WINBOND W78C51DF-24

Preliminary W78C51D
8-BIT MICROCONTROLLER
GENERAL DESCRIPTION
The W78C51D microcontroller supplies a wider frequency and supply voltage range than most 8-bit
microcontrollers on the market. It is compatible with the industry standard 80C51 microcontroller
series.
The W78C51D contains four 8-bit bidirectional parallel ports, one extra 4-bit bit-addressable I/O port
(Port 4) and two additional external interrupts ( INT2 , INT3 ), two 16-bit timer/counters, one watchdog
timer and a serial port. These peripherals are supported by a seven-source, two-level interrupt
capability. There are 128 bytes of RAM and an 4K byte mask ROM for application programs.
The W78C51D microcontroller has two power reduction modes, idle mode and power-down mode,
both of which are software selectable. The idle mode turns off the processor clock but allows for
continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power
consumption. The external clock can be stopped at any time and in any state without affecting the
processor.
FEATURES
• Fully static design
• Supply voltage of 4.5V to 5.5V
• DC-40 MHz operation
• 128 bytes of on-chip scratchpad RAM
• 4K bytes of on-chip mask ROM
• 64K bytes program memory address space
• 64K bytes data memory address space
• Four 8-bit bidirectional ports
• Two 16-bit timer/counters
• One full duplex serial port
• Seven-source, two-level interrupt capability
• One extra 4-bit bit-addressable I/O port
• Two additional external interrupts INT2 / INT3
• Watchdog timer
• EMI reduction mode
• Built-in power management
• Code protection
• Packages:
− DIP 40: W78C51D-24/40
− PLCC 44: W78C51DP-24/40
− QFP 44: W78C51DF-24/40
-1-
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
PIN CONFIGURATIONS
40-Pin DIP (W78C51D)
1
P1.0
P1.1
40
39
2
3
4
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
38
37
5
6
36
35
7
8
34
33
32
9
10
11
RXD, P3.0
TXD, P3.1
INT0, P3.2
INT1, P3.3
T0, P3.4
T1, P3.5
WR, P3.6
RD, P3.7
XTAL2
XTAL1
P1.5
P1.6
P1.7
RST
RXD, P3.0
A
D
0
,
P
0
.
0
A
D
1
,
P
0
.
1
A
D
2
,
P
0
.
2
12
13
29
28
14
15
16
27
26
25
PSEN
P2.7, A15
P2.6, A14
17
18
24
23
22
21
6 5 4 3 2 1 44 43 42 41 40
39
38
8
37
9
36
10
35
11
12
13
INT1, P3.3
T0, P3.4
15
16
17
18 19 20 21 22 23 24 25 26 27
14
P
3
.
7
,
/
R
D
X
T
A
L
2
P2.5, A13
P2.4, A12
P2.3, A11
P2.2, A10
P2.1, A9
P2.0, A8
X V P P P
T S 4 2 2
A S . . .
L
0 0 1
1
, ,
A A
8 9
P
2
.
2
,
A
1
0
P
2
.
3
,
A
1
1
/
I
N
T
3
,
P P P P P P
1 1 1 1 1 4 V
. . . . . . D
4 3 2 1 0 2 D
A
D
3
,
P
0
.
3
7
P
3
.
6
,
/
W
R
P0.6, AD6
P0.7, AD7
44-Pin QFP (W78C51DF)
INT2, P4.3
TXD, P3.1
INT0, P3.2
T1, P3.5
P0.3, AD3
P0.4, AD4
P0.5, AD5
EA
ALE
44-Pin PLCC (W78C51DP)
/
I
N
T
3
,
P P P P P P
1 1 1 1 1 4 V
. . . . . . D
4 3 2 1 0 2 D
P0.0, AD0
P0.1, AD1
P0.2, AD2
31
30
19
20
VSS
VDD
P0.4, AD4
P0.5, AD5
P0.6, AD6
P0.7, AD7
34
EA
P4.1
33
32
ALE
31
30
29
28
P
2
.
4
,
A
1
2
A
D
3
,
P
0
.
3
44 43 42 41 40 39 38 37 36 35 34
33
32
P1.7
RST
RXD, P3.0
3
4
5
31
30
29
P0.6, AD6
P0.7, AD7
INT2, P4.3
TXD, P3.1
6
7
8
9
28
P4.1
ALE
27
26
25
10
24
23
11
12 13 14 15 16 17 18 19 20 21 22
P
3
.
6
,
/
W
R
-2-
A
D
2
,
P
0
.
2
1
2
INT1, P3.3
T0, P3.4
T1, P3.5
P2.5, A13
A
D
1
,
P
0
.
1
P1.5
P1.6
INT0, P3.2
PSEN
P2.7, A15
P2.6, A14
A
D
0
,
P
0
.
0
P
3
.
7
,
/
R
D
X
T
A
L
2
X V P P
T S 4 2
A S . .
L
0 0
1
,
A
8
P
2
.
1
,
A
9
P
2
.
2
,
A
1
0
P
2
.
3
,
A
1
1
P
2
.
4
,
A
1
2
P0.4, AD4
P0.5, AD5
EA
PSEN
P2.7, A15
P2.6, A14
P2.5, A13
Preliminary W78C51D
PIN DESCRIPTION
P0.0−P0.7
Port 0, Bits 0 through 7. Port 0 is a bidirectional I/O port. This port also provides a multiplexed low
order address/data bus during accesses to external memory.
P1.0−P1.7
Port 1, Bits 0 through 7. Port 1 is a bidirectional I/O port with internal pull-ups.
P2.0−P2.7
Port 2, Bits 0 through 7. Port 2 is a bidirectional I/O port with internal pull-ups. This port also provides
the upper address bits for accesses to external memory.
P3.0−P3.7
Port 3, Bits 0 through 7. Port 3 is a bidirectional I/O port with internal pull-ups. All bits have alternate
functions, which are described below:
PIN
P3.0
P3.1
P3.2
ALTERNATE FUNCTION
RXD Serial Receive Data
TXD Serial Transmit Data
P3.3
INT1 External Interrupt 1
T0 Timer 0 Input
T1 Timer 1 Input
P3.4
P3.5
P3.6
P3.7
INT0 External Interrupt 0
WR Data Write Strobe
RD Data Read Strobe
P4.0−P4.3
Another bit-addressable bidirectional I/O port P4. P4.3 and P4.2 are alternative function pins. It can
be used as general I/O pins or external interrupt input sources ( INT2 / INT3 ).
EA
External Address Input, active low. This pin forces the processor to execute out of external ROM.
This pin should be kept low for all W78C31 operations.
RST
Reset Input, active high. This pin resets the processor. It must be kept high for at least two machine
cycles in order to be recognized by the processor.
ALE
Address Latch Enable Output, active high. ALE is used to enable the address latch that separates the
address from the data on Port 0. ALE runs at 1/6th of the oscillator frequency. A single ALE pulse is
skipped during external data memory accesses. ALE goes to a high impedance state during reset with
a weak pull-up.
-3-
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
PSEN
Program Store Enable Output, active low. PSEN enables the external ROM onto the Port 0
address/data bus during fetch and MOVC operations. PSEN goes to a high impedance state during
reset with a weak pull-up.
XTAL1
Crystal 1. This is the crystal oscillator input. This pin may be driven by an external clock.
XTAL2
Crystal 2. This is the crystal oscillator output. It is the inversion of XTAL1.
VSS, VDD
Power Supplies. These are the chip ground and positive supplies.
BLOCK DIAGRAM
P1.0
~
P1.7
Port
1
Port 1
Latch
ACC
B
INT2
Port 0
Interrupt
INT3
T1
Latch
T2
Port
0
P0.0
~
P0.7
DPTR
Timer
0
Stack
Pointer
PSW
ALU
Temp Reg.
Timer
1
PC
Incrementor
UART
Addr. Reg.
P3.0
~
P3.7
Port
3
Port 3
SFR RAM
Address
Instruction
Decoder
&
Sequencer
Latch
128bytes
RAM & SFR
Bus & Clock
Controller
P4.0
~
P4.3
Port
4
Port 2
Latch
4KB
ROM
Port 4
Latch
Watchdog
Timer
Oscillator
XTAL1
Reset Block
XTAL2 ALE PSEN
RST
-4-
Power control
VDD
GND
Port
2
P2.0
~
P2.7
Preliminary W78C51D
FUNCTIONAL DESCRIPTION
The W78C51D architecture consists of a core controller surrounded by various registers, five general
purpose I/O ports, 128 bytes of RAM, two timer/counters, one watchdog timer and a serial port. The
processor supports 111 different opcodes and references both a 64K program address space and a
64 K data storage space.
Timers 0, 1
Timers 0, 1 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0, TL1
and TH1 for Timer 1. The TCON and TMOD registers provide control functions for timers 0, 1.
Clock
The W78C51D is designed to be used with either a crystal oscillator or an external clock. Internally,
the clock is divided by two before it is used. This makes the W78C51D relatively insensitive to duty
cycle variations in the clock.
Crystal Oscillator
The W78C51D incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must be
connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from each
pin to ground, and a resistor must also be connected from XTAL1 to XTAL2 to provide a DC bias
when the crystal frequency is above 24 MHz.
External Clock
An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The
XTAL1 input is a CMOS-type input, as required by the crystal oscillator. As a result, the external clock
signal should have an input high level of greater than 3.5 volts when VDD = 5 volts.
Power Management
Idle Mode
The idle mode is entered by setting the IDL bit in the PCON register. In the idle mode, the internal
clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The
processor will exit idle mode when either an interrupt or a reset occurs.
Power-down Mode
When the PD bit of the PCON register is set, the processor enters the power-down mode. In this
mode all of the clocks, including the oscillator are stopped. The only way to exit power-down mode is
by a reset.
Reset
The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two
machine cycles while the oscillator is running.
An internal trigger circuit in the reset line is used to deglitch the reset line when the W78C51D is used
with an external RC network. The reset logic also has a special glitch removal circuit that ignores
glitches on the reset line.
During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of
bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.
-5-
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
New Defined Peripheral
In order to be more suitable for I/O, an extra 4-bit bit-addressable port P4 and two external interrupts
INT2 , INT3 have been added to either the PLCC or QFP package. And description follows:
1. INT2 / INT3
Two additional external interrupts, INT2 and INT3 , whose functions are similar to those of external
interrupt 0 and 1 in the standard 80C52. The functions/status of these interrupts are
determined/shown by the bits in the XICON (External Interrupt Control) register. The XICON register
is bit-addressable but is not a standard register in the standard 80C52. Its address is at 0C0H. To
set/clear bits in the XICON register, one can use the "SETB (/CLR) bit" instruction. For example,
"SETB 0C2H" sets the EX2 bit of XICON.
***XICON - external interrupt control (C0H)
PX3
EX3
IE3
IT3
PX2
EX2
IE2
IT2
PX3: External interrupt 3 priority high if set
EX3: External interrupt 3 enable if set
IE3: If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is detected/serviced
IT3: External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software
PX2: External interrupt 2 priority high if set
EX2: External interrupt 2 enable if set
IE2: If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is detected/serviced
IT2: External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software
Eight-source interrupt informations:
INTERRUPT
SOURCE
VECTOR
ADDRESS
POLLING
SEQUENCE WITHIN
PRIORITY LEVEL
ENABLE
REQUIRED
SETTINGS
INTERRUPT
TYPE
EDGE/LEVEL
External Interrupt 0
03H
0 (highest)
IE.0
TCON.0
Timer/Counter 0
0BH
1
IE.1
-
External Interrupt 1
13H
2
IE.2
TCON.2
Timer/Counter 1
1BH
3
IE.3
-
Serial Port
23H
4
IE.4
-
Timer/Counter 2
2BH
5
IE.5
-
External Interrupt 2
33H
6
XICON.2
XICON.0
External Interrupt 3
3BH
7 (lowest)
XICON.6
XICON.3
2. PORT4
Another bit-addressable port P4 is also available and only 4 bits (P4<3:0>) can be used. This port
address is located at 0D8H with the same function as that of port P1, except the P4.3 and P4.2 are
-6-
Preliminary W78C51D
alternative function pins. It can be used as general I/O pins or external interrupt input sources ( INT2 /
INT3 ).
Example: P4
REG 0D8H
MOV
P4, #0AH
; Output data "A" through P4.0−P4.3.
MOV
A, P4
; Read P4 status to Accumulator.
SETB
P4.0
; Set bit P4.0
CLR
P4.1
; Clear bit P4.1
Watchdog Timer
The Watchdog timer is a free-running timer which can be programmed by the user to serve as a
system monitor, a time-base generator or an event timer. It is basically a set of dividers that divide
the system clock. The divider output is selectable and determines the time-out interval. When the
time-out occurs a system reset can also be caused if it is enabled. The main use of the Watchdog
timer is as a system monitor. This is important in real-time control applications. In case of power
glitches or electro-magnetic interference, the processor may begin to execute errant code. If this is
left unchecked the entire system may crash. The watchdog time-out selection will result in different
time-out values depending on the clock speed. The Watchdog timer will de disabled on reset. In
general, software should restart the Watchdog timer to put it into a known state. The control bits that
support the Watchdog timer are discussed below.
Watchdog Timer Control Register
Bit:
7
6
5
4
3
2
1
0
ENW
CLRW
WIDL
-
-
PS2
PS1
PS0
Mnemonic: WDTC
Address: 8FH
ENW : Enable watch-dog if set.
CLRW : Clear watch-dog timer and prescaler if set. This flag will be cleared automatically
WIDL : If this bit is set, watch-dog is enabled under IDLE mode. If cleared, watch-dog is disabled
under IDLE mode. Default is cleared.
PS2, PS1, PS0 : Watch-dog prescaler timer select. Prescaler is selected when set PS2~0 as follows:
PS2 PS1 PS0
0
0
0
0
1
0
0
0
1
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
PRESCALER SELECT
2
4
8
16
32
64
128
256
-7-
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
The time-out period is obtained using the following formula:
1
× 214 × PRESCALER × 1000 × 12 mS
OSC
Before Watchdog time-out occurs, the program must clear the 14-bit timer by writing 1 to WDTC.6
(CLRW). After 1 is written to this bit, the 14-bit timer , prescaler and this bit will be reset on the next
instruction cycle. The Watchdog timer is cleared on reset.
ENW
WIDL
IDLE
EXTERNAL
RESET
OSC
1/12
Watchdog Timer Block Diagram
INTERNAL
RESET
14-BIT TIMER
PRESCALER
CLEAR
CLRW
Typical Watchdog time-out period when OSC = 20 MHz
PS2 PS1 PS0
0 0
0
0 1
0
0 0
1
0 1
1
1 0
0
1 0
1
1 1
0
1 1
1
WATCHDOG TIME-OUT PERIOD
19.66 mS
39.32 mS
78.64 mS
157.28 mS
314.57 mS
629.14 mS
1.25 S
2.50 S
Reduce EMI Emission
Because of the on-chip ROM, when a program is running in internal ROM space, the ALE will be
unused. The transition of ALE will cause noise, so it can be turned off to reduce the EMI emission if it
is not needed. Turning off the ALE signal transition only requires setting the bit 0 of the AUXR SFR,
which is located at 08Eh. When ALE is turned off, it will be reactivated when the program accesses
external ROM/RAM data or jumps to execute an external ROM code. The ALE signal will turn off
again after it has been completely accessed or the program returns to internal ROM code space.
AUXR - Auxiliary Register
Bit:
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
AO
Mnemonic: AUXR
AO:
Address: 8Eh
Turn off ALE signal.
-8-
Preliminary W78C51D
ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
MIN.
MAX.
UNIT
VCC−VSS
-0.3
+7.0
V
Input Voltage
VIN
VSS -0.3
VCC +0.3
V
Operating Temperature
TA
0
70
°C
Storage Temperature
TST
-55
+150
°C
DC Power Supply
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the
device.
DC CHARACTERISTICS
(VDD−VSS = 5V ±10%, TA = 25°C, Fosc = 20 MHz, unless otherwise specified.)
PARAMETER
SYM.
SPECIFICATION
MIN.
MAX.
UNIT
TEST CONDITIONS
Operating Voltage
VDD
4.5
5.5
V
Operating Current
IDD
-
20
mA
VDD = 5.5V, 20 MHz, no load
IIDLE
-
6
mA
VDD = 5.5V, 20 MHz, no load
IPWDN
-
50
µA
VDD = 5.5V, no load
IIN
-50
+10
µA
VDD = 5.5V
Idle Current
Power Down Current
Input Current
P1, P2, P3, P4
Input Leakage Current
VIN = 0V or VDD
ILK
-10
+10
µA
VSS < VIN < VDD
P0, EA
Input Current
VDD = 5.5V
IIN2
-10
+300
µA
RST
VDD = 5.5V
0 < VIN < VDD
Logic 1-to-0 Transition Current
ITL
-500
-
µA
P1, P2, P3, P4
VDD = 5.5V
VIN = 2V
Input
Input Low Voltage
VIL1
0
0.8
V
VDD = 4.5V
VIL2
0
0.8
V
VDD = 4.5V
VIL3
0
0.8
V
VDD = 4.5V
P1, P2, P3, P4
Input Low Voltage
RST
Input Low Voltage
[*4]
XTAL1
-9-
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
DC Characteristics, continued
PARAMETER
SYM.
SPECIFICATION
TEST CONDITIONS
MIN.
MAX.
UNIT
VIH1
2.4
VDD +0.2
V
VDD = 5.5V
VIH2
3.5
VDD +0.2
V
VDD = 5.5V
VIH3
3.5
VDD +0.2
V
VDD = 5.5V
-
0.45
V
VDD = 4.5V
Input
Input High Voltage
P1, P2, P3, P4
Input High Voltage
RST
Input High Voltage
[*4]
XTAL1
Output
Output Low Voltage
VOL1
P1, P2, P3, P4
IOL = +2 mA
Output Low Voltage
P0, ALE, PSEN
VOL2
-
0.45
V
Sink Current
ISK1
4
10
mA
P1, P2, P3, P4
ISK2
8
16
mA
Output High Voltage
VOH1
2.4
-
V
VDD = 4.5V
IOH = -100 µA
P1, P2, P3, P4
Output High Voltage
VOH2
2.4
-
V
VDD = 4.5V
IOH = -400 µA
[*4]
ISR1
-100
-250
µA
P1, P2, P3, P4
Source Current
VDD = 4.5V
VIN = 0.45V
P0, ALE, PSEN
Source Current
VDD = 4.5V
Vin = 0.45V
Sink Current
P0, ALE, PSEN
VDD = 4.5V
IOL = +4 mA
[*4]
VDD = 4.5V
VIN = 2.4V
ISR2
-8
-14
mA
VDD = 4.5V
VIN = 2.4V
P0, ALE, PSEN
Notes:
*1. RST pin has an internal pull-down.
*2. Pins of P1 and P3 can source a transition current when they are being externally driven from 1 to 0.
*3. RST is a Schmitt trigger input and XTAL1 is a CMOS input.
*4. P0, P2, ALE and PSEN are tested in the external access mode.
- 10 -
Preliminary W78C51D
AC CHARACTERISTICS
The AC specifications are a function of the particular process used to manufacture the part, the
ratings of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the
specifications can be expressed in terms of multiple input clock periods (TCP), and actual parts will
usually experience less than a ±20 nS variation. The numbers below represent the performance
expected from a 0.5 micron CMOS process when using 2 and 4 mA output buffers.
Clock Input Waveform
XTAL1
T CH
TCL
F OP,
PARAMETER
TCP
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
Operating Speed
FOP
0
-
40
MHz
1
Clock Period
TCP
25
-
-
nS
2
Clock High
TCH
10
-
-
nS
3
Clock Low
TCL
10
-
-
nS
3
Notes:
1. The clock may be stopped indefinitely in either state.
2. The TCP specification is used as a reference in other specifications.
3. There are no duty cycle requirements on the XTAL1 input.
Program Fetch Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
Address Valid to ALE Low
TAAS
1 TCP-∆
-
-
nS
4
Address Hold from ALE Low
TAAH
1 TCP-∆
-
-
nS
1, 4
ALE Low to PSEN Low
TAPL
1 TCP-∆
-
-
nS
4
PSEN Low to Data Valid
TPDA
-
-
2 TCP
nS
2
Data Hold after PSEN High
TPDH
0
-
1 TCP
nS
3
Data Float after PSEN High
TPDZ
0
-
1 TCP
nS
ALE Pulse Width
TALW
2 TCP-∆
2 TCP
-
nS
4
PSEN Pulse Width
TPSW
3 TCP-∆
3 TCP
-
nS
4
Notes:
1. P0.0−P0.7, P2.0−P2.7 remain stable throughout entire memory cycle.
2. Memory access time is 3 TCP.
3. Data have been latched internally prior to PSEN going high.
4. "∆" (due to buffer driving delay and wire loading) is 20 nS.
- 11 -
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
Data Read Cycle
PARAMETER
SYMBOL
MIN.
TYP.
MAX.
UNIT
NOTES
ALE Low to RD Low
TDAR
3 TCP-∆
-
3 TCP+∆
nS
1, 2
RD Low to Data Valid
TDDA
-
-
4 TCP
nS
1
Data Hold from RD High
TDDH
0
-
2 TCP
nS
Data Float from RD High
TDDZ
0
-
2 TCP
nS
RD Pulse Width
TDRD
6 TCP-∆
6 TCP
-
nS
SYMBOL
MIN.
TYP.
MAX.
UNIT
ALE Low to WR Low
TDAW
3 TCP-∆
-
3 TCP+∆
nS
Data Valid to WR Low
TDAD
1 TCP-∆
-
-
nS
Data Hold from WR High
TDWD
1 TCP-∆
-
-
nS
WR Pulse Width
TDWR
6 TCP-∆
6 TCP
-
nS
SYMBOL
MIN.
TYP.
MAX.
UNIT
Port Input Setup to ALE Low
TPDS
1 TCP
-
-
nS
Port Input Hold from ALE Low
TPDH
0
-
-
nS
Port Output to ALE
TPDA
1 TCP
-
-
nS
Notes:
1. Data memory access time is 8 TCP.
2. "∆" (due to buffer driving delay and wire loading) is 20 nS.
Data Write Cycle
PARAMETER
Note: "∆" (due to buffer driving delay and wire loading) is 20 nS.
Port Access Cycle
PARAMETER
Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to
ALE, since it provides a convenient reference.
- 12 -
2
Preliminary W78C51D
TIMING WAVEFORMS
Program Fetch Cycle
S1
S2
S3
S4
S5
S6
S1
S2
S3
S4
S5
S6
XTAL1
TALW
ALE
TAPL
PSEN
TPSW
TAAS
PORT 2
TPDA
TAAH
TPDH, TPDZ
PORT 0
A0-A7
Code
Data
A0-A7
A0-A7
Code
Data
A0-A7
Data Read Cycle
S4
S5
S6
S1
S2
S3
S4
S5
S6
S1
S2
S3
XTAL1
ALE
PSEN
PORT 2
A8-A15
DATA
A0-A7
PORT 0
T DAR
T DDA
T DDH,
T DDZ
RD
T DRD
- 13 -
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
Timing Waveforms, continued
Data Write Cycle
S4
S5
S6
S1
S2
S3
S4
S5
S6
S1
S2
XTAL1
ALE
PSEN
A8-A15
PORT 2
PORT 0
A0-A7
DATA OUT
T DWD
TDAD
WR
T DWR
T DAW
Port Access Cycle
S5
S6
S1
XTAL1
ALE
TPDS
T PDA
T PDH
DATA OUT
PORT
INPUT
SAMPLE
- 14 -
S3
Preliminary W78C51D
APPLICATION CIRCUITS
Expanded External Program Memory and Crystal
VDD
VDD
31
19
10 u
CRYSTAL
8.2 K
XTAL1
R 18
XTAL2
9
C1
EA
RST
C2
12
13
14
15
INT0
INT1
T0
T1
1
2
3
4
5
6
7
8
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
39 AD0
38 AD1
37 AD2
36 AD3
35 AD4
34 AD5
33 AD6
32 AD7
AD0 3
AD1 4
AD2 7
AD3 8
AD413
AD514
AD617
AD718
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
21
22
23
24
25
26
27
28
GND 1 OC
11 G
RD
WR
PSEN
ALE
TXD
RXD
17
16
29
30
11
10
A8
A9
A10
A11
A12
A13
A14
A15
D0
D1
D2
D3
D4
D5
D6
D7
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
74HC373
2 A0
5 A1
6 A2
9 A3
12 A4
15 A5
16 A6
19 A7
A0 10
A1 9
A2 8
A3 7
A4 6
A5 5
A6 4
A7 3
A8 25
A9 24
A10 21
A11 23
A12 2
A13 26
A14 27
A15 1
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
O0
O1
O2
O3
O4
O5
O6
O7
11
12
13
15
16
17
18
19
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
GND 20 CE
22
OE
27LV512
W78C51D
Figure A
CRYSTAL
C1
C2
R
16 MHz
30P
30P
−
24 MHz
15P
15P
33 MHz
10P
10P
−
6.8K
40 MHz
5P
5P
4.7K
Above table shows the reference values for crystal applications.
Note: C1, C2, R components refer to Figure A.
- 15 -
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
Application Circuits, continued
Expanded External Data Memory and Oscillator
VDD
VDD
31
10 u
19
EA
XTAL1
18
XTAL2
9
RST
OSCILLATOR
8.2 K
12
13
14
15
1
2
3
4
5
6
7
8
INT0
INT1
T0
T1
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
39
38
37
36
35
34
33
32
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
21
22
23
24
25
26
27
28
A8
A9
A10
A11
A12
A13
A14
RD
17
16
29
30
11
10
WR
PSEN
ALE
TXD
RXD
AD0 3
AD1 4
AD2 7
AD3 8
AD4 13
AD5 14
AD6 17
AD7 18
D0
D1
D2
D3
D4
D5
D6
D7
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
2
5
6
9
12
15
16
19
GND 1
OC
11 G
74HC373
A0
A1
A2
A3
A4
A5
A6
A7
A0 10
A1 9
A2 8
A3 7
A4 6
A5 5
A6 4
A7 3
A8 25
A9 24
A10 21
A11 23
A12 2
A13 26
A14 1
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
GND 20
22
27
CE
OE
WR
20256
W78C51D
Figure B
- 16 -
D0 11
D1 12
D2 13
D3 15
D4 16
D5 17
D6 18
D7 19
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
Preliminary W78C51D
PACKAGE DIMENSIONS
40-pin DIP
Dimension in inch
Dimension in mm
Min. Nom. Max. Min. Nom. Max.
Symbol
D
40
21
E1
0.010
0.150
0.155
0.160
3.81
3.937
4.064
0.016
0.018
0.022
0.406
0.457
0.559
0.048
0.050
0.054
1.219
1.27
1.372
0.008
0.010
0.014
0.203
0.254
0.356
2.055
2.070
52.20
52.58
0.600
0.610
14.986
15.24
15.494
0.540
0.545
0.550
13.72
13.84
13.97
0.090
0.100
0.110
2.286
2.54
2.794
0.120
0.130
0.140
3.048
3.302
3.556
15
0
0.670
16.00
16.51
17.01
0
eA
S
20
0.254
0.590
a
1
5.334
0.210
A
A1
A2
B
B1
c
D
E
E1
e1
L
0.630
0.650
15
0.090
2.286
Notes:
E
S
1. Dimension D Max. & S include mold flash or
tie bar burrs.
2. Dimension E1 does not include interlead flash.
3. Dimension D & E1 include mold mismatch and
. parting line.
are determined at the mold
4. Dimension B1 does not include dambar
protrusion/intrusion.
5. Controlling dimension: Inches.
6. General appearance spec. should be based on
final visual inspection spec.
c
A A2
A1
Base Plane
Seating Plane
L
B
e1
eA
a
B1
44-pin PLCC
HD
D
6
1
44
40
Symbol
7
39
E
17
HE
GE
29
18
28
c
A
A1
A2
b1
b
c
D
E
e
GD
GE
HD
HE
L
y
Dimension in inch Dimension in mm
Min. Nom. Max. Min. Nom. Max.
0.185
0.020
4.699
0.508
0.145
0.150
0.155
0.026
0.028
0.032
0.016
0.018
0.022
0.008
0.010
0.014
0.203
0.254
0.356
0.648
0.653
0.658
16.46
16.59
16.71
0.648
0.653
0.658
16.46
16.59
16.71
0.050
BSC
3.81
3.937
0.66
0.711
0.813
0.406
0.457
0.559
3.683
1.27
BSC
0.590
0.610
0.630
14.99
15.49
0.590
0.610
0.630
14.99
15.49
16.00
0.680
0.690
0.700
17.27
17.53
17.78
16.00
0.680
0.690
0.700
17.27
17.53
17.78
0.090
0.100
0.110
2.296
2.54
2.794
0.004
0.10
L
Notes:
A2 A
1. Dimension D & E do not include interlead
flash.
2. Dimension b1 does not include dambar
protrusion/intrusion.
3. Controlling dimension: Inches
4. General appearance spec. should be based
on final visual inspection spec.
θ
e
b
b1
Seating Plane
A1
y
GD
- 17 -
Publication Release Date: January 1999
Revision A1
Preliminary W78C51D
Package Dimensions, continued
44-pin QFP
HD
Symbol
34
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
y
θ
33
1
E HE
11
12
e
Dimension in mm
Dimension in inch
D
44
b
22
Min. Nom. Max.
Min. Nom.
Max.
---
---
---
---
0.002
0.01
0.02
0.05
0.25
0.5
0.075
0.081
0.087
1.90
2.05
2.20
0.01
0.014
0.018
0.25
0.35
0.45
0.004
0.006
0.010
0.101
0.152
0.254
0.390
0.394
0.398
9.9
10.00
10.1
0.390
0.394
0.398
9.9
10.00
10.1
0.025
0.031
0.036
0.635
0.80
0.952
0.510
0.520
0.530
12.95
13.2
13.45
13.45
---
---
0.510
0.520
0.530
12.95
13.2
0.025
0.031
0.037
0.65
0.8
0.95
0.051
0.063
0.075
1.295
1.6
1.905
0.08
0.003
0
7
0
7
Notes:
1. Dimension D & E do not include interlead
flash.
2. Dimension b does not include dambar
protrusion/intrusion.
3. Controlling dimension: Millimeter
4. General appearance spec. should be based
on final visual inspection spec.
c
A2 A
θ
A1
Seating Plane
See Detail F
L
y
L1
Headquarters
Detail F
Winbond Electronics (H.K.) Ltd.
Rm. 803, World Trade Square, Tower II,
No. 4, Creation Rd. III,
123 Hoi Bun Rd., Kwun Tong,
Science-Based Industrial Park,
Kowloon, Hong Kong
Hsinchu, Taiwan
TEL: 852-27513100
TEL: 886-3-5770066
FAX: 852-27552064
FAX: 886-3-5792766
http://www.winbond.com.tw/
Voice & Fax-on-demand: 886-2-27197006
Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-27190505
FAX: 886-2-27197502
Note: All data and specifications are subject to change without notice.
- 18 -
Winbond Electronics North America Corp.
Winbond Memory Lab.
Winbond Microelectronics Corp.
Winbond Systems Lab.
2727 N. First Street, San Jose,
CA 95134, U.S.A.
TEL: 408-9436666
FAX: 408-5441798