NEC UPD78F9177Y

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD78F9177, 78F9177Y
8-BIT SINGLE-CHIP MICROCONTROLLER
The µPD78F9177 and µPD78F9177Y are µPD789177, 789177Y Subseries (small, general-purpose) in the 78K/0S
Series.
The µPD78F9177 replaces the internal ROM of the µPD789176 and µPD789177 with flash memory, while the
µPD78F9177Y replaces the ROM of the µPD789176Y and µPD789177Y with flash memory.
Because flash memory allows the program to be written and erased electrically with the device mounted on the
board, this product is ideal for the evolution stages of system development, small-scale production and rapid
development of new products.
Detailed function descriptions are provided in the following user’s manuals. Be sure to read them before
designing.
µPD789167, 789177, 789167Y, 789177Y Subseries User’s Manual: U14186E
78K/0S Series User's Manual Instruction: U11047E
FEATURES
•
•
•
•
•
•
•
•
•
•
Pin compatible with mask ROM version (except VPP pin)
Flash memory: 24 Kbytes
High-speed RAM: 512 bytes
Minimum instruction execution time can be changed from high-speed (0.4 µs: @5.0-MHz operation with main
system clock) to ultra-low-speed (122 µs: @ 32.768-kHz operation with subsystem clock)
10-bit resolution A/D converter: 8 channels
I/O ports: 31
Serial interface: 2 channels
• 3-wire serial I/O mode / UART mode: 1 channel
• SMB (µPD78F9177Y only): 1 channel
Timers: 6 channels
• 16-bit timer: 1 channel
• 8-bit timer/event counter: 2 channels
• 8-bit timer: 1 channel
• Watch timer: 1 channel
• Watchdog timer: 1 channel
On-chip 16-bit multiplier
Power supply voltage: VDD = 1.8 to 5.5 V
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. U14022EJ1V0DS00 (1st edition)
Date Published August 2000 NS CP(K)
Printed in Japan
The mark
shows major revised
©
2000
µPD78F9177, 78F9177Y
APPLICATIONS
Power windows, battery management unit, side air bags, etc
ORDERING INFORMATION
(1) µPD78F9177
Part Number
Package
µPD78F9177GB-8ES
44-pin plastic QFP (10 × 10)
(2) µPD78F9177Y
Part Number
2
Package
µPD78F9177YGB-8ES
44-pin plastic LQFP (10 X 10)
µPD78F9177YGA-9EU
48-pin plastic TQFP (fine pitch) (7 X 7)
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
78K/0S SERIES DEVELOPMENT
The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.
Products under mass production
Products under development
Y subseries supports SMB.
Small, general-purpose
44 pins
42/44 pins
28 pins
µ PD789026 with subsystem clock added
µ PD789014 with timer reinforced and ROM and RAM expanded
µ PD789046
µ PD789026
µ PD789014
UART. Low-voltage (1.8-V) operation
Small, general-purpose + A/D
µ PD789177
µ PD789167
µ PD789156
µ PD789146
µ PD789134A
µ PD789124A
µ PD789114A
µ PD789104A
44 pins
44 pins
30 pins
30 pins
30 pins
30 pins
30 pins
30 pins
µ PD789177Y
µ PD789167Y
µ PD789167 with improved A/D
µ PD789104A with improved timer
µ PD789146 with improved A/D
µ PD789104A with EEPROM added
µ PD789124A with improved A/D
RC oscillation model of µ PD789104A
µ PD789104A with improved A/D
µ PD789026 with A/D and multiplier added
For inverter control
µ PD789842
44 pins
78K/0S
series
Internal inverter control circuit and UART
For driving LCD
80 pins
80 pins
64 pins
64 pins
64 pins
64 pins
64 pins
64 pins
µ PD789417A
µ PD789407A
µ PD789456
µ PD789446
µ PD789436
µ PD789426
µ PD789316
µ PD789306
µ PD789407A with improved A/D
µ PD789456 with improved I/O
µ PD789446 with improved A/D
µ PD789426 with improved display output
µ PD789426 with improved A/D
µ PD789306 with A/D added
RC oscillation model of µ PD789306
Basic subseries for driving LCD
For driving Dot LCD
144 pins
88 pins
µ PD789835
µ PD789830
Segment/common output: 96 pins
Segment: 40 pins, common: 16 pins
For ASSP
52 pins
52 pins
44 pins
44 pins
20 pins
20 pins
µ PD789467
µ PD789327
µ PD789800
µ PD789840
µ PD789861
µ PD789860
µ PD789327 with A/D added
For remote controller. Internal LCD controller/driver
For PC keyboard. Internal USB function
For key pad. Internal POC
RC oscillation model of µPD789860
For keyless entry. Internal POC and key return circuit
Data Sheet U14022EJ1V0DS00
3
µPD78F9177, 78F9177Y
The major differences between subseries are shown below.
Function
Subseries Name
ROM
Capacity
Small,
µPD789046 16 K
generalµPD789026 4 K-16 K
purpose
µPD789014 2 K-4 K
Small,
µPD789177 16 K-24 K
generalµPD789167
purpose
µPD789156 8 K-16 K
+ A/D
Timer
8-bit
1 ch
16-bit
1 ch
Watch WDT
1 ch
1 ch
8-bit
A/D
10-bit
A/D
Serial Interface
I/O
VDD
MIN
Value
Remark
−
−
1 ch (UART:1 ch)
34 pins
1.8 V
−
1.8 V
−
−
2 ch
−
3 ch
1 ch
22 pins
1 ch
1 ch
−
1 ch
µPD789146
−
8 ch
8 ch
−
−
4 ch
4 ch
−
µPD789134A 2 K-8 K
20 pins
Internal
EEPROM
4 ch
RC oscillation
version
µPD789124A
4 ch
−
µPD789114A
−
4 ch
µPD789104A
4 ch
−
8 ch
−
1 ch (UART: 1 ch) 30 pins
4.0 V
−
7 ch
1 ch (UART: 1 ch) 43 pins
1.8 V
−
µPD789842 8 K-16 K
3 ch
Note
1 ch
1 ch
For LCD µPD789417A 12 K-24 K
driving
µPD789407A
3 ch
1 ch
1 ch
1 ch
µPD789456 12 K-16 K
2 ch
For
inverter
control
1 ch (UART: 1 ch) 31 pins
7 ch
−
−
6 ch
µPD789446
6 ch
−
µPD789436
−
6 ch
µPD789426
6 ch
−
µPD789316 8 K to
16K
−
−
30 pins
40 pins
2 ch (UART: 1 ch) 23 pins
RC oscillation
version
µPD789306
−
For Dot
LCD
driving
µPD789835 24 K-60 K
6 ch
−
µPD789830 24 K
1 ch
1 ch
ASSP
µPD789467 4 K-24 K
2 ch
−
1 ch
1 ch
2 ch
1 ch
µPD789840
µPD789861 4 K
−
1 ch
1 ch
−
1 ch
1 ch
−
1.8 V
30 pins
2.7 V
18 pins
1.8 V
1 ch
21 pins
−
2 ch (USB: 1 ch)
31 pins
4.0 V
1 ch
29 pins
2.8 V
14 pins
1.8 V
−
µPD789860
−
−
Internal
LCD
−
RC oscillation
version,
Internal
EEPROM
Internal
EEPROM
Note 10-bit timer: 1 channel
4
−
28 pins
−
4 ch
−
1 ch
−
µPD789327
µPD789800 8 K
3 ch
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
OVERVIEW OF FUNCTIONS
µPD78F9177
Item
Internal memory
Flash memory
24 Kbytes
High-speed RAM
512 bytes
µPD78F9177Y
Minimum instruction execution time
• 0.4/1.6 µs (@5.0-MHz operation with main system clock)
• 122 µs (@ 32.768-kHz operation with subsystem clock)
General-purpose registers
8 bits × 8 registers
Instruction set
• 16-bit operations
• Bit manipulations (set, reset, test)
Multiplier
8 bits × 8 bits = 16 bits
I/O ports
Total:
31
• CMOS input:
• CMOS I/O:
• N-ch open drain:
8
17
6
A/D converters
10-bit resolution × 8 channels
Serial interfaces
3-wire serial I/O/UART : 1 channel
• 3-wire serial I/O / UART: 1 channel
• SMB: 1 channel
Timers
•
•
•
•
•
Timer output
4 output
Buzzer output
1
Vectored interrupt
Maskable
16-bit timer:1 channel
8-bit timer/event counter:2 channels
8-bit timer:1 channel
Watch timer:1 channel
Watchdog timer:1 channel
Internal: 10, External: 4 (µPD78F9177)
Internal: 12, External: 4 (µPD78F9177Y)
sources
Non-maskable
Internal: 1
Power supply voltage
VDD = 1.8 to 5.5 V
Operating ambient temperature
TA = −40°C to +85°C
Package
44-pin plastic LQFP (10 × 10)
• 44-pin plastic LQFP (10 X10)
• 48-pin plastic TQFP (fine pitch) (7 x 7)
Data Sheet U14022EJ1V0DS00
5
µPD78F9177, 78F9177Y
CONTENTS
1.
PIN CONFIGURATION (TOP VIEW) .................................................................................................
7
2.
BLOCK DIAGRAM.............................................................................................................................
10
3.
PIN FUNCTIONS................................................................................................................................
11
3.1
Port Pins ..................................................................................................................................................
11
3.2
Non-Port Pins..........................................................................................................................................
12
3.3
Pin I/O Circuits and Recommended Connection of Unused Pins ......................................................
13
4.
CPU ARCHITECTURE.......................................................................................................................
15
5.
FLASH MEMORY PROGRAMMING ................................................................................................
16
5.1
Selecting Communication Mode ..........................................................................................................
16
5.2
Function of Flash Memory Programming ............................................................................................
17
5.3
Flashpro III Connection Example .........................................................................................................
17
5.4
Example of Settings for Flashpro III (PG-FP3) ....................................................................................
19
INSTRUCTION SET OVERVIEW ......................................................................................................
20
6.1
Conventions ...........................................................................................................................................
20
6.2
Operations ..............................................................................................................................................
22
7.
ELECTRICAL SPECIFICATIONS......................................................................................................
27
8.
CHARACTERISTICS CURVES ........................................................................................................
45
9.
PACKAGE DRAWING ......................................................................................................................
46
10. RECOMMENDED SOLDERING CONDITIONS ...............................................................................
48
APPENDIX A. DIFFERENCES BETWEEN µPD78F9177, 78F9177Y, AND MASK ROM VERSIONS......
49
APPENDIX B. DEVELOPMENT TOOLS ...............................................................................................
50
APPENDIX C. RELATED DOCUMENTS ...............................................................................................
52
6.
6
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
1. PIN CONFIGURATION (TOP VIEW)
• 44-pin plastic LQFP (10 × 10)
µPD78F9177GB-8ES
P02
P03
P04
VSS1
P05
P50
P51
P52
P53
30
P25/TI80/SS20
P64/ANI4
5
29
VDD0
P65/ANI5
6
28
VSS0
P66/ANI6
7
27
X1
P67/ANI7
8
26
X2
AVSS
9
25
RESET
P10
10
24
XT1
P11
11
23
12 13 14 15 16 17 18 19 20 21 22
XT2
VPP
4
P24/SDA0Note
P26/TO80
P63/ANI3
P23/SCL0Note
31
P22/SI20/RXD20
3
P21/SO20/TXD20
P00
P62/ANI2
VDD1
32
P20/SCK20/ASCK20
2
P33/INTP3/TO82/BZO90
P01
P61/ANI1
P32/INTP2/TO90
44 43 42 41 40 39 38 37 36 35 34
1
33
P31/INTP1/TO81
P60/ANI0
P30/INTP0/TI81/CPT90
Note
AVDD
AVREF
µPD78F9177YGB-8ES
The SCL0 and SDA0 pins are available in µPD78F9177Y product only.
Cautions 1.
Connect the VPP pin directly to VSS0 or VSS1.
2. Connect the AVDD pin to VDD0.
3. Connect the AVSS pin to VSS0.
Data Sheet U14022EJ1V0DS00
7
µPD78F9177, 78F9177Y
• 44-pin plastic QFP (fine pitch) (7 × 7)
AVREF
AVDD
P53
P52
IC0
P51
P50
P05
VSS1
P04
P03
P02
µPD78F9177YGA-9EU
1
2
3
4
5
6
7
8
9
10
11
12
48 47 46 45 44 43 42 41 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
13 14 15 16 17 18 19 20 21 22 23 24
P01
P00
P26/TO80
P25/Tl80/SS20
VDD0
IC2
VSS0
X1
X2
RESET
XT1
XT2
P30/INTP0/Tl81/CPT90
P31/INTP1/TO81
P32/INTP2/TO90
P33/INTP3/TO82/BZO90
P20/SCK20/ASCK20
VDD1
IC2
P21/SO20/TxD20
P22/Sl20/RxD20
P23/SCL0
P24/SDA0
VPP
P60/ANI0
P61/ANI1
P62/ANI2
P63/ANI3
P64/ANI4
P65/ANI5
P66/ANI6
P67/ANI7
AVSS
P10
P11
IC2
Cautions 1.
Connect the VPP pin directly to the VSS0 or VSS1 pin in normal operation mode.
2. Connect the IC0 (Internally Connected) pin directly to VSS0 or VSS1.
3. Leave the IC2 pin open.
4. Connect the AVDD pin to VDD0.
5. Connect the AVSS pin to VSS0.
8
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
ANI0 to ANI7:
Analog Input
RESET:
Reset
ASCK20:
Asynchronous Serial Input
RxD20:
Receive Data
AVDD:
Analog Power Supply
SCK20:
Serial Clock (for SIO20)
AVREF:
Analog Reference Voltage
SCL0
Note2
Note2
:
Serial Clock (for SMB0)
AVSS:
Analog Ground
SDA0
BZO90:
Buzzer Output
SI20:
Serial Input
Capture Trigger Input
SO20:
Serial Output
Internally Connected
SS20:
Chip Select Input
INTP0 to INTP3: Interrupt from Peripherals
TI80, TI81:
Timer Input
P00 to P05:
Port 0
TO80 to TO82, TO90: Timer Output
P10, P11:
Port 1
TxD20:
Transmit Data
P20 to P26:
Port 2
VDD0, VDD1:
Power Supply
P30 to P33:
Port 3
VPP:
Programming Power Supply
P50 to P53:
Port 5
VSS0, VSS1:
Ground
P60 to P67:
Port 6
X1, X2:
Crystal (Main System Clock)
XT1, XT2:
Crystal (Subsystem Clock)
CPT90:
IC0
Note1
,IC2
Note2
:
:
Serial Data
Notes 1. The IC0 pin is available in 48-pin plastic TQFP (fine pitch) only.
2. The IC2, SCL0, and SDA0 pins are available in µPD78F9177Y product only.
Data Sheet U14022EJ1V0DS00
9
µPD78F9177, 78F9177Y
2. BLOCK DIAGRAM
TI80/SS20/P25
TO80/P26
8-BIT TIMER/
EVENT COUNTER80
PORT0
P00-P05
TI81/INTP0/CPT90/P30
TO81/INTP1/P31
8-BIT TIMER/
EVENT COUNTER81
PORT1
P10, P11
TO82/INTP3/BZO90/P33
8-BIT TIMER82
PORT2
P20-P26
CPT90/INTP0/TI81/P30
TO90/INTP2/P32
BZO90/INTP3/TO82/P33
16-BIT TIMER90
PORT3
P30-P33
PORT5
P50-P53
PORT6
P60-P67
SYSTEM
CONTROL
RESET
X1
X2
XT1
XT2
WATCH TIMER
78K/0S
CPU CORE
ROM
WATCHDOG TIMER
SCK20/ASCK20/P20
SO20/TXD20/P21
SI20/RXD20/P22
SS20/TI80/P25
SCL0/P23
SDA0/P24
ANI0/P60ANI7/P67
AVDD
AVSS
AVREF
SIO20
RAM
SMBNote1
INTERRUPT
CONTROL
A/D
CONVERTER
MULTIPLIER
VDD0
VDD1
VSS0
VSS1
VPP
IC0 Note2
IC2 Note3
Notes 1. SMB is available in µPD78F9177Y product only.
10
2.
The IC0 pin is available in 48-pin plastic TQFP (fine pitch) only.
3.
The IC2 pin is available in µPD78F9177Y product only.
Data Sheet U14022EJ1V0DS00
INTP0/TI81/CPT90/P30
INTP1/TO81/P31
INTP2/TO90/P32
INTP3/TO82/BZO90/P33
µPD78F9177, 78F9177Y
3. PIN FUNCTIONS
3.1
Port Pins
Pin Name
I/O
P00 to P05
I/O
P10, P11
P20
After Reset
Alternate Function
Port 0
6-bit input/output port
Input/output mode can be specified in 1-bit units
When used as an input port, an on-chip pull-up resistor can be
specified by software.
Input
−
I/O
Port 1
2-bit input/output port
Input/output mode can be specified in 1-bit units
When used as an input port, an on-chip pull-up resistor can be
specified by software.
Input
−
I/O
Port 2
7-bit input/output port
Input/output mode can be specified in 1-bit units
For P20 to P22, P25, and P26, an on-chip pull-up resistor can be
specified by software.
Only P23 and P24 can be used as N-ch open-drain
input/output port pins.
Input
P21
P22
P23
P24
Function
SCK20/ASCK20
SO20/TxD20
SI20/RxD20
SCL0
Note
SDA0
Note
P25
TI80/SS20
P26
TO80
P30
I/O
P31
P32
Port 3
4-bit input/output port
Input/output mode can be specified in 1-bit units
On-chip pull-up resistor can be specified by software.
Input
INTP0/TI81/CPT90
INTP1/TO81
INTP2/TO90
INTP3/TO82/BZO90
P33
P50 to P53
I/O
P60 to P67
Input
Port 5
4-bit N-ch open-drain input/output port
Input/output mode can be specified in 1-bit units
Input
Port 6
8-bit input-only port
Input
−
ANI0 to ANI7
Note µPD78F9177Y only
Data Sheet U14022EJ1V0DS00
11
µPD78F9177, 78F9177Y
3.2
Non-Port Pins
Pin Name
INTP0
I/O
Function
After Reset
Input
External interrupt input for which the valid edge (rising edge,
falling edge, or both rising and falling edges) can be specified
Input
INTP1
Alternate Function
P30/TI81/CPT90
P31/TO81
INTP2
P32/TO90
INTP3
P33/TO82/BZO90
SI20
Input
Serial data input to serial interface
Input
P22/RxD20
SO20
Output
Serial data output from serial interface
Input
P21/TxD20
Serial clock input/output for serial interface
Input
P20/ASCK20
SCK20
I/O
SS20
Input
Chip select input to serial interface
Input
P25/TI80
ASCK20
Input
Serial clock input for asynchronous serial interface
Input
P20/SCK20
RxD20
Input
Serial data input for asynchronous serial interface
Input
P22/SI20
TxD20
Output
Serial data output for asynchronous serial interface
Input
P21/SO20
SCL0
SDA0
Note1
I/O
SMB0 clock input/output
Input
P23
Note1
I/O
SMB0 data input/output
Input
P24
TI80
Input
External count clock input to 8-bit timer/event counter (TM80)
Input
P25/SS20
TI81
Input
External count clock input to 8-bit timer/event counter (TM81)
Input
P30/INTP0/CPT90
TO80
Output
8-bit timer/event counter (TM80) output
Input
P26
TO81
Output
8-bit timer/event counter (TM81) output
Input
P31/INTP1
TO82
Output
8-bit timer (TM82) output
Input
P33/INTP3/BZO90
TO90
Output
16-bit timer (TM90) output
Input
P32/INTP2
BZO90
Output
16-bit timer (TM90) Buzzer output
Input
P33/INTP3/TO82
CPT90
Input
Capture edge input
Input
P30/INTP0/TI81
ANI0 to
ANI7
Input
A/D converter analog input
Input
P60 to P67
AVREF
−
A/D converter reference voltage
−
−
AVSS
−
A/D converter ground potential
−
−
AVDD
−
A/D converter analog power supply
−
−
X1
Input
X2
−
Connecting crystal resonator for main system clock
oscillation
−
−
−
−
−
−
−
−
XT1
Input
XT2
−
VDD0
−
Positive power supply
−
−
VDD1
−
Positive power supply (other than ports)
−
−
VSS0
−
Ground potential
−
−
VSS1
−
Ground potential (other than ports)
−
−
Input
−
−
−
RESET
Input
−
VPP
Connecting crystal resonator for subsystem clock oscillation
System reset input
Sets flash memory programming mode. Applies high voltage
when a program is written or verified. Connect directly to VSS0
or VSS1 in normal operation mode.
IC0
IC2
Note2
−
Internally connected. Connect this pin directly to the VSS0 or
VSS1 pin.
−
−
Note1
−
Internally connected. Leave this pin open.
−
−
Notes 1. µPD78F9177Y only.
2. 48-pin plastic TQFP (fine pitch) only.
12
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
3.3
Pin I/O Circuits and Recommended Connection of Unused Pins
The input/output circuit type of each pin and recommended connection of unused pins is shown in Table 3-1.
For the input/output circuit configuration of each type, refer to Figure 3-1.
Table 3-1. Type of I/O Circuit for Each Pin and Connection of Unused Pins
Pin Name
P00 to P05
I/O Circuit Type
I/O
5-H
I/O
P10, P11
P20/SCK20/ASCK20
Recommended Connection of Unused Pins
Input:
Independently connects to VDD0, VDD1 or VSS0, VSS1
via a resistor.
Output: Leave open.
8-C
P21/SO20/TxD20
P22/SI20/RxD20
Note1
P23/SCL0
13-X
Input:
Note1
P24/SDA0
Independently connects to VDD0 or VDD1 via a
resistor.
Output: Leave open.
P25/TI80/SS20
8-C
Independently connects to VDD0, VDD1 or VSS0, VSS1
via a resistor.
Output: Leave open.
Input:
P26/TO80
Input:
P30/INTP0/TI81/CPT90
P31/INTP1/TO81
Independently connects to VSS0 or VSS1 via a
resistor.
Output: Leave open.
P32/INTP2/TO90
P33/INTP3/TO82/BZO90
P50 to P53
13-T
Input:
Independently connects to VDD0 or VDD1 via a
resistor.
Output: Leave open.
P60/ANI0 to P67/ANI7
XT1
9-C
Input
Connect directly to VDD0, VDD1 or VSS0, VSS1.
−
Input
Connect to VSS0 or VSS1.
−
XT2
RESET
2
Input
VPP
−
−
IC0
IC2
Leave open.
−
Connect directly to VSS0 or VSS1.
Note2
Note1
Leave open.
Notes 1. The IC2, SCL0, and SDA0 pins are available in µPD78F9177Y product only.
2. 48-pin plastic TQFP (fine pitch) only.
Data Sheet U14022EJ1V0DS00
13
µPD78F9177, 78F9177Y
Figure 3-1. Pin Input/Output Circuits
Type 2
Type 9-C
Comparator
P-ch
N-ch
IN
IN
+
−
AVSS
VREF
(Threshold voltage)
Schmitt-triggered input with hysteresis characteristics
Input
enable
Type 5-H
Type 13-T
VDD0
Pull-up
enable
P-ch
IN/OUT
VDD0
Data
Output data
Output disable
P-ch
IN/OUT
Output
disable
N-ch
N-ch
VSS0
Input enable
VSS0
Input buffer with intermediate withstand voltage
Input
enable
Type 8-C
Type 13-X
VDD0
Pull-up
enable
P-ch
IN/OUT
VDD0
Data
Output data
Output disable
P-ch
IN/OUT
Output
disable
14
N-ch
N-ch
VSS0
Input buffer with 5-V
withstand voltage
VSS0
Comparator
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
4. CPU ARCHITECTURE
Products in the µPD78F9177 and µPD78F9177Y can access up to 64 Kbytes of memory space.
Figure 4-1 shows the memory map.
Figure 4-1. Memory Map
FFFFH
Special function registers
256 × 8 bits
FF00H
FEFFH
Internal high-speed RAM
512 × 8 bits
Data memory space
FD00H
FCFFH
Reserved
5FFFH
6000H
5FFFH
Program area
Program memory
space
Internal flash memory
24576 x 8 bits
0080H
007FH
CALLT table area
0040H
003FH
0024H
0023H
Program area
Vector table area
0000H
0000H
Data Sheet U14022EJ1V0DS00
15
µPD78F9177, 78F9177Y
5. FLASH MEMORY PROGRAMMING
The on-chip program memory in the µPD78F9177 and µPD78F9177Y is flash memory.
The flash memory can be written with the µPD78F9177 and µPD78F9177Y mounted on the target system (onboard). Connect the dedicated flash programmer (Flashpro III (part number: FL-PR3, PG-FP3)) to the host machine
and target system to write the flash memory.
Remark FL-PR3 is made by Naito Densei Machida Mfg. Co., Ltd.
5.1
Selecting Communication Mode
The flash memory is written by using Flashpro III and by means of serial communication. Select a communication
mode from those listed in Table 5-1. To select a communication mode, the format shown in Figure 5-1 is used. Each
communication mode is selected by the number of VPP pulses shown in Table 5-1.
Table 5-1. Communication Mode
Communication Mode
Pins Used
Number of VPP Pulses
3-wire serial I/O
SCK20/ASCK20/P20
0
SO20/TxD20/P21
SI20/RxD20/P22
SMB
Note1
SCL0/P23
4
SDA0/P24
UART
TxD20/SO20/P21
8
RxD20/SI20/P22
Pseudo 3-wire mode
Note2
12
P00 (Serial clock input)
P01 (Serial data output)
P02 (Serial data input)
Notes 1. µPD78F9177Y only
2. Serial transfer is performed by controlling a port by software.
Caution Be sure to select a communication mode based on the VPP pulse number shown in Table 5-1.
Figure 5-1. Communication Mode Selection Format
10 V
VPP
VDD
1
VSS
VDD
RESET
VSS
16
Data Sheet U14022EJ1V0DS00
2
n
µPD78F9177, 78F9177Y
5.2
Function of Flash Memory Programming
By transmitting/receiving commands and data in the selected communication mode, operations such as writing to
the flash memory are performed. Table 5-2 shows the major functions of flash memory programming.
Table 5-2. Functions of Flash Memory Programming
Function
Description
Batch erase
Erases all contents of memory
Batch blank check
Checks erased state of entire memory
Data write
Write to flash memory based on write start address and number of data written
(number of bytes)
Batch verify
Compares all contents of memory with input data
5.3
Flashpro III Connection Example
How the Flashpro III is connected to the µPD78F9177 and µPD78F9177Y differs depending on the communication
mode (3-wired serial I/O, SMB, UART, or pseudo 3-wire mode). Figures 5-2 to 5-5 show the connection in the
respective mode.
Figure 5-2. Flashpro III Connection in 3-wired Serial I/O Mode
µ PD78F9177, 78F9177Y
Flashpro III
VPPnNote
VPP
VDD
VDD0, VDD1, AVDD
RESET
RESET
CLK
X1
SCK
SCK20
SO
SI20
SI
SO20
GND
VSS0, VSS1, AVSS
Note n = 1, 2
Data Sheet U14022EJ1V0DS00
17
µPD78F9177, 78F9177Y
Figure 5-3. Flashpro III Connection in SMB Mode
µ PD78F9177Y
Flashpro III
VPPnNote
VPP
VDD
VDD0, VDD1, AVDD
RESET
RESET
CLK
X1
SO
SCL0
SI
SDA0
VSS0, VSS1, AVSS
GND
Note n = 1, 2
Figure 5-4. Flashpro III Connection in UART Mode
µ PD78F9177, 78F9177Y
Flashpro III
VPPnNote
VPP
VDD
VDD0, VDD1, AVDD
RESET
RESET
CLK
X1
SO
RxD20
SI
TxD20
GND
VSS0, VSS1, AVSS
Note n = 1, 2
Figure 5-5. Flashpro III Connection in Pseudo Serial I/O Mode (When Port 0 is Used)
µ PD78F9177, 78F9177Y
Flashpro III
VPPnNote
VPP
VDD
VDD0, VDD1, AVDD
RESET
RESET
CLK
X1
SCK
P00 (Serial clock)
SO
P02 (Serial input)
SI
P01 (Serial output)
VSS0, VSS1, AVSS
GND
Note n = 1, 2
18
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
5.4
Example of Settings for Flashpro III (PG-FP3)
Set as follows when writing to flash memory using the Flashpro III (PG-FP3).
<1> Download the parameter file.
<2> Select the serial mode and the serial clock using the type command.
<3> The following is a setting example using the PG-FP3.
Table 5-3. Example Using PG-FP3
Communication mode
3-wired serial I/O mode
Setting example using PG-FP3
COMM PORT
SIO ch-0
CPU CLK
On target board
Number of V PP pulses
Note1
0
In Flashpro
On target board
SMB
Note2
UART
Pseudo 3-wire mode
4.1943 MHz
SIO CLK
1.0 MHz
In Flashpro
4.0 MHz
SIO CLK
1.0 MHz
COMM PORT
IIC-ch0
SLAVE ADDRESS
10H
IIC CLOCK
100 kHz
CPU CLOCK
In Flashpro
Flashpro Clock
4.0 MHz
Multiple Rate
01.00
COMM PORT
UART-ch0
CPU CLK
On target board
On target board
4.1943 MHz
UART BPS
9600 bps
COMM PORT
Port A
CPU CLK
On target board
4
Note3
8
Note4
12
In Flashpro
On target board
4.1943 MHz
SIO CLK
1.0 MHz
In Flashpro
4.0 MHz
SIO CLK
1.0 MHz
Notes 1. The number of VPP pulses supplied from the Flashpro III during serial communication initialization.
The pins to be used in communication are determined by this number of pulses.
2.
µPD78F9177Y only.
3.
Select one of 4.0 MHz or 3.125 MHz.
4.
Select one of 9600 bps, 19200 bps, 38400 bps, or 76800 bps.
Remark
COMM PORT : Selection of serial port
SIO CLK
: Selection of serial clock frequency
CPU CLK
: Selection of CPU clock source to be input
Data Sheet U14022EJ1V0DS00
19
µPD78F9177, 78F9177Y
6. INSTRUCTION SET OVERVIEW
This section lists the µPD78F9177 and µPD78F9177Y instruction set.
6.1 Conventions
6.1.1 Operand identifiers and description methods
Operands are described in the “Operand” column of each instruction in accordance with the description method of
the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more
description methods, select one of them. Alphabetic letters in capitals and the symbols, #, !, $, and [ ], are keywords
and must be described as they are. Each symbol has the following meaning.
•
#: Immediate data specification
•
$:
•
!:
•
[ ]: Indirect address specification
Absolute address specification
Relative address specification
In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to
describe the #,!, $, or [ ] symbols.
For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in
parentheses in the table below, R0, R1, R2, etc.) can be used for description.
Table 6-1. Operand Identifiers and Description Methods
Identifier
Description Method
r
rp
sfr
X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7),
AX (RP0), BC (RP1), DE (RP2), HL (RP3)
Special function register symbol
saddr
saddrp
FE20H to FF1FH immediate data or label
FE20H to FF1FH immediate data or label (even address only)
addr16
addr5
0000H to FFFFH immediate data or label
(Only even addresses for 16-bit data transfer instructions)
0040H to 007FH immediate data or label (even address only)
word
byte
bit
16-bit immediate data or label
8-bit immediate data or label
3-bit immediate data or label
20
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
6.1.2 Descriptions of the operation field
A:
A register; 8-bit accumulator
X:
X register
B:
B register
C:
C register
D:
D register
E:
E register
H:
H register
L:
L register
AX:
AX register pair; 16-bit accumulator
BC:
BC register pair
DE:
DE register pair
HL:
HL register pair
PC:
Program counter
SP:
Stack pointer
PSW:
Program status word
CY:
Carry flag
AC:
Auxiliary carry flag
Z:
Zero flag
IE:
Interrupt request enable flag
NMIS:
Non-maskable interrupt servicing flag
( ):
Memory contents indicated by address or register contents in parentheses
XH, XL:
Higher 8 bits and lower 8 bits of 16-bit register
∧:
Logical product (AND)
∨:
Logical sum (OR)
∨:
Exclusive OR
:
Inverted data
addr16:
16-bit immediate data or label
jdisp8:
Signed 8-bit data (displacement value)
6.1.3 Description of the flag operation field
(Blank):
Not affected
0:
Cleared to 0
1:
Set to 1
×:
Set/cleared according to the result
R:
Previously saved value is restored
Data Sheet U14022EJ1V0DS00
21
µPD78F9177, 78F9177Y
6.2 Operations
Flags
Mnemonic
Operand
Bytes
Clock
Operation
Z
MOV
r. #byte
3
6
r ← byte
saddr, #byte
3
6
(saddr) ← byte
sfr, #byte
3
6
sfr ← byte
Note 1
2
4
A←r
Note 1
2
4
r←A
A, r
r, A
XCH
A, saddr
2
4
A ← (saddr)
saddr, A
2
4
(saddr) ← A
A, sfr
2
4
A ← sfr
sfr, A
2
4
sfr ← A
A, !addr16
3
8
A ← (addr16)
!addr16, A
3
8
(addr16) ← A
PSW, #byte
3
6
PSW ← byte
A, PSW
2
4
A ← PSW
PSW, A
2
4
PSW ← A
A, [DE]
1
6
A ← (DE)
[DE], A
1
6
(DE) ← A
A, [HL]
1
6
A ← (HL)
[HL], A
1
6
(HL) ← A
A, [HL + byte]
2
6
A ← (HL + byte)
[HL + byte], A
2
6
(HL + byte) ← A
1
4
A ←→ X
A, r
2
6
A ←→ r
A, saddr
2
6
A ←→ (saddr)
A, sfr
2
6
A ←→ (sfr)
A, [DE]
1
8
A ←→ (DE)
A, [HL]
1
8
A ←→ (HL)
A, [HL + byte]
2
8
A ←→ (HL+byte)
rp, #word
3
6
rp ← word
AX, saddrp
2
6
AX ← (saddrp)
saddrp, AX
A, X
Note 2
MOVW
2
8
(saddrp) ← AX
Note 3
1
4
AX ← rp
Note 3
1
4
rp ← AX
AX, rp
rp, AX
AC CY
×
×
×
×
×
×
Notes 1. Except r = A
2. Except r = A, X
3. Only when rp = BC, DE, HL
Remark
One clock of an instruction is one clock of the CPU clock (fCPU) selected using the processor clock
control register (PCC).
22
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
Flags
Mnemonic
Operand
Bytes
Clock
Operation
Z
AC CY
XCHW
AX, rp
1
8
AX ←→ rp
ADD
A, #byte
2
4
A, CY ← A + byte
×
×
×
saddr, #byte
3
6
(saddr), CY ← (saddr) + byte
×
×
×
A, r
2
4
A, CY ← A + r
×
×
×
A, saddr
2
4
A, CY ← A + (saddr)
×
×
×
A, !addr16
3
8
A, CY ← A + (addr16)
×
×
×
A, [HL]
1
6
A, CY ← A + (HL)
×
×
×
A, [HL + byte]
2
6
A, CY ← A + (HL + byte)
×
×
×
A, #byte
2
4
A, CY ← A + byte + CY
×
×
×
saddr, #byte
3
6
(saddr), CY ← (saddr) + byte + CY
×
×
×
A, r
2
4
A, CY ← A + r + CY
×
×
×
A, saddr
2
4
A, CY ← A+ (saddr) + CY
×
×
×
A, !addr16
3
8
A, CY ← A+ (addr16) +CY
×
×
×
A, [HL]
1
6
A, CY ← A + (HL) + CY
×
×
×
A, [HL + byte]
2
6
A, CY ← A+ (HL + byte) + CY
×
×
×
A, #byte
2
4
A, CY ← A – byte
×
×
×
saddr, #byte
3
6
(saddr), CY ← (saddr) – byte
×
×
×
A, r
2
4
A, CY ← A – r
×
×
×
A, saddr
2
4
A, CY ← A – (saddr)
×
×
×
A, !addr16
3
8
A, CY ← A – (addr16)
×
×
×
A, [HL]
1
6
A, CY ← A – (HL)
×
×
×
A, [HL + byte]
2
6
A, CY ← A – (HL + byte)
×
×
×
A, #byte
2
4
A, CY ← A – byte – CY
×
×
×
saddr, #byte
3
6
(saddr), CY ← (saddr) – byte – CY
×
×
×
A, r
2
4
A, CY ← A – r – CY
×
×
×
A, saddr
2
4
A, CY ← A – (saddr) – CY
×
×
×
A, !addr16
3
8
A, CY ← A – (addr16) – CY
×
×
×
A, [HL]
1
6
A, CY ← A – (HL) – CY
×
×
×
A, [HL + byte]
2
6
A, CY ← A – (HL + byte) – CY
×
×
×
ADDC
SUB
SUBC
Note
Note Only when rp = BC, DE, HL
Remark
One clock of an instruction is one clock of the CPU clock (fCPU) selected using the processor clock
control register (PCC).
Data Sheet U14022EJ1V0DS00
23
µPD78F9177, 78F9177Y
Flags
Mnemonic
Operand
Bytes
Clock
Operation
Z
AND
A, #byte
2
4
A ← A ∧ byte
×
saddr, #byte
3
6
(saddr) ← (saddr) ∧ byte
×
A, r
2
4
A←A∧r
×
A, saddr
2
4
A ← A ∧ (saddr)
×
A, !addr16
3
8
A ← A ∧ (addr16)
×
AC CY
A, [HL]
1
6
A ← A ∧ (HL)
×
A, [HL + byte]
2
6
A ← A ∧ (HL + byte)
×
A, #byte
2
4
A ← A ∨ byte
×
saddr, #byte
3
6
(saddr) ← (saddr) ∨ byte
×
A, r
2
4
A←A∨r
×
A, saddr
2
4
A ← A ∨ (saddr)
×
A, !addr16
3
8
A ← A ∨ (addr16)
×
A, [HL]
1
6
A ← A ∨ (HL)
×
A, [HL + byte]
2
6
A ← A ∨ (HL + byte)
×
A, #byte
2
4
A ← A ∨ byte
×
saddr, #byte
3
6
(saddr) ← (saddr) ∨ byte
×
A, r
2
4
A←A∨r
×
A, saddr
2
4
A ← A ∨ (saddr)
×
A, !addr16
3
8
A ← A ∨ (addr16)
×
A, [HL]
1
6
A ← A ∨ (HL)
×
A, [HL + byte]
2
6
A ← A ∨ (HL + byte)
×
A, #byte
2
4
A – byte
×
×
×
saddr, #byte
3
6
(saddr) – byte
×
×
×
A, r
2
4
A–r
×
×
×
A, saddr
2
4
A – (saddr)
×
×
×
A, !addr16
3
8
A – (addr16)
×
×
×
A, [HL]
1
6
A – (HL)
×
×
×
A, [HL + byte]
2
6
A – (HL + byte)
×
×
×
ADDW
AX, #word
3
6
AX, CY ← AX + word
×
×
×
SUBW
AX, #word
3
6
AX, CY ← AX – word
×
×
×
CMPW
AX, #word
3
6
AX – word
×
×
×
INC
r
2
4
r←r+1
×
×
saddr
2
4
(saddr) ← (saddr) + 1
×
×
r
2
4
r ← r– 1
×
×
saddr
2
4
(saddr) ← (saddr) – 1
×
×
OR
XOR
CMP
DEC
Remark
One clock of an instruction is one clock of the CPU clock (fCPU) selected using the processor clock
control register (PCC).
24
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
Flags
Mnemonic
Operand
Bytes
Clock
Operation
Z
AC CY
INCW
rp
1
4
rp ← rp + 1
DECW
rp
1
4
rp ← rp – 1
ROR
A, 1
1
2
(CY, A7 ← A0, Am-1 ← Am) × 1
×
ROL
A, 1
1
2
(CY, A0 ← A7, Am+1 ← Am) × 1
×
RORC
A, 1
1
2
(CY ← A0, A7 ← CY, Am-1 ← Am) × 1
×
ROLC
A, 1
1
2
(CY ← A7, A0 ← CY, Am+1 ← Am) × 1
×
SET1
saddr.bit
3
6
(saddr.bit) ← 1
sfr.bit
3
6
sfr.bit ← 1
A.bit
2
4
A.bit ← 1
PSW.bit
3
6
PSW.bit ← 1
[HL].bit
2
10
(HL).bit ← 1
saddr.bit
3
6
(saddr.bit) ← 0
sfr.bit
3
6
sfr.bit ← 0
A.bit
2
4
A.bit ← 0
PSW.bit
3
6
PSW.bit ← 0
[HL].bit
2
10
(HL).bit ← 0
SET1
CY
1
2
CY ← 1
1
CLR1
CY
1
2
CY ← 0
0
NOT1
CY
1
2
CY ← CY
×
CALL
!addr16
3
6
(SP – 1) ← (PC + 3)H, (SP – 2) ← (PC + 3)L,
PC ← addr16, SP ←SP – 2
CALLT
[addr5]
1
8
(SP – 1) ← (PC + 1)H, (SP – 2) ← (PC + 1)L,
PCH ← (00000000, addr5 + 1)
PCL ← (00000000, addr5)
SP ← SP – 2
RET
1
6
PCH ← (SP + 1), PCL ← (SP),
SP ← SP + 2
RETI
1
8
PCH ← (SP + 1), PCL ← (SP),
PSW ← (SP + 2), SP ← SP + 3,
NMIS ← 0
PSW
1
2
(SP – 1) ← PSW, SP ← SP – 1
rp
1
4
(SP – 1) ← rpH, (SP – 2) ← rpL,
SP ← SP -– 2
PSW
1
4
PSW ← (SP), SP ← SP + 1
rp
1
6
rpH ← (SP + 1), rpL ← (SP),
SP ← SP + 2
SP, AX
2
8
SP ← AX
AX, SP
2
6
AX ← SP
CLR1
PUSH
POP
MOVW
Remark
×
×
×
×
×
×
R
R
R
R
R
R
One clock of an instruction is one clock of the CPU clock (fCPU) selected using the processor clock
control register (PCC).
Data Sheet U14022EJ1V0DS00
25
µPD78F9177, 78F9177Y
Flags
Mnemonic
Operand
Bytes
Clock
Operation
Z
!addr16
3
6
PC ← addr16
$addr16
2
6
PC ← PC + 2 + jdisp8
AX
1
6
PCH ← A, PCL ← X
BC
$addr16
2
6
PC ← PC + 2 + jdisp8 if CY = 1
BNC
$addr16
2
6
PC ← PC + 2 + jdisp8 if CY = 0
BZ
$addr16
2
6
PC ← PC + 2 + jdisp8 if Z = 1
BNZ
$addr16
2
6
PC ← PC + 2 + jdisp8 if Z = 0
BT
saddr.bit, $saddr16
4
10
PC ← PC + 4 + jdisp8
if (saddr. bit) = 1
sfr.bit, $addr16
4
10
PC ← PC + 4 + jdisp8 if sfr. bit = 1
A.bit, $saddr16
3
8
PC ← PC + 3 + jdisp8 if A. bit = 1
PSW.bit $addr16
4
10
PC ← PC + 4 + jdisp8 if PSW. bit = 1
saddr.bit, $addr16
4
10
PC ← PC + 4 + jdisp8
if (saddr. bit) = 0
sfr.bit, $addr16
4
10
PC ← PC + 4 + jdisp8 if sfr. bit = 0
A.bit, $addr16
3
8
PC ← PC + 3 + jdisp8 if A. bit = 0
PSW.bit, $addr16
4
10
PC ← PC + 4 + jdisp8 if PSW. bit = 0
B, $addr16
2
6
B ← B – 1, then
PC ← PC + 2 + jdisp8 if B ≠ 0
C, $addr16
2
6
C ← C – 1, then
PC ← PC + 2 + jdisp8 if C ≠ 0
saddr, $addr16
3
8
(saddr) ← (saddr) – 1, then
PC ← PC + 3 + jdisp8 if (saddr) ≠ 0
NOP
1
2
No Operation
EI
3
6
IE ← 1 (Enable Interrupt)
DI
3
6
IE ← 0 (Disable Interrupt)
HALT
1
2
Set HALT Mode
STOP
1
2
Set Stop Mode
BR
BF
DBNZ
Remark
One clock of an instruction is one clock of the CPU clock (fCPU) selected using the processor clock
control register (PCC).
26
AC CY
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
7. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25°°C)
Parameter
Supply voltage
Symbol
VDD
Conditions
AVDD − 0.3 V ≤ VDD ≤ AVDD + 0.3 V
AVREF
AVREF ≤ VDD + 0.3 V
V
V
−0.3 to VDD + 0.3
V
Pins other than P50 to P53, P23, P24
VI2
P23, P24
−0.3 to +5.5
V
VI3
P50 to P53
−0.3 to +13
V
−0.3 to VDD + 0.3
V
Per pin
−10
mA
Total for all pins
−30
mA
Per pin
30
mA
Total for all pins
160
mA
In normal operation mode
−40 to +85
°C
During flash memory programming
+10 to +40
°C
−40 to +125
°C
IOH
Caution
−0.3 to +10.5
VI1
Output current, high
Storage temperature
V
V
VO
Operating ambient temperature
−0.3 to +6.5
AVREF ≤ AVDD + 0.3 V
Output voltage
Output current, low
Unit
AVDD
VPP
Input voltage
Ratings
IOL
TA
Tstg
Product quality may suffer if the absolute maximum rating is exceeded even momentarily for
any parameter. That is, the absolute maximum ratings are rated values at which the product is
on the verge of suffering physical damage, and therefore the product must be used under
conditions that ensure that the absolute maximum ratings are not exceeded.
Remark
Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port
pins.
Data Sheet U14022EJ1V0DS00
27
µPD78F9177, 78F9177Y
Main System Clock Oscillator Characteristics (TA = −40 to +85 °C, VDD = 1.8 to 5.5 V)
Resonator
Recommended Circuit
Parameter
Conditions
Note 1
Ceramic
Oscillation frequency (fX)
VPP X1
resonator
X2
Oscillation stabilization time
C2
1.0
TYP.
MAX.
Unit
5.0
MHz
4
ms
5.0
MHz
10
ms
voltage range
Note 2
C1
VDD = oscillation
MIN.
After VDD reaches
oscillation voltage
range MIN.
Note 1
Crystal
VPP X1
X2
Oscillation frequency (fX)
1.0
resonator
C1
C2
Note 2
Oscillation stabilization time
VDD = 4.5 to 5.5 V
30
Note 1
External
X1
X2
X1 input frequency (fX)
1.0
5.0
MHz
X1 input high-/low-level width
85
500
ns
clock
(tXH, tXL)
Note 1
X1
X1 input frequency (fX)
VDD = 2.7 to 5.5 V
1.0
5.0
MHz
X1 input high-/low-level width
VDD = 2.7 to 5.5 V
85
500
ns
X2
OPEN
(tXH, tXL)
Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release. Use a resonator that stabilizes
oscillation within the oscillation wait time.
Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the
broken lines in the above figures to avoid an adverse effect from wiring capacitance.
• Keep the wiring length as short as possible.
• Do not cross the wiring with the other signal lines.
• Do not route the wiring near a signal line through which a high fluctuating current flows.
• Always make the ground point of the oscillator capacitor the same potential as VSS0.
• Do not ground the capacitor to a ground pattern through which a high current flows.
• Do not fetch signals from the oscillator.
2. When the main system clock is stopped and the device is operating on the subsystem clock,
wait until the oscillation stabilization time has been secured by the program before
switching back to the main system clock.
Remark
For the resonator selection and oscillator constant, customers are requested to either evaluate the
oscillation themselves or apply to the resonator manufacturer for evaluation.
28
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
Subsystem Clock Oscillator Characteristics (TA = −40 to +85 °C, VDD = 1.8 to 5.5 V)
Resonator
Recommended Circuit
Parameter
Conditions
Note 1
Crystal
VPP XT1
resonator
C3
XT2
R
C4
Oscillation frequency (fXT)
Note 2
Oscillation stabilization time
XT1
XT2
TYP.
MAX.
Unit
32
32.768
35
kHz
1.2
2
s
10
s
32
35
kHz
14.3
15.6
µs
VDD = 4.5 to 5.5 V
Note 1
External
MIN.
XT1 input frequency (fXT)
clock
XT1 input high-/low-level width
(tXTH, tXTL)
Notes 1. Indicates only oscillator characteristics. Refer AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.
Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the
broken lines in the above figures to avoid an adverse effect from wiring capacitance.
• Keep the wiring length as short as possible.
• Do not cross the wiring with the other signal lines.
• Do not route the wiring near a signal line through which a high fluctuating current flows.
• Always make the ground point of the oscillator capacitor the same potential as VSS0.
• Do not ground the capacitor to a ground pattern through which a high current flows.
• Do not fetch signals from the oscillator.
2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current
consumption, and is more prone to malfunction due to noise than the main system clock
oscillator. Particular care is therefore required with the wiring method when the subsystem
clock is used.
Remark
For the resonator selection and oscillator constant, customers are requested to either evaluate the
oscillation themselves or apply to the resonator manufacturer for evaluation.
Data Sheet U14022EJ1V0DS00
29
µPD78F9177, 78F9177Y
DC Characteristics (TA = −40 to +85°°C, VDD = 1.8 to 5.5 V)
Parameter
Output current,
Symbol
IOH
high
Conditions
MIN.
TYP.
MAX.
Unit
−1
mA
−15
mA
10
mA
80
mA
0.7 VDD
0.9 VDD
0.7 VDD
0.9 VDD
VDD
VDD
12
12
V
V
V
V
0.8 VDD
0.9 VDD
VDD
VDD
V
V
VDD
VDD
0.3 VDD
0.1 VDD
0.3 VDD
0.1 VDD
0.2 VDD
0.1 VDD
0.4
0.1
V
V
V
V
V
V
V
V
V
V
V
Per pin
Total for all pins
Output current, low
IOL
Per pin
Total for all pins
Input voltage, high
VIH1
P00 to P05, P10,
P11,P60 to P67
VDD = 2.7 to 5.5 V
VIH2
P50 to P53
VIH3
VDD = 2.7 to 5.5 V
VDD = 1.8 to 5.5 V,
TA = 25 to +85°C
VDD = 2.7 to 5.5 V
RESET,
P20 to P26, P30
to P33
X1, X2, XT1, XT2 VDD = 4.5 to 5.5 V
VIL1
P00 to P05, P10,
P11, P60 to P67
VDD = 2.7 to 5.5 V
VIL2
P50 to P53
VDD = 2.7 to 5.5 V
VIL3
RESET,P20 to
P26, P30 to P33
VDD = 2.7 to 5.5 V
VIL4
X1, X2, XT1, XT2 VDD = 4.5 to 5.5 V
VOH
Pins other than
P23, P24, P50 to
P53
VDD = 4.5 to 5.5 V, IOH = −1 mA
VDD − 0.5
VDD − 0.1
0
0
0
0
0
0
0
0
VDD − 1.0
VDD = 1.8 to 5.5 V, IOH = −100 µA
VDD − 0.5
VOL1
Pins other than
P50 to P53
VOL2
P50 to P53
ILIH1
VI = VDD
ILIH2
ILIH3
ILIL1
VI = 12 V
VI = 0 V
VDD = 4.5 to 5.5 V, IOL = 10 mA
VDD = 1.8 to 5.5 V, IOL = 400 µA
VDD = 4.5 to 5.5 V, IOL = 10 mA
VDD = 1.8 to 5.5 V, IOL = 1.6 mA
Pins other than P50 to P53 (N-ch
open-drain) X1, X2, XT1, and
XT2
X1, X2, XT1, XT2
P50 to P53 (N-ch open drain)
Pins other than P50 to P53 (N-ch
open-drain) X1, X2, XT1, and
XT2
X1, X2, XT1, XT2
P50 to P53 (N-ch open drain)
VIH4
Input voltage, low
Output voltage,
high
Output voltage,
low
Input leakage
current, high
Input leakage
current, low
ILIL2
ILIL3
V
1.0
0.5
1.0
0.4
3
V
V
V
V
µA
20
20
−3
µA
µA
µA
−20
µA
µA
Note
−3
Output leakage
current, high
ILOH
VO = VDD
3
µA
Output leakage
current, low
ILOL
VO = 0 V
−3
µA
Software pull-up
resistor
R1
200
kΩ
VI = 0 V, for pins other than P23, P24, and P50 to
P53
50
100
Note A low-level input leakage current of -60 µA(MAX.) flows only during the 1-cycle time after a read instruction
is executed to P50 to P53 and P50 to P53 are set to input mode. At times other than this, -3 µA (MAX.)
current flows.
Remark
Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port
pins.
30
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
DC Characteristics (TA = −40 to +85 °C, VDD = 1.8 to 5.5 V)
Parameter
Symbol
Note 1
Power supply
current
IDD1
Conditions
5.0-MHz crystal oscillation
operating mode
(C1 = C2 = 22pF)
TYP.
MAX.
Unit
Note 4
MIN.
5.0
15.0
mA
Note 5
2.0
5.0
mA
Note 5
1.5
3.0
mA
Note 4
2.0
6.0
mA
Note 5
1.0
2.5
mA
Note 5
0.75
1.5
mA
VDD = 5.0 V ± 10%
250
750
µA
VDD = 3.0 V ± 10%
200
600
µA
VDD = 2.0 V ± 10%
150
450
µA
VDD = 5.0 V ± 10%
VDD = 3.0 V ± 10%
VDD = 2.0 V ± 10%
Note 1
IDD2
5.0-MHz crystal oscillation
HALT mode
(C1 = C2 = 22pF)
VDD = 5.0 V ± 10%
VDD = 3.0 V ± 10%
VDD = 2.0 V ± 10%
IDD3
Note 1
32.768-kHz crystal
oscillation operating
Note 3
mode
(C3 = C4 = 22pF,
R = 220kΩ)
IDD4
IDD5
IDD6
Note 1
VDD = 5.0 V ± 10%
50
150
µA
oscillation HALT mode
(C3 = C4 = 22pF,
R = 220kΩ)
VDD = 3.0 V ± 10%
30
90
µA
VDD = 2.0 V ± 10%
20
60
µA
32.768-kHz crystal stop
STOP mode
VDD = 5.0 V ± 10%
0.1
30
µA
VDD = 3.0 V ± 10%
0.05
10
µA
VDD = 2.0 V ± 10%
0.05
10
µA
Note 4
6.0
17.0
mA
Note 5
3.0
7.0
mA
Note 5
2.5
5.0
mA
32.768-kHz crystal
Note 3
Note 1
Note 2
5.0-MHz crystal oscillation
A/D operating mode
(C1 = C2 = 22pF)
VDD = 5.0 V ± 10%
VDD = 3.0 V ± 10%
VDD = 2.0 V ± 10%
Notes 1. The AVREFON (ADCS0 (bit 7 of ADM0; A/D converter mode register 0) = 1), AVDD, and the port current
(including the current flowing through the internal pull-up resistors) are not included.
2. The AVREFOn (ADCS0 =1) and port current (including the current flowing through the internal pull-up
resistors) are not included. Refer to the A/D converter characteristics for the current flowing through
AVREF.
3. When the main system clock is stopped.
4. During high-speed mode operation (when the processor clock control register (PCC) is set to 00H.)
5. During low-speed mode operation (when PCC is set to 02H)
Remark
Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port
pins.
Data Sheet U14022EJ1V0DS00
31
µPD78F9177, 78F9177Y
AC Characteristics
(1) Basic operation (TA = −40 to +85°°C, VDD = 1.8 to 5.5 V)
Parameter
Symbol
Cycle time
(minimum instruction
execution time)
TCY
Conditions
Operation based on the
main system clock
MIN.
VDD = 2.7 to 5.5 V
Operation based on the subsystem clock
TI80 and TI81 input
frequency
fTI
TI80 and TI81 input
high-/low-level width
tTIH, tTIL
Interrupt input high/low-level width
TYP.
MAX.
Unit
0.4
8
µs
1.6
8
µs
125
µs
0
4
MHz
0
275
kHz
114
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
tINTH, tINTL INTP0 to INTP3
122
0.1
µs
1.8
µs
10
µs
RESET input lowlevel width
tRSL
10
µs
CPT90 input high/low-level width
tCPH,
tCPL
10
µs
TCY vs VDD (main system clock)
60
Cycle time TCY [ µ s]
10
Guaranteed
operation range
2.0
1.0
0.5
0.4
0.1
1
2
3
4
5
Supply voltage VDD [V]
32
Data Sheet U14022EJ1V0DS00
6
µPD78F9177, 78F9177Y
(2) Serial interface (TA = −40 to +85 °C, VDD = 1.8 to 5.5 V)
(a) 3-wire serial I/O mode (SCK20...Internal clock)
Parameter
Symbol
SCK20 cycle time
tKCY1
SCK20 high-/lowlevel width
tKH1, tKL1
SI20 setup time
(to SCK20 ↑)
tSIK1
SI20 hold time
(from SCK20 ↑)
tKSI1
SO20 output delay
time from SCK20↓
tKSO1
Conditions
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
R = 1 kΩ,
C = 100 pF
VDD = 2.7 to 5.5 V
MIN.
TYP.
MAX.
Unit
800
ns
3200
ns
tKCY1/2−50
ns
tKCY1/2−150
ns
150
ns
500
ns
400
ns
600
ns
0
250
ns
0
1000
ns
MAX.
Unit
Note
Note R and C are the load resistance and load capacitance of the SO20 output line.
(b) 3-wire serial I/O mode (SCK20...External clock)
Parameter
Symbol
SCK20 cycle time
tKCY2
SCK20 high-/lowlevel width
tKH2, tKL2
SI20 setup time
(to SCK20 ↑)
tSIK2
SI20 hold time
(from SCK20 ↑)
tKSI2
SO20 output delay
time from SCK20 ↓
tKSO2
SO20 setup time
(when using SS20,
to SS20 ↓)
tKAS2
SO20 disable time
(when using SS20,
from SS20 ↑)
tKDS2
Conditions
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
R = 1 kΩ,
C = 100 pF
VDD = 2.7 to 5.5 V
MIN.
TYP.
900
ns
3500
ns
400
ns
1600
ns
100
ns
150
ns
400
ns
600
ns
0
300
ns
0
1000
ns
120
ns
400
ns
240
ns
800
ns
MAX.
Unit
78125
bps
19531
bps
Note
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
Note R and C are the load resistance and load capacitance of the SO20 output line.
(c) UART mode (dedicated baud rate generator output)
Parameter
Transfer rate
Symbol
Conditions
VDD = 2.7 to 5.5 V
Data Sheet U14022EJ1V0DS00
MIN.
TYP.
33
µPD78F9177, 78F9177Y
(d) UART mode (external clock input)
Parameter
ASCK20 cycle
time
ASCK20 high-/lowlevel width
Symbol
tKCY3
tKH3, tKL3
Transfer rate
ASCK20 rise time,
fall time
34
Conditions
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
tR, tF
Data Sheet U14022EJ1V0DS00
MIN.
TYP.
MAX.
Unit
900
ns
3500
ns
400
ns
1600
ns
39063
bps
9766
bps
1
µs
µPD78F9177, 78F9177Y
(3) Serial interface SMB0 (TA = −40 to +85 °C, VDD = 1.8 to 5.5 V) (µPD78F9177Y only)
(a) DC Characteristics
Parameter
Symbol
Conditions
Input voltage, high
VIH
SCL0, SDA0 (at hysteresis)
Input voltage, low
VIL
SCL0, SDA0 (at hysteresis)
Output voltage,
high
VOL
SCL0, SDA0
Input leakage
current, high
ILIH
SCL0, SDA0
Input leakage
current, low
ILIL
SCL0, SDA0
MIN.
TYP.
MAX.
Unit
0.8 VDD
VDD
V
0
0.2 VDD
V
VDD = 4.5 to 5.5 V, IOL = 10 mA
1.0
V
VDD = 1.8 to 5.5 V, IOL = 400 µ A
0.5
V
VI = VDD
3
µA
VI = 0 V
−3
µA
MAX.
Unit
5.5
V
(b) DC Characteristics (When using comparator)
Parameter
Symbol
Conditions
MIN.
TYP.
Input range
VSDA,
VSCL
VDD = 1.8 to 5.5 V
0
Transfer level
VISDA,
VISCL
4.5 ≤ VDD ≤ 5.5 V
0.72 VISMB
VISMB
1.28 VISMB
V
3.3 ≤ VDD < 4.5 V
0.78 VISMB
VISMB
1.22 VISMB
V
2.7 ≤ VDD < 3.3 V
0.75 VISMB
VISMB
1.25 VISMB
V
1.8 ≤ VDD < 2.7 V
0.90 VISMB
VISMB
1.45 VISMB
V
Input level
threshold value
VISMB
LVL01, LVL00 = 0, 1
0.25 × VDD
V
LVL01, LVL00 = 1, 0
0.375 × VDD
V
LVL01, LVL00 = 1, 1
0.5 × VDD
V
Note VISMB is an input level threshold value selected by bits LVL00 and LVL01 (bits 0 and 1 of SMB input level
setting register 0 (SMBVI0)).
According to the SMB standard (V1.1), the maximum value of low-level input voltage is 0.8 V, and the
minimum value of high-level input voltage, 2.1 V. To satisfy these conditions, set LVL01 and LVL00 as
follows;
• When VDD = 1.8 to 3.3 V: LVL01, LVL00 = 1, 1 (0.5 × VDD)
• When VDD = 3.3 to 4.5 V: LVL01, LVL00 = 1, 0 (0.375 × VDD)
• When VDD = 4.5 to 5.5 V: LVL01, LVL00 = 0, 1 (0.25 × VDD)
"LVL01, LVL00 = 0, 0" is not available since this setting does not satisfy the SMB standard (V1.1).
Data Sheet U14022EJ1V0DS00
35
µPD78F9177, 78F9177Y
(c) AC Characteristics
2
SMB Mode
Parameter
2
Standard Mode I C
High-speed Mode I C
Bus
Bus
Symbol
Unit
MIN.
MAX.
MIN.
MAX.
MIN.
MAX.
SCL0 clock frequency
fCLK
10
100
0
100
0
400
kHz
Bus free time
tBUF
4.7
−
4.7
−
1.3
−
µs
Hold time
tHD:STA
4.0
−
4.0
−
0.6
−
µs
Start/restart condition setup time
tSU:STA
4.7
−
4.7
−
0.6
−
µs
Stop condition setup time
tSU:STO
4.0
−
4.0
−
0.6
−
µs
Data hold When using CBUScompatible master
time
tHD:DAT
−
−
5
−
−
−
µs
300
−
−
−
0
100
(between stop and start condition)
Note1
When using SMB/IIC
bus
Note2
Note3
900
Note4
ns
−
ns
1.3
−
µs
−
0.6
−
µs
−
300
−
300
ns
1000
−
1000
−
300
ns
−
−
−
−
0
50
ns
tTIMEOUT
25
35
−
−
−
−
ms
Total extended time of SCL0 clock
low-level period (slave)
tLOW:SEXT
−
25
−
−
−
−
ms
Total extended time of cumulative
clock low-level period (master)
tLOW:MEXT
−
10
−
−
−
−
ms
Capacitive load per each bus line
Cb
−
−
−
400
−
400
pF
Data setup time
tSU:DAT
250
−
250
−
SCL0 clock low-level width
tLOW
4.7
−
4.7
−
SCL0 clock high-level width
tHIGH
4.0
50
4.0
SCL0 and SDA0 signal fall time
tF
−
300
SCL0 and SDA0 signal rise time
tR
−
Spike pulse width controlled by
input filter
tSP
Timeout
Notes 1. In the start condition, the first clock pulse is generated after this hold time.
2. To fill in the underfined area of the SCL0 falling edge, it is necessary for the device to internally
provide at least 300 ns of hold time for the SDA0 signal (which is V IHmin. of the SCL0 signal).
3. If the device does not extend the SCL0 signal low hold time (tLOW), only maximum data hold time
tHD:DAT needs to be fulfilled.
2
2
4. The high-speed mode I C bus is available in the SMB mode and the standard mode I C bus system.
At this time, the conditions described below must be satisfied.
If the device extends the SCL0 signal low state hold time
tSU:DAT ≥ 250 ns
If the device extends the SCL0 signal low state hold time
Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (tRmax.+
2
tSU:DAT = 1000 + 250 = 1250 ns by the SMB mode or the standard mode I C bus specification).
36
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
AC Timing Measurement Points (excluding the X1 and XT1 inputs)
0.8 VDD
0.8 VDD
Point of
measurement
0.2 VDD
0.2 VDD
Clock Timing
1/fX
tXL
tXH
VIH4 (MIN.)
X1 input
VIL4 (MAX.)
1/fXT
tXTL
tXTH
VIH4 (MIN.)
XT1 input
VIL4 (MAX.)
TI Timing
1/fTI
tTIL
t TIH
TI80, TI81
Data Sheet U14022EJ1V0DS00
37
µPD78F9177, 78F9177Y
Interrupt Input Timing
tINTL
tINTH
INTP0-INTP3
RESET Input Timing
tRSL
RESET
CPT90 Input Timing
tCPL
CPT90
38
Data Sheet U14022EJ1V0DS00
tCPH
µPD78F9177, 78F9177Y
Serial Transfer Timing
3-wire serial I/O mode:
tKCYm
tKHm
tKLm
SCK20
tSIKm
tKSIm
Input data
SI20
tKSOm
Output data
SO20
Remark
m = 1, 2
3-wire serial I/O mode (when using SS20):
SS20
tKAS2
tKDS2
SO20
Output data
UART mode (external clock input):
tKCY3
tKL3
tKH3
tR
tF
ASCK20
Data Sheet U14022EJ1V0DS00
39
µPD78F9177, 78F9177Y
SMB mode:
tLOW
tR
SCL0
tHD:DAT
tHD:STA
tHIGH
tF
tSU:STA
tHD:STA
tSP
tSU:STO
tSU:DAT
SDA0
tBUF
Stop condition Start condition
40
Restart condition
Data Sheet U14022EJ1V0DS00
Stop condition
µPD78F9177, 78F9177Y
10-Bit A/D Converter Characteristics (TA = −40 to +85 °C, 1.8 ≤ AVREF ≤ AVDD = VDD ≤ 5.5 V, AVSS = VSS = 0 V)
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
10
10
10
bit
4.5 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±0.2
±0.4
%FSR
2.7 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±0.4
±0.6
%FSR
1.8 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±0.8
±1.2
%FSR
Resolution
Note
Overall error
Conversion time
Zero-scale error
tCONV
Note
Note
Full-scale error
Integral linearity
INL
Note
error
Differential linearity
DNL
Note
error
4.5 V ≤ AVREF ≤ AVDD ≤ 5.5 V
14
100
µs
2.7 V ≤ AVREF ≤ AVDD ≤ 5.5 V
14
100
µs
1.8 V ≤ AVREF ≤ AVDD ≤ 5.5 V
28
100
µs
4.5 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±0.4
%FSR
2.7 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±0.6
%FSR
1.8 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±1.2
%FSR
4.5 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±0.4
%FSR
2.7 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±0.6
%FSR
1.8 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±1.2
%FSR
4.5 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±2.5
LSB
2.7 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±4.5
LSB
1.8 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±8.5
LSB
4.5 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±1.5
LSB
2.7 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±2.0
LSB
1.8 V ≤ AVREF ≤ AVDD ≤ 5.5 V
±3.5
LSB
VIAN
0
AVREF
V
Reference voltage
AVREF
1.8
AVDD
V
Resistance between
AVREF and AVSS
RAIREF
20
Analog input voltage
40
kΩ
Note Excludes quantization error (±0.05%FSR).
Remark
FSR: Full scale range
Data Sheet U14022EJ1V0DS00
41
µPD78F9177, 78F9177Y
FLASH MEMORY WRITE/DELETE CHARACTERISTICS (TA = 10 to 40 °C, VDD = 1.8 to 5.5 V)
Parameter
Write current
(VDD pin)
IDDW
Note
TYP.
When VPP supply voltage = VPP1
MAX.
Unit
18
mA
IPPW
When VPP supply voltage = VPP1
7.5
mA
IDDE
When VPP supply voltage = VPP1
18
mA
100
mA
1
s
20
s
Note
(5.0-MHz crystal oscillation operation mode)
Delete current
(VPP pin)
MIN.
Note
Delete current
(VDD pin)
Conditions
(5.0-MHz crystal oscillation operation mode)
Write current
(VPP pin)
Symbol
IPPE
When VPP supply voltage = VPP1
Note
Unit delete time
ter
Total delete time
tera
Write count
0.5
1
Delete/write are regarded as 1 cycle
VPP supply voltage
VPP0
In normal operation
VPP1
During flash memory programming
0
9.7
10.0
20
Times
0.2VDD
V
10.3
V
Note The current flowing to the ports (including the current flowing through an on-chip pull-up resistor) and AVDD
current are not included.
Data Memory Stop Mode Low Power Supply Voltage Data Retention Characteristics (TA = −40 to +85 °C)
Parameter
Symbol
Conditions
MIN.
Data retention power
supply voltage
VDDDR
1.8
Release signal set time
tSREL
0
Oscillation stabilization
Note 1
wait time
tWAIT
Release by RESET
Release by interrupt request
TYP.
MAX.
Unit
5.5
V
µs
15
2 /fX
s
Note 2
s
Notes 1.
The oscillation stabilization time is the time the CPU operation is stopped to prevent unstable
2.
By using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS),
operation when oscillation starts.
212/fX, 215/fX, or 217/fX can be selected.
Remark
42
fX: Main system clock oscillation frequency
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
Data Retention Timing (STOP Mode Release by RESET)
Internal reset operation
HALT mode
STOP mode
Operating mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction execution
RESET
tWAIT
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)
HALT mode
STOP mode
Operating mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction execution
Standby release signal
(interrupt request)
tWAIT
Data Sheet U14022EJ1V0DS00
43
µPD78F9177, 78F9177Y
8. CHARACTERISTICS CURVES
(TA = 25 ˚C)
10.0
Main system clock operating
mode (PCC1 = 0, CSS0 = 0)
Main system clock operating
mode (PCC1 = 1, CSS0 = 0)
1.0
Main system clock operation
HALT mode (PCC1 = 1,
CSS0 = 0)
Supply current IDD (mA)
0.5
Main system clock operation
HALT mode (PCC1 = 1, CSS0 = 0)
Subsystem clock operating
mode (CSS0 = 1, MCC = 1)
0.1
0.05
Subsystem clock operation
HALT mode (CSS0 = 1,
MCC = 1)
0.01
XT2
X2 XT1
Crystal
Crystal
resonator
resonator 220 kΩ
5.0 MHz
32.768 kHz
X1
0.005
22 pF
22 pF
33 pF
VSS
33 pF
VSS
0.001
0
1
2
3
4
5
Supply voltage VDD (V)
44
Data Sheet U14022EJ1V0DS00
6
7
8
µPD78F9177, 78F9177Y
9. PACKAGE DRAWING
44 PIN PLASTIC QFP (10x10)
A
B
detail of lead end
23
22
33
34
S
P
C
T
D
R
12
11
44
1
L
U
Q
F
J
G
H
I
M
K
M
N
S
S
NOTE
ITEM
Each lead centerline is located within 0.16 mm of
its true position (T.P.) at maximum material condition.
A
12.0±0.2
B
10.0±0.2
C
10.0±0.2
D
12.0±0.2
F
1.0
G
1.0
H
0.37 +0.08
−0.07
I
0.2
J
0.8 (T.P.)
K
1.0±0.2
L
0.5
M
0.17 +0.03
−0.06
N
0.10
P
Q
1.4±0.05
0.1±0.05
R
3° +4°
−3°
S
U
Data Sheet U14022EJ1V0DS00
MILLIMETERS
1.6 MAX.
0.6±0.15
S44GB-80-8ES-1
45
µPD78F9177, 78F9177Y
48-PIN PLASTIC TQFP (FINE PITCH) (7x7)
A
B
detail of lead end
25
24
36
37
S
P
C
T
D
R
48
13
12
1
L
U
Q
F
G
J
H
I
M
K
S
N
S
M
NOTE
ITEM
Each lead centerline is located within 0.10 mm of
its true position (T.P.) at maximum material condition.
A
MILLIMETERS
9.0±0.2
B
7.0±0.2
C
7.0±0.2
D
F
9.0±0.2
0.75
G
0.75
H
0.22 +0.05
−0.04
I
0.10
J
0.5 (T.P.)
K
L
1.0±0.2
0.5±0.2
0.17 +0.03
−0.07
M
N
0.08
P
1.0±0.1
Q
0.1±0.05
3°+4°
−3°
R
S
1.27 MAX.
P48GA-50-9EU
46
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
10. RECOMMENDED SOLDERING CONDITIONS
The µPD78F9177 and µPD789177Y should be soldered and mounted under the following recommended
conditions.
For the details of the recommended soldering conditions, refer to the document Semiconductor Device
Mounting Technology Manual (C10535E).
For soldering methods and conditions other than those recommended below, contact your NEC sales
representative.
Table 10-1. Surface Mounting Type Soldering Conditions (1/2)
µPD78F9177GB-8ES: 44-pin plastic LQFP (10 × 10)
µPD78F9177YGB-8ES: 44-pin plastic LQFP (10 × 10)
Soldering Method
Recommended Condition
Symbol
Soldering Conditions
Infrared reflow
Package peak temperature: 235 °C, Time: 30 seconds max.
(at 210 °C or higher), Count: Twice or less
IR35-00-2
VPS
Package peak temperature: 215 °C, Time: 40 seconds max.
(at 200 °C or higher), Count: Twice or less
VP15-00-2
Wave soldering
Solder bath temperature: 260 °C max., Time: 10 seconds max., Count:
Once, Preheating temperature: 120 °C max. (package surface
temperature)
WS60-00-1
Partial heating
Pin temperature: 300 °C max., Time: 3 seconds max. (per pin row)
Caution
−
Do not use different soldering methods together (except for partial heating).
Table 10-1. Surface Mounting Type Soldering Conditions (2/2)
µPD78F9177YGA-9EU: 48-pin plastic TQFP (7 × 7)
Soldering Method
Infrared reflow
Soldering Conditions
Package peak temperature: 235 °C, Time: 30 seconds max.
Note
(at 210 °C or higher), Count: Twice or less, Number of days:3 (After
Recommended Condition
Symbol
IR35-103-2
that, prebaking sis necessary at 125 °C for 10 hours)
Package peak temperature: 215 °C, Time: 40 seconds max.
Note
(at 200 °C or higher), Count: Twice or less, Number of days:3 (After
VPS
VP15-103-2
that, prebaking sis necessary at 125 °C for 10 hours)
Partial heating
Pin temperature: 300 °C max., Time: 3 seconds max. (per pin row)
−
Note The number of days for storage at 25°C, 65% RH MAX after the dry pack has been opened.
Caution
Do not use different soldering methods together (except for partial heating).
Data Sheet U14022EJ1V0DS00
47
µPD78F9177, 78F9177Y
APPENDIX A. DIFFERENCES BETWEEN µPD78F9177, 78F9177Y, AND MASK ROM VERSIONS
The µPD78F9177 and µPD78F9177Y are flash memory version of the Mask ROM version. The differences
between the µPD78F9177, 78F9177Y and the Mask ROM versions are shown in Table A-1.
Table A-1. Differences between µPD78F9177, 78F9177Y and Mask ROM Versions
Product Name
Flash Memory Version
µPD78F9177, 78F9177Y
Item
Internal
ROM
24 KB
memory
High-speed RAM
512 bytes
Mask ROM Version
µPD789166, 789166Y
µPD789167, 789167Y
789176, 789176Y
789177, 789177Y
16 KB
24 KB
VPP pin
Provided
Not provided
Pull-up resistor
17 (Software control)
21 (Software control: 17, mask option specification: 4)
A/D resolution
10 bits
8 bits (µPD789166, 789167, 789166Y, 789167Y)
10 bits (µPD789176, 789177, 789176Y, 789177Y)
Electrical specifications
See the relevant data sheet
Cautions 1. There are differences in the amount of noise immunity and noise radiation between the
flash memory and mask ROM versions. When pre-producing an application set with the
flash memory version and then mass producing it with the mask ROM versions, be sure
to conduct sufficient evaluations on the commercial samples (CS) (not engineering
sample, ES) of the mask ROM version.
2. When the µPD78F9177, a flash memory counterpart of the µPD789166 or µPD789167, is
used, however, ADCR0 can be manipulated with an 8-bit memory manipulation
instruction. In this case, use an object file assembled with the µPD789166 or µPD789167.
The same is also true for the µPD78F9177Y, a flash memory counterpart of the
µPD789166Y or µPD789167Y. When the µPD78F9177Y is used, ADCR0 can be
manipulated with an 8-bit memory manipulation instruction. In this case, use an object
file assembled with the µPD789166Y or µPD789167Y.
48
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
APPENDIX B. DEVELOPMENT TOOLS
The following development tools are available for developing systems using the µPD78F9177 and µPD78F9177Y.
Language Processing Software
RA78K0S
Notes 1, 2, 3
CC78K0S
Assembler package common to 78K/0S Series
Notes 1, 2, 3
DF789177
C compiler package common to 78K/0S Series
Notes 1, 2, 3
Device file for µPD789167, 789177, 789167Y, and 789177Y Subseries
Notes 1, 2, 3
C compiler library source file common to 78K/0S Series
CC78K0S-L
Flash Memory Writing Tools
Flashpro lIl
Flash programmer dedicated for on-chip flash memory microcontrollers
Note 4
(Part No. FL-PR3
FA-44GB-8ES
, PG-FP3)
Note 4
Flash memory programming adapter for 44-pin plastic LQFP (GB-8ES type)
FA-48GA
Flash memory programming adapter for 48-pin plastic TQFP (fine pitch) (GA-9EU
type)
Debugging Tools(1/2)
IE-78K0S-NS
In-circuit emulator
In-circuit emulator used to debug hardware or software when application systems
which use the 78K/0S Series are developed. The IE-78K0S-NS supports an integrated
debugger (ID78K0S-NS). The IE-78K0S-NS is used in combination with an interface
adapter for connection to an AC adapter, emulation probe, or host machine.
IE-70000-MC-PS-B
AC adapter
Adapter used to supply power from a 100- to 240-V AC outlet
IE-70000-98-IF-C
Interface adapter
Adapter required when using the PC-9800 series (excluding notebook PCs) as the host
machine for the IE-78K0S-NS (C bus supported)
IE-70000-CD-IF-A
PC card/interface
PC card and interface cable required when using a notebook PC as the host machine
for the IE-78K0S-NS (PCMCIA socket supported)
IE-70000-PC-IF-C
Interface adapter
Adapter required when using an IBM PC/AT
IE-70000-PCI-IF
Interface adapter
Adapter required when using a PC equipped with a PCI bus as the host machine for
the IE-78K0S-NS
IE-789177-NS-EM1
Emulation board
Emulation board used to emulate the peripheral hardware specific to the device. This
is used in combination with the in-circuit emulator.
NP-44GB
TM
or compatible as the host machine for
the IE-78K0S-NS (ISA bus supported)
Note 4
Board to connect an in-circuit emulator to the target system. This is used in
combination with the EV-9200G-44
Emulation probe
EV-9200G-44
conversion socket
Note 4
Conversion socket to connect the target system board on which a 44-pin plastic LQFP
can be mounted and the NP-44GB
Board to connect an in-circuit emulator to the target system. This is used in
combination with the TGB-044SAP.
NP-44GB-TQ
Emulation probe
TGB-044SAP
Note 5
conversion socket
Conversion socket to connect the target system board on which a 44-pin plastic LQFP
can be mounted and the NP-44GB-TQ
Data Sheet U14022EJ1V0DS00
49
µPD78F9177, 78F9177Y
Debugging Tools(2/2)
NP-48GA
Note 4
Board to connect an in-circuit emulator to the target system. This is used in
combination with the TGA-048SDP.
Emulation probe
TGA-048SDP
Note 5
conversion socket
SM78K0S
Notes 1, 2
ID78K0S-NS
DF789177
Conversion socket to connect the target system board on which a 48-pin plastic TQFP
(fine pitch) can be mounted and the NP-48GA
System simulator common to 78K/0S Series
Notes 1, 2
Integrated debugger common to 78K/0S Series
Notes 1, 2
Device file for µPD789167, 789177, 789167, and 789177Y Subseries
Real-Time OS
MX78K0S
Notes 1, 2
OS for 78K/0S Series
TM
Notes 1. Based on the PC-9800 series (Japanese Windows )
2. Based on IBM PC/AT and compatibles (Japanese Windows/English Windows)
3. Based on the HP9000 series 700
TM
TM
(HP-UX ), SPARCstation
TM
TM
TM
(NEWS-OS )
4. Product made by and available from Naito Densei Machida Mfg. Co., Ltd. (+81-44-822-3813).
5. Product made by TOKYO ELETECH CORPORATION.
Refer to: Daimaru Kogyo, Ltd.
Tokyo Electronic Division (+81-3-3820-7112)
Osaka Electronic Division (+81-6-6244-6672)
Remark
50
The RA78K0S, CC78K0S, and SM78K0S can be used in combination with the DF789177.
Data Sheet U14022EJ1V0DS00
TM
(SunOS , Soraris ), and NEWS
TM
µPD78F9177, 78F9177Y
APPENDIX C. RELATED DOCUMENTS
Documents Related to Devices
Document Name
Document No.
Japanese
English
µPD789166, 167, 176, 177, 166Y, 167Y, 176Y, 177Y, 166(A), 167(A), 176(A), 177(A),
166Y(A), 167Y(A), 176Y(A), 177Y(A) Data Sheet
U14017J
U14017E
µPD78F9177, 78F9177Y Data Sheet
U14022J
This manual
µPD789167, 789177, 789167Y, 789177Y Subseries User’s Manual
U14186J
U14186E
78K/0S Series Instruction User’s Manual
U11047J
U11047E
Document Related to Development Tools (User’s Manuals)
Document Name
Document No.
Japanese
RA78K0S Assembler Package
English
Operation
U11622J
U11622E
Assembly Language
U11599J
U11599E
Structured Assembly
Language
U11623J
U11623E
Operation
U11816J
U11816E
Language
U11817J
U11817E
SM78K0S System Simulator Windows based
Reference
U11489J
U11489E
SM78K Series System Simulator
External Parts User
Open Interface
Specifications
U10092J
U10092E
ID78K0S-NS Windows based
Reference
U12901J
U12901E
IE-78K0S-NS In-circuit Emulator
U13549J
U13549E
IE-789177-NS-EM1 Emulation Board
U14621J
U14621E
CC78K0S C Compiler
Documents Related to Embedded Software (User’s Manuals)
Document Name
Document No.
Japanese
OS for 78K/0S Series MX78K0S
Caution
Fundamental
U12938J
English
U12938E
The related documents listed above are subject to change without notice. Be sure to use the
latest version of each document for designing.
Data Sheet U14022EJ1V0DS00
51
µPD78F9177, 78F9177Y
Other Documents
Document Name
Document No.
Japanese
English
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)
X13769X
Semiconductor Device Mounting Technology Manual
C10535J
C10535E
Quality Grades on NEC Semiconductor Device
C11531J
C11531E
NEC Semiconductor Device Reliability/Quality Control System
C10983J
C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)
C11892J
C11892E
Guide to Microcomputer-Related Products by Third Party
U11416J
−
Caution
The related documents listed above are subject to change without notice. Be sure to use the
latest version of each document for designing.
The related document indicated in this publication may include preliminary versions. However, preliminary versions
are not marked as such.
52
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
[MEMO]
Data Sheet U14022EJ1V0DS00
53
µPD78F9177, 78F9177Y
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
EEPROM is a trademark of NEC Corporation.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.
PC/AT is a trademark of International Business Machines Corporation.
HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
Solaris and SunOS are trademarks of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of SONY Corporation.
54
Data Sheet U14022EJ1V0DS00
µPD78F9177, 78F9177Y
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:
•
Device availability
•
Ordering information
•
Product release schedule
•
Availability of related technical literature
•
Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)
•
Network requirements
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
NEC Electronics Inc. (U.S.)
NEC Electronics (Germany) GmbH
NEC Electronics Hong Kong Ltd.
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A.
NEC Electronics Singapore Pte. Ltd.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Hong Kong Ltd.
NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s.r.l.
NEC Electronics (Germany) GmbH
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829
J00.7
Data Sheet U14022EJ1V0DS00
55
µPD78F9177, 78F9177Y
• The information in this document is current as of August, 2000. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
• NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
• While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
• NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).
M8E 00. 4