right Arithmetic Variable Doubleword Shift Left Logical Doubleword Shift Right Logical Doubleword Shift Right Arithmetic Doubleword Shift Left Logical Variable Doubleword Shift Right Logical Variable Doubleword Shift Right Arithmetic Variable SLL SRL SRA SLLV SRLV SRAV DSLL DSRL DSRA DSLLV DSRLV DSRAV Multiplication/division instructions MULT MULTU DIV DIVU MFHI MFLO DMULT DMULTU DDIV DDIVU ry ry ry ry ry ry ry ry Jump/branch instructions Shift instructions SLL SRL SRA SLLV SRLV SRAV DSLL DSRL DSRA DSLLV DSRLV DSRAV Data Sheet U13211EJ2V0DS00 rx, rx, rx, ry, ry, ry, rx, ry, ry, ry, ry, ry, ry, immediate ry, immediate ry, immediate rx rx rx ry, immediate immediate immediate rx rx rx 87 µPD30111 23. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25°°C) Parameter Symbol Supply voltage Input voltage Condition Unit VDD2 2.5 V (VDDP, VDDPD, VDD2) −0.5 to +3.6 V VDD3 3.3 V (CVDD, DVDD, AVDD, PIUVDD, VDD3) −0.5 to +4.0 V VDD3 ≥ 3.7 V −0.5 to +4.0 V VDD3 < 3.7 V −0.5 to VDD3 + 0.3 V −65 to +150 °C VI Storage temperature Rating Tstg Cautions 1. Do not short-circuit two or more output pins simultaneously. 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The specifications and conditions shown in DC Characteristics and AC Characteristics are the ranges for normal operation and quality assurance of the product. 3. VI can be −1.5 V if the input pulse is less than 10 ns. Operating Conditions Parameter Symbol Supply voltage Condition MIN. MAX. Unit VDD2 2.5 V (VDDP, VDDPD, VDD2) 2.3 2.7 V VDD3 3.5 V (CVDD, DVDD, AVDD, PIUVDD, VDD3) 3.0 3.6 V −10 +70 °C Ambient temperature TA Note 1 VDDS 3.0 V Note 2 VDDH1 2.5 V Note 3 VDDH2 3.0 V Oscillation start voltage Oscillation hold voltage Oscillation hold voltage Notes 1. This is a voltage at which oscillation is always started after power application, and is applied to oscillators of 32.768 kHz and 18.432 MHz. 2. This is a voltage at which oscillation can be guaranteed if the voltage is lowered from the normal operation level, and is applied to an oscillator of 32.768 kHz. 3. This is a voltage at which oscillation can be guaranteed if the voltage is lowered from the normal operation level, and is applied to an oscillator of 18.432 MHz. Capacitance (TA = 25°°C, VDD = 0 V) Parameter Symbol Input capacitance CI I/O capacitance CIO 88 Condition fC = 1 MHz Unmeasured pins returned to 0 V. Data Sheet U13211EJ2V0DS00 MIN. MAX. Unit 10 pF 10 pF µPD30111 DC Characteristics (TA = −10 to +70°°C, VDD2 = 2.3 to 2.7 V, VDD3 = 3.0 to 3.6 V) (1/2) Parameter Symbol Condition MIN. TYP. MAX. Unit VOH1 IOH = −2 mA 0.8VDD3 V Output voltage, high VOH2 IOH = −12 mA 0.8VDD3 V Output voltage, low VOL IOL = 2 mA 0.4 IOL = 20 µA 0.1 IOL = 12 mA 0.4 IOL = 20 µA 0.1 Output voltage, high Note 1 Note 1 Output voltage, low VOL2 Note 2 Input voltage, high Note 2 Input voltage, low Input voltage, high Note 3 Input voltage, low 2.0 VDD3 + 0.3 V VIL1 −0.3 0.3VDD3 V −1.5 0.3VDD3 V VIH2 0.75VDD3 VDD3 + 0.3 V VIL2 −0.3 0.6 V −1.5 0.6 V Pulse less than 10 ns Note 4 Hysteresis voltage VH Note 5 V VIH1 Pulse less than 10 ns Note 3 V 0.17VDD3 V ILI VDD3 = 3.6 V, VI = VDD3, 0 V ±5 µA ILIH VDD3 = 3.6 V, VI = VDD3 36 µA Input leakage current, low ILIL VDD3 = 3.6 V, VI = 0 V −36 µA Output leakage current ILO VDD3 = 3.6 V, VI = VDD3, 0 V ±5 µA Input leakage current Note 6 Input leakage current, high Note 7 Notes 1. Applied to TPX (0:1), TPY (0:1). A panel resistance of 250 Ω is presumed. 2. Except RTCX1, CLKX1, FIRCLK, HSPSCLK, TPX (0:1), TPY (0:1), ADIN (0:2), AUDIOIN, POWER, RSTSW#, RTCRST#, DCD#/GPIO15, GPIO (0:14), BATTINH/BATTINT#, IRING, and KPORT (0:7) pins. 3. Applied to POWER, RSTSW#, RTCRST#, DCD#/GPIO15, GPIO (0:14), BATTINH/BATTINT#, IRING, and KPORT (0:7) pins. 4. Hysteresis voltage: Difference between the minimum voltage at which the high level of a Schmitt input signal is not recognized when the signal goes from low to high and the maximum voltage at which the low level is not recognized when the signal goes from high to low. 5. Except KPORT (0:7) (input pins with pull-down resistor). 6. Applied to KPORT (0:7) (input pins with pull-down resistor) and GPIO (0:14) when the internal pull-down resistor is used. 7. Applied to GPIO (0:14) when the internal pull-up resistor is used. Data Sheet U13211EJ2V0DS00 89 µPD30111 (2/2) Parameter Power supply current Symbol Note 2 IDD2 Condition MIN. TYP. Note 1 MAX. Unit In Fullspeed mode 60 140 mA In Standby mode 27 49 mA In Suspend mode 6 18 mA 0 µA 20 45 mA In Standby mode, external load 0 pF 6 12 mA In Suspend mode, external load 0 pF 0.5 2 mA 5 50 µA 5 30 µA In Hibernate mode, VDD2 = 0.0 V, when LED unit is off. Note 3 IDD3 In Fullspeed mode, ADD (0:25), RD#, WR#, TPX (0:1), TPY (0:1) = 120 pF, other pins = 40 pF In Hibernate mode, external load 0 pF, when LED unit is off. In Hibernate mode, external load 0 pF, VDD3 = 2.5 V, when LED unit is off. Notes 1. Unless otherwise specified, these are reference values at TA = 25°C, VDD2 = 2.5 V, VDD3 = 3.3 V. 2. Total current flowing to the VDDP, VDDPD, and VDD2 pins. 3. Total current flowing to the CVDD, DVDD, AVDD, PIUVDD, and VDD3 pins. Remark 90 IDD2 and IDD3 do not reach the maximum value at the same time in the Fullspeed mode. Data Sheet U13211EJ2V0DS00 µPD30111 Data Retention Characteristics (TA = 25°°C) Parameter Note 1 Data retention voltage Symbol Condition MIN. MAX. Unit VDDDR3 Hibernate mode, 3.3-V power supply 2.5 3.6 V Note 2 VIHDR Data retention input voltage, high 0.9VDDDR3 V Notes 1. The data retention voltage is the voltage at which the operation of the Elapsed Time timer and the data retention of the registers of the following peripheral units are guaranteed, and is not applied to the internal data of the CPU core. BCU: BCURFCNTREG, BCUCNTREG3 PUM: PMUCNTREG (15:8), PMUCNT2REG, PMUWAITREG RTC: ETIMELREG, ETIMEMREG, ETIMEHREG, ECMPLREG, ECMPMREG, ECMPHREG, RTCL1LREG, RTCL1HREG, RTCL1CNTLREG, RTCL1CNTHREG, RTCL2LREG, RTCL2HREG, RTCL2CNTLREG, RTCL2CNTHREG, RTCINTREG (2:0) GIU: GIUPODATL, GIUPODATH, GIUUSEUPNL, GIUTERMUPNL KIU: KIUGPEN, PORTREG LED: LEDHTSREG, LEDLTSREG, LEDHLTCLREG, LEDHLTCHREG, LEDCNTREG 2. Applied to RTCRST# pin. Remark The values in parentheses are the targeted values. VDD RTCRST# (input) 3.0 V VDDDR3 VIHDR Data Sheet U13211EJ2V0DS00 91 µPD30111 AC Characteristics (TA = −10 to +70°°C, VDD2 = 2.3 to 2.7 V, VDD3 = 3.0 to 3.6 V) AC test input waveform (a) CTS#, DATA (0:15), DATA (16:31)/GPIO (16:31), DBUS32/GPIO48, DCTS#/GPIO47, DDIN/GPIO45, DSR#, DTR#/CLKSEL0, FS, FIRDIN#/SEL, GPIO49, HLDRQ#, ILCSENSE, IOCHRDY, IOCS16#, IRDIN, LCDRDY, MEMCS16#, RxD, RTS#/CLKSEL1, SDI, TxD/CLKSEL2, ZWS# VDD 2.0 V 2.0 V Test points 0.3 V 0.3 V 0V (b) BATTINH/BATTINT#, DCD#/GPIO15, GPIO (0:14), IRING, KPORT (0:7), POWER, RSTSW#, RTCRST# VDD 0.75VDD 0.75VDD Test points 0.2VDD 0.2VDD 0V AC test output measuring points (c) ADD (0:25), AFERST#, BUSCLK, GPIO49, DATA (0:15), DATA (16:31)/GPIO (16:31), DBUS32/GPIO48, DCTS#/GPIO47, DDIN/GPIO45, DDOUT/GPIO44, DRTS#/GPIO46, DTR#/CLKSEL0, FIRDIN#/SEL, GPIO (0:14), GPIO49, HC0, HLDACK#, HSPMCLK, IOR#, IOW#, IRDOUT#, KSCAN (0:11)/GPIO (32:43), LCAS#, LCDCS#, LEDOUT#, MEMR#, MEMW#, MPOWER, MRAS (0:1)#, MUTE, OFFHOOK, OPD#, POWERON, RD#, ROMCS (0:3)#, RSTOUT, RTS#/CLKSEL1, SDO, SHB#, TELCON, TPX (0:1), TPY (0:1), TxD/CLKSEL2, UCAS#, ULCAS#/MRAS2#, UUCAS#/MRAS3#, WR# VDD 0.5VDD Test points 0V 92 Data Sheet U13211EJ2V0DS00 0.5VDD µPD30111 Load condition (a) ADD (0:25), RD#, WR#, TPX (0:1), TPY (0:1) ADD (0:25), RD#, WR#, TPX (0:1), TPY (0:1) DUT CL = 120 pF (b) Other output pins Output pin (other than those shown in (a)) DUT CL = 40 pF Data Sheet U13211EJ2V0DS00 93 µPD30111 (1) Clock parameter Parameter Symbol HSPSCLK high-level width Condition MIN. TYP. MAX. Unit tWHSH When HSP unit is used 40 HSPSCLK low-level width tWHSL When HSP unit is used 40 HSPSCLK clock frequency tHSCYC When HSP unit is used HSPSCLK clock cycle tCYHS When HSP unit is used HSPSCLK clock rise time tHSR When HSP unit is used HSPSCLK clock fall time tSHF When HSP unit is used 10 ns HSPMCLK high-level width tMPH When HSP unit is used tCYHM × 0.45 tCYHM × 0.55 ns HSPMCLK low-level width tMPL When HSP unit is used tCYHM × 0.45 tCYHM × 0.55 ns HSPMCLK clock frequency tMCYC When HSP unit is used 0.585 18.432 MHz HSPMCLK clock cycle tCYHM When HSP unit is used 54.253 1790.365 ns BUSCLK high-level width tBCLKH 45 ns BUSCLK low-level width tBCLKL 45 ns FIRCLK input frequency FIR clock duty Note 1 Note 1 ns fCYC MHz 10 ns 108.5 ns tFIRCYC1 In FIR 4 Mbps 47.996 48.000 48.005 MHz tFIRCYC2 In FIR 1.152/0.576 Mbps 47.952 48.000 48.048 MHz 90 % tFIRDUTY CPU core operating frequency ns fPCYC 10 Note 2 RFU MHz Note 2 RFU MHz Note 2 RFU MHz Note 2 CLKSEL (2:0) = 100 RFU MHz CLKSEL (2:0) = 011 69.3 MHz CLKSEL (2:0) = 010 65.4 MHz CLKSEL (2:0) = 001 62.0 MHz CLKSEL (2:0) = 000 49.1 MHz CLKSEL (2:0) = 111 CLKSEL (2:0) = 110 CLKSEL (2:0) = 101 Notes 1. Applied to FIRCLK pin. 2. Do not set CLKSEL2 to 1. Remark CLKSEL (2:0): Value set to the TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0 pins after reset. tCYHS tWHSH tWHSL HSPSCLK (input) tHSR tSHF tCYHM tMPH tMPL tBCLKH tBCLKL HSPMCLK (output) BUSCLK (output) 94 Data Sheet U13211EJ2V0DS00 µPD30111 (2) Reset parameter Parameter Reset input low-level width Symbol tWRSL Condition MIN. RTCRST# pin MAX. Unit µs 305 tWRSL RTCRST# (input) Remark For the RTCRST# characteristics at power application, refer to VR4111 User’s Manual. (3) Initialization parameter Parameter Symbol Data sampling time (from RTCRST# ↑) tSS Output delay time (from RTCRST# ↑) tOD Condition DBUS32/GPIO48 MIPS16EN GPIO49Note (input) MAX. Unit 61.04 µs µs 61.04 RTCRST# (input) TxD/CLKSEL2 RTS#/CLKSEL1 DTR#/CLKSEL0 (I/O) MIN. tOD tSS , Don t care Hi-Z Input Output Hi-Z Hi-Z Sampling Note Be sure to input a low level to GPIO49 in this timing. Remark Set the input data level by using a pull-up or pull-down resistor with high resistance. Data Sheet U13211EJ2V0DS00 95 µPD30111 (4) GPIO interface parameter (1/2) Parameter Input level width GPIO input rise time GPIO input fall time Output level width Symbol Condition MIN. MAX. Unit tINP1 Note 1 91.5 µs tINP2 Note 2 361.5 ns tINP3 Note 3 180.6 ns tGPINR1 Note 4 200 ns tGPINR2 Note 5 10 ns tGPINF1 Note 4 200 ns tGPINF2 Note 5 10 ns tOUTP Note 6 30 ns Notes 1. Applied to GPIO (0:3) pins. 2. Applied to DCD#/GPIO15 and GPIO (9:14) pins. 3. Applied to DATA (16:31)/GPIO (16:31) and GPIO (4:8) pins. 4. Applied to GPIO (0:14) and DCD#/GPIO15 pins. 5. Applied to DATA (16:31)/GPIO (16:31) pins. 6. Applied to GPIO (0:14), DATA (16:31)/GPIO (16:31), KSCAN (0:11)/GPIO (32:43), DDOUT/GPIO44, DDIN/GPIO45, DRTS#/GPIO46, DCTS#/GPIO47, DBUS32/GPIO48, and GPIO49 pins. Caution These parameters are applied when the DATA (16:31)/GPIO (16:31), DCD#/GPIO15, KSCAN (0:11)/GPIO (32:43), DDOUT/GPIO44, DDIN/GPIO45, DRTS#/GPIO46, DCTS#/GPIO47, DBUS32/GPIO48, or GPIO49 pin is used as the GPIO pin. 96 Data Sheet U13211EJ2V0DS00 µPD30111 (4) GPIO interface parameter (2/2) (a) Input level width tINP1 Note 1 tINP2 Note 2 tINP3 Note 3 Notes 1. GPIO (0:3) 2. DCD#/GPIO15, GPIO (9:14) 3. DATA (16:31)/GPIO (16:31), GPIO (4:8) (b) GPIO input rise/fall time tGPINF1 Note 1 tGPINF2 Note 2 tGPINR1 Note 1 tGPINR2 Note 2 Notes 1. DCD#/GPIO15, GPIO (0:14) 2. DATA (16:31)/GPIO (16:31) (c) Output level width tOUTPNote Note GPIO (0:14), DATA (16:31)/GPIO (16:31), KSCAN (0:11)/GPIO (32:43), DDOUT/GPIO44, DDIN/GPIO45, DRTS#/GPIO46, DCTS#/GPIO47, DBUS32/GPIO48, GPIO49 Data Sheet U13211EJ2V0DS00 97 µPD30111 (5) EDO-type DRAM read parameter (1/2) The target DRAM is the µPD42S16165L-A60, 42S16165L-A70, 42S18165L-A60, 42S18165L-A70, 42S64165G5-A50, 42S64165G5-A60, 42S65165G5-A50, or 42S65165G5-A60. Parameter Symbol Condition MIN. MAX. Unit MRAS (0:3)# pulse width tRASP 75 ns MRAS (0:3)# hold time (from UCAS#/LCAS# precharge) tRHCP 45 ns tRP 55 ns UCAS#/LCAS# hold time (from MRAS (0:3)#) tCSH 55 ns UCAS#/LCAS# pulse width tHCAS 12 ns UCAS#/LCAS# precharge time tCP 10 ns Read/write cycle time tHPC 31 ns MRAS (0:3)# hold time (from UCAS#/LCAS#) tRSH 20 ns Row address setup time (to MRAS (0:3)#) tASR 0 ns UCAS#/LCAS# ↓ delay time from MRAS (0:3)# ↓ tRCD 19 ns Column address delay time from MRAS (0:3)# ↓ tRAD 17 ns Column address setup time (to UCAS#/LCAS#) tASC 0 ns Column address read time (to MRAS (0:3)#↑) tRAL 40 ns Row address hold time (from MRAS (0:3)# ↓) tRAH 15 ns Column address hold time 1 (from UCAS#/LCAS# ↓) tCAH1 10 ns Column address hold time 2 (from UCAS#/LCAS# ↓) tCAH2 10 ns Column address hold time 3 (from UCAS#/LCAS# ↓) tCAH3 10 ns Data access time (from UCAS#/LCAS# precharge) tACP 45 ns Data access time (from RD# ↓) tOEA 23 ns Data input setup time 1 (to UCAS#/LCAS# ↓) tDS1 0 ns Data input hold time 1 (from MRAS (0:3)#) tDH1 6 ns Data input setup time 2 (to UCAS#/LCAS# ↓) tDS2 0 ns Data input hold time 2 (from MRAS (0:3)#) tDH2 6 ns Data access time (from MRAS (0:3)# ↓) tRAC 75 ns Data access time (from column address) tAA 37 ns Data access time (from UCAS#/LCAS# ↓) tCAC 23 ns MRAS (0:3)# precharge time Caution These ratings are applied only when a device operates within the recommended operating condition range and the operating ambient temperature is kept constant. If the power supply voltage or operating ambient temperature changes during DRAM access, the above ratings are not applied. 98 Data Sheet U13211EJ2V0DS00 µPD30111 (5) EDO-type DRAM read parameter (2/2) tRASP MRAS (0:3)#Note 1 (output) tRHCP tCSH tHCAS tRSH UCAS#/LCAS#Note 2 (output) tCP tRCD tASR tRP tCAH3 tHPC ADD (19:23) (output) tRAD ADD (9:18) (output) tASC tRAL tCAH1 tRAH tCAH2 RD# (output) tACP tOEA DATANote 3 (I/O) Invalid Hi-Z tDS1 tDH1 tDS2 tDH2 Hi-Z Invalid tRAC tAA tCAC Notes 1. In 32-bit mode: Applied to MRAS (0:1)# In 16-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#/MRAS2#, and MRAS (0:1)# 2. In 32-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#MRAS2#, UCAS#, and LCAS# In 16-bit mode: Applied to UCAS# and LCAS# 3. In 32-bit mode: Applied to DATA (16:31)/GPIO (16:31) and DATA (0:15) In 16-bit mode: Applied to DATA (0:15) Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 99 µPD30111 (6) EDO-type DRAM write parameter (1/2) The target DRAM is the µPD42S16165L-A60, 42S16165L-A70, 42S18165L-A60, 42S18165L-A70, 42S64165G5-A50, 42S64165G5-A40, 42S65165G5-A50, or 42S65165G5-A60. Parameter Symbol Condition MIN. MAX. Unit MRAS (0:3)# pulse width tRASP 75 ns MRAS (0:3)# hold time (from UCAS#/LCAS# precharge) tRHCP 45 ns tRP 55 ns UCAS#/LCAS# hold time (from MRAS (0:3)# ↓) tCSH 55 ns UCAS#/LCAS# pulse width tHCAS 12 ns UCAS#/LCAS# precharge time tCP 10 ns Read/write cycle time tHPC 31 ns MRAS (0:3)# hold time (from UCAS#/LCAS#) tRSH 20 ns Row address setup time (to MRAS (0:3)# ↓) tASR 0 ns UCAS#/LCAS# ↓ delay time from MRAS (0:3)# ↓ tRCD 19 ns Column address delay time from MRAS (0:3)# ↓ tRAD 17 ns Column address setup time (to UCAS#/LCAS# ↓) tASC 0 ns Column address read time (to MRAS (0:3)# ↑) tRAL 40 ns Row address hold time (from MRAS (0:3)# ↓) tRAH 15 ns Column address hold time 1 (from UCAS#/LCAS# ↓) tCAH1 10 ns Column address hold time 2 (from UCAS#/LCAS# ↓) tCAH2 10 ns Column address hold time 3 (from UCAS#/LCAS# ↓) tCAH3 10 ns MRAS (0:3)# precharge time WR# setup time tWCS 0 ns WR# hold time (from UCAS#/LCAS# ↓) tWCH 15 ns Data output setup time tD1 0 ns Data output hold time tD2 10 ns Caution These ratings are applied only when a device operates within the recommended operating condition range and the operating ambient temperature is kept constant. If the power supply voltage or operating ambient temperature changes during DRAM access, the above ratings are not applied. 100 Data Sheet U13211EJ2V0DS00 µPD30111 (6) EDO-type DRAM write parameter (2/2) tRASP MRAS (0:3)#Note 1 (output) tRHCP tCSH tRP tRSH tHCAS Note 2 UCAS#/LCAS# (output) tASR tCP tRCD tCAH3 tHPC ADD (19:23) (output) tRAD ADD (9:18) (output) tASC tRAL tRAH tCAH2 tCAH1 WR# (output) tWCS tWCH tD1 DATANote 3 (I/O) tD2 tD1 tD2 Invalid Notes 1. In 32-bit mode: Applied to MRAS (0:1)# In 16-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#/MRAS2#, and MRAS (0:1)# 2. In 32-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#MRAS2#, UCAS#, and LCAS# In 16-bit mode: Applied to UCAS# and LCAS# 3. In 32-bit mode: Applied to DATA (16:31)/GPIO (16:31) and DATA (0:15) In 16-bit mode: Applied to DATA (0:15) Data Sheet U13211EJ2V0DS00 101 µPD30111 (7) DRAM refresh parameter The target DRAM is the µPD42S161615L-A60, 42S16165L-A70, 42S18165L-A60, 42S18165L-A70, 42S64165G5-A50, 42S64165G5-A60, 42S65165G5-A50, or 42S65165G5-A60. (a) CAS-before-RAS refresh parameter Parameter Symbol Condition MIN. MAX. Unit Read/write cycle time tRC 124 ns MRAS (0:3)# pulse width tRAS 70 ns MRAS (0:3)# precharge time tRP 50 ns UCAS#/LCAS# setup time (to MRAS (0:3)# ↓) tCSR 5 ns UCAS#/LCAS# hold time (from MRAS (0:3)# ↓) tCHR 10 ns MRAS (0:3)# precharge time from UCAS#/LCAS# ↑ tCRP 5 ns UCAS#/LCAS# precharge time tCPN 10 ns tRC tRAS MRAS (0:3)#Note 1 (output) tRP tCRP UCAS#/LCAS#Note 2 (output) tCSR tCHR tCPN WR# H (output) Notes 1. In 32-bit mode: Applied to MRAS (0:1)# In 16-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#/MRAS2#, and MRAS (0:1)# 2. In 32-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#MRAS2#, UCAS#, and LCAS# In 16-bit mode: Applied to UCAS# and LCAS# 102 Data Sheet U13211EJ2V0DS00 µPD30111 (b) CAS-before-RAS self-refresh parameter Parameter Symbol Condition MIN. MAX. Unit Note tRASS 100 µs MRAS (0:3)# precharge time tRPS 130 ns UCAS#/LCAS# hold time tCHS −50 ns MRAS (0:3)# pulse width Note The CAS-before-RAS self-refresh parameter is valid when tRASS exceeds 100 µs. tRASS tRPS MRAS (0:3)#Note 1 (output) tCHS UCAS#/LCAS#Note 2 (output) Notes 1. In 32-bit mode: Applied to MRAS (0:1)# In 16-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#/MRAS2#, and MRAS (0:1)# 2. In 32-bit mode: Applied to UUCAS#/MRAS3#, ULCAS#MRAS2#, UCAS#, and LCAS# In 16-bit mode: Applied to UCAS# and LCAS# Data Sheet U13211EJ2V0DS00 103 µPD30111 (8) Normal ROM parameter (1/2) Parameter Symbol Condition MIN. MAX. Unit tACC T × N − 19 ns tCE T × N − 19 ns Data access time (from RD#↓) tOE T × (N − 1) − 29 ns Data input setup time tDS 0 ns Data input hold time tDH 6 ns Data access time (from address) Note Note Data access time (from ROMCS (0:3)# ↓) Note Note The value of N is set by using the WROMA (0:2) bits of the BCUSPEEDREG register. The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL2 Note 1 Note 1 Note 1 Note 1 CLKSEL1 Note 1 Note 1 Note 0 Note 0 CLKSEL0 T (ns) WROMA2 WROMA1 WROMA0 N Note RFU 0 0 0 9 Note RFU 0 0 1 8 Note RFU 0 1 0 7 Note RFU 0 1 1 6 1 0 1 0 0 1 1 43.3 1 0 0 5 0 1 0 45.9 1 0 1 4 0 0 1 48.4 1 1 0 3 0 0 0 40.7 1 1 1 2 Note Do not set CLKSEL2 to 1. 104 Data Sheet U13211EJ2V0DS00 µPD30111 (8) Normal ROM parameter (2/2) When WROMA (0:2) = 111 ADD (19:23), ADD (0:8) (output) ADD (9:18) (output) tACC ROMCS (0:3)# (output) tCE RD# (output) tOE DATA Note (I/O) Invalid Hi-Z Hi-Z tDS Invalid tDH Note In 32-bit mode: Applied to DATA (16:31)/GPIO (16:31) and DATA (0:15) In 16-bit mode: Applied to DATA (0:15) Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 105 µPD30111 (9) Page ROM parameter (1/2) Parameter Symbol Condition MIN. MAX. Unit Note tACC1 T × N − 19 ns Note tACC2 T × M − 12 ns tCE T × N − 19 ns Data access time (from RD#↓) tOE T × (N − 1) − 29 ns Data input setup time tDS 0 ns Data input hold time tDH 6 ns Data access time (from address) 1 Data access time (from address) 2 Note Data access time (from ROMCS (0:3)# ↓) Note Note The value of N is set by using the WROMA (0:2) bits of the BCUSPEEDREG register. The value of M is set by using the WPROM (0:1) bits of the BCUSPEEDREG register. The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL 2 Note 1 Note 1 Note 1 Note 1 CLKSEL 1 Note 1 Note 1 Note 0 Note 0 CLKSEL 0 T (ns) WROMA WROMA 2 1 WROMA 0 N (TClock) M (TClock) Note RFU 0 0 0 9 0 0 3 Note RFU 0 0 1 8 0 1 2 Note RFU 0 1 0 7 1 0 1 Note RFU 0 1 1 6 1 1 1 0 1 0 0 1 1 43.3 1 0 0 5 0 1 0 45.9 1 0 1 4 0 0 1 48.4 1 1 0 3 0 0 0 40.7 1 1 1 2 Note Do not set CLKSEL2 to 1. 106 WPROM WPROM 1 0 Data Sheet U13211EJ2V0DS00 µPD30111 (9) Page ROM parameter (2/2) ADD (1:3) (output) ADD (4:23), ADD0 (output) tACC2 tACC1 ROMCS (0:3)# (output) tCE RD# (output) tOE DATA Note (I/O) Invalid Hi-Z Hi-Z tDS tDH tDS Invalid tDH Note In 32-bit mode: Applied to DATA (16:31)/GPIO (16:31) and DATA (0:15) In 16-bit mode: Applied to DATA (0:15) Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 107 µPD30111 (10) Flash memory mode write parameter Parameter Symbol Condition MIN. MAX. Unit Write cycle time tAVAV 150 Address setup time (to WR# ↑) tAVWH 75 ns Address setup time (to ROMCS (0:3)# ↓) tAVEL 0 ns ROMCS (0:3)# setup time (to WR#↓) tELWL 10 ns WR# low-level width tWLWH 75 ns ROMCS (0:3)# hold time (from WR# ↑) tWHEH 10 ns Address hold time (from WR# ↑) tWHAX 10 ns WR# high-level width tWHWL 75 ns Address setup time (to WR# ↓) tAVWL 25 ns Data output setup time (to WR# ↑) tDVWH 75 ns Data output hold time (from WR# ↑) tWHDX 10 ns ADD (19:23), ADD (0:8) (output) ns tAVAV ADD (9:18) (output) tAVWH ROMCS (0:3)# (output) tAVEL WR# (output) DATA Note (I/O) tWHEH tELWL tWLWH tWHWL tWHAX tDVWH tWHDX tAVWL Invalid Note In 32-bit mode: Applied to DATA (16:31)/GPIO (16:31) and DATA (0:15) In 16-bit mode: Applied to DATA (0:15) 108 Data Sheet U13211EJ2V0DS00 µPD30111 (11) Flash memory mode read parameter Parameter Symbol Condition MIN. MAX. Unit Data output delay time from address tAVQV 180 ns Data output delay time from ROMCS (0:3)# tELQV 180 ns Address setup time (to ROMCS (0:3)# ↓) tAVEL 0 ns Data output delay time from RD# ↓ tGLQV 80 ns Address setup time (to RD# ↓) tAVGL 0 ns ROMCS (0:3)# hold time (from RD# ↑) tGHEH 10 ns Address hold time (from RD# ↑) tGHAX 10 ns RD# high-level width tGHGL 75 ns Data input setup time tDS 0 ns tDH 6 ns tELGL 10 ns Data input hold time ROMCS (0:3)# setup time (to RD# ↓) ADD (19:20), ADD (0:8) (output) ADD (9:18) (output) tGHAX ROMCS (0:3)# (output) tAVEL tGHEH tELGL RD# (output) tGHGL tAVGL DATA Note (I/O) Hi-Z Invalid Invalid tDS tDH tGLQV tELQV tALQV Note In 32-bit mode: Applied to DATA (16:31)/GPIO (16:31) and DATA (0:15) In 16-bit mode: Applied to DATA (0:15) Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 109 µPD30111 (12) System bus parameter (IOCHRDY) (1/2) Parameter Symbol Condition MIN. MAX. Unit BUSCLK low-level width tBCLKL 45 ns BUSCLK high-level width tBCLKH 45 ns Address setup time (to BUSCLK) tAVCK 15 ns tAVCL T × N − 29 ns tCLCK 15 ns tCLCH 2 × T × N − 29 ns tCHAV 25 ns tCHCL T × (N + 1) − 29 ns tCLR 0 T × N − 44 ns 2 × T × N + 29 ns Notes 1, 2 Address setup time (to command signal ↓) Note 1 Command signal setup time (to BUSCLK) Command signal low-level width Notes 1, 2 Note 1 Address hold time (from command signal ↑) Notes 1, 2 Command signal recovery time Note 2 IOCHRDY sampling time tRHCH T×N Note 1 tCHRL 0 ns Note 1 tDVCL 0 ns Data output hold time (from command signal ↑) tCHDV 25 ns MEMCS16#/IOCS16# sampling start time Note 2 tAVSV1 2 × T × N − 44 ns MEMCS16#/IOCS16# hold time (from command tCHSV 0 ns Data input setup time tDS 0 ns Data input hold time tDH 15 ns Notes 1, 2 Command signal ↑ delay time from IOCHRDY ↑ IOCHRDY hold time (from command signal ↑) Data output setup time (to command signal ↓) Note 1 Note 1 signal ↓) Notes 1. With the VR4111, the MEMW#, MEMR#, IOW#, and IOR# pins are called the command signals for the system bus interface. 2. The value of N is set by using the WISAA (0:2) bits of the BCUSPEEDREG register. The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL2 Note 1 Note 1 Note 1 Note 1 0 CLKSEL1 Note 1 Note 1 Note 0 Note 0 1 CLKSEL0 T (ns) WISAA2 WISAA1 WISAA0 N (TClock) Note RFU 0 0 0 8 Note RFU 0 0 1 7 Note RFU 0 1 0 6 Note RFU 0 1 1 5 1 0 1 0 1 Note 1 Note Note 0 Note Note 4 Note 3 0 0 1 0 45.9 0 0 1 48.4 1 1 0 0 0 0 40.7 1 1 1 Note Do not set CLKSEL2 to 1. 110 43.3 1 0 1 Note If the WISAA (0:2) bits are set to 100 or high, the AC characteristics of tAVCK and tCLCK are not guaranteed. Data Sheet U13211EJ2V0DS00 µPD30111 (12) System bus parameter (IOCHRDY) (2/2) When WISAA (0:2) = 010 tBCLKH tBCLKL BUSCLKNote 1 (output) BUSCLKNote 1 (output) BUSCLKNote 1 (output) BUSCLKNote 1 (output) ADD (19:25), ADD (0:8) (output) tAVCKNote 2 ADD (9:18) (output) tAVCL SHB# (output) tCHAV tCLCKNote 2 tCLCH MEMR#/MEMW#, IOR#/IOW# (output) tCHCL tCLR IOCHRDY (input) tCHRL tRHCH ZWS# (input) tAVSV1 MEMCS16#, IOCS16# (input) tCHSV tDVCL DATA (output) tCHDV Invalid tDS DATA (input) Hi-Z Invalid tDH Invalid Notes 1. BUSCLK indicates that there are four possible relationships between BUSCLK and other system bus interface signals. 2. This indicates the minimum setup time to the BUSCLK rising or falling edge. Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 111 µPD30111 (13) System bus parameter (ZWS#) (1/2) Parameter Symbol Address setup time (to BUSCLK) Notes 1, 2 Address setup time (to command signal ↓) Note 1 Command signal setup time (to BUSCLK) Command signal low-level width Notes 1, 2 Note 1 Address hold time (from command signal ↑) Notes 1, 2 Command signal recovery time Condition MIN. MAX. tAVCK 15 ns tAVCL T × N − 29 ns tCLCK 15 ns tCLCH T × N − 31 ns tCLAV 25 ns tCHCL T × (N + 1) − 29 ns Notes 1, 2 ZWS# ↓ delay time from command signal ↓ T × (N − 1) − 20 tCLZL Note 1 ZWS# hold time (from command signal ↑) Unit ns tCHZH 0 ns tDVCL 0 ns Data output hold time (from command signal ↑) tCHDV 25 ns MEMCS16#/IOCS16# sampling start time Note 2 tAVSV2 2 × T × (N – 1) – 44 ns MEMCS16#/IOCS16# hold time (from command tCHSV 0 ns Note 1 Data output setup time (to command signal ↓) Note 1 Note 1 signal ↑) Data input setup time tDS 0 ns Data input hold time tDH 15 ns Notes 1. With the VR4111, the MEMW#, MEMR#, IOW#, and IOR# pins are called the command signals for the system bus interface. 2. The value of N is set by using the WISAA (0:2) bits of the BCUSPEEDREG register. The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL2 Note 1 Note 1 Note 1 Note 1 CLKSEL1 Note 1 Note 1 Note 0 Note 0 CLKSEL0 T (ns) WISAA2 WISAA1 WISAA0 N (TClock) Note RFU 0 0 0 8 Note RFU 0 0 1 7 Note RFU 0 1 0 6 Note RFU 1 5 1 0 1 0 1 Note Note 4 Note 3 0 1 1 43.3 1 0 1 0 45.9 1 0 0 1 48.4 1 1 0 0 0 0 40.7 1 1 1 Note Do not set CLKSEL2 to 1. 112 0 Note Note 0 Note 0 0 1 Note If the WISAA (0:2) bits are set to 100 or high, the AC characteristics of tCLCK and tAVCK are not guaranteed. Data Sheet U13211EJ2V0DS00 µPD30111 (13) System bus parameter (ZWS#) (2/2) When WISAA (0:2) = 101 BUSCLKNote 1 (output) BUSCLKNote 1 (output) BUSCLKNote 1 (output) BUSCLKNote 1 (output) tAVCKNote 2 ADD (19:25), ADD (0:8) (output) ADD (9:18) (output) tAVCL SHB# (output) tCLAV tCLCKNote 2 MEMR#/MEMW#, IOR#/IOW# (output) tCLCK IOCHRDY (input) tCHCL tCLZL tCHZH ZWS# (input) tAVSV2 tCHSV MEMCS16#, IOCS16# (input) tCHDV tDVCL DATA (output) Invalid tDS DATA (input) tDH Hi-Z Invalid Invalid Notes 1. BUSCLK indicates that there are four possible relationships between BUSCLK and other system bus interface signals. 2. This indicates the minimum setup time to the BUSCLK rising or falling edge. Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 113 µPD30111 (14) High-speed system bus parameter (IOCHRDY) (1/2) Parameter Symbol Notes 1, 2 Address setup time (to command signal ↓) Command signal low-level width Notes 1, 2 Note 1 Address hold time (from command signal ↑) Notes 1, 2 Command signal recovery time IOCHRDY sampling start time Condition MIN. MAX. Unit tAVCL T × N − 29 ns tCLCH T × (N + M) − 29 ns tCHAV 25 ns tCHCL T × (N + 1) − 29 ns tCLR 0 ns tRHCH T×M Note 1 tCHRL 0 ns Note 1 tDVCL −15 ns Data output hold time (from command signal ↑) tCHDV 25 ns Note 2 MEMCS16#/IOCS16# sampling start time tAVSV1 2 × T × N – 44 ns MEMCS16#/IOCS16# hold time (from command tCHSV 0 ns Notes 1, 2 Command signal ↑ delay time from IOCHRDY ↑ IOCHRDY hold time (from command signal ↑) Data output setup time (to command signal ↓) Note 1 T × (N + M) + 29 ns Note 1 signal ↑) Data input setup time tDS 0 ns Data input hold time tDH 15 ns Notes 1. With the VR4111, the MEMW# and MEMR# signals are called the command signals for the high-speed system bus interface. 2. The values of N and M are set by using the WLCD/M (0:2) bits of the BCUSPEEDREG register. The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL2 Note 1 Note 1 Note 1 Note 1 CLKSEL1 Note 1 Note 1 Note 0 Note 0 CLKSEL0 T (ns) WLCD/M2 WLCD/M1 WLCD/M0 N (TClock) M (TClock) Note RFU 0 0 0 8 8 Note RFU 0 0 1 7 7 Note RFU 0 1 0 6 6 Note RFU 0 1 1 5 5 1 0 1 0 0 1 1 43.3 1 0 0 4 4 0 1 0 45.9 1 0 1 3 3 0 0 1 48.4 1 1 0 2 2 0 0 0 40.7 1 1 1 1 2 Note Do not set CLKSEL2 to 1. 114 Data Sheet U13211EJ2V0DS00 µPD30111 (14) High-speed system bus parameter (IOCHRDY) (2/2) When WISAA (2:0) = 111 ADD (19:25), ADD (0:8) (output) ADD (9:18) (output) SHB# (output) LCDCS# (output) tCHAV tAVCL MEMR#/MEMW# (output) tCLCH tCHCL tCLR IOCHRDY (input) tRHCH tCHRL ZWS# (input) tAVSV1 tCHSV MEMCS16#, IOCS16# (input) tDVCL DATA (output) tCHDV Invalid tDS DATA (input) tDH Hi-Z Invalid Invalid Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 115 µPD30111 (15) High-speed system bus parameter (ZWS#) (1/2) Parameter Symbol Notes 1, 2 Address setup time (to command signal ↓) Command signal low-level width Notes 1, 2 Note 1 Address hold time (from command signal ↑) Notes 1, 2 Command signal recovery time Condition MIN. MAX. tAVCL T × N − 29 ns tCLCH T × N − 31 ns tCHAV 25 ns tCHCL T × (N + 1) − 29 ns Notes 1, 2 ZWS# ↓ delay time from command signal ↓ T × (N − 1) − 20 tCLZL Note 1 ZWS# signal hold time (from command signal ↑) Unit ns tCHZH 0 ns tDVCL −15 ns Data output hold time (from command signal ↑) tCHDV 25 ns MEMCS16#/IOCS16# sampling start time Note 2 tAVSV2 2 × T × (N – 1) – 44 ns MEMCS16#/IOCS16# hold time (from command tCHSV 0 ns Note 1 Data output setup time (to command signal ↓) Note 1 Note 1 signal ↑) Data input setup time tDS 0 ns Data input hold time tDH 15 ns Notes 1. With the VR4111, the MEMW# and MEMR# signals are called the command signals for the high-speed system bus interface. 2. The value of N is set by using the WISAA (0:2) bits of the BCUSPEEDREG register. The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL2 Note 1 Note 1 Note 1 Note 1 CLKSEL1 Note 1 Note 1 Note 0 Note 0 CLKSEL0 T (ns) WISAA2 WISAA1 WISAA0 N (TClock) Note RFU 0 0 0 8 Note RFU 0 0 1 7 Note RFU 0 1 0 6 Note RFU 0 1 1 5 1 0 1 0 0 1 1 43.3 1 0 0 4 0 1 0 45.9 1 0 1 3 0 0 1 48.4 1 1 0 2 0 0 0 40.7 1 1 1 1 Note Do not set CLKSEL2 to 1. 116 Data Sheet U13211EJ2V0DS00 µPD30111 (15) High-speed system bus parameter (ZWS#) (2/2) When WISAA (0:2) = 111 ADD (19:25), ADD (0:8) (output) ADD (9:18) (output) SHB# (output) LCDCS# (output) tCHAV tAVCL MEMR#/MEMW# (output) tCLCH tCHCL IOCHRDY (input) tCLZL ZWS# (input) tCHZH tAVSV2 tCHSV MEMCS16#, IOCS16# (input) tCHDV tDVCL DATA (output) Invalid tDS DATA (input) Hi-Z Invalid tDH Invalid Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 117 µPD30111 (16) LCD interface parameter (1/2) Parameter Symbol Note 1 Address setup time (to command signal ↓) Note 1 Address hold time (from command signal ↑) Note 1 Command signal recovery time LCDRDY sampling start time Notes 1, 2 Command signal delay time from LCDRDY ↑ Note 1 LCDRDY hold time (from command signal ↑) Condition MIN. MAX. Unit tAS 15 ns tAH 0 ns tRY 30 ns tCLR 0 ns tRHCH T×N T × (N + 2) + 29 ns tRYZ 0 ns Notes 1, 2 tDVCH T × (N + 2) ns Note 1 tCHDV 25 ns tDS 0 ns tDH 15 ns Data output setup time (to command signal ↑) Data output hold time (from command signal ↑) Note 1 Data input setup time (to command signal ↑) Note 1 Data input hold time (from command signal ↑) Notes 1. With the VR4111, the RD# and WR# signals are called the command signals for the LCD interface. 2. The values of N is set by using the WLCD/M (0:1) bits of the BCUSPEEDREG register. The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL2 Note 1 Note 1 Note 1 Note 1 CLKSEL1 Note 1 Note 1 Note 0 Note 0 CLKSEL0 T (ns) WLCD/M1 WLCD/M0 N (TClock) Note RFU 0 0 8 Note RFU 0 1 6 Note RFU 1 0 4 Note RFU 1 1 2 1 0 1 0 0 1 1 43.3 0 1 0 45.9 0 0 1 48.4 0 0 0 40.7 Note Do not set CLKSEL2 to 1. 118 Data Sheet U13211EJ2V0DS00 µPD30111 (16) LCD interface parameter (2/2) ADD (19:20), ADD (0:8) (output) ADD (9:18) (output) SHB# (output) LCDCS# (output) tAH tAS RD#/WR# (output) tRY tCLR tRHCH tRYZ LCDRDY (input) tDVCH DATA (output) DATA (input) tCHDV Invalid Hi-Z Invalid tDS tDH Invalid Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 119 µPD30111 (17) Bus hold parameter (1/2) Parameter Symbol Note Condition MIN. MAX. Unit HLDRQ# input pulse width tFHP In Full-speed/standby mode 5T ns Data floating delay time tFOFF In Full-speed/standby mode 0 ns tFON In Full-speed/standby mode 0 ns HLDRQ# input pulse width tSHP In Suspend mode 12T ns Data floating delay time tSOFF In Suspend mode 0 ns Data valid delay time tSON In Suspend mode 0 ns MRAS (0:3)# precharge time tRPS In Suspend mode 110 ns UCAS#/LCAS# setup time tCSR In Suspend mode 5 ns Data valid delay time Note Note The value of T is set by using the CLKSEL (0:2) bits (TxD/CLKSEL2, RTS#/CLKSEL1, and DTR#/CLKSEL0). CLKSEL2 Note 1 Note 1 Note 1 Note 1 CLKSEL1 Note 1 Note 1 Note 0 Note 0 CLKSEL0 RFU Note RFU Note RFU Note RFU 1 0 1 0 0 1 1 43.3 0 1 0 45.9 0 0 1 48.4 0 0 0 40.7 Note Do not set CLKSEL2 to 1. 120 T (ns) Note Data Sheet U13211EJ2V0DS00 µPD30111 (17) Bus hold parameter (2/2) (a) Bus hold in Fullspeed/Standby mode tFHP HLDRQ# (input) HLDACK# (output) tFOFF tFON Note 1 Hi-Z Note 2 Hi-Z BUSCLK (output) Notes 1. UUCAS#/MRAS3#, ULCAS#/MRAS#2, MRAS (0:1)#, UCAS#, LCAS# 2. SHB#, IOR#, IOW#, MEMR#, MEMW#, RD#, WR#, ADD (0:25), DATA (0:15), DATA (16:31)/GPIO (16:31) (In 32-bit data bus mode) Remark The broken lines indicate high impedance. (b) Bus hold in Suspend mode tSHP HLDRQ# (input) HLDACK# (output) tSOFF tRPS Note 1 tRPS tCSR Hi-Z Note 2 Hi-Z Note 3 BUSCLK (output) tSOFF Hi-Z H Notes 1. In 32-bit mode: MRAS (0:1)# In 16-bit mode: UUCAS#/MRAS3#, ULCAS#/MRAS2#, MRAS (0:1)# 2. In 32-bit mode: UUCAS#/MRAS3#, ULCAS#/MRAS2#, UCAS#, LCAS# In 16-bit mode: UCAS#, LCAS# 3. SHB#, IOR#, IOW#, MEMR#, MEMW#, RD#, WR#, ADD (0:25), DATA (0:15), DATA (16:31)/GPIO (16:31) (In 32-bit data bus mode) Remark The broken lines indicate high impedance. Data Sheet U13211EJ2V0DS00 121 µPD30111 (18) Keyboard Interface parameter (1/2) Parameter Symbol Condition MIN. MAX. Unit KSCAN (0:11) high-level width tSCAN 30 (K + 2) – 1 30.16 (K + 2) + 1 µs Idle time (KSCAN (n+1) ↑ from KSCANn ↓) tKWAIT 30 (L + 1) – 1 30.16 (L + 1) + 1 µs tKI 30M – 1 30.16M + 1 µs Key input setup time (to KSCANn ↑) tKS 30 (N + 1) – 1 µs Key input hold time (from KSCANn ↑) tKH 0 µs Key scan interval time Notes 1. K: Sum of the values set to the T1CNT (0:4) bits and T2CNT (0:4) bits of the KIUWKS register 2. L: Value set to the T3CNT (0:4) bits of the KIUWKS register 3. M: Value set to KIUWKI register 4. N: Value set to the T1CNT (0:4) bits of the KIUWKS register 5. n = 0 to 11 (a) Keyboard scan parameter 1 tSCAN KSCANn (output) Hi-Z Hi-Z tKWAIT Hi-Z KSCAN (n + 1) (output) Remark n = 0 to 10 (b) Keyboard scan parameter 2 KSCAN0 Hi-Z (output) Hi-Z KSCAN1 (output) Hi-Z KSCAN2 (output) KSCAN11 (output) 122 tKWAIT Hi-Z tKWAIT tKWAIT + tKI Hi-Z Hi-Z Hi-Z Hi-Z Data Sheet U13211EJ2V0DS00 µPD30111 (18) Keyboard Interface parameter (2/2) (c) Keyboard port parameter KSCANn (output) Hi-Z Hi-Z tKS tKH KPORT (0:7) (input) Remark n = 0 to 11 Data Sheet U13211EJ2V0DS00 123 µPD30111 (19) Serial interface parameter (1/2) Parameter Symbol Note TxD output pulse width RxD input pulse width Note Note IRDOUT# high-level output pulse width IRDIN input pulse width Condition MIN. MAX. Unit tTXD N–1 N+1 µs tRXD (9/16) × N tIRDOUT (3/16) × N – 1 tIRDIN 1 µs (3/16) × N + 1 µs µs Note N: Data transfer rate per bit, which is determined by the divisor of the baud-rate generator that is set with the SIUDLL and SIUDLM registers. 124 Baud Rate (bps) SIUDLM, SIUDLL N (µs) 50 23,040 20,000 75 15,360 13,333 110 10,473 9,091 134.5 8,565 7,435 150 7,680 6,667 300 3,840 3,333 600 1,920 1,667 1,200 920 833 1,800 640 556 2,000 573 500 2,400 480 417 3,600 320 278 4,800 240 208 7,200 160 139 9,600 120 104 19,200 60 52.1 38,400 30 26.0 56,000 21 17.9 128,000 9 7.81 144,000 8 6.94 192,000 6 5.21 230,400 5 4.34 288,000 4 3.47 384,000 3 2.60 576,000 2 1.74 1,152,000 1 0.868 Data Sheet U13211EJ2V0DS00 µPD30111 (19) Serial interface parameter (2/2) TxD (output) tTXD RxD (input) tRXD IRDOUT# (output) tIRDOUT IRDIN (input) tIRDIN Data Sheet U13211EJ2V0DS00 125 µPD30111 (20) Debug serial interface parameter Parameter Note DDOUT output pulse width Note DDIN input pulse width Symbol Condition MIN. MAX. Unit tDDOUT N–1 N+1 µs tDDIN (9/16) × N µs Note N: Transfer rate of baud rate per bit set to the BPR0 bits of the BPRM0REG register. N (µs) BPR0 (2:0) Baud Rate (bps) 111 115,200 8.68 110 57,600 17.36 101 38,400 26.04 100 19,200 52.03 011 9,600 104.16 010 4,800 208.33 001 2,400 416.66 000 1,200 833.33 DDIN (input) tDDIN DDOUT (output) tDDOUT (21) HSP interface parameter Parameter Note 1 SDO output delay time Note 2 Condition MIN. tSDOD Unit 15 ns tSDIS 25 ns tSDIH 0 ns Note 2 tFSIS 20 ns tFSIH 0 ns SDI hold time FS setup time Note 2 Notes 1. The reference clock of this parameter is the rising edge of HSPSCLK. 2. The reference clock of this parameter is the falling edge of HSPSCLK. 126 MAX. Note 2 SDI setup time FS hold time Symbol Data Sheet U13211EJ2V0DS00 µPD30111 A/D Converter Characteristics (TA = –10 to +70°°C, VDD2 = 2.3 to 2.7 V, VDD3 = 3.0 to 3.6 V) Parameter Symbol Condition Resolution MIN. MAX. Unit 10 Zero-scale error Notes 1, 2 Notes 1, 2 Full-scale error Notes 1, 2 Integral linearity error Differential linearity error Notes 1, 2 Notes 1, 3 Analog input voltage bit ZSE 0 ±4.0 LSB RSE 0 ±5.0 LSB INL 0 ±3.0 LSB DNL 0 ±3.0 LSB VIAN –0.3 AVDD + 0.3 V MAX. Unit Notes 1. Applied to TPX (0:1), TPY (0:1), ADIN (0:2), and AUDIOIN pins. 2. Quantization error is excluded. 3. AVDD is a voltage on the AVDD pin that is VDD dedicated to the A/D converter. D/A Converter Characteristics (TA = –10 to +70°°C, VDD2 = 2.3 to 2.7 V, VDD3 = 3.0 to 3.6 V) Parameter Symbol Condition Resolution MIN. 10 Notes 1, 2 Integral linearity error Differential linearity error Notes 1, 2 bit INL 0 ±3.0 LSB DNL 0 ±3.0 LSB Notes 1. Applied to AUDIOOUT pin. 2. Quantization error is excluded. Load Coefficient (Delay Time per Load Capacitance) Parameter Symbol Condition Rating MIN. Load coefficient CLD Unit MAX. 5 Data Sheet U13211EJ2V0DS00 ns/20 pF 127 µPD30111 24. PACKAGE DRAWING 224-PIN FINE PITCH BGA (16x16) A W S B B B 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A C D V U T R P NM L K J HG F E D C B A P Index mark Q W S A J Y1 R I S H S K F S L E φM M G S A B NOTES 1. Controlling dimension millimeter. 2. Each ball centerline is located within φ 0.08 mm of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 16.00±0.10 0.630±0.004 B 15.4 0.606 C 15.4 0.606 D 16.00±0.10 0.630±0.004 E 1.20 0.047 F 0.8 (T.P.) 0.031 G 0.35±0.1 0.014 +0.004 −0.005 H 0.36 0.014 I 0.96 0.038 J 1.31±0.15 0.052 +0.006 −0.007 K 0.10 0.004 L φ 0.50 +0.05 −0.10 φ 0.020 +0.002 −0.005 M 0.08 0.003 P C1.0 C0.039 Q R0.3 R0.012 R 25° 25° W 0.20 0.008 Y1 0.20 0.008 S224S1-3C-1 128 Data Sheet U13211EJ2V0DS00 µPD30111 25. RECOMMENDED SOLERING CONDITIONS The µPD30111 should be soldered and mounted under the following recommended conditions. For details of recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Table 25-1. Surface Mounting Type Soldering Conditions Soldering Method Infrared reflow Soldering Conditions Recommended Condition Symbol Package peak temperature: 230°C, Time: 30 seconds max. (at 210°C or higher), Count: 2 times max., Exposure limit: 3 days Note IR30-103-2 (after that, prebake at 125°C for 10 to 72 hours.) VPS Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: 3 times max. , Exposure limit: 3 days Note VP15-103-2 (after that, prebake at 125°C for 10 to 72 hours.) Partial heating Pin temperature: 300°C max., Time: 3 seconds max. (per pin row) Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). Data Sheet U13211EJ2V0DS00 129 µPD30111 APPENDIX DIFFERENCES BETWEEN VR4111 AND VR4102 Item Cache memory VR4111 VR4102 Size Instruction: 16 Kbytes, data: 8 Kbytes Instruction: 4 Kbytes, data: 1 Kbyte Parity check None Provided Instruction set MIPS III + high-speed sum-of-products operation + MIPS16 MIPS III + high-speed sum-of-products operation LCD interface bus width 16 bits, 32 bits 16 bits Memory controller Maximum DRAM capacity (EDO type) 64 Mbytes 32 Mbytes Maximum ROM capacity 64 Mbytes 32 Mbytes Power-on factor 4 types, 12 sources 4 types, 8 sources Pull-up/pull-down of GPIO (0:14) pins Internal. Can be independently set by means of software. External processing Modem interface Transmit/receive FIFO: 96 bytes Transmit/receive FIFO: 32 bytes Internal maximum operating frequency 70 MHz 49 MHz Supply voltage Internal: 2.5 V External: 3.3 V 3.3 V Package 224-pin FBGA 216-pin LQFP 224-pin FBGA 130 Data Sheet U13211EJ2V0DS00 µPD30111 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet U13211EJ2V0DS00 131 µPD30111 [MEMO] 132 Data Sheet U13211EJ2V0DS00 µPD30111 Regional Information Some information contained in this document may vary from country to country. Before using any NEC product in your application, pIease contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: • Device availability • Ordering information • Product release schedule • Availability of related technical literature • Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) • Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country. NEC Electronics Inc. (U.S.) NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580 Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411 NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860 United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583 NEC Electronics Italiana s.r.l. NEC Electronics (Germany) GmbH Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490 NEC Electronics (UK) Ltd. NEC Electronics Hong Kong Ltd. NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC do Brasil S.A. Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829 J99.1 Data Sheet U13211EJ2V0DS00 133 µPD30111 Related documents Reference document VR4111 User’s Manual (U13137E) VR4102 User’s Manual (U12739E) µPD30102 (VR4102) Data Sheet (U12543E) Note Electrical Characteristics for Microcomputer (IEI-601) Note This document number is that of the Japanese version. The documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such. VR4000, VR4100, VR4102, VR4110, VR4111, VR4300, VR4400, and VR Series are trademarks of NEC Corporation. MIPS is a trademark of MIPS Technologies, Inc. Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some countries because this product utilizes technologies limited by the export control regulations of the U.S.A. • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8