DATA DATASHEET SHEET MOS INTEGRATED CIRCUIT µPD78C10A, 78C11A, 78C12A 8-BIT SINGLE-CHIP MICROCOMPUTER (WITH A/D CONVERTER) DESCRIPTION The µPD78C11A is a CMOS 8-bit microprocessor which can integrate 16-bit ALU, ROM, RAM, an A/D converter, a multi-function timer/event counter, and a general-purpose serial interface into a single chip, then expand the memory (ROM/RAM) up to 60K bytes externally. The µPD78C10A is a ROM-less product of the µPD78C11A, and can directly address the external memory up to 64k bytes. The µPD78C12A is a product which has more built-in ROM capacity than the µPD78C11A, and its memory (ROM/RAM) can be externally extended up to 56K bytes. The µPD78C10A, µPD78C11A, and µPD78C12A operated at low power consumption, because they have a CMOS construction. Also, they can hold data with low power consumption by using standby function. On-chip PROM products, µPD78CP14 and µPD78CP18 which are ideal for evaluation or preproduction use during system development, early start-up and short-run multiple-device production of application sets, are available. FEATURES • Abundant 159 types of instructions : 87AD series instruction set, multiplication/division instructions, 16-bit operation instructions • Instruction cycle : 0.8 µs (at 15 MHz operation) • On-chip ROM : 4096W × 8 (µPD78C11A), 8192W × 8 (µPD78C12A) Non (µPD78C10A) • On-chip RAM : 256W × 8 • High-precision 8-bit A/D converter : 8 analog inputs • General-purpose serial interface : Asynchronous, synchronous, I/O interface mode • Multi-function 16-bit timer/event counter • Two 8-bit timers • I/O lines : 32 (µPD78C10A), 44 (µPD78C11A, 78C12A) • Interrupt function (external - 3, internal - 8) : Non-maskable interrupt × 1, maskable interrupt × 10 • Standby function : HALT mode, hardware/software STOP mode • Zero-cross detection function : (2 inputs) • On-chip pull-up resistor (port A, B, C: µPD78C11A, 78C12A only) by mask option Caution The µPD78C10A does not hava a mask option. The information in this document is subject to change without notice. Document No. IC-2678C (O. D. No. IC-7769E) Date Published February 1995 P Printed in Japan The mark ★ shows major revised points. © 1990 µPD78C10A,78C11A,78C12A ORDERING INFORMATION Ordering Code µPD78C10ACW µPD78C10AGF-3BE µPD78C10AGQ-36 µPD78C10AL µPD78C11ACW-××× µPD78C11AGF-×××-3BE µPD78C11AGQ-×××-36 µPD78C11AGQ-×××-37 µPD78C11AL-××× µPD78C12ACW-××× µPD78C12AGF-×××-3BE µPD78C12AGQ-×××-36 µPD78C12AGQ-×××-37 µPD78C12AL-××× 2 Package 64-pin 64-pin 64-pin 68-pin 64-pin 64-pin 64-pin 64-pin 68-pin 64-pin 64-pin 64-pin 64-pin 68-pin plastic plastic plastic plastic plastic plastic plastic plastic plastic plastic plastic plastic plastic plastic shrink DIP (750 mil) QFP (14 × 20 mm) QUIP QFJ ( 950 mil) shirink DIP (750 mil) QFP (14 × 20 mm) QUIP QUIP straight QFJ ( 950 mil) shrink DIP (750 mil) QFP (14 × 20 mm) QUIP QUIP straight QFJ ( 950 mil) On-Chip ROM None None None None Mask ROM Mask ROM Mask ROM Mask ROM Mask ROM Mask ROM Mask ROM Mask ROM Mask ROM Mask ROM µPD78C10A,78C11A,78C12A PIN CONFIGURATION (TOP VIEW) PA0 1 64 V DD PA1 2 63 STOP PA2 3 62 PD7 PA3 4 61 PD6 PA4 5 60 PD5 PA5 6 59 PD4 PA6 7 58 PD3 PA7 8 57 PD2 PB0 9 56 PD1 PB1 10 55 PD0 PB2 11 54 PF7 PB3 12 53 PF6 PB4 13 52 PF5 PB5 14 51 PF4 PB6 15 50 PF3 PB7 16 49 PF2 PC0/T X D 17 48 PF1 PC1/R X D 18 47 PF0 PC2/SCK 19 46 ALE PC3/INT2 20 45 WR PC4/TO 21 44 RD PC5/CI 22 43 AV DD PC6/CO0 23 42 V AREF PC7/CO1 24 41 AN7 NMI 25 40 AN6 INT1 26 39 AN5 MODE1 27 38 AN4 RESET 28 37 AN3 MODE0 29 36 AN2 X2 30 35 AN1 X1 31 34 AN0 V SS 32 33 AV SS PD0 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 ALE WR RD AV DD V AREF AN7 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 PD4 27 AV SS V DD 58 26 V SS PA0 59 25 X1 PA1 60 24 X2 PA2 61 23 MODE0 PA3 62 22 RESET PA4 63 21 MODE1 PA5 64 20 19 2 3 4 5 6 7 8 m 9 10 11 12 13 14 15 16 17 18 INT1 NM1 1 PC7/CO1 57 PC6/CO0 AN0 STOP PC5/CI 28 PC4/TO 56 PC3/INT2 AN1 PD7 PC2/SCK 29 PC1/R X D 55 PC0/T X D AN2 PD6 PB7 30 PB6 54 PB5 AN3 PD5 PB4 31 PB3 AN4 53 PB2 33 32 PB1 34 PB0 AN5 PD1 51 52 50 PD3 AN6 PD2 For µPD78C10AGF-3BE, µPD78C11AGF-×××-3BE, µPD78C12AGF-×××-3BE PA7 • For µPD78C10ACW, µPD78C10AGQ-36, µPD78C11ACW-×××, µPD78C11AGQ-×××-36/37, µPD78C12ACW-×××, µPD78C12AGQ-×××-36/37. PA6 • 3 µPD78C10A,78C11A,78C12A V DD 2 1 4 IC PA0 3 PD2 PA1 4 PD3 PA2 5 PD4 PA3 6 PD5 PA4 7 PD6 PA5 8 PD7 PA6 9 STOP IC For µPD78C10AL, µPD78C11AL-×××, µPD78C12AL-××× 15 55 PF4 PB5 16 54 PF3 PB6 17 53 PF2 PB7 18 52 PF1 PC0/T X D 19 51 PF0 PC1/R X D 20 50 ALE PC2/SCK 21 49 WR PC3/INT2 22 48 RD IC 23 47 AV DD PC4/TO 24 46 IC PC5/CI 25 45 V AREF PC6/CO0 26 44 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 AN7 AN6 PF5 PB4 AN5 56 AN4 14 AN3 PF6 PB3 AN2 57 AN1 13 AN0 PF7 PB2 AV SS 58 V SS 12 X1 PD0 PB1 X2 59 MODE0 11 RESET PD1 PB0 MODE1 68 67 66 65 64 63 62 61 60 INT1 10 NMI PA7 PC7/C01 • 8 V B D H V' B' D' H' 4 8 8 8 8 8 8 8 MAIN G.R 16 8 8 TIMER PC4/TO DATA MEMORY (256-BYTE) ALT G.R TIMER/ EVENT COUNTER PC7-0*2 8/16 8 PB7-0*2 PA7-0*2 8 8 8 PC5/CI PC6/CO0 PC7/CO1 PD7-0/ AD7-0 PROGRAM*1 MEMORY A' C' E' L' BUFFER PC3/INT2/TI PF7-0/ AB15-8 12/ 13 EA' 8 INT. CONTROL 8 8 A C E L NMI INT1 PORT F SERIAL I/O PORT D PC0/TXD PC1/RXD PC2/SCK 8 PORT C X2 PORT B LATCH INC/DEC PC SP EA PORT A OSC BLOCK DIAGRAM 8 16 X1 8 INTERNAL DATA BUS 16 16 LATCH LATCH 8 6 8 PSW INST.REG AN7-0 16 A/D CONVERTER 16 8 INST. DECODER ALU (8/16) 16 READ/WRITE CONTROL * SYSTEM CONTROL STAND BY CONTROL 1. It depends on a product type. The µPD78C11A has 4K bytes, and the µPD78C12A has 8K bytes. The µPD78C10A does not incorporate a program memory. 5 2. An on-chip pull-up resistor is available by mask option (µPD78C11A, 78C12A only). RD WR ALE MODE1 MODE0 RESET STOP VDD VSS µPD78C10A,78C11A,78C12A VAREF AVDD AVSS 8 µPD78C10A,78C11A,78C12A CONTENTS 1. PIN FUNCTIONS ..................................................................................................................................... 7 1.1 LIST OF PIN FUNCTION ................................................................................................................................ 7 1.2 1.3 PIN INPUT/OUTPUT CIRCUITS .................................................................................................................... PIN MASK OPTIONS ...................................................................................................................................... 9 14 1.4 RECOMMENDED CONNECTION OF UNUSED PINS .................................................................................. 14 2. DIFFERENCES BETWEEN µPD78C10A AND µPD78C11A, 78C12A ................................................... 15 3. RESET OPERATIONS ............................................................................................................................. 17 4. INSTRUCTION SET ................................................................................................................................. 20 4.1 IDENTIFIER/DESCRIPTION OF OPERAND ................................................................................................... 20 4.2 4.3 SYMBOL DESCRIPTION OF OPERATION CODE ......................................................................................... INSTRUCTION EXECUTION TIME ................................................................................................................ 21 22 5. LIST OF MODE REGISTERS .................................................................................................................. 34 6. ELECTRICAL SPECIFICATIONS ............................................................................................................. 35 7. CHARACTERISTIC CURVES (REFERENCE VALUES) ......................................................................... 47 8. DIFFERENCES IN 87AD SERIES PRODUCTS ...................................................................................... 50 9. PACKAGE INFORMATION ..................................................................................................................... 54 10. RECOMMENDED SOLDERING CONDITIONS...................................................................................... 60 APPENDIX DEVELOPMENT TOOLS ............................................................................................................ 62 6 µPD78C10A,78C11A,78C12A 1. PIN FUNCTIONS 1.1 LIST OF PIN FUNCTION (1/2) Pin Name I/O Function PA7 to PA0 (Port A) Input/Output 8-bit input-output port, which can specify input/output bit-wise. PB7 to PB0 (Port B) Input/Output 8-bit input-output port, which can specify input/output bit-wise. PC0/TXD Input-output/ Output Transmit Data Output pin for serial data. PC1/RxD Input-output/ Input Receive Data Input pin for serial data. PC2/SCK Input-output/ Input-output Serial Clock Input-output pin for serial clock. It becomes output clock for the internal clock use, and input for the external. PC3/INT2/TI Input-output/ Input/Input Interrupt Request/Timer Input Maskable interrut input pin of the edge trigger (falling edge), or an external clock input pin for a timer. Also, it can be used as a zero-cross detection pin for AC input. PC4/TO Input-output/ Output Timer Output Square wave defining one cycle of internal clock or timer counter time as half cycle is output. PC5/CI Input-output/ Input Counter Input External pulse input pin to timer/event counter. PC6/CO0 PC7/CO1 Input-output/ Output Counter Output 0, 1 Programmable rectangle wave output by timer/event counter. PD7 to PD0/ AD7 to AD0 Input-output/ Input-output Port D 8-bit input-output port, which can specify input-output in byte units (µPD78C11A). Address/Data Bus When external memory is used, it becomes multiplexed address/data bus. PF7 to PF0/ AB15 to AB8 Input-output/ Output Port F 8-bit input-output port, which can specify input-output bit-wise. Address Bus When external memory is used, it becomes address bus. WR (Write Strobe) Output Strobe signal which is output for write operation of external memory. It becomes high in any cycle other than the data write machine cycle of external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance. RD (Read Strobe) Output Strobe signal which is output for read operation of external memory. It becomes high in any cycle other than the read machine cycle of external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance. ALE (Address Latch Enable) Output Strobe signal to latch externally the lower address information which is output to PD7 to PD0 pins to access external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance. Port C 8-bit input-output port, which can specify input/ output bit-wise. 7 µPD78C10A,78C11A,78C12A 1.1 LIST OF PIN FUNCTION (2/2) Pin Name I/O Function µPD78C11A and 78C12A sets MODE0 pin to “0” (low level), and MODE1 pin to “1” (high level*) µPD78C10A allows you to set MODE0, MODE1 pins to select 4K, 16K, or 64K bytes for the size of the memory which is installed externally. MODE0 MODE1 (Mode) Input-output MODE0 MODE1 0 1 1 0 0 1 External Memory 4K bytes 16K bytes 64K bytes Also, when each of MODE0 and MODE1 pins is set to “1”*, it is synchronized to ALE to output a control signal. ★ NMI (Non-Maskable Interrupt) Input Non-maskable interrupt input pin of the edge trigger (falling edge) INT1 (Interrupt Request) Input A maskable interrupt input pin of the edge trigger (rising edge). Also, it can be used as a zero-cross detection pin for AC input. AN7 to AN0 (Analog Input) Input 8 pins of analog input to A/D converter. AN7 to AN4 can be used as edge detection (falling edge) input. VAREF (Reference Voltage) Input A common pin serving both as a standard voltage input pin for A/D converter and as a control pin for A/D converter operation. AVDD (Analog VDD) Power supply pin for A/D converter. AVSS (Analog VSS) GND pin for A/D converter. X1, X2 (Crystal) Crystal connection pins for system clock oscillation. X1 should be input when a clock is supplied from outside. Input the clock of the reverse phase of X1 to X2. RESET (Reset) Input Low-level active system reset input. STOP (Stop) Control signal input pin in hardware STOP mode. The oscillation stops when a clock is supplied from outside. VDD Positive power supply pin. VSS GND pin. * Pull-up. Pull-up resister R is 4 [kΩ] ≤ R ≤ 0.4 tCYC [kΩ] (tCYC is ns unit). Remarks The µPD78C11A and µPD78C12A are pull-up resistor incorporation specifiable by mask option at ports A, B and C. 8 µPD78C10A,78C11A,78C12A 1.2 PIN INPUT/OUTPUT CIRCUITS Tables 1-1 and 1-2, and figures (1) to (15) show input- output circuits of each pin in a partially simplified form. Table 1-1 Pin Type No. (µPD78C10A) Pin Name Type No. Pin Name Type No. PA7 to PA0 5 RESET 2 PB7 to PB0 5 RD 4 PC1 to PC0 5 WR 4 PC2/SCK 8 ALE 4 PC3/INT2 10 STOP 2 PC7 to PC4 5 MODE0 11 PD7 to PD0 5 MODE1 11 PF7 to PF0 5 AN3 to AN0 7 NMI 5 AN7 to AN4 12 INT1 2 VAREF 13 Table 1-2 Pin Type No. (µPD78C11A and 78C12A) Pin Name Type No. Pin Name Type No. PA7 to PA0 5-A RESET 2 PB7 to PB0 5-A RD 4 PC1 to PC0 5-A WR 4 PC2/SCK 8-A ALE 4 PC3/INT2 10-A STOP 2 PC7 to PC4 5-A MODE0 11 PD7 to PD0 5 MODE1 11 PF7 to PF0 5 AN3 to AN0 7 NMI 2 AN7 to AN4 12 INT1 9 VAREF 13 9 µPD78C10A,78C11A,78C12A (1) Type 1 V DD P- ch IN N- ch (2) Type 2 IN (3) Type 4 V DD output data P-ch OUT output disable N-ch (4) Type 4-A V DD output data P-ch OUT output disable 10 N-ch µPD78C10A,78C11A,78C12A (5) Type 5 output data IN/OUT Type4 output disable Type1 (6) Type 5-A output data IN/OUT Type4-A output disable Type1 (7) Type 7 AV DD P-ch IN + N-ch AV DD Sampling C AV SS AVSS Reference Voltage (From Voltage Tap of Series Resistance String) (8) Type 8 output data output disable Type5 IN/OUT Type2 MCC 11 µPD78C10A,78C11A,78C12A (9) Type 8-A output data output disable Type5-A IN/OUT Type2 MCC (10) Type 9 self bias enable IN Type1 data (11) Type 10 output data output disable Type5 self bias enable Type9 MCC 12 IN/OUT µPD78C10A,78C11A,78C12A (12) Type 10-A output data output disable Type5-A self bias enable IN/OUT Type9 MCC (13) Type 11 IN/OUT output data N-ch Type1 (14) Type 12 IN Type7 Edge Detector Type2 (15) Type 13 IN Type1 STOP Mode AV SS 13 µPD78C10A,78C11A,78C12A 1.3 PIN MASK OPTIONS µPD78C11A and 78C12A has the following mask options, which can be selected bit-wise according to the application. Pin Name Mask Options PA7 to PA0 PB7 to PB0 PC7 to PC0 Cautions ➀ Pull-up resistor incorporated ➁ Pull-up resistor not incorporated 1. Zero-cross function can not be operated normally if pull-up resistor is incorporated in PC3. 2. µPD78C10A has no mask option. 1.4 RECOMMENDED CONNECTION OF UNUSED PINS Pin Recommended Connection PA7 to PA0 PB7 to PB0 PC7 to PC0 Connect to VSS or VDD via resistor PD7 to PD0 PF7 to PF0 RD WR Leave open ALE STOP INT1, NMI AVDD Connect to VDD Connect to VSS or VDD Connect to VDD AVAREF AVSS AN7 to AN0 14 Connect to VSS Connect to AVSS or AVDD µPD78C10A,78C11A,78C12A 2. DIFFERENCES BETWEEN µPD78C10A AND µPD78C11A, 78C12A The difference between the µPD78C10A and µPD78C11A, 78C12A is whether or not there is an on-chip mask programmable ROM. The memory map differs accordingly as described below. (1) µPD78C10A Since the µPD78C10A does not have an on-chip ROM, all memory, except the on-chip RAM area (addresses FF00H to FFFFH) can be installed outside. The size of this external memory can be selected from among 4K bytes (0000H to 0FFFH), 16K bytes (0000H to 3FFFH), and 64K bytes (0000H to FEFFH) by MODE0 and MODE1 pin setting as shown in the following table and Fig. 2-1. Control Pin Operation Mode External Memory On-Chip RAM 0 4K bytes (address 0000H to 0FFFH) Address FF00H to FFFFH 0 1 16K bytes (address 0000H to 3FFFH) Address FF00H to FFFFH 1 1 64K bytes (address 0000H to FEFFH) Address FF00H to FFFFH MODE1 MODE0 4K bytes access 0 16K bytes access 64K bytes access External memory is accessed by using PD7 to PD0 (multiplexed address/data bus), PF7 to PF0 (address bus), and the RD, WR, and ALE signals. When 4K-byte or 16K-byte external memory is accessed PF7 to PF0 not used as address lines can be used as general purpose input/output ports. The size of external memory can be specified by MODE0 and MODE1 pin setting. Preset each bit of MEMORY MAPPING reisters MM2, MM1, and MM0 to "0". (2) µPD78C11A and 78C12A The µPD78C11A has an on-chip mask programmable ROM at addresses 0000H to 0FFFH and RAM at addresses FF00H to FFFFH. Externally, memory can be extended up to 60K bytes (addresses 1000H to FEFFH) in steps. The µPD78C12A has an on-chip mask programmable ROM at address 0000H to 1FFFH and RAM at address FF00H to FFFFH. Externally, memory can be extended up to 56K bytes (address 2000H to FEFFH) in steps. The size of the external extension memory can be selected from among no external memory, 256 bytes, 4K bytes, 16K bytes, and 56K/60K bytes* by MEMORY MAPPING register setting. External memory can be accessed by using PD7 to PD0 (multiplexed address/data bus), PF7 to PF0 (address bus), and the RD, WR, and ALE signals. Programs and data can be stored in external memory. PF7 to PF0 become address lines corresponding to the size of external memory. The remaining pins can be used as general purpose input/output ports. * PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 External Memory Port Port Port Port Port Port Port Port Maximam 256 bytes Port Port Port Port AB11 AB10 AB9 AB8 Maximum 4K bytes Port Port AB13 AB12 AB11 AB10 AB9 AB8 Maximum 16K bytes AB15 AB14 AB13 AB12 AB11 AB10 AB9 AB8 Maximum 56K/60K bytes* µPD78C11A: 60K bytes, µPD78C12A: 56K bytes 15 "#+,45=>FGOPABCJKL123:;<DEMN µPD78C10A,78C11A,78C12A Fig. 2-1 µPD78C10A Memory Map 4K Bytes Access 16K Bytes Access 64K Bytes Access 0000H External Memory 0FFFH External Memory External Memory Not Used 3FFFH Not Used FF00H On-Chip RAM On-Chip RAM On-Chip RAM MODE0 = 0 MODE1 = 0 MODE0 = 1 MODE1 = 0 MODE0 = 1 MODE1 = 1 FFFFH 16 µPD78C10A,78C11A,78C12A 3. RESET OPERATIONS When RESET Input becomes low, the system reset is activated to create the following status. • INTERRUPT ENABLE F/F is reset and interrupt is disabled. • All the interrupt mask registers are set (1) and interrupt is masked. • An interrupt request flag is reset (0) and hold interrupt is eliminated. • Each bit of PSW is reset (0). • 0000H is loaded into the program counter (PC). • The MODE A, MODE B, MODE C, and MODE F registers are set to FFH and the bits (MM0, 1, and 2) of the MODE CONTROL C and MEMORY MAPPING registers are respectively reset (0), then all the ports (A, B, C, D, and F) become input port (output high-impedance). • All the test flags but SB flag are reset (0). • A timer mode register is set to FFH, and TIMER F/F is reset. • The mode register (ETMM, EOM) of a timer/event counter is reset (0). • The serial mode high register(SMH) of serial interface is reset (0), while the serial mode low register (SML) is set to 48H. • The A/D channel mode register of the A/D converter is reset (0). • WR, RD, ALE signals become high-impedance. • The ZC1, ZC2 bits of the zero-cross mode register (ZCM) are set (1). • The internal timing generator is initialized. • Data memory and the following register contents are undefined: Stack pointer (SP) Expansion accumulator (EA, EA’), accumulator (A, A’) General register (B, C, D, E, H, L, B’, C’, D’, E’, H’, L’) Output latch of each port TIMER REG0, 1 (TM0, TM1) TIMER/EVENT COUNTER REG0, 1 (ETM0, ETM1) RAE bit of MEMORY MAPPING register SB flag of test flag When RESET input becomes high, the reset status is released. Then, execution of the program is started from 0000H. The contents of various kinds of registers must be initialized or re-initialized in the program, if necessary. Table 3-1 shows the state of each hardware after reset. Table 3-2 shows the state of each pin after reset. 17 µPD78C10A,78C11A,78C12A Table 3-1 State of Each Hardware after Reset State after Reset Hardware Power-on reset Internal data memory Reset input during normal operation Previous contents held. Writing by CPU Write address data Undefined Address data other than the aboove Operation other than writing by CPU Previous contents held. Reset input in standby mode Expansion accumulator (EA, EA') Accumulator (A, A') Undefined General register (B, C, D, E, H, L, B', C', D', E', H', L') Working register vector register (V, V') Program counter (PC) 0000H Stack pointer (SP) Undefined Port Mode register (MA, MB, MC, MF) FFH MCC register 00H MM register (bits MM0 to MM2) 0 Output latch of each port Interrupt INTERRUPT ENABLE F/F 0 Request flag 0 Mask register FFH Test flag (except SB flag) Standby flag (SB) Timer Undefined 0 Power-on reset 1 Standby mode Previous contents held. Reset input during normal operation Contents immediately before RESET input held Timer mode register (TMM) FFH Timer F/F 0 Timer register (TM0, TM1) Undefined Timer/event counter mode register (ETMM) 00H Timer/event counter output mode register (EOM) Timer/event counter Timer/event counter register (ETM0, ETM1) Timer/event counter capture register (ECPT) Undefined Timer/event counter (ECNT) Serial mode high register (SMH) 00H Serial mode low register (SML) 48H Serial interface A/D channel mode register (ANM) 00H MM register (MM3; RAE bit) Undefined Zero cross mode register (ZC1, ZC2 bits) 1 18 µPD78C10A,78C11A,78C12A Table 3-2 State of Each Pin after Reset Pin State after Reset WR RD High-impedance ALE All ports (PA, PB, PC, PD, PF) 19 µPD78C10A,78C11A,78C12A 4. INSTRUCTION SET 4.1 IDENTIFIER/DESCRIPTION OF OPERAND Identifier * Description r r1 r2 V, A, B, C, D, E, H, L EAH, EAL, B, C, D, E, H, L A, B, C sr sr1 sr2 sr3 sr4 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TXB, TM0, TM1, ZCM PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CR0, CR1, CR2, CR3 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM ETM0, ETM1 ECNT, ECPT rp rp1 rp2 rp3 SP, B, D, H V, B, D, H, EA SP, B, D, H, EA B, D, H rpa rpa1 rpa2 rpa3 B, D, H, D+, H+, D–, H– B, D, H B, D, H, D+, H+, D–, H–, D+byte, H+A, H+B, H+EA, H+byte D, H, D++, H++, D+byte, H+A, H+B, H+EA, H+byte wa 8 bit immediate data word byte bit 16 bit immediate data 8 bit immediate data 3 bit immediate data f CY, HC, Z irf NMI*, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7, SB NMI can also be described as FNMI. Remarks 1. sr to sr4 (special register) 2. rp to rp3 (register pair) SP : STACK POINTER CY B : BC HC : HALF CARRY D : DE Z : ZERO COUNTER OUTPUT H : HL MODE V : VA EA : EXTENDED PA : PORT A PB : PORT B ETMM : TIMER/EVENT PC : PORT C PD : PORT D PF : PORT F MA : MODE A ANM : A/D CHANNEL MODE MB : MODE B CR0 : A/D CONVERSION MC : MODE C to MCC : MODE CONTROL C CR3 COUNTER MODE EOM : TIMER/EVENT 3. rpa to rpa3 (rp addressing) MF : MODE F TXB : TX BUFFER : MEMORY MAPPING RXB : RX BUFFER TM0 : TIMER REG0 SMH : SERIAL MODE High TM1 : TIMER REG1 SML : SERIAL MODE Low TMM : TIMER MODE MKH : MASK High ETM0 : TIMER/EVENT MKL : MASK Low ZCM : ZERO CROSS MODE ETM1 : TIMER/EVENT COUNTER REG1 ECNT : TIMER/EVENT COUNTER UPCOUNTER ECPT : TIMER/EVENT COUNTER CAPTURE 20 ACCUMULATOR RESULT 0 to 3 MM COUNTER REG0 4. f (flag) B D H D+ H+ D– H– D++ H++ D + byte H+A H+B H + EA H + byte : : : : : : : : : : : : : : (BC) (DE) (HL) (DE)+ (HL)+ (DE)– (HL)– (DE)++ (HL)++ (DE + byte) (HL + A) (HL + B) (HL + EA) (HL + byte) : CARRY 5. irf (interrupt flag) NMI : NMI INPUT FT0 : INTFT0 FT1 : INTFT1 F1 : INTF1 F2 : INTF2 FE0 : INTFE0 FE1 : INTFE1 FEIN : INTFEIN FAD : INTFAD FSR : INTFSR FST : INTFST ER : ERROR OV : OVERFLOW AN4 : ANALOG INPUT 4 to 7 to AN7 SB : STANDBY µPD78C10A,78C11A,78C12A 4.2 SYMBOL DESCRIPTION OF OPERATION CODE r rpa r1 R2 R1 R0 reg T2 T1 T0 reg A3 A2 A1 A0 addressing 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V A B C D E H L 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 EAH EAL B C D E H L 0 0 0 0 0 0 0 0 1 1 1 1 1 (BC) (DE) (HL) rpa (DE)+ (HL)+ (DE)(HL)(DE + byte) (HL + A) (HL + B) (HL + EA) (HL + byte) r2 r sr S5 S4 S3 S2 S1 S0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 Special-reg PA PB PC PD PF MKH MKL ANM SMH SML EOM ETMM TMM MM MCC MA MB MC MF TXB RXB TM0 TM1 CR0 CR1 CR2 CR3 ZCM 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 sr3 sr1 special-reg V0 0 1 ETM0 ETM1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 rpa1 rpa2 rpa3 sr2 C3 C2 C1 C0 addressing 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 (DE) (HL) (DE)++ (HL)++ (DE + byte) (HL + A) (HL + B) (HL + EA) (HL + byte) I4 I3 I2 I1 I0 INTF 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 NMI FT0 FT1 F1 F2 FE0 FE1 FEIN FAD FSR FST ER OV AN4 AN5 AN6 AN7 SB sr 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 irf sr4 U0 0 0 0 0 1 1 1 1 0 1 1 1 1 special-reg ECNT ECPT rp rp1 f P2 P1 P0 reg-pair Q2 Q1 Q0 reg-pair F2 F1 F0 flag 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 SP BC DE HL EA 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 VA BC DE HL EA 0 0 0 1 0 1 1 0 0 0 1 0 CY HC Z rp rp2 rp3 21 µPD78C10A,78C11A,78C12A 4.3 INSTRUCTION EXECUTION TIME 1 state shown here is composed of 3 clock cycles. When a clock cycle of 15 MHz is used, the execution time should be 200 ns (= 3 × 1/15 µs). In this case, the 4-state instruction which is the minimum execution time should be execution time of 0.8 µs. 22 Note 1 Mnemonic B1 8-bit data transfer instructions MOV B2 State B3 Operation B4 r1, A 0 0 0 1 1 T2 T1 T0 4 r1 ← A A, r1 0 0 0 0 1 T2 T1 T0 4 A ← r1 * sr, A 0 1 0 0 1 1 0 1 1 1 S5 S4 S3 S2 S1 S0 10 sr ← A * A, sr1 0 1 0 0 1 1 0 0 1 1 S5 S4 S3 S2 S1 S0 10 A ← sr1 r, word 0 1 1 1 0 0 0 0 0 1 1 0 1 R2 R1 R0 Low Adrs High Adrs 17 r ← (word) word, r 0 1 1 1 0 0 0 0 0 1 1 1 1 R2 R1 R0 Low Adrs High Adrs 17 (word) ← r r, byte 0 1 1 0 1 R2 R1 R0 Data sr2, byte 0 1 1 0 0 1 0 0 S3 0 0 0 0 S2 S1 S0 Data 14 sr2 ← byte Data 13 (V. wa) ← byte * 7 MVI r ← byte MVIW * wa, byte 0 1 1 1 0 0 0 1 Offset MVIX * rpa1, byte 0 1 0 0 1 0 A1 A0 Data 10 (rpa1) ← byte STAW * wa 0 1 1 0 0 0 1 1 Offset 10 (V. wa) ← A LDAW * wa 0 0 0 0 0 0 0 1 Offset 10 A ← (V. wa) STAX * rpa2 A3 0 1 1 1 A2 A1 A0 Data*1 7/13*3 (rpa2) ← A LDAX * rpa2 A3 0 1 0 1 A2 A1 A0 Data*1 7/13*3 A ← (rpa2) EXX 0 0 0 1 0 0 0 1 4 B ↔ B', C ↔ C', D ↔ D' E ↔ E', H ↔ H', L ↔ L' EXA 0 0 0 1 0 0 0 0 4 V, A ↔ V', A', EA ↔ EA' EXH 0 1 0 1 0 0 0 0 4 H, L ↔ H', L' BLOCK 0 0 1 1 0 0 0 1 13 (C + 1) rp3, EA 1 0 1 1 0 1 P1 P0 4 rp3L ← EAL, rp3H ← EAH EA, rp3 1 0 1 0 0 1 P1 P0 4 EAL ← rp3L, EAH ← rp3H DMOV Note 1. Instruction Group 23 2. 16-bit data transfer instructions Skip Condition (DE) +← (HL) +, C ← C – 1 End if borrow µPD78C10A,78C11A,78C12A Note 2 Operation Code Operand Note 1 Operation Code Operand sr3, EA State B3 B2 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 U0 14 sr3 ← EA 1 1 0 0 0 0 0 V0 14 EA ← sr4 20 (word) ← C, (word + 1) ← B EA, sr4 16-bit data transfer instructions Operation B1 B4 DMOV Low Adrs SBCD word SDED word 0 0 1 0 1 1 1 0 20 (word) ← E, (word + 1) ← D SHLD word 0 0 1 1 1 1 1 0 20 (word) ← L, (word + 1) ← H SSPD word 0 0 0 0 1 1 1 0 20 (word) ← SPL, (word + 1) ← SPH STEAX rpa3 0 1 0 0 1 0 0 0 1 0 0 1 C3 C2 C1 C0 Data*2 *3 14/20 (rpa3) ← EAL, (rpa3 + 1) ← EAH LBCD word 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 Low Adrs LDED word LHLD 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 High Adrs C ← (word), B ← (word + 1) 0 0 1 0 1 1 1 1 20 E ← (word), D ← (word + 1) word 0 0 1 1 1 1 1 1 20 L ← (word), H ← (word + 1) LSPD word 0 0 0 0 1 1 1 1 20 SPL ← (word), SPH ← (word + 1) LDEAX rpa3 0 1 0 0 1 0 0 0 *3 14/20 EAL ← (rpa3), EAH ← (rpa3 + 1) PUSH rp1 1 0 1 1 0 Q2 Q1 Q0 13 POP rp1 1 0 1 0 0 Q2 Q1 Q0 10 rp2, word 0 P2 P1 P0 0 1 0 0 LXI * 1 0 0 0 C3 C2 C1 C0 Low Byte Data*2 High Byte High Adrs (SP – 1) ← rp1H, (SP – 2) ← rp1L SP ← SP – 2 rp1L ← (SP), rp1H ← (SP + 1) SP ← SP + 2 10 rp2 ← word C ← (PC + 3 + A) B ← (PC + 3 + A + 1) 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 17 0 1 1 0 0 0 0 0 1 1 0 0 0 R2 R1 R0 8 A←A+r r, A 0 1 0 0 8 r←r+A A, r 1 1 0 1 8 A ← A + r + CY r, A 0 1 0 1 8 r ← r + A + CY TABLE A, r ADD ADC Note 1. Instruction Group 2. 8-bit operation instructions (register) Skip Condition µPD78C10A,78C11A,78C12A 20 Note 2 24 Mnemonic Note Mnemonic Operation Code Operand State B4 Skip Condition B2 0 1 1 0 0 0 0 0 1 0 1 0 0 R2 R1 R0 8 A←A+r No Carry r, A 0 0 1 0 8 r←r+A No Carry A, r 1 1 1 0 8 A ←A – r r, A 0 1 1 0 8 r←r–A A, r 1 1 1 1 8 A ← A – r – CY r, A 0 1 1 1 8 r ← r – A – CY A, r 1 0 1 1 8 A←A–r r, A 0 0 1 1 8 r←r–A A, r 1 0 0 0 1 R2 R1 R0 8 A←A∧r r, A 0 0 0 0 8 r←r∧A A, r 1 0 0 1 8 A←A∨r r, A 0 0 0 1 8 r←r∨A A, r 1 0 0 1 0 R2 R1 R0 8 A←A∨r r, A 0 0 0 1 8 r←r∨A A, r 1 0 1 0 1 R2 R1 R0 8 A–r–1 r, A 0 0 1 0 8 r–A–1 A, r 1 0 1 1 8 A–r Borrow r, A 0 0 1 1 8 r–A Borrow A, r 1 1 1 0 8 A–r No Zero r, A 0 1 1 0 8 r–A No Zero A, r B3 Operation B1 ADDNC SUB 8-bit operation instructions (register) SBB SUBNB ANA ORA XRA No Borrow No Borrow LTA NEA Note Instruction Group 25 µPD78C10A,78C11A,78C12A GTA No Borrow No Borrow 8-bit operation instructions (register) Note Operation Code Operand State B4 Skip Condition B2 0 1 1 0 0 0 0 0 1 1 1 1 1 R2 R1 R0 8 A–r Zero r, A 0 1 1 1 8 r–A Zero ONA A, r 1 1 0 0 8 A∧r No Zero OFFA A, r 1 1 0 1 8 A∧r Zero ADDX rpa 1 1 0 0 0 A2 A1 A0 11 A ← A + (rpa) ADCX rpa 1 1 0 1 11 A ← A + (rpa) + CY ADDNCX rpa 1 0 1 0 11 A ← A + (rpa) SUBX rpa 1 1 1 0 11 A ← A – (rpa) SBBX rpa 1 1 1 1 11 A ← A – (rpa) – CY SUBNBX rpa 1 0 1 1 11 A ← A – (rpa) ANAX rpa 1 0 0 0 1 A2 A1 A0 11 A ← A ∧ (rpa) ORAX rpa 1 0 0 1 11 A ← A ∨ (rpa) XRAX rpa 1 0 0 1 0 A2 A1 A0 11 A ← A ∨ (rpa) GTAX rpa 1 0 1 0 1 A2 A1 A0 11 A – (rpa) – 1 No Borrow LTAX rpa 1 0 1 1 11 A – (rpa) Borrow NEAX rpa 1 1 1 0 11 A – (rpa) No Zero EQAX rpa 1 1 1 1 11 A – (rpa) Zero ONAX rpa 1 1 0 0 11 A ∧ (rpa) No Zero OFFAX rpa 1 1 0 1 11 A ∧ (rpa) Zero A, r B3 Operation B1 EQA Note Instruction Group 0 1 1 1 0 0 0 0 No Carry No Borrow µPD78C10A,78C11A,78C12A 8-bit operation instructions (memory) 26 Mnemonic Note Mnemonic B1 * ADI * ACI Immediate data operation instructions Operation Code Operand * ADINC * SUI * SBI SUINB * A, byte 0 1 0 0 0 1 1 0 Data r, byte 0 1 1 1 0 1 0 0 0 1 0 0 0 R2 R1 R0 sr2, byte 0 1 1 0 A, byte State B3 7 r ← r + byte S3 1 0 0 0 S2 S1 S0 20 sr2 ← sr2 + byte 0 1 0 1 0 1 1 0 Data 7 r, byte 0 1 1 1 0 1 0 0 0 1 0 1 0 R2 R1 R0 sr2, byte 0 1 1 0 A, byte A ← A + byte + CY 11 r ← r + byte + CY S3 1 0 1 0 S2 S1 S0 20 sr2 ← sr2 + byte + CY 0 0 1 0 0 1 1 0 Data 7 r, byte 0 1 1 1 0 1 0 0 0 0 1 0 0 R2 R1 R0 sr2, byte 0 1 1 0 A, byte Data Skip Condition A ← A + byte 11 Data A ← A + byte No Carry 11 r ← r + byte No Carry S3 0 1 0 0 S2 S1 S0 20 sr2 ← sr2 + byte No Carry 0 1 1 0 0 1 1 0 Data 7 r, byte 0 1 1 1 0 1 0 0 0 1 1 0 0 R2 R1 R0 sr2, byte 0 1 1 0 A, byte Data A ← A – byte 11 r ← r – byte S3 1 1 0 0 S2 S1 S0 20 sr2 ← sr2 – byte 0 1 1 1 0 1 1 0 Data 7 r, byte 0 1 1 1 0 1 0 0 0 1 1 1 0 R2 R1 R0 sr2, byte 0 1 1 0 A, byte Data A ← A – byte – CY 11 r ← r – byte – CY S3 1 1 1 0 S2 S1 S0 20 sr2 ← sr2 – byte – CY 0 0 1 1 0 1 1 0 Data 7 r, byte 0 1 1 1 0 1 0 0 0 0 1 1 0 R2 R1 R0 sr2, byte 0 1 1 0 A, byte r, byte Data Instruction Group A ← A – byte 11 r ← r – byte S3 0 1 1 0 S2 S1 S0 20 sr2 ← sr2 – byte 0 0 0 0 0 1 1 1 Data 7 0 1 1 1 0 1 0 0 0 0 0 0 1 R2 R1 R0 Data ANI Note Operation B4 Data 11 A ← A ∧ byte r ← r ∧ byte No Borrow No Borrow No Borrow 27 µPD78C10A,78C11A,78C12A * B2 Note ANI * ORI * XRI Immediate data operation instructions 28 Mnemonic * GTI * LTI * * EQI Note State B1 B2 B3 sr2, byte 0 1 1 0 0 1 0 0 S3 0 0 0 1 S2 S1 S0 Data A, byte 0 0 0 1 0 1 1 1 Data r, byte 0 1 1 1 0 1 0 0 0 0 0 1 1 R2 R1 R0 sr2, byte 0 1 1 0 A, byte Operation B4 20 sr2 ← sr2 ∧ byte 7 A ← A ∨ byte 11 r ← r ∨ byte S3 0 0 1 1 S2 S1 S0 20 sr2 ← sr2 ∨ byte 0 0 0 1 0 1 1 0 Data 7 r, byte 0 1 1 1 0 1 0 0 0 0 0 1 0 R2 R1 R0 sr2, byte 0 1 1 0 A, byte Data Skip Condition A ← A ∨ byte 11 r ← r ∨ byte S3 0 0 1 0 S2 S1 S0 20 sr2 ← sr2 ∨ byte 0 0 1 0 0 1 1 1 Data 7 A – byte– 1 r, byte 0 1 1 1 0 1 0 0 0 0 1 0 1 R2 R1 R0 11 r – byte – 1 sr2, byte 0 1 1 0 S3 0 1 0 1 S2 S1 S0 14 sr2 – byte – 1 A, byte 0 0 1 1 0 1 1 1 Data 7 A – byte Borrow r, byte 0 1 1 1 0 1 0 0 0 0 1 1 1 R2 R1 R0 11 r – byte Borrow sr2, byte 0 1 1 0 S3 0 1 1 1 S2 S1 S0 14 sr2 – byte Borrow A, byte 0 1 1 0 0 1 1 1 Data 7 A – byte No Zero r, byte 0 1 1 1 0 1 0 0 0 1 1 0 1 R2 R1 R0 11 r – byte No Zero sr2, byte 0 1 1 0 S3 1 1 0 1 S2 S1 S0 14 sr2 – byte No Zero A, byte 0 1 1 1 0 1 1 1 Data 7 A – byte Zero r, byte 0 1 1 1 0 1 0 0 0 1 1 1 1 R2 R1 R0 11 r – byte Zero sr2, byte 0 1 1 0 S3 1 1 1 1 S2 S1 S0 14 sr2 – byte Zero Instruction Group Data Data Data Data Data No Borrow No Borrow No Borrow µPD78C10A,78C11A,78C12A NEI Operation Code Operand Note Mnemonic B1 Immediate data operation instructions B2 State B3 Operation B4 Skip Condition 7 A ∧ byte No Zero 11 r ∧ byte No Zero S3 1 0 0 1 S2 S1 S0 14 sr2 ∧ byte No Zero 0 1 0 1 0 1 1 1 Data 7 A ∧ byte Zero r, byte 0 1 1 1 0 1 0 0 0 1 0 1 1 R2 R1 R0 11 r ∧ byte Zero sr2, byte 0 1 1 0 S3 1 0 1 1 S2 S1 S0 14 sr2 ∧ byte Zero ADDW wa 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 14 A ← A +(V. wa) ADCW wa 1 1 0 1 14 A ← A + (V. wa) + CY ADDNCW wa 1 0 1 0 14 A ← A + (V. wa) SUBW wa 1 1 1 0 14 A ← A – (V. wa) SBBW wa 1 1 1 1 14 A ← A – (V. wa) – CY SUBNBW wa 1 0 1 1 14 A ← A – (V. wa) ANAW wa 1 0 0 0 1 0 0 0 14 A ← A ∧ (V. wa) ORAW wa 1 0 0 1 14 A ← A ∨ (V. wa) XRAW wa 1 0 0 1 0 0 0 0 14 A ← A ∨ (V. wa) GTAW wa 1 0 1 0 1 0 0 0 14 A – (V. wa) – 1 No Borrow LTAW wa 1 0 1 1 14 A – (V. wa) Borrow NEAW wa 1 1 1 0 14 A – (V. wa) No Zero EQAW wa 1 1 1 1 14 A – (V. wa) Zero ONAW wa 1 1 0 0 14 A ∧ (V. wa) No Zero * ONI * OFFI Note A, byte 0 1 0 0 0 1 1 1 Data r, byte 0 1 1 1 0 1 0 0 0 1 0 0 1 R2 R1 R0 sr2, byte 0 1 1 0 A, byte Instruction Group Data Data offset No Carry No Borrow 29 µPD78C10A,78C11A,78C12A Working register operation instructions Operation Code Operand Note Working register operation instructions OFFAW Operation Code Operand State Operation B1 B2 B3 B4 wa 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 Offset 14 A ∧ (V. wa) Offset Data 19 (V. wa) ← (V. wa) ∧ byte Skip Condition Zero ANIW * wa, byte 0 0 0 0 0 1 0 1 ORIW * wa, byte 0 0 0 1 19 (V. wa) ← (V. wa) ∨ byte GTIW * wa, byte 0 0 1 0 13 (V. wa) – byte – 1 No Borrow LTIW * wa, byte 0 0 1 1 13 (V. wa) – byte Borrow NEIW * wa, byte 0 1 1 0 13 (V. wa) – byte No Zero EQIW * wa, byte 0 1 1 1 13 (V. wa) – byte Zero ONIW * wa, byte 0 1 0 0 13 (V. wa) ∧ byte No Zero OFFIW wa, byte 0 1 0 1 13 (V. wa) ∧ byte Zero EADD EA, r2 0 1 1 1 0 0 0 0 0 1 0 0 0 0 R1 R0 11 EA ← EA + r2 DADD EA, rp3 0 1 0 0 1 1 0 0 0 1 P1 P0 11 EA ← EA + rp3 DADC EA, rp3 1 1 0 1 11 EA ← EA + rp3 +CY DADDNC EA, rp3 1 0 1 0 11 EA ← EA + rp3 ESUB EA, r2 0 0 0 0 0 1 1 0 0 0 R1 R0 11 EA ← EA – r2 DSUB EA, rp3 0 1 0 0 1 1 1 0 0 1 P1 P0 11 EA ← EA – rp3 DSBB EA, rp3 1 1 1 1 11 EA ← EA – rp3 – CY DSUBNB EA, rp3 1 0 1 1 11 EA ← EA – rp3 DAN EA, rp3 1 0 0 0 1 1 P1 P0 11 EA ← EA ∧ rp3 DOR EA, rp3 1 0 0 1 11 EA ← EA ∨ rp3 DXR EA, rp3 1 0 0 1 0 1 P1 P0 11 EA ← EA ∨ rp3 Note Instruction Group No Carry No Borrow µPD78C10A,78C11A,78C12A 16-bit operation instructions 30 Mnemonic State B3 Operation B4 Skip Condition B1 B2 0 1 1 1 0 1 0 0 1 0 1 0 1 1 P1 P0 11 EA – rp3 – 1 No Borrow EA, rp3 DLT EA, rp3 1 0 1 1 11 EA – rp3 Borrow DNE EA, rp3 1 1 1 0 11 EA – rp3 No Zero DEQ EA, rp3 1 1 1 1 11 EA – rp3 Zero DON EA, rp3 1 1 0 0 11 EA ∧ rp3 No Zero DOFF EA, rp3 1 1 0 1 11 EA ∧ rp3 Zero MUL r2 0 0 1 0 1 1 R1 R0 32 EA ← A × r2 DIV r2 0 0 1 1 59 EA ← EA ÷ r2, r2 ← Remainder INR r2 0 1 0 0 0 0 R1 R0 4 r2 ← r2 + 1 Carry wa 0 0 1 0 0 0 0 0 16 (V. wa) ← (V. wa) + 1 Carry rp 0 0 P1 P0 0 0 1 0 7 rp ← rp + 1 EA 1 0 1 0 1 0 0 0 7 EA ← EA + 1 r2 0 1 0 1 0 0 R1 R0 4 r2 ← r2 – 1 Borrow wa 0 0 1 1 0 0 0 0 16 (V. wa) ← (V. wa) – 1 Borrow rp 0 0 P1 P0 0 0 1 1 7 rp ← rp – 1 EA 1 0 1 0 1 0 0 1 7 EA ← EA – 1 DAA 0 1 1 0 0 0 0 1 4 Decimal Adjust Accumulator STC 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 8 CY ← 1 CLC 0 0 1 0 1 0 1 0 8 CY ← 0 NEGA 0 0 1 1 1 0 1 0 8 A←A+1 Note 3 Increment/decrement instructions DGT INRW * 0 1 0 0 1 0 0 0 Offset INX DCR DCRW * Offset DCX Note 1. Instruction Group 2. Multiplication/division instructions 31 3. Other operation instructions µPD78C10A,78C11A,78C12A 16-bit operation instructions Note 1 Operation Code Operand Note 2 Mnemonic Note Operation Code Operand RLD Rotation/shift instructions B3 Operation B2 B4 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 17 Rotate Left Digit 1 0 0 1 17 Rotate Right Digit Skip Condition r2 0 1 R1 R0 8 r2m + 1 ← r2m, r20 ← CY, CY ← r27 RLR r2 0 0 R1 R0 8 r2m – 1 ← r2m, r27 ← CY, CY ← r20 SLL r2 0 0 1 0 0 1 R1 R0 8 r2m + 1 ← r2m, r20 ← 0, CY ← r27 SLR r2 0 0 R1 R0 8 r2m – 1 ← r2m, r27 ← 0, CY ← r20 SLLC r2 0 0 0 0 0 1 R1 R0 8 r2m + 1 ← r2m, r20 ← 0, CY ← r27 Carry SLRC r2 0 0 R1 R0 8 r2m – 1 ← r2m, r27 ← 0, CY ← r20 Carry DRLL EA 1 0 1 1 0 1 0 0 8 EAn + 1 ← EAn, EA0 ← CY, CY ← EA15 DRLR EA 0 0 0 0 8 EAn – 1 ← EAn, EA15 ← CY, CY ← EA0 DSLL EA 1 0 1 0 0 1 0 0 8 EAn + 1 ← EAn, EA0 ← 0, CY ← EA15 DSLR EA 0 0 0 0 8 EAn – 1 ← EAn, EA15 ← 0, CY ← EA0 10 PC ← word 4 PCH ← B, PCL ← C 10 PC ← PC + 1 + jdisp 1 10 PC ← PC + 2 + jdisp 8 PC ← EA * word JB * 1 1 word 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 * word Note 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 CALB CALF High Adrs jdisp 1 word JEA CALL Low Adrs 0 0 1 0 0 0 0 1 JR JRE 0 1 0 1 0 1 0 0 * word Instruction Group 0 1 1 1 1 jdisp 0 0 1 0 1 0 0 0 Low Adrs 0 0 1 0 1 0 0 1 fa High Adrs 16 17 13 (SP – 1) ← (PC + 3)H, (SP – 2) ← (PC + 3)L PC ← word, SP ← SP – 2 (SP – 1) ← (PC + 2)H, (SP – 2) ← (PC + 2)L PCH ← B, PCL ← C, SP ← SP – 2 (SP – 1) ← (PC + 2)H, (SP – 2) ← (PC + 2)L PC15 – 11 ← 00001, PC10 – 0 ← fa, SP ← SP – 2 µPD78C10A,78C11A,78C12A RLL JMP Jump instructions State B1 RRD Call Instructions 32 Mnemonic Note 1 Note 2 Return instructions Mnemonic B1 word CALT Skip instructions 1 0 0 B2 State B3 ta 16 0 1 1 1 0 0 1 0 16 RET 1 0 1 1 1 0 0 0 10 1 0 0 1 10 0 1 1 0 0 0 1 0 13 RETS RETI * Operation B4 SOFTI Skip Condition (SP – 1) ← (PC + 1)H, (SP – 2) ← (PC + 1)L PCL ← (128 + 2ta), PCH ← (129 + 2ta), SP ← SP – 2 (SP – 1) ←PSW, (SP – 2) ← (PC + 1)H, (SP – 3) ← (PC + 1)L, PC ← 0060H, SP ← SP – 3 PCL ← (SP), PCH ← (SP + 1) SP ←SP + 2 PCL ← (SP), PCH ← (SP + 1), SP ← SP +2 PC ← PC + n PCL ← (SP), PCH ← (SP + 1) PSW ← (SP + 2), SP ← SP + 3 Unconditional skip bit, wa 0 1 0 1 1 B2 B1 B0 Offset 10 Skip if (V. wa) bit = 1 (V. wa)bit =1 SK f 0 1 0 0 1 0 0 0 0 0 0 0 1 F2 F1 F0 8 Skip if f = 1 f=1 SKN f 0 0 0 1 8 Skip if f = 0 f=0 SKIT irf 0 1 0 I4 I3 I2 I1 I0 8 Skip if irf = 1, then reset irf irf = 1 SKNIT irf 0 1 1 I4 I3 I2 I1 I0 8 Skip if irf = 0 Reset irf, if irf = 1 irf = 0 BIT NOP 0 0 0 0 0 0 0 0 4 No Operation EI 1 0 1 0 1 0 1 0 4 Enable Interrupt DI 1 0 1 1 1 0 1 0 4 Disable Interrupt HLT 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 12 Set Halt Mode STOP 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 12 Set Stop Mode * 1. Data is B2 if rpa2 = D + byte, H + byte. 2. Data is B3 if rpa3 = D + byte, H + byte. 3. In the State item, a figure is in the right side of slash if rpa2 and rpa3 are D + byte, H + A, H + B, H + EA, H + byte. Remarks The idle state when each instruction is skipped is different from the execution state as shown below. 1-byte instruction : 4 states 3-byte instruction (with *) : 10 states 2-byte instruction (with *) : 2-byte instruction : Note 1. 2. Instruction Group Call instructions 7 states 8 states 3-byte instruction 4-byte instruction : : 11 states 14 states 33 µPD78C10A,78C11A,78C12A CPU control instructions Operation Code Operand µPD78C10A,78C11A,78C12A 5. LIST OF MODE REGISTERS Name of Mode Registers Read/ Write Function MA MODE A register W Specifies bit-wise the input/output of the port A. MB MODE B register W Specifies bit-wise the input/output of the port B. MCC MODE CONTROL C register W Specifies bit-wise the port/control mode of the port C. MC MODE C register W Specifies bit-wise the input/output of the port C which is in port mode. MM MEMORY MAPPING register W Specifies the port/extension mode of port D and port F. MF MODE F register W Specifies bit-wise the input/output of the port F which is in port mode. TMM Timer mode register R/W ETMM Timer/event counter mode register W EOM Timer/event counter output mode register R/W SML Specifies operating mode of timer. Specifies the operating mode of timer/event counter. Control the output level of CO0 and CO1. W Serial mode register SMH Specifies the operating mode of serial interface. R/W MKL Interrupt mask register R/W Specifies the enable/disable of the interrupt request. ANM A/D channel mode register R/W Specifies the operating mode of A/D converter. ZCM Zero-cross mode register MKH 34 W Specifies the operation of zero-cross detector circuit. µPD78C10A,78C11A,78C12A 6. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (TA = 25 °C) PARAMETER SYMBOL TEST CONDITIONS –0.5 to +7.0 VDD Power supply voltage RATING AVDD AVSS to VDD +0.5 UNIT V V AVSS –0.5 to +0.5 V Input voltage VI –0.5 to VDD +0.5 V Output voltage VO –0.5 to VDD +0.5 V All output pins 4.0 mA Output current low IOL Total of all output pins 100 mA All output pins –2.0 mA Total of all output pins –50 mA VAREF –0.5 to AVDD +0.3 V Operating ambient temperature TA –40 to +85 °C Storage temperature Tstg –65 to +150 °C Output current high A/D converter reference input voltage Caution IOH Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this value when using the product. 35 ★ µPD78C10A,78C11A,78C12A (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ±10 %, VSS = AVSS = 0 V, VDD –0.8 V ≤ AVDD ≤ VDD, 3.4 V ≤ VAREF ≤ AVDD) OSCILLATOR CHARACTERISTICS RESONATOR RECOMMENDED CIRCUIT X1 Ceramic*1 or crystal resonator*2 PARAMETER TEST CONDITIONS MHz 5.8 15 MHz 4 15 MHz 5.8 15 MHz X1 rise time, fall time (tr, tf) 0 20 ns X1 input high, low level width (t∅H, t∅L) 20 250 ns Oscillator frequency (fXX) C1 C2 X1 X2 X1 input frequency (fX) A/D converter used External clock HCMOS Inverter Cautions 1. Place oscillator circuit as close as possible to X1, X2 pins. 2. Ensure that no other signal lines pass through the shadow area. 1. The ceramic oscillators and external capacitance given in the following table are recommended. RECOMMENDED CONSTANTS MAKER PRODUCT NAME CSA7.37MT CST7.37MTW Murata Mfg. Co., Ltd CSA12.0MT CST12.0MTW CSA15.00MX001 C1[pF] C2[pF] 30 30 On-chip On-chip 30 30 On-chip On-chip 15 15 On-chip On-chip FCR8.0MC TDK Corp. FCR10.0MC FCR12.0OMC FCR15.0MC 2. When a crystal oscillator is used, the following external capacitance is recommended. C1 = C2 = 10 pF 36 UNIT 15 A/D converter not used * MAX. 4 A/D converter not used X2 A/D converter used * MIN. µPD78C10A,78C11A,78C12A CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V) PARAMETER Input capacitance SYMBOL TEST CONDITIONS CI MIN. TYP. MAX. UNIT 10 pF 20 pF 20 pF fC = 1 MHz Output capacitance CO Unmeasured pins returned to 0 V Input-output capacitance CIO 37 µPD78C10A,78C11A,78C12A DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ±10 %, VSS = AVSS = 0 V) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VIL1 All except RESET, STOP, NMI, SCK, INT1, TI, AN4 to AN7 0 0.8 V VIL2 RESET, STOP, NMI, SCK, INT1, TI, AN4 to AN7 0 0.2 VDD V V1IH All except RESET, STOP, NMI, SCK, INT1, TI, AN4 to AN7, X1, X2 2.2 VDD V VIH2 RESET, STOP, NMI, SCK, INT1, TI, AN4 to AN7, X1, X2 VDD V VOL IOL = 2.0 mA 0.45 V Input voltage low Input voltage high Output voltage low Output voltage high 0.8 VDD IOH = –1.0 mA VDD –1.0 V IOH = –100 µA VDD –0.5 V VOH Input current II INT1*1, TI(PC3)*2 ; 0 V ≤ VI ≤ VDD ±200 µA Input leakage current ILI All except INT1, TI (PC3), 0 V ≤ VI ≤ VDD ±10 µA Output leakage current ILO 0 V ≤ VO ≤ VDD ±10 µA AIDD1 Operating mode fXX = 15 MHz 0.5 1.3 mA AIDD2 STOP mode 10 20 µA IDD1 Operating mode fXX = 15 MHz 13 25 mA IDD2 HALT mode fXX = 15 MHz 7 13 mA Data retention voltage VDDDR Hardware/software STOP mode Data retention current IDDDR AVDD power supply current VDD power supply current Pull-up resistor*4 Caution * RL V Hardware/software*3 VDDDR = 2.5 V 1 15 µA STOP mode VDDDR = 5 V ±10% 10 50 µA Ports A, B and C 3.5 V ≤ VDD ≤ 5.5 V, VI = 0 V 27 75 kΩ 17 For a detailed description of the hardware STOP mode, refer to the 87AD Series mPD78C18 User's Manual. 1. If self-bias should be generated by ZCM register. 2. If the control mode is set by MCC register, and self-bias should be generated by ZCM register. 3. If self-bias is not generated. 4. µPD78C11A and 78C12A only. 38 2.5 µPD78C10A,78C11A,78C12A AC CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ±10 %, VSS = AVSS = 0 V) Read/write Operation: PARAMETER SYMBOL TEST CONDITIONS MIN. MAX. UNIT 250 ns X1 input cycle time tCYC 66 Address setup time (to ALE ↓ ) tAL 30 ns Address hold time (from ALE ↓ ) tLA 35 ns RD ↓ delay time from address tAR 100 ns Address float time from RD ↓ tAFR Data input time from address tAD Data input time from ALE ↓ tLDR fXX = 15 MHz, CL = 100 pF CL = 100 pF 20 ns 250 ns 135 ns 120 ns fXX = 15 MHz, CL = 100 pF Data input time from RD ↓ tRD RD ↓ delay time from ALE ↓ tLR Data hold time (from RD ↑ ) tRDH ALE ↑ delay time from RD ↑ tRL RD low level width 15 ns CL = 100 pF 0 ns fXX = 15 MHz, CL = 100 pF 80 ns In Data Read fXX = 15 MHz, CL = 100 pF 215 ns In OP Code Fetch fXX = 15 MHz, CL = 100 pF 415 ns fXX = 15 MHz, CL = 100 pF 90 ns 30 ns 35 ns tRR ALE high level width tLL M1 setup time (to ALE ↓ ) tML M1 hold time (from ALE ↓ ) tLM fXX = 15 MHz IO/M setup time (to ALE ↓ ) tIL 30 ns IO/M hold time (from ALE ↓ ) tLI 35 ns WR ↓ delay time from address tAW 100 ns fXX = 15 MHz, CL = 100 pF Data output time from ALE ↓ tLDW Data output time from WR ↓ tWD WR ↓ delay time from ALE ↓ tLW 15 ns Data setup time (to WR ↑ ) tDW 165 ns Data hold time (from WR ↑ ) tWDH 60 ns ALE ↑ delay time from WR ↑ tWL 80 ns WR low level width tWW 215 ns CL = 100 pF fXX = 15 MHz, CL = 100 pF 180 ns 100 ns 39 µPD78C10A,78C11A,78C12A Serial Operation : PARAMETER SYMBOL TEST CONDITIONS MIN. MAX. UNIT *1 800 ns *2 400 ns 1.6 µs *1 335 ns *2 160 ns 700 ns *1 335 ns *2 160 ns SCK output 700 ns SCK input SCK cycle time tCYK SCK output SCK input SCK low level width tKKL SCK output SCK input SCK high level width tKKH RXD setup time (to SCK ↑ ) tRXK *1 80 ns RXD hold time (from SCK ↑ ) tKRX *1 80 ns TXD delay time from SCK ↓ tKTX *1 210 ns MIN. MAX. UNIT 1 1.8 VACP-P ±135 mV 0.05 1 kHz MIN. MAX. UNIT 1. If clock rate is × 1 in asynchronous mode, synchronous mode, or I/O interface mode. * 2. If clock rate is × 16 or × 64 in asynchronous mode. Remarks The numeric values in the table are those when fXX = 15 MHz, CL = 100 pF. Zero-Cross Characteristics : PARAMETER SYMBOL Zero-cross detection input VZX Zero-cross accuracy AZX Zero-cross detection input frequency fZX TEST CONDITIONS AC combination 60 Hz sine wave Other Operation : PARAMETER TI high, low level width SYMBOL TEST CONDITIONS tTIH, tTIL 6 tCYC tCI1H, tCI1L Event count mode 6 tCYC tCI2H,tCI2L Pulse width test mode 48 tCYC CI high, low level width NMI high, low level width tNIH, tNIL 10 µs INT1 high, low level width tI1H, tI1L 36 tCYC INT2 high, low level width tI2H, tI2L 36 tCYC AN4 to AN7, low level width tANH, tANL 36 tCYC RESET high, low level width tRSH, tRSL 10 µs 40 µPD78C10A,78C11A,78C12A A/D CONVERTER CHARACTERISTICS (TA = –40 to +85 °C, VDD = +5.0 V ±10 %, VSS = AVSS = 0 V, VDD –0.5 V ≤ AVDD ≤ VDD, 3.4 V ≤ VAREF ≤ AVDD) PARAMETER SYMBOL TEST CONDITIONS MIN. Resolution Sampling time tCONV tSAMP Analog input voltage VIAN Analog input impedance RAN Reference voltage MAX. 8 Absolute accuracy* Conversion time TYP. UNIT Bits 3.4 V ≤ VAREF ≤ AVDD, 66 ns ≤ tCYC ≤ 170 ns ±0.8% FSR 4.0 V ≤ VAREF ≤ AVDD, 66 ns ≤ tCYC ≤ 170 ns ±0.6% FSR TA = –10 to +70 °C, 4.0 V ≤ VAREF ≤ AVDD, 66 ns ≤ tCYC ≤ 170 ns ±0.4% FSR 66 ns ≤ tCYC ≤ 110 ns 576 tCYC 110 ns ≤ tCYC ≤ 170 ns 432 tCYC 66 ns ≤ tCYC ≤ 110 ns 96 tCYC 110 ns ≤ tCYC ≤ 170 ns 72 tCYC AN0 to AN7 (including unused pins) –0.3 VAREF +0.3 50 VAREF 3.4 V ★ MΩ AVDD V IAREF1 Operating mode 1.5 3.0 mA IAREF2 STOP mode 0.7 1.5 mA AIDD1 Operating mode fXX = 15 MHz 0.5 1.3 mA AIDD2 STOP mode 10 20 µA VAREF current AVDD power supply current * Quantization error (±1/2 LSB) is not included. AC Timing Test Point VDD – 1.0 V 0.45 V 2.2 V 0.8 V Test Points 2.2 V 0.8 V 41 µPD78C10A,78C11A,78C12A tCYC-Dependent AC Characteristics Expression PARAMETER EXPRESSION MIN./MAX. UNIT tAL 2T – 100 MIN. ns tLA T – 30 MIN. ns tAR 3T – 100 MIN. ns tAD 7T – 220 MAX. ns tLDR 5T – 200 MAX. ns tRD 4T – 150 MAX. ns tLR T – 50 MIN. ns tRL 2T – 50 MIN. ns MIN. ns 4T – 50 (In data read) tRR 7T – 50 (In OP code fetch) tLL 2T – 40 MIN. ns tML 2T – 100 MIN. ns tLM T – 30 MIN. ns tIL 2T – 100 MIN. ns tLI T – 30 MIN. ns tAW 3T – 100 MIN. ns tLDW T + 110 MAX. ns tLW T – 50 MIN. ns tDW 4T – 100 MIN. ns tWDH 2T – 70 MIN. ns tWL 2T – 50 MIN. ns tWW 4T – 50 MIN. ns MIN. ns MIN. ns MIN. ns 12T (SCK input)*1/6T (SCK input)*2 tCYK 24T (SCK output) 5T + 5 (SCK input)*1/2.5T + 5 (SCK input)*2 tKKL 12T – 100 (SCK output) 5T + 5 (SCK input)*1/2.5T + 5 (SCK input)*2 tKKH 12T – 100 (SCK output) * 1. If clock rate is ×1, in asynchronous mode, synchronous mode, or I/O interface mode. 2. If clock rate is 16 × 64, in asynchronous mode. Cautions 1. T = tCYC = 1/fXX 2. Other items which are not listed in this table are not dependent on oscillator frequency (fXX). 42 µPD78C10A,78C11A,78C12A Timing Waveform Read operation tCYC X1 Address (Upper) PF7 - 0 tAD PD7 - 0 Address (Lower) tLL Read Data tLDR tLA tRDH tRL tAFR ALE tAL tRD tRR RD tLR tAR MODE1 (M1)*1 tML tLM tIL tLI MODE0 (IO/M)*2 * 1. When MODE1 pin is pulled up, M1 signal is output to MODE1 pin in the 1st OP code fetch cycle. 2. When MODE0 pin is pulled up, IO/M signal is output to MODE0 pin in sr to sr2 register read cycle. Write operation X1 PF7 - 0 Address (Upper) tLDW PD7 - 0 Write Data Address (Lower) tLL tDW tLA tWDH tWD ALE tWW tAL tWL WR tLW tAW tIL tLI MODE0 (IO/M)*3 * 3. When MODE0 pin is pulled up, IO/M signal is output to MODE0 pin in sr to sr2 register write cycle. 43 µPD78C10A,78C11A,78C12A Serial Operation tCYK tKKL tKKH SCK tKTX TXD R XD tRXK tKRX Timer Input Timing tTIH tTIL tCI1H tCI1L tCI2H tCI2L TI Timer/Event Counter Input Timing Event Counter Mode CI Pulse Width Test Mode CI 44 µPD78C10A,78C11A,78C12A Interrupt Input Timing tNIH tNIL tI1L tI1H tI2H tI2L tRSH tRSL NMI INT1 INT2 Reset Input Timing RESET 0.8 VDD 0.2 VDD External Clock Timing tΦ H 0.8 VDD X1 0.8 V tr tf tΦ H tCYC 45 µPD78C10A,78C11A,78C12A DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (TA = –40 to +85 °C) PARAMETER ★ SYMBOL Data retention power supply voltage VDDDR Data retention power supply current IDDDR TEST CONDITIONS MIN. TYP. 2.5 MAX. UNIT 5.5 V VDDDR = 2.5 V 1 15 µA VDDDR = 5 V ±10% 10 50 µA VDD rise/fall time tRVD, tFVD 200 µs STOP setup time (to VDD) tSSTVD 12T +0.5 µs STOP hold time (from VDD) tHVDST 12T +0.5 µs Data Retention Timing 90 % VDD 10 % tFVD tSSTVD STOP VDDDR tRVD tHVDST VIH2 VIL2 46 µPD78C10A,78C11A,78C12A 7. CHARACTERISTIC CURVES (REFERENCE VALUES) IDD1, IDD2 vs VDD (TA = 25 ˚C, fXX = 15 MHz) 20 VDD Power Supply Current IDD1, IDD2 [mA] IDD1 (TYP.) 15 10 IDD2 (TYP.) 5 0 4.5 5.0 5.5 6 Power Supply Voltage VDD [V] IDD1, IDD2 vs fXX (TA = 25 ˚C, VDD = 5 V) VDD Power Supply Current IDD1, IDD2 [mA] 30 20 IDD1 (TYP.) 10 IDD2 (TYP.) 0 5 10 15 Oscillator Frequency fXX [MHz] 47 µPD78C10A,78C11A,78C12A IOL vs VOL (TA = 25 ˚C, VDD = 5 V) 2.5 TYP. Output Current Low IOL [mA] 2.0 1.5 1.0 0.5 0 0.1 0.2 0.3 0.4 0.5 Output Voltage Low VOL [V] IOH vs VOH (TA = 25 ˚C, VDD = 5 V) –1.5 Output Current High IOH [mA] TYP. –1.0 –0.5 0 0.1 0.2 0.3 0.4 Power Supply Voltage – Output Voltage High VDD – VOH [V] 48 0.5 µPD78C10A,78C11A,78C12A IDDDR vs VDDDR (TA = 25 ˚C) Data Retention Power Supply Current IDDDR [µ A] 10 8 6 TYP. 4 2 0 2 3 4 5 6 Data Retention Power Supply Voltage VDDDR [V] 49 µPD78C10A,78C11A,78C12A 8. DIFFERENCES IN 87AD SERIES PRODUCTS (1/2) Product Name Item Number of instructions On-chip ROM µPD7810H, 7811H µPD7810, 7811*1 159 kinds (STOP instruction added) 158 kinds ROM less (µPD7810) 4K × 8 bits (µPD7811) µPD78C10, 78C11*1 ROM less (µPD7810H) 4K × 8 bits (µPD7811H) ROM less (µPD78C10) 4K × 8 bits (µPD78C11) 256 × 8 bits On-chip RAM 27 Nnmber of special registers 28 (ZCM register added) Operating frequency 10 to 12 MHz 4 to 10 MHz 4 to 15 MHz 4 to 15 MHz*2 Power supply voltage 5 V ±5 % 5 V ±10 % 5 V ±10 % 5 V ±10 % –10 to +70 °C –40 to +85 °C Operating temperature range Standby function –10 to +70 °C –40 to +85 °C Thirty-two bytes of the on-chip RAM 256 bytes of data are held by low power supply voltage (3.2 V) Number of HALT instruction state HALT mode CPU operation 11 12 M3 T2 cycle repeated Stop High level Low level Self-bias control impossible Self-bias control possible (by ZCM register specification) By clock sampling By analog delay ALE Zero crossing detector self-bias control NMI, RESET noise elimination method A/D converter operation control Three kinds: HALT mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5V) in software/ hardware STOP mode. Operation stop impossible Operation stop possible (VAREF pin operation) 0.4% (TA = –10 to +70 °C, 0.6% (TA = –40 to +85 °C, VAREF = 4.0V to AVDD) A/D converter absolute accuracy (Unit: FSR) 0.4% (TA = –10 to +50 °C) 0.6% (TA = –40 to +85 °C) 0.4% (TA = –10 to +70 °C)*3 VAREF = 4.0V to AVDD) 0.8% (TA = –40 to +85 °C VAREF = 3.4V to AVDD) VAREF voltage range AVCC to 0.5V to AVCC 0V to VAREF Analog input voltage range AICC/AIDD1 AIDD2 IAREF/IAREF1 IAREF2 * 1. 2. 3. 50 3.4 V to AVDD 6 mA Typ. 0.5 mA Typ. — 10 µA Typ. 0.5 mA Typ. 2.0 mA Typ. — 1.5 mA Typ. 0.7 mA Typ. µPD7810, 7811, 78C10 and 78C11 are maintenance products. K, E, P masks apply from 4 MHz to 12 MHz. The µPD7810HG and 7811HG G masks, µPD7810HCW and 7811HCW K masks apply TA = 0 to +70 °C. µPD78C10A,78C11A,78C12A µPD78C10A, 78C11A, µPD78CP14 78C12A µPD78CP18 159 kinds (STOP instruction added) ROM less (µPD78C10A) 4K × 8 bits (µPD78C11A) 8K × 8 bits (µPD78C12A) 16K × 8 bits (PROM) 256 × 8 bits 32K × 8 bits (PROM) 1024 × 8 bits 28 (ZCM register added) 4 to 15 MHz 6 to 15 MHz 4 to 15 MHz 5 V ±10 % –40 to +85 °C 5 V ±5 % –40 to +85 °C 5 V ±10 % –40 to +85 °C Three kinds: Halt mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP mode. 12 STOP Low level Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (VAREF pin operation) 0.4% (TA = –10 to +70 °C, VAREF = 4.0 V to AVDD) 0.6% (TA = –40 to +85 °C, VAREF = 4.0 V to AVDD) 0.8% (TA = –40 to +85 °C, VAREF = 3.4 V to AVDD) 3.4V to AVDD –0.3 V to VAREF + 0.3 V 0V to VAREF –0.3 V to VAREF + 0.3 V 0.5mA Typ. 10 µA Typ. 1.5 mA Typ. 0.7 mA Typ. 51 µPD78C10A,78C11A,78C12A DIFFERENCES IN 87AD SERIES PRODUCTS (2/2) Product Name Item RD/WR Operation during RESET µPD78C10, 78C11*1 High level ALE PD/PF*4 µPD7810H, 7811H µPD7810, 7811*1 Output High-impedance Zero is output at the pin specified by the address bus. Other pins are high impedance. On-chip pull-up register (Mask option) Impossible Device configuration NMOS CMOS 50 µA MAX. 3.2 mA (–10 to +70°C) MAX. 3.2 mA MAX. (VDD = 5 V ±10 %) 203.2 mA MAX. 25 mA MAX. Standby current 3.5 mA (–40 to +85°C) MAX. 203.2 mA (–10 to +70°C) MAX. Current consumption SCK (Unit: ns) ★ 223.5 mA (–40 to +85°C) MAX. Cycle time input 20T Low level width 10T + 80 High level width 10T – 80 *5 TLDW Bus timing TWD (Unit: ns) TDW T + 110 100 4T – 100 Hardware STOP mode restrictions — Yes Asyncronous mode restrictions during external SCK input. No Yes 64-pin plastic shrink DIP 64-pin plastic QUIP straight*8 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 mm, 2.05 mm thickness) 64-pin plastic QFP (14 × 20 mm, 2.70 mm thickness) 64-pin plastic shrink DIP 64-pin plastic QUIP straight*7 64-pin plastic QUIP Package 68-pin plastic QFJ Pin connection*10 * 1. 4. VCC (64-pin), VDD (63-pin) VDD (64-pin), STOP (63-pin) µPD7810, 7811, 78C10 and 78C11 are maintenance products. For µPD7810, 7810H, 78C10 and 78C10A. 5. (Unit : ns) SCK Remarks 52 For the asyncronous mode with clock rate x1, syncronous mode, and I/O interface mode For the asyncronous mode with clock rate ×16 and ×64 Cycle time input 12T 6T Low level width 5T + 5 2.5T + 5 High level width 5T + 5 2.5T + 5 T = tCYC = 1/fxx µPD78C10A,78C11A,78C12A µPD78C10A, 78C11A, µPD78CP14 78C12A µPD78CP18 High-impedance Only µPD78C11A, 78C12A possible (ports A, B, C) Impossible CMOS 50 µA MAX. (VDD = 5 V ±10 %) 50 µA MAX. (VDD = 5 V ±10 %) 1 mA MAX. (VDD = 5 V ±5 %) 25 mA MAX. 35 mA MAX. 32 mA MAX. *5 T + 110 T + 130 110 140 4T – 100 4T – 140 Yes*6 ★ No No 64-pin plastic shrink DIP 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 64-pin plastic shrink DIP mm, 2.70 mm thickness) 64-pin plastic QUIP straight*9 68-pin plastic QFJ 64-pin plastic QUIP 64-pin ceramic shrink DIP 64-pin plastic QFP (14 × 20 with window mm, 2.70 mm thickness) 64-pin ceramic QUIP with 68-pin plastic QFJ window 64-pin plastic shrink DIP 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 mm, 2.70 mm thickness) 64-pin ceramic shrink DIP with window 64-pin ceramic WQFN 64-pin ceramic WQFN VDD (64-pin), STOP (63-pin) * 6. K mask products only 7. µPD7811, 7811H only 8. µPD78C11, only 9. µPD78C11A, 78C12A only 10. Items in the parentheses are the pin numbers for the 64-pin plastic shrink DIP, 64-pin plastic QUIP straight and 64-pin plastic QUIP. Caution Since the oscillator characteristics, I/O level, and some internal operation timing are different, be careful when studying direct replacement of the mPD78C10A, 78C11A, 78C12A and µPD7810, 7811, 7810H, 7811H, 78C10, 78C11. 53 µPD78C10A,78C11A,78C12A 9. PACKAGE INFORMATION 64 PIN PLASTIC SHRINK DIP (750 mil) 64 33 1 32 A K H G J I L F D N M NOTE B C M R ITEM MILLIMETERS INCHES 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition. A 58.68 MAX. 2.311 MAX. B 1.78 MAX. 0.070 MAX. 2) Item "K" to center of leads when formed parallel. C 1.778 (T.P.) 0.070 (T.P.) D 0.50±0.10 0.020 +0.004 –0.005 F 0.9 MIN. 0.035 MIN. G 3.2±0.3 0.126±0.012 H 0.51 MIN. 0.020 MIN. I 4.31 MAX. 0.170 MAX. J 5.08 MAX. 0.200 MAX. K 19.05 (T.P.) 0.750 (T.P.) L 17.0 0.669 M 0.25 +0.10 –0.05 0.010 +0.004 –0.003 N 0.17 0.007 R 0~15° 0~15° P64C-70-750A,C-1 54 µPD78C10A,78C11A,78C12A 55 µPD78C10A,78C11A,78C12A 56 µPD78C10A,78C11A,78C12A 64PIN PLASTIC QFP (14 × 20) (UNIT: mm) A B 33 32 64 1 20 19 detail of lead end F Q 5°±5° D C S 51 52 G H I M J M P K N L P64GF-100-3B8,3BE,3BR-1 NOTE Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 23.6 ± 0.4 0.929 ± 0.016 B 20.0 ± 0.2 0.795+0.009 –0.008 C 14.0 ± 0.2 0.551+0.009 –0.008 D 17.6 ± 0.4 0.693 ± 0.016 F 1.0 0.039 G 1.0 0.039 H 0.40 ± 0.10 0.016 +0.004 –0.005 I 0.20 0.008 J 1.0 (T.P.) 0.039 (T.P.) K 1.8 ± 0.2 0.071–0.009 L 0.8 ± 0.2 0.031+0.009 –0.008 M 0.15+0.10 –0.05 0.006+0.004 –0.003 N 0.12 0.005 P 2.7 0.106 Q 0.1 ± 0.1 0.004 ± 0.004 S 3.0 MAX. 0.119 MAX. +0.008 57 µPD78C10A,78C11A,78C12A ES 64PIN CERAMIC QFP (REFERENCE DRAWING) (UNIT: mm) Cautions 1. The metal cap is connected to pin 26 and is VSS (GND) level. 2. The bottom leads are tilted. 3. Since cutting of the end of the leads is no process-controlled, the lead length is unspecified. 58 µPD78C10A,78C11A,78C12A 68PIN PLASTIC QFJ ( 950 mil) (UNIT: mm) A B C D F E H G U J 68 1 I T Q K M N M P P68L-50A1-2 NOTE Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 25.2 ± 0.2 0.992 ± 0.008 B 24.20 0.953 C 24.20 0.953 D 25.2 ± 0.2 0.992 ± 0.008 E 1.94 ± 0.15 0.076+0.007 –0.006 F 0.6 0.024 G 4.4 ± 0.2 0.173+0.009 –0.008 H 2.8 ± 0.2 0.110+0.009 –0.008 I 0.9 MIN. 0.035 MIN. J 3.4 0.134 K 1.27 (T.P.) 0.050 (T.P.) M 0.40 ± 1.0 0.016+0.004 –0.005 N 0.12 0.005 P 23.12 ± 0.20 0.910+0.009 –0.008 Q 0.15 0.006 T R 0.8 R 0.031 U 0.20 +0.10 –0.05 0.008+0.004 –0.002 59 µPD78C10A, 78C11A, 78C12A ★ 10. RECOMMENDED SOLDERING CONDITIONS The µPD78C10A, 78C11A, and 78C12A should be soldered and mounted under the conditions recommended in the table below. For detail of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (IEI-1207). For soldering methods and conditions other than those recommended below, contact our sales personnel. Table 10-1 Surface Mounting Type Soldering Conditions (1) µPD78C10AGF-3BE : 64-pin plastic QFP (14 × 20 mm) µPD78C11AGF-×××-3BE : 64-pin plastic QFP (14 × 20 mm) µPD78C12AGF-×××-3BE : 64-pin plastic QFP (14 × 20 mm) Soldering Method Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature : 235 °C, Duration : 30 sec. max. (210 °C min.), Number of times : 2 max. <Points to note> (1) Start the second reflow after the device temperature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided. IR35-00-2 VPS Package peak temperature : 215 °C, Duration : 40 sec. max. (200 °C min.), Number of times : 2 max. <Points to note> (1) Start the second reflow after the device temperature by the first VP15-00-2 reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided. Wave soldering Solder bath temperature : 260 °C max., Duration : 10 sec. max., Number of times : 1 Pre-heating temperature : 120 °C max. (package surface temperature) Pin part heating Pin temperature : 300 °C max., Duration: 3 sec. max. (per device side) Caution WS60-00-1 Do not use two or more soldering methods in combination (except the pin part heating method). (2) µPD78C10AL µPD78C11AL-××× : : 68-pin plastic QFJ ( 68-pin plastic QFJ ( 950 mil) 950 mil) µPD78C12AL-××× : 68-pin plastic QFJ ( 950 mil) Soldering Conditions Soldering Method Infrared reflow Package peak temperature : 230 °C, Duration : 30 sec. max. Recommended Condition Symbol IR30-00-1 (210 °C min.), Number of times : 1 Package peak temperature : 215 °C, Duration : 40 sec. max. VPS VP15-00-1 (200 °C min.), Number of times : 1 Pin part heating Pin temperature : 300 °C max., Duration : 3 sec. max. (per device side) Caution 60 Do not use two or more soldering methods in combination (except the pin part heating method). µPD78C10A, 78C11A, 78C12A Table 10-2 Inserted Type Soldering Conditions (1) µPD78C10ACW µPD78C11ACW-××× µPD78C12ACW-××× µPD78C10AGQ-36 µPD78C11AGQ-×××-36 µPD78C12AGQ-×××-36 Soldering Method : 64-pin plastic shrink DIP (750 mil) : 64-pin plastic shrink DIP (750 mil) : 64-pin plastic shrink DIP (750 mil) : 64-pin plastic QUIP : 64-pin plastic QUIP : 64-pin plastic QUIP Soldering Conditions Wave soldering Solder bath temperature: 260 °C max. (pin only) Duration: 10 sec. max. Pin temperature: 300 °C max. Pin part heating Caution Duration: 3 sec. max. (per pin) Ensure that the application of wave soldering is limited to the pins and no solder touches the main unit directly. (2) µPD78C11AGQ-×××-37 µPD78C12AGQ-×××-37 Soldering Method Pin part heating : 64-pin plastic QUIP straight : 64-pin plastic QUIP straight Soldering Conditions Pin temperature: 300 °C max. Duration: 3 sec. max. (per pin) 61 µPD78C10A,78C11A,78C12A ★ APPENDIX DEVELOPMENT TOOLS The following development tools are available to develop a system which uses 87AD series products. Language Processor This is a program which converts a program written in mnemonic to an object code that microcomputer execution is possible. Besides, it contains a function to automatically create a symbol/table, and optimize a branch instruction. Host Machine OS Supply Medium Ordering Code (Product Name) 3.5-inch 2HD µS5A13RA87 PC-9800 series MS-DOSTM Ver. 2.11 to Ver. 5.00A* 5-inch 2HD µS5A10RA87 PC DOSTM (Ver. 3.1) 3.5-inch 2HC µS7B13RA87 5-inch 2HC µS7B10RA87 87AD series relocatable assembler (RA87) IBM PC/ATTM Hardware PROM Write Tools PG-1500 With an provided board and an optional programmer adapter connected, this PROM programmer can manipulate from a stand-alone or host machine to perform programming on single-chip microcomputer which incorporates PROM. It is also capable of programming a typical PROM ranging from 256K to 4M bits. PA-78CP14CW/ GF/GQ/KB/L PROM programmer adapter for µPD78CP14/78CP18. Used by connecting to PG-1500. PA-78CP14CW For µPD78CP14CW, 78CP14DW, 78CP18CW, 78CP18DW PA-78CP14GF For µPD78CP14GF-3BE, 78CP18GF-3BE PA-78CP14GQ For µPD78CP14G-36, 78CP14R, 78CP18GQ-36 PA-78CP14KB For µPD78CP14KB, 78CP18KB PA-78CP14L For µPD78CP14L Software Connected PG-1500 to a host machine by using serial and parallel interface, to control the PG1500 on a host machine. Host Machine OS PC-9800 series MS-DOS Ver. 2.11 to Ver. 5.00A* PG-1500 controller IBM PC/AT PC DOS (Ver. 3.1) Supply Medium Ordering Code (Product Name) 3.5-inch 2HD µS5A13PG1500 5-inch 2HD µS5A10PG1500 5-inch 2HC µS7B10PG1500 * Ver. 5.00/5.00A has a task swap function, but this function cannot be used with this software. Remarks Operation of assemblers and the PG-1500 controller are guaranteed only on the host machines and operating systems quoted above. 62 µPD78C10A,78C11A,78C12A Debugging tools Hardware An in-circuit emulator (IE-78C11-M) is available as a program debugging tool for 87AD series. The following table shows its system configuration. IE-78C11-M The IE-78C11-M is an in-circuit emulator which works with 87AD series. Only the IE-78C11-M should be used for a plastic QUIP package, while it should be used with a conversion socket for a plastic shrink DIP package. It can be connected to a host machine to perform efficient debugging. EV-9001-64 Conversion sockets for plastic shrink DIP. Used in combination with the IE-78C11-M. EV-9200G-64 64-pin LCC socket. Can be used as a substitute for 64-pin plastic QFP products with window in combination with the µPD78CP14KB/78CP18KB. Software Connects the IE-78C11-M to host machine by using the RS-232-C, then controls the IE-78C11-M on host machine. Host Machine OS PC-9800 series MS-DOS Ver. 2.11 to Ver. 3.30D IE-78C11-M control program (IE controller) IBM PC/AT Remarks PC DOS (Ver. 3.1) Supply Medium Ordering Code (Product Name) 3.5-inch 2HD µS5A13IE78C11 5-inch 2HD µS5A10IE78C11 5-inch 2HC µS7B10IE78C11 Operation of the IE controller is guaranteed only on the host machine and operating systems quoted above. 63 µPD78C10A,78C11A,78C12A [MEMO] 64 µPD78C10A,78C11A,78C12A NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. 65 µPD78C10A,78C11A,78C12A The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. The customer must judge : µPD78C11ACW-×××, 78C11AGF-×××-3BE, 78C11AGQ-×××-36, 78C11AGQ-×××-37, the need for license µPD78C11AL-×××, 78C12ACW-×××, 78C12AGF-×××-3BE, 78C12AGQ-×××-36, µPD78C12AGQ-×××-37, 78C12AL-××× License not needed : µPD78C10ACW, 78C10AGF-3BE, 78C10AGQ-36, 78C10AL No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: “Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on a customer designated “quality assurance program“ for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance. Anti-radioactive design is not implemented in this product. M4 94.11 MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.