NEC UPD780018Y

PRELIMINARY PRODUCT INFORMATION
MOS INTEGRATED CIRCUIT
µPD780016Y, 780018Y
8-BIT SINGLE-CHIP MICROCONTROLLER
DESCRIPTION
The µPD780016Y and 780018Y are members of the µ PD780018Y subseries of the 78K/0 series microcontrollers.
Besides a high-speed, high-performance CPU, these microcontrollers have on-chip ROM, RAM, I/O ports, timer,
serial interface, real-time output port, interrupt control, and various other peripheral hardware.
The µ PD78P0018Y devices including a one-time PROM version and an EPROM version, both of which can operate
in the same power supply voltage range as a mask ROM version, and various development tools are available.
The details of the functions are described in the following user’s manuals. Be sure to read it before starting design.
µPD780018,780018Y Subseries User’s Manual: U11754E
78K/0 Series User’s Manual – Instructions
: IEU-1372
FEATURES
• Internal high capacity ROM and RAM
Item
Part
Number
Program
Memory
(ROM)
µPD780016Y
48K bytes
µPD780018Y
60K bytes
Data Memory
Internal High-Speed
RAM
Buffer RAM
Internal Extended
RAM
1024 bytes
32 bytes
1024 bytes
• External memory expansion space: 64K bytes
• Instruction execution time can be changed from
high-speed (0.4 µs) to ultra-low-speed (122 µs)
• I/O ports: 88
• 8-bit resolution A/D converter: 8 channels
• Timer: 7 channels
Package
100-pin plastic QFP
(14 × 20 mm)
• Serial interface: 3 channels
• 3-wire serial I/O mode
(with automatic data transmit/receive function): 1 channel
• 3-wire serial I/O mode
(with time division transfer function): 1 channel
• I2C bus mode (supporting multi-task): 1 channel
• Supply voltage : VDD = 2.7 to 5.5 V
APPLICATION FIELD
Cellular phones, cordless phones, AV equipment, etc.
The information contained in this document is being issued in advance of the production cycle for the
device. The parameters for the device may change before final production or NEC Corporation, at its own
discretion, may withdraw the device prior to its production.
Document No. U11810EJ1V0PM00 (1st edition)
Date Published December 1996 N
Printed in Japan
©
1996
µPD780016Y, 780018Y
ORDERING INFORMATION
Part Number
Package
µPD780016YGF-XXX-3BA
100-pin plastic QFP (14 × 20 mm)
µPD780018YGF-XXX-3BA
100-pin plastic QFP (14 × 20 mm)
Remark XXX indicates ROM code suffix.
78K/0 SERIES DEVELOPMENT
These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are
subseries names.
Under mass production
Under development
Y subseries supports I2C bus.
For control
100-pin
µ PD78078
µ PD78078Y
Timer added to the µPD78054, external interface functions enhanced
100-pin
µ PD78070A
µ PD78070AY
ROM-less product for the µPD78078
100-pin
µ PD780018Note
µ PD780018YNote
Enhanced serial I/O of the µPD78078, functions limited
80-pin
µ PD78058F
µ PD78058FY
Reduced EMI noise product of the µPD78054
80-pin
µ PD78054
µ PD78054Y
UART and D/A added to the µPD78014, enhanced I/O
64-pin
µ PD780034
µ PD780034Y
Enhanced A/D of the µ PD780024
64-pin
µ PD780024
µ PD780024Y
Enhanced serial I/O of the µ PD78018F. Reduced EMI noise product.
64-pin
64-pin
µ PD780964
µ PD780924
64-pin
µ PD78014H
64-pin
µ PD78018F
µ PD78018FY
Reduced EMI noise of the µ PD78018F.
Low-voltage (1.8 V) operation product of the µ PD78014, ROM, RAM variations enhanced
64-pin
µ PD78014
µ PD78014Y
A/D, 16-bit timer added to the µPD78002
64-pin
64-pin
µ PD780001
µ PD78002
µ PD78002Y
42/44-pin
µ PD78083
Enhanced A/D of the µ PD780924
Internal inverter control circuit and UART. Reduced EMI noise product.
A/D added to the µPD78002
Basic subseries for control
Internal UART, low-voltage (1.8 V) operation possible
For driving FIPTM
78K/0
series
100-pin
µ PD780208
I/O, FIP C/D of the µPD78044F enhanced, display output total: 53
80-pin
µ PD78044F
6-bit U/D counter added to the µPD78024, display output total: 34
64-pin
µ PD78024
Basic subseries for FIP driving, display output total: 26
For driving LCD
100-pin
µ PD780308
100-pin
µ PD78064B
100-pin
µ PD78064
µPD780308Y
Enhanced SIO of the µPD78064, ROM, RAM extended
Reduced EMI noise product of the µPD78064
µ PD78064Y
Basic subseries for LCD driving, internal UART
Supporting IEBusTM
80-pin
µ PD78098
IEBus controller added to the µPD78054
For LV
64-pin
µPD78P0914
Note Under planning
2
PWM output, internal LV digital code decoder, Hsync counter
µPD780016Y, 780018Y
The major functional differences among the subseries are shown below.
Function
Subseries Name
For Control µPD78078
ROM
Capacity
Timer
8-bit 16-bit Watch WDT
32 K-60 K 4ch
µPD78070A
1ch
1ch
1ch
8ch
—
I/O
VDD
External
MIN.
Eexpansion
Value
2ch
3ch (UART: 1ch)
88
1.8 V
61
2.7 V
—
µPD780018 48 K-60 K
µPD78058F
µPD78054
Serial
Interface
8-bit 10-bit 8-bit
A/D A/D D/A
—
2ch
2ch
2ch
88
3ch (UART: 1ch)
69
16 K-60 K
2.0 V
µPD780034 8 K-32 K
µPD780024
µPD780964
3ch
Note
—
µPD780924
µPD78014H
2ch
—
8ch
8ch
—
—
8ch
8ch
—
—
51
1.8 V
2ch (UART: 2ch)
47
2.7 V
1.8 V
1ch
1ch
2ch
53
—
—
1ch
39
µPD78018F 8 K-60 K
µPD78014
8 K-32 K
2.7 V
µPD780001 8 K
µPD78002
8 K-16 K
µPD78083
1ch
—
—
8ch
53
1ch (UART: 1ch)
33
1.8 V
—
74
2.7 V
—
1.8 V
—
For FIP
µPD780208 32 K-60 K 2ch
driving
µPD78044F 16 K-40 K
68
µPD78024
54
1ch
1ch
8ch
—
—
2ch
24 K-32 K
For LCD
µPD780308 48 K-60 K 2ch
driving
µPD78064B 32 K
1ch
1ch
1ch
8ch
—
—
3ch (UART: 1ch)
57
2ch (UART: 1ch)
µPD78064
16 K-32 K
For IEBus
µPD78098
32 K-60 K 2ch
For LV
µPD78P0914 32 K
Note
1ch
6ch
—
1ch
1ch
1ch
8ch
—
2ch
—
—
1ch
8ch
—
—
2.0 V
3ch (UART: 1ch)
69
2.7 V
2ch
54
4.5 V
10-bit timer: 1 channel
3
µPD780016Y, 780018Y
OVERVIEW OF FUNCTION
Part Number
µPD780016Y
µPD780018Y
60K bytes
Item
Internal
ROM
48K bytes
memory
Internal high-speed RAM
1024 bytes
Buffer RAM
32 butes
Internal expansion RAM
1024 bytes
Memory space
64K bytes
General registers
8 bits × 32 registers (8 bits × 8 registers × 4 banks)
Instruction cycle
On-chip instruction execution time selective function
When main system clock selected
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 5.0 MHz)
When subsystem clock selected
122 µs (at 32.768 kHz)
Instruction set
•
•
•
•
I/O ports
16-bit operation
Multiplcation/division (8 bits × 8 bits,16 bits ÷ 8 bits)
Bit manipulation (set, reset, test, boolean operation)
BCD adjustment, etc.
Total
• CMOS input
• CMOS I/O
4
: 88
: 9
: 79
A/D converter
• 8-bit resolution × 8 channels
Serial interface
• 3-wire serial I/O mode (with automatic data transmit/receive function): 1 channel
• 3-wire serial I/O mode (with time division transfer function)
: 1 channel
• I2C bus mode (supporting multi-task)
: 1 channel
Timer
•
•
•
•
Timer output
5 (14-bit PWM output × 1, 8-bit PWM output × 2)
Clock output
39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5.0 MHz
(at main system clock of 5.0 MHz)
32.768 kHz (at subsystem clock of 32.768 kHz)
Buzzer output
2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock: at 5.0 MHz)
Vectored
interrupt
sources
Maskable
Internal : 12
External : 7
Non-maskable
Internal : 1
Software
1
16-bit timer/event counter :
8-bit timer/event counter :
Watch timer
:
Watchdog timer
:
1
4
1
1
channel
channels
channel
channel
Test input
Internal : 1
External : 1
Supply voltage
VDD = 2.7 to 5.5 V
Package
• 100-pin plastic QFP (14 × 20 mm)
µPD780016Y, 780018Y
CONTENTS
1. PIN CONFIGURATION (TOP VIEW) ................................................................................................... 6
2. BLOCK DIAGRAM .............................................................................................................................. 8
3. PIN FUNCTIONS ................................................................................................................................. 9
3.1
Port Pins ...................................................................................................................................................... 9
3.2
Non-port Pins ............................................................................................................................................ 11
3.3
Pin I/O Circuits and Recommended Connection of Unused Pins ..................................................... 13
4. MEMORY SPACE .............................................................................................................................. 16
5. PERIPHERAL HARDWARE FUNCTIONS ....................................................................................... 17
5.1
Ports ........................................................................................................................................................... 17
5.2
Clock Generator ........................................................................................................................................ 18
5.3
Timer/Event Counter ................................................................................................................................ 18
5.4
Clock Output Control Circuit .................................................................................................................. 22
5.5
Buzzer Output Control Circuit ................................................................................................................ 22
5.6
A/D Converter ........................................................................................................................................... 23
5.7
Serial Interfaces ........................................................................................................................................ 24
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS ....................................................................... 26
6.1
Interrupt Functions .................................................................................................................................. 26
6.2
Test Functions .......................................................................................................................................... 29
7. EXTERNAL DEVICE EXPANSION FUNCTIONS ............................................................................. 30
8. STANDBY FUNCTION ...................................................................................................................... 30
9. RESET FUNCTION ............................................................................................................................ 31
10. INSTRUCTION SET ........................................................................................................................... 32
11. PACKAGE DRAWINGS ..................................................................................................................... 34
APPENDIX A. DEVELOPMENT TOOLS................................................................................................ 35
APPENDIX B. RELATED DOCUMENTS ............................................................................................... 37
5
µPD780016Y, 780018Y
1. PIN CONFIGURATION (TOP VIEW)
• 100-pin plastic QFP (14 × 20 mm)
P156
P155
P154
P153
P152
P151
P150
P37
P36/BUZ
P35/PCL
P34/TI2
P33/TI1
P32/TO2
P31/TO1
P30/TO0
P103
P102
P101/TI6/TO6
P100/TI5/TO5
P67/ASTB
µPD780016YGF-XXX-3BA, 780018YGF-XXX-3BA
P80/A0
P81/A1
P82/A2
P83/A3
P84/A4
P85/A5
P86/A6
P87/A7
IC
X2
X1
VDD1
XT2
XT1
RESET
P00/INTP0/TI00
P01/INTP1/TI01
P02/INTP2
P03/INTP3
P04/INTP4
60
21
59
22
58
23
57
24
56
25
55
26
54
27
53
28
52
29
51
30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
P66/WAIT
P65/WR
P64/RD
P63
P62
P61
P60
P57/A15
P56/A14
VSS0
P55/A13
P54/A12
P53/A11
P52/A10
P51/A9
P50/A8
P47/AD7
P46/AD6
P45/AD5
P44/AD4
P43/AD3
P42/AD2
P41/AD1
P40/AD0
P117/SCL
P116/SDA
P115
P114
P113
P112/SCK4C
P16/ANI6
P17/ANI7
AVSS
P20/SI1
P21/SO1
P22/SCK1
P23/STB
P24/BUSY
P25
VSS1
P26
P27
P90/SI4A
P91/SO4A
P92/SCK4A
P93/SI4B
P94/SO4B
P95/SCK4B
P110/SI4C
P111/SO4C
P05/INTP5
P06/INTP6
VDD0
AVREF
P10/ANI0
P11/ANI1
P12/ANI2
P13/ANI3
P14/ANI4
P15/ANI5
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
80
1
79
2
78
3
77
4
76
5
75
6
74
7
73
8
72
9
71
10
70
11
69
12
68
13
67
14
66
15
65
16
64
17
63
18
62
19
61
20
Cautions 1. Connect IC (internally connected) pin directly to VSS0.
2. AVSS pin should be connected to VSS0.
Remark When the circuit is used in an application where the noise generated from the inside of the microcontroller
needs to be reduced, take countermeasures against noise such as supplying power to VDD0 and VDD1
separately and connecting VSS0 and VSS1 to the ground line separately.
6
µPD780016Y, 780018Y
A0-A15
: Address Bus
PCL
AD0-AD7
: Address/Data Bus
RD
: Read Strobe
ANI0-ANI7
: Analog Input
RESET
: Reset
ASTB
: Address Strobe
SCK1
: Serial Clock
AVREF
: Analog Reference Voltage
SCK4A, SCK4B, SCK4C : Serial Clock
AVSS
: Analog Ground
SCL
: Serial Clock
BUSY
: Busy
SDA
: Serial Data
BUZ
: Buzzer Clock
SI1
: Serial Input
IC
: Internally Connected
SI4A, SI4B, SI4C
: Serial Input
INTP0-INTP6
: Interrupt from Peripherals
SO1
: Serial Output
P00-P06
: Port0
SO4A, SO4B, SO4C
: Serial Output
P10-P17
: Port1
STB
: Strobe
P20-P27
: Port2
TI00, TI01
: Timer Input
P30-P37
: Port3
TI1, TI2, TI5, TI6
: Timer Input
P40-P47
: Port4
TO0-TO2, TO5, TO6
: Timer Output
P50-P57
: Port5
VDD0, VDD1
: Power Supply
P60-P67
: Port6
VSS0, VSS1
: Ground
P80-P87
: Port8
WAIT
: Wait
P90-P96
: Port9
WR
: Write Strobe
P100-P103
: Port10
X1, X2
: Crystal (Main System Clock)
P110-P117
: Port11
XT, XT2
: Crystal (Subsystem Clock)
P150-P156
: Port15
: Programmable Clock
7
µPD780016Y, 780018Y
2. BLOCK DIAGRAM
16-bit timer/
event counter
Port 0
P00
P01_P06
TO1/P31
TI1/P33
8-bit timer/
event
counter 1
Port 1
P10_P17
8-bit timer/
event
counter 2
Port 2
P20_P27
TO2/P32
TI2/P34
Port 3
P30_P37
Port 4
P40_P47
Port 5
P50_P57
Port 6
P60_P67
Port 8
P80_P87
Port 9
P90_P95
TO0/P30
TI00/INTP0/P00
TI01/INTP1/P01
TI5/TO5/P100
TI6/TO6/P101
8-bit timer/
event
counter 5
8-bit timer/
event
counter 6
Watchdog timer
Watch timer
SI1/P20
SO1/P21
SCK1/P22
STB/P23
BUSY/P24
Serial
interface 4
SDA/P116
SCL/P117
Serial
interface 5
AVSS
AVREF
INTP0/P00_
INTP6/P06
ROM
Serial
interface 1
SI4A/P90
SO4A/P91
SCK4A/P92
SI4B/P93
SO4B/P94
SCK4B/P95
SI4C/P110
SO4C/P111
SCK4C/P112
ANI0/P10_
ANI7/P17
78K/0
CPU Core
RAM
Port 10
P100_P103
Port 11
P110_P117
Port 15
P150_P156
AD0/P40_
AD7/P47
A0/P80_
External
access
RD/P64
A/D
converter
WR/P65
WAIT/P66
ASTB/P67
Interrupt
control
RESET
System
control
BUZ/P36
Buzzer output
PCL/P35
Clock output
control
VDD0,
VDD1
VSS0,
VSS1
IC
Remark The internal ROM capacity depends on the product.
8
A7/P87
A8/P50_
A15/P57
X1
X2
XT1
XT2
µPD780016Y, 780018Y
3. PIN FUNCTIONS
3.1 Port Pins (1/2)
Pin Name
I/O
P00
Input
P01
Input/
output
P02
Function
Port 0
7-bit I/O port
Input only
After
Reset
Alternate
Function Pin
Input
INTP0/TI00
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor
can be used by software.
INTP1/TI01
INTP2
INTP3
P03
Input
P04
INTP4
P05
INTP5
P06
INTP6
P10 to P17
Input
Port 1
8-bit input port
Input
ANI7
On-chip pull-up resistor can be used by software.Note
P20
Input/
output
P21
P22
Port 2
8-bit input/output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
P23
ANI0 to
SI1
SO1
SCK1
Input
STB
P24
BUSY
P25-P27
—
P30
Input/
output
P31
P32
TO0
Port 3
8-bit input/output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
TO1
TO2
TI1
P33
Input
P34
TI2
P35
PCL
P36
BUZ
P37
—
P40 to P47
Note
Input/
output
Port 4
8-bit input/output port
Input/output can be specified in 8-bit units.
When used as an input port, on-chip pull-up resistor can be used by software.
Test input flag (KRIF) is set to 1 by falling edge detection.
Input
AD0 to AD7
When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, on-chip pull-up resistor is
automatically disconnected.
9
µPD780016Y, 780018Y
3.1 Port Pins (2/2)
Pin Name
I/O
P50 to P57
Input/
output
P60
Input/
output
P61
P62
After
Reset
Alternate
Function Pin
Port 5
8-bit input/output port
LED can be driven directly.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
A8 to A15
Port 6
8-bit input/ output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
—
Function
P63
P64
RD
P65
WR
P66
WAIT
P67
ASTB
P80 to P87
Input/
output
Port 8
8-bit input/output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
A0 to A7
P90
Input/
output
Port 9
6-bit input/output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
SI4A
P91
P92
SO4A
SCK4A
P93
SI4B
P94
SO4B
P95
SCK4B
P100
P101
Input/
output
P102, P103
P110
P111
Input/
output
P112
Port 10
4-bit input/output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
Port 11
8-bit input/output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
TI5/TO5
TI6/TO6
—
SI4C
SO4C
SCK4C
P113-P115
—
P116
SDA
P117
SCL
P150-P156
10
Input/
output
Port 15
7-bit input/output port
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Input
—
µPD780016Y, 780018Y
3.2 Non-port Pins (1/2)
Pin Name
INTP0
I/O
Input
INTP1
Function
External interrupt request input by which the active edge (rising edge, falling
edge, or both rising and falling edges) can be specified.
After
Reset
Alternate
Function Pin
Input
P00/TI00
P01/TI01
INTP2
P02
INTP3
P03
INTP4
P04
INTP5
P05
INTP6
P06
SI1
Input
Serial interface serial data input.
Input
P20
SI4A
P90
SI4B
P93
SI4C
P110
SO1
Output
Serial interface serial data output.
Input
P21
SO4A
P91
SO4B
P94
SO4C
P111
SDA
Input/output
Input/output of serial data of serial interface.
Input
P116
SCK1
Input
/output
Serial interface serial clock input/output.
Input
P22
SCK4A
P92
SCK4B
P95
SCK4C
P112
SCL
P117
Output
Serial interface automatic transmit/receive strobe output.
Input
P23
BUSY
Input
Serial interface automatic transmit/receive busy input.
Input
P24
TI00
Input
External count clock input to 16-bit timer (TM0).
Input
P00/INTP0
STB
P01/INTP1
TI01
Capture trigger signal input to capture register (CR00).
TI1
External count clock input to 8-bit timer (TM1).
P33
TI2
External count clock input to 8-bit timer (TM2).
P34
TI5
External count clock input to 8-bit timer (TM5).
P100/TO5
TI6
External count clock input to 8-bit timer (TM6).
P100/TO6
TO0
Output
16-bit timer (TM0) output (also used for 14-bit PWM output).
Input
P30
TO1
8-bit timer (TM1) output.
P31
TO2
8-bit timer (TM2) output.
P32
TO5
8-bit timer (TM5) output (also used for 8-bit PWM output).
P100/TI5
TO6
8-bit timer (TM6) output (also used for 8-bit PWM output).
P101/TI6
PCL
Output
Clock output (for main system clock, subsystem clock trimming).
Input
P35
BUZ
Output
Buzzer output.
Input
P36
AD0 to AD7
Input
/output
Low-order address/data bus at external memory expansion.
Input
P40 to P47
11
µPD780016Y, 780018Y
3.2 Non-port Pins (2/2)
After
Reset
Alternate
Function Pin
Low-order address bus at external memory expansion.
Input
P80 to P87
Output
High-order address bus at external memory expansion.
Input
P50 to P57
Output
External memory read operation strobe signal output.
Pin Name
I/O
A0 to A7
Output
A8 to A15
RD
WR
Function
P64
Input
P65
External memory write operation strobe signal output.
WAIT
Input
ASTB
Output
Wait insertion at external memory access.
Strobe output which externally latches the address information output to
Input
Input
P66
P67
ports 4, 5 and 8 to access external memory.
ANI0 to ANI7
Input
A/D converter analog input.
AVREF
Input
AVSS
—
RESET
12
Input
P10 to P17
A/D converter reference voltage input (shared with analog power supply).
—
—
A/D converter ground potential. Same potential as VSS0.
—
—
Input
System reset input.
—
—
X1
Input
Main system clock oscillation crystal connection.
—
—
X2
—
—
—
XT1
Input
Input
—
XT2
—
—
—
VDD0
—
Port block positive power supply.
—
—
VSS0
—
Port block ground potential.
—
—
VDD1
—
Positive power supply (except for port and analog blocks)
—
—
VSS1
—
Ground potential (except for port and analog blocks)
—
—
IC
—
Internal connection. Connect directly to VSS0.
—
—
Subsystem clock oscillation crystal connection.
µPD780016Y, 780018Y
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins
The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.
For the input/output circuit configuration of each type, see Figure 3-1.
Table 3-1. Types of Pin Input/Output Circuits (1/2)
Input/Output
Circuit Type
I/O
P00/INTP0/TI00
2
Input
P01/INTP1/TI01
8-C
Input/output
P10/ANI0-P17/ANI7
9-B
Input
P20/SI1
8-C
Input/output
P21/SO1
5-H
P22/SCK1
8-C
P23/STB
5-H
P24/BUSY
8-C
P25-P27
5-H
Pin Name
Recommended Connection for Unused Pins
Connect to VSS0.
Connect to VSS0 via a resistor individually.
P02/INTP2
P03/INTP3
P04/INTP4
P05/INTP5
P06/INTP6
Connect to VDD0 or VSS0 via a resistor individually.
P30/TO0-P32/TO2
P33/TI1
8-C
P34/TI2
P35/PCL
5-H
P36/BUZ
P37
P40/AD0-P47/AD7
5-N
Input/output
Connect to VDD0 via a resistor individually.
P50/A8-P57/A15
5-H
Input/output
Connect to VDD0 or VSS0 via a resistor individually.
P60-P63
P64/RD
P65/WR
P66/WAIT
P67/ASTB
P80/A0-P87/A7
P90/SI4A
8-C
P91/SO4A
5-H
P92/SCK4A
8-C
P93/SI4B
P94/SO4B
5-H
P95/SCK4B
8-C
13
µPD780016Y, 780018Y
Table 3-1. Types of Pin Input/Output Circuits (2/2)
Pin Name
P100/TI5/TO5
Input/Output
Circuit Type
8-C
I/O
Input/output
Recommended Connection for Unused Pins
Connect to VDD0 or VSS0 via a resistor individually.
P101/TI6/TO6
P102, P103
5-H
P110/SI4C
8-C
P111/SO4C
5-H
P112/SCK4C
8-C
P113-P115
5-H
P116/SDA
10-B
P117/SCL
P150-P156
5-H
RESET
2
Input
XT1
16
—
XT2
AVREF
—
Connect to VDD0.
Leave open.
—
Connect to VSS0.
AVSS
IC
14
Connect to VSS0.
µPD780016Y, 780018Y
Figure 3-1. Pin Input/Output Circuits
Type 2
Type 9-B
VDD0
pullup
enable
P-ch
IN
comparator
P-ch
N-ch
IN
+
_
VSS0
Schmitt-triggered input with hysteresis characteristic
VREF
threshold voltage
input
enable
VDD0
Type 5-H
pullup
enable
Type 10-B
VDD0
pullup
enable
P-ch
P-ch
VDD0
data
VDD0
data
P-ch
P-ch
IN/OUT
output
disable
IN/OUT
open drain
output disable
N-ch
N-ch
VSS0
VSS0
input
enable
Type 5-N
Type 16
VDD0
pullup
enable
feedback
cut-off
P-ch
VDD0
P-ch
data
P-ch
IN/OUT
output
disable
N-ch
VSS0
XT1
Type 8-C
XT2
VDD0
pullup
enable
P-ch
VDD0
data
P-ch
IN/OUT
output
disable
N-ch
VSS0
15
µPD780016Y, 780018Y
4. MEMORY SPACE
The memory map of the µPD780016Y and 780018Y is shown in Figure 4-1.
Figure 4-1. Memory Map
FFFFH
Special function registers
(SFR) 256 × 8 bits
FF00H
FEFFH
FEE0H
FEDFH
General-purpose registers
32 × 8 bits
Internal high-speed RAM
1024 × 8 bits
FB00H
FAFFH
Use prohibited
FAE0H
Data
memory
space
FADFH
FAC0H
nnnnH
Buffer RAM
32 × 8 bits
Program area
1000H
0FFFH
FABFH
Use prohibited
CALLF entry area
F800H
F7FFH
0800H
Internal extended RAM
F400H
F3FFH
Program nnnnH+1
memory
nnnnH
space
07FFH
1024 × 8 bits
Program area
0080H
Use prohibited Note 1
007FH
CALLT table area
0040H
003FH
Internal ROM Note 2
Vector table area
0000H
0000H
Notes 1. If external device expansion functions are to be employed for the µPD780018Y, set the size of the
internal ROM to below 56K bytes using the memory size switching register (IMS).
2. The internal ROM capacity depends on the product. (See the following table.)
Part Number
16
Internal ROM Last Address
nnnnH
µPD780016Y
BFFFH
µPD780018Y
EFFFH
µPD780016Y, 780018Y
5. PERIPHERAL HARDWARE FUNCTIONS
5.1 Ports
Input/output ports are classified into two types.
• CMOS input (P00, Port 1)
: 9
• CMOS input/output (P01 to P06, Port 2 to 6, Port 8 to 11, Port 15)
Total
: 79
: 88
Table 5-1. Functions of Ports
Port Name
Pin Name
Port 0
P00
Function
Input only.
P01 to P06
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 1
P10 to P17
Input only.
On-chip pull-up resistor can be used by software.
Port 2
P20 to P27
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 3
P30 to P37
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 4
P40 to P47
Input/output port. Input/output can be specified in 8-bit units.
When used as an input port, on-chip pull-up resistor can be used by software.
The test input flag (KRIF) is set to 1 by falling edge detection.
Port 5
P50 to P57
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
LED can be driven directly.
Port 6
P60 to P67
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 8
P80 to P87
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 9
P90 to P95
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 10
P100 to P103
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 11
P110 to P117
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
Port 15
P150 to P156
Input/output port. Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by software.
17
µPD780016Y, 780018Y
5.2 Clock Generator
There are two kinds of clock generators: main system and subsystem clock generators.
It is possible to change the instruction execution time.
• 0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at main system clock frequency of 5.0 MHz)
• 122 µs (at subsystem clock frequency of 32.768 kHz)
Figure 5-1. Clock Generator Block Diagram
XT1
Subsystem
clock
oscillator
XT2
fXT
Watch timer, Clock
output function
X1
Main system fX
clock
oscillator
X2
Division
circuit
Selector
Prescaler
fXX
fXX
2
fX
2
Prescaler
1
fXX
22
fXX
23
fXX
24
Clock to peripheral
hardware
2
fXT
2
Selector
STOP
MCSNote
Oscillation mode
select register
Wait
control
circuit
Standby
control
circuit
CPU clock
(fCPU)
To INTP0
sampling clock
Note
Be sure to set 1 to MCS.
5.3 Timer/Event Counter
There are the following seven timer/event counter channels:
• 16-bit timer/event counter
: 1 channel
• 8-bit timer/event counter
: 4 channels
• Watch timer
: 1 channel
• Watchdog timer
: 1 channel
Table 5-2. Types and Functions of Timer/Event Counters
16-bit Timer/Event 8-bit Timer/Event
Counter
Counters 1, 2
8-bit Timer/Event
Counters 5, 6
Watch Timer
Watchdog Timer
Interval timer
1 channel
2 channels
2 channels
1 channel
1 channel
External event counter
1 channel
2 channels
2 channels
—
—
Timer output
1 output
2 outputs
2 outputs
—
—
PWM output
1 output
—
2 outputs
—
—
Pulse width measurement
2 inputs
—
—
—
—
Square wave output
1 output
2 outputs
2 outputs
—
—
One-shot pulse output
1 output
—
—
—
—
Interrupt request
2
2
2
1
1
Test input
—
—
—
1 input
—
Type
Function
18
µPD780016Y, 780018Y
Figure 5-2. 16-Bit Timer/Event Counter Block Diagram
Internal bus
INTP1
Selector
TI01/P01/
INTP1
16-bit capture/
compare register
(CR00)
INTTM00
PWM pulse
output
control
circuit
Match
Watch timer
output
Selector
fXX
fXX/2
fXX/22
TO0/P30
16-bit timer
register (TM0)
Clear
TI00/P00/
INTP0
Output
control circuit
Edge
detector
Selector
Match
INTTM01
INTP0
16-bit capture/
compare register
(CR01)
Internal bus
Figure 5-3. 8-Bit Timer/Event Counter 1, 2 Block Diagram
Internal bus
8-bit compare
register (CR10)
8-bit compare
register (CR20)
Match
fXX/211
TI1/P33
8-bit timer
register 1 (TM1)
Clear
fXX/211
TI2/P34
TO2/P32
8-bit timer
register 2 (TM2)
Clear
Selector
fXX/2fXX/29
Output
control
circuit
INTTM2
Selector
fXX/2fXX/29
Selector
Match
Selector
INTTM1
Selector
Output
control
circuit
TO1/P31
Internal bus
19
µPD780016Y, 780018Y
Figure 5-4. 8-Bit Timer/Event Counter 5, 6 Block Diagram
Internal bus
8-bit compare register
(CRn0)
fXX - fXX/29
fXX/211
Selector
Match
8-bit timer register n
(TMn)
TI5/P100/TO5,
TI6/P101/TO6
20
OVF
Clear
Internal bus
n = 5, 6
INTTMn
Output control
circuit
TO5/P100/TI5,
TO6/P101/TI6
µPD780016Y, 780018Y
fXT
fW
Prescaler
fW
25
fW
26
fW
27
fW
28
INTWT
fW
213
fW
29
Selector
fW
24
5-bit counter
fW
214
Selector
Selector
fXX/27
Selector
Figure 5-5. Watch Timer Block Diagram
INTTM3
To 16-bit timer/
event counter
Figure 5-6. Watchdog Timer Block Diagram
fXX
23
Prescaler
fXX
26
fXX
27
fXX
28
fXX
29
fXX
211
INTWDT
maskable
interrupt request
8-bit counter
Control
circuit
fXX
25
Selector
fXX
24
RESET
INTWDT
non-maskable
interrupt request
21
µPD780016Y, 780018Y
5.4 Clock Output Control Circuit
This circuit can output clocks of the following frequencies:
• 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz/2.5 MHz/5.0 MHz (at main system clock frequency
of 5.0 MHz)
• 32.768 kHz (at subsystem clock frequency of 32.768 kHz)
Figure 5-7. Clock Output Control Circuit Block Diagram
fXX
fXX/2
fXX/24
fXX/25
fXX/26
Selector
fXX/22
fXX/23
Synchronization
circuit
Output control
circuit
PCL/P35
fXX/27
fXT
5.5 Buzzer Output Control Circuit
This circuit can output clocks of the following frequencies that can be used for driving buzzers:
• 2.4 kHz/4.9 kHz/9.8 kHz (at main system clock frequency of 5.0 MHz)
fXX/29
fXX/210
fXX/211
22
Selector
Figure 5-8. Buzzer Output Control Circuit Block Diagram
Output control
circuit
BUZ/P36
µPD780016Y, 780018Y
5.6 A/D Converter
The A/D converter consists of eight 8-bit resolution channels.
A/D conversion can be started by the following two methods:
• Hardware starting
• Software starting
Figure 5-9. A/D Converter Block Diagram
Series resistor string
ANI0/P10
AVREF
ANI1/P11
ANI2/P12
ANI4/P14
Voltage comparator
Selector
ANI3/P13
AVSS
ANI5/P15
Tap selector
Sample & hold circuit
ANI6/P16
AVSS
ANI7/P17
INTP3/P03
Successive approximation
register (SAR)
Edge
detector
Control
circuit
INTAD
INTP3
A/D conversion result
register (ADCR)
Internal bus
23
µPD780016Y, 780018Y
5.7 Serial Interfaces
There are the following three on-chip serial interface channels synchronous with the clock:
• Serial interface channel 1
• Serial interface channel 4
• Serial interface channel 5
Table 5-3. Types and Functions of Serial Interfaces
Function
Serial Interface Channel 1
Serial Interface Channel 4
Serial Interface Channel 5
(Starting bit MSB/LSB switching possible)
(Starting bit MSB/LSB switching possible)
3-wire serial I/O mode
3-wire serial I/O mode with
automatic data transmit/
/receive function
—
—
—
(Starting bit MSB/LSB switching possible)
3-wire serial I/O mode with
automatic data transmit/
receive function
—
I2C bus mode
—
—
(Starting bit MSB/LSB switching possible)
—
(MSB first)
Figure 5-10. Serial Interface Channel 1 Block Diagram
Internal bus
Automatic data transmit/
receive address
pointer (ADTP)
Automatic data
transmit/receive
interval specification
register (ADTI)
Buffer RAM
Serial I/O shift
register 1 (SIO1)
SI1/P20
Match
SO1/P21
5-bit counter
BUSY/P24
SCK1/P22
Handshake
control
circuit
Serial clock counter
Serial clock
control circuit
24
Interrupt request
signal generator
Selector
STB/P23
INTCSI1
fXX/22—fXX/28
TO2
µPD780016Y, 780018Y
Figure 5-11. Serial Interface Channel 4 Block Diagram
SO4A/P91
SO4B/P94
SO4C/P111
SCK4A/P92
SCK4B/P95
SCK4C/P112
Interrupt
request
signal
generator
Serial clock
counter
Selector
SI4C/P110
Serial I/O
shift register 4
(SIO4)
Selector
SI4B/P93
Selector
SI4A/P90
Selector
Internal bus
Serial clock
control circuit
INTCSI4
fXX/22-fXX/28
TO2
Figure 5-12. Serial Interface Channel 5 Block Diagram
Internal bus
I2C bus interface control
register (IICC)
Slave address
register 5 (SVA5)
Clear
Match signal
P116/SDA
Serial I/O shift
register 5 (SIO5)
Set
Output latch
CL0
Data retention time
correction circuit
N-ch open-drain output
I2C bus interface status
register (IICS)
P116 output latch
Wake-up
control circuit
Acknowledge
output circuit
Acknowledge
detection circuit
Start condition
detection circuit
Stop condition
detection circuit
P117/SCL
Interrupt request signal
generation circuit
Serial clock
counter
Serial clock
control circuit
N-ch open-drain output
P117 output latch
INTIIC
Serial clock wait
control circuit
Prescaler
I2C bus interface clock
select register (IICCL)
Internal bus
25
µPD780016Y, 780018Y
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS
6.1 Interrupt Functions
A total of 21 interrupt functions are provided, divided into the following three types.
• Non-maskable : 1
• Maskable
: 19
• Software
: 1
Table 6-1. List of Interrupt Factors
Interrupt
DefaultNote 1
Type
Priority
Name
Nonmaskable
—
INTWDT
Overflow of watchdog timer (When the watchdog
timer mode 1 is selected)
Maskable
0
INTWDT
Overflow of watchdog timer (When the interval
timer mode is selected)
1
INTP0
2
Interrupt Factor
Trigger
Pin input edge detection
Internal/
Vector Table BasicNote 2
External
Address Structure Type
Internal
0004H
(A)
(B)
External
0006H
(C)
INTP1
0008H
(D)
3
INTP2
000AH
4
INTP3
000CH
5
INTP4
000EH
6
INTP5
0010H
7
INTP6
0012H
8
INTCSI1
Completion of serial interface channel 1 transfer
9
INTTM3
Reference interval signal from watch timer
001EH
10
INTTM00
Generation of matching signal of 16-bit timer
0020H
Internal
0016H
(B)
register and capture/compare register (CR00)
Software
11
INTTM01
Generation of matching signal of 16-bit timer
register and capture/compare register (CR01)
0022H
12
INTTM1
Generation of matching signal of 8-bit timer/event
counter 1
0024H
13
INTTM2
Generation of matching signal of 8-bit timer/event
counter 2
0026H
14
INTAD
Completion of A/D conversion
0028H
15
INTTM5
Generation of matching signal of 8-bit timer/event
counter 5
002AH
16
INTTM6
Generation of matching signal of 8-bit timer/event
counter 6
002CH
17
INTCSI4
Completion of serial interface channel 4 transfer
002EH
18
INTIIC
Completion of serial interface channel 5 transfer
0030H
—
BRK
Execution of BRK instruction
—
003EH
(E)
Notes 1. Default priority is the priority order when several maskable interruptions are generated at the same time.
0 is the highest order and 18 is the lowest order.
2. Basic structure types (A) to (E) correspond to (A) to (E) in Figure 6-1.
26
µPD780016Y, 780018Y
Figure 6-1. Interrupt Function Basic Configuration (1/2)
(A) Internal non-maskable interrupt
Internal bus
Priority
control
circuit
Interrupt
request
Vector table
address
generator
Standby release
signal
(B) Internal maskable interrupt
Internal bus
MK
Interrupt
request
IE
PR
ISP
Priority
control
circuit
IF
Vector table
address
generator
Standby release
signal
(C) External maskable interrupt (INTP0)
Internal bus
Interrupt
request
Sampling clock
select register
(SCS)
External interrupt
mode register
(INTM0)
Sampling
clock
Edge
detector
MK
IF
IE
PR
Priority
control
circuit
ISP
Vector table
address
generator
Standby
release
signal
27
µPD780016Y, 780018Y
Figure 6-1. Interrupt Function Basic Configuration (2/2)
(D) External maskable interrupt (except INTP0)
Internal bus
External interrupt
mode register
(INTM0, INTM1)
Interrupt
request
Edge
detector
MK
IE
PR
ISP
Priority control
circuit
IF
Vector table
address
generator
Standby
release
signal
(E) Software interrupt
Internal bus
Interrupt
request
IF
28
:
Interrupt request flag
E
:
ISP :
Interrupt enable flag
In-service priority flag
MK :
PR :
Interrupt mask flag
Priority specification flag
Priority
control
circuit
Vector table
address
generator
µPD780016Y, 780018Y
6.2 Test Functions
Table 6-2 shows the two test functions available.
Table 6-2. Test Input Factors
Test Input Factor
Name
Trigger
Internal/
External
INTWT
Overflow of watch timer
Internal
INTPT4
Detection of falling edge of port 4
External
Figure 6-2. Basic Configuration of Test Function
Internal bus
MK
Test input
signal
IF
IF
:
Test input flag
MK
:
Test mask flag
Standby release
signal
29
µPD780016Y, 780018Y
7. EXTERNAL DEVICE EXPANSION FUNCTIONS
The external device expansion functions connect external devices to areas other than the internal ROM, RAM and
SFR.
External devices connection uses ports 4 to 6 and port 8.
The external device expansion function has the following two modes:
•
Separate bus mode
: External devices are connected by using an independent address bus and data
bus. Because an external latch circuit is not necessary, this mode is effective for
reducing the number of components and the mounting area on a printed wiring
board.
•
Multiplexed bus mode
: External devices are connected by using a time-division multiplexed address/data
bus. This mode is useful for reducing the number of ports used when external
devices are connected.
8. STANDBY FUNCTION
The standby function intends to reduce current consumption. It has the following three modes:
•
HALT mode
: In this mode, the CPU operation clock is stopped. The average current consumption
can be reduced by intermittent operation by combining this mode with the normal
operation mode.
•
Main STOP mode : In this mode, oscillation of the main system clock is stopped. The power consumption
•
Sub-STOP mode : In this mode, oscillation of the subsystem clock is stopped. The whole operation is
can be reduced because the whole internal circuit is stopped.
stopped and the power is consumed very little.
Figure 8-1. Standby Function
CSS = 1
Main system clock operation
Subsystem clock operationNote
CSS = 0
Interrupt
request
STOP
instruction
Interrupt
request
STOP mode
(Oscillation of the main system
clock is stopped.)
Note
HALT instruction
HALT
instruction
Reset
HALT mode
(Supply of clock to CPU is
stopped although clock
is generated.)
STOP
instructon
Interrupt
request
Sub-STOP mode
(Oscillation of the main
system clock and subsystem
clock is stopped.)
Note
HALT mode
(Supply of clock to CPU is
stopped although clock
is generated.)
Current consumption is reduced by shutting off the main system clock.
If the CPU is operating on subsystemclock, shut off the main system clock by setting MCC. You cannot
use a STOP instruction in HALT mode.
Cautions 1. The main stop mode can be used only when the main system clock is being operated. (The
oscillation of the subsystem clock cannot be stopped.)
2. When switching on the main system clock again after the subsystem clock has been used
with the main system clock stopped, be sure to provide enough time for the generation
to be stable with the program first.
30
µPD780016Y, 780018Y
9. RESET FUNCTION
There are the following two reset methods.
• External reset input by RESET pin
• Internal reset by watchdog timer inadvertent program loop time detection
31
µPD780016Y, 780018Y
10. INSTRUCTION SET
(1) 8-bit instructions
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,
ROLC, ROR4, ROL4, PUSH, POP, DBNZ
2nd Operand
#byte
A
rNote
sfr
saddr
!addr16
PSW
[DE]
MOV
MOV
XCH
[HL]
1st Operand
A
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
r
MOV
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
[HL + byte]
[HL + B] $addr16
[HL + C]
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
None
ROR
ROL
RORC
ROLC
MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
B, C
1
INC
DEC
DBNZ
sfr
MOV
MOV
saddr
MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
!addr16
DBNZ
INC
DEC
MOV
PSW
MOV
MOV
[DE]
MOV
[HL]
MOV
[HL + byte]
[HL + B]
[HL + C]
MOV
PUSH
POP
ROR4
ROL4
X
MULU
C
DIVUW
Note
32
Except r = A
µPD780016Y, 780018Y
(2) 16-bit instructions
MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW
2nd Operand
1st Operand
#word
AX
AX
ADDW
SUBW
CMPW
rp
MOVW
MOVWNote
sfrp
MOVW
MOVW
saddrp
MOVW
MOVW
MOVW
MOVW
!addr16
sfrp
MOVW
XCHW
MOVW
saddrp
MOVW
!addr16
MOVW
SP
None
MOVW
INCW, DECW
PUSH, POP
MOVW
SP
Note
rpNote
Only when rp = BC, DE, HL
(3) Bit manipulation instructions
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR
2nd Operand
1st Operand
A.bit
sfr.bit
saddr.bit
PSW.bit
[HL].bit
CY
$addr16
None
A.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
sfr.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
saddr.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
PSW.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
[HL].bit
MOV1
BT
BF
BTCLR
SET1
CLR1
CY
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
SET1
CLR1
NOT1
(4) Call instructions/Branch instructions
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ
2nd Operand
AX
1st Operand
Basic instruction
BR
!addr16
CALL
BR
Compound instruction
!addr11
CALLF
[addr5]
CALLT
$addr16
BR, BC
BNC
BZ, BNZ
BT, BF
BTCLR
DBNZ
(5) Other instructions
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP
33
µPD780016Y, 780018Y
11. PACKAGE DRAWINGS
100 PIN PLASTIC QFP (14 × 20)
A
B
Q
F
G
H
I M
5°±5°
31
30
S
100
1
detail of lead end
D
51
50
C
80
81
J
M
P
K
N
L
P100GF-65-3BA1-2
NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at
maximum material condition.
34
ITEM
MILLIMETERS
INCHES
A
23.6 ± 0.4
0.929 ± 0.016
B
20.0 ± 0.2
0.795+0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.6 ± 0.4
0.693 ± 0.016
F
0.8
0.031
G
0.6
0.024
H
0.30 ± 0.10
0.012+0.004
–0.005
I
0.15
0.006
J
0.65 (T.P.)
0.026 (T.P.)
K
1.8 ± 0.2
0.071+0.008
–0.009
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.10
0.004
P
2.7
0.106
Q
0.1 ± 0.1
0.004 ± 0.004
S
3.0 MAX.
0.119 MAX.
µPD780016Y, 780018Y
APPENDIX A. DEVELOPMENT TOOLS
The following tools are available for system development using the µPD780016Y and 780018Y.
Language Processing Software
RA78K/0Notes 1, 2, 3, 4
Assembler package used in common for the 78K/0 series
CC78K/0Notes 1, 2, 3, 4
C compiler package used in common for the 78K/0 series
DF780018Notes 1, 2, 3, 4, 8
Device file used in common for the µPD780018 subseries
CC78K/0–LNotes 1, 2, 3, 4
C compiler library source file used in common for the 78K/0 series
PROM Writing Tools
PG-1500
PA-78P0018GF
PROM programmer
Note 8
PA-78P0018KL-T
Programmer adapter connected to the PG-1500
Note 8
PG-1500 controllerNotes 1, 2
Control program for the PG-1500
Debugging Tools
IE-78000-R
In-circuit emulator used in common for the 78K/0 series
IE-78000-R-ANote 8
In-circuit emulator used in common for the 78K/0 series (for integrated debugger)
IE-78000-R-BK
Break board used in common for the 78K/0 series
IE-780018-R-EMNote 8
Emulation board used in common for the µPD780018 subseries
EP-78064GF-R
Emulation probe used in common for the µPD78064 subseries
EV-9200GF-100
Socket mounted on the target system board prepared for 100-pin plastic QFP
(GF-3BA type)
EV-9900
Tool used for removing the µPD78P0018YKL-T from the EV-9200GF-100.
SM78K0Notes 5, 6, 7
System simulator used in common for the 78K/0 series
ID78K0Notes 4, 5, 6, 7, 8
Integrated debugger for IE-78000-R-A
SD78K/0Notes 1, 2
Screen debugger for the IE-78000-R
DF780018Notes 1, 2, 4, 5, 6, 7, 8
Device file used in common for the µPD780018 subseries
35
µPD780016Y, 780018Y
Real-Time OS
RX78K/0Notes 1, 2, 3, 4
MX78K0
Notes 1, 2, 3, 4
Real-time OS used for the 78K/0 series
OS used for the 78K/0 series
Fuzzy Inference Development Support System
FE9000Note 1/FE9200Note 6
Fuzzy knowledge data creating tool
FT9080Note 1/FT9085Note 2
Translator
FI78K0Notes 1, 2
Fuzzy inference module
FD78K0Notes 1, 2
Fuzzy inference debugger
Notes 1. Based on PC-9800 series (MS-DOSTM)
2. Based on IBM PC/ATTM and compatible machines (PC DOSTM /IBM DOSTM/MS-DOS)
3. Based on HP9000 series 300TM (HP-UXTM)
4. Based on HP9000 series 700TM (HP-UX), SPARCstationTM (SunOSTM), and EWS-4800 series (EWS-UX/
V)
5. Based on PC-9800 series (MS-DOS + WindowsTM)
6. Based on IBM PC/AT and compatible machines (PC DOS/IBM DOS/MS DOS + Windows)
7. Based on NEWTM (NEWS-OSTM)
8. Under development
Remarks 1. For development tools supplied by third-party manufacturers, refer to 78K/0 Series Selection Guide
(U11126E).
2. Use the RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 in combination with the
DF780018.
36
µPD780016Y, 780018Y
APPENDIX B. RELATED DOCUMENTS
Documents Related to Devices
Document No.
Document
Japanese
English
µPD780018Y, 780018Y Subseries User’s Manual
U11754J
To be prepared
µPD780016Y, 780018Y Preliminary Product Information
U11810J
This document
µPD78P0018Y Preliminary Product Information
U11603J
To be prepared
78K/0 Series User’s Manual-Instruction
IEU-849
IEU-1372
78K/0 Series Instruction Table
U10903J
—
78K/0 Series Instruction Set
U10904J
—
To be prepared
—
µPD780018Y Subseries Special-Function Register Table
Documents on Development Tools (User’s Manuals)
Document No.
Document
RA78K Series Assembler Package
Japanese
English
Operation
EEU-809
EEU-1399
Language
EEU-815
EEU-1404
RA78K Series Structured Assembler Preprocessor
EEU-817
EEU-1402
Operation
EEU-656
EEU-1280
Language
EEU-655
EEU-1284
Operation
U11517J
—
Language
U11518J
—
Programing Know-how
EEA-618
EEA-1208
CC78K Series Library Source File
EEU-777
—
PG-1500 PROM Programmer
EEU-651
EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Base
EEU-704
EEU-1291
PG-1500 Controller IBM PC Series (PC-DOS) Base
EEU-5008
U10540E
IE-78000-R
EEU-810
U11376E
IE-78000-R-A
U10057J
U10057E
IE-78000-R-BK
EEU-867
EEU-1427
IE-780018-R-EM
U11838J
To be prepared
EP-78064
EEU-934
EEU-1469
Reference
U10181J
U10181E
External component user
U10092J
U10092E
CC78K Series C Compiler
CC78K0 C Compiler
CC78K/0 C Compiler Application Note
SM78K0 System Simulator Windows Base
SM78K Series System Simulator
open interface specification
ID78K0 Integrated Debugger EWS Base
Reference
U11151J
—
ID78K0 Integrated Debugger PC Base
Reference
U11539J
—
ID78K0 Integrated Debugger Windows Base
Guide
U11649J
—
SD78K/0 Screen Debugger
Introduction
EEU-852
—
PC-9800 Series (MS-DOS) Base
Reference
U10952J
—
SD78K/0 Screen Debugger
Introduction
EEU-5024
EEU-1414
IBM PC/AT (PC DOS) Base
Reference
U11279J
EEU-1413
Caution The above documents are subject to change without notice. Be sure to use the latest documents
for design or for any other similar purpose.
37
µPD780016Y, 780018Y
Documents on Embeded Software (User’s Manuals)
Document No.
Document
78K/0 Series Real-time OS
78K/0 Series OS MX78K0
Japanese
English
Basic
U11537J
—
Installation
U11536J
—
Technical
U11538J
—
Fundamental
Fuzzy Knowledge Data Creation Tool
78K/0, 78K/II, 87AD Series
EEU-5010
—
EEU-829
EEU-1438
EEU-862
EEU-1444
Fuzzy Inference Development Support System Translator
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module
EEU-858
EEU-1441
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger
EEU-921
EEU-1458
Other Documents
Document
Document No.
Japanese
IC Package Manual
English
C10943X
Semiconductor Device Mounting Technology Manual
C10535J
C10535E
Quality Grade on NEC Semiconductor Devices
C11531J
C11531E
NEC Semiconductor Device Reliability/Quality Control System
U10983J
U10983E
Electrostatic Discharge (ESD) Test
MEM-539
—
Semiconductor Device Quality Assurance Guide
MEI-603
MEI-1202
Microcontroller-Related Product Guide – Third Party Products –
U11416J
—
Caution The above documents are subject to change without notice. Be sure to use the latest documents
for design or for any other similar purpose.
38
µPD780016Y, 780018Y
[MEMO]
39
µPD780016Y, 780018Y
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note: Strong electric field, when exposed to a MOS device, can cause destruction
of the gate oxide and ultimately degrade the device operation. Steps must
be taken to stop generation of static electricity as much as possible, and
quickly dissipate it once, when it has occurred. Environmental control must
be adequate. When it is dry, humidifier should be used. It is recommended
to avoid using insulators that easily build static electricity. Semiconductor
devices must be stored and transported in an anti-static container, static
shielding bag or conductive material.
All test and measurement tools
including work bench and floor should be grounded. The operator should
be grounded using wrist strap. Semiconductor devices must not be touched
with bare hands. Similar precautions need to be taken for PW boards with
semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note: No connection for CMOS device inputs can be cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input
level may be generated due to noise, etc., hence causing malfunction. CMOS
device behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using a pull-up or pull-down
circuitry.
Each unused pin should be connected to V DD or GND with a
resistor, if it is considered to have a possibility of being an output pin. All
handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device.
Immediately after the power source is turned ON, the devices with reset
function have not yet been initialized. Hence, power-on does not guarantee
out-pin levels, I/O settings or contents of registers. Device is not initialized
until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.
40
µPD780016Y, 780018Y
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:
• Device availability
• Ordering information
• Product release schedule
• Availability of related technical literature
• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)
• Network requirements
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
NEC Electronics Inc. (U.S.)
NEC Electronics (Germany) GmbH
NEC Electronics Hong Kong Ltd.
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490
NEC Electronics Hong Kong Ltd.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A.
NEC Electronics Singapore Pte. Ltd.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics (France) S.A.
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99
NEC Electronics Taiwan Ltd.
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689
J96. 8
41
µPD780016Y, 780018Y
Purchase of NEC I2C components conveys a license under the Philips I2C Patent Rights to use these
components in an I2C system, provided that the system conforms to the I2C Standard Specification as
defined by Philips.
FIP is a trademark of NEC Corp.
IEBus is a trademark of NEC Corp.
MS-DOS and Windows are trademarks of Microsoft Corp.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corp.
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett Packard Co.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corp.
The related documents in this publication may include preliminary versions, but may not be marked as such.
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited
without governmental license, the need for which must be judged by the customer. The export or re-export of this product
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96.5