ETC WED9LC6816V1512BC

WED9LC6816V
White Electronic Designs
256Kx32 SSRAM/4Mx32 SDRAM
External Memory Solution for Texas Instruments
TMS320C6000 DSP
FEATURES
DESCRIPTION
n Clock speeds:
The WED9LC6816V is a 3.3V, 256K x 32 Synchronous
Pipeline SRAM and a 4Mx32 Synchronous DRAM array
constructed with one 256K x 32 SBSRAM and two 4Mx16
SDRAM die mounted on a multilayer laminate substrate. The device is packaged in a 153 lead, 14mm by
22mm, BGA.
• SSRAM: 200, 166,150, and 133 MHz
• SDRAMs: 125 and 100 MHz
n DSP Memory Solution
• Texas Instruments TMS320C6201
The WED9LC6816V provides a total memory solution
for the Texas Instruments TMS320C6201 and the
TMS320C6701 DSPs The Synchronous Pipeline SRAM
is available with clock speeds of 200, 166,150,v and
133 MHz, allowing the user to develop a fast external
memory for the SSRAM interface port .
• Texas Instruments TMS320C6701
n Packaging:
• 153 pin BGA, JEDEC MO-163
n 3.3V Operating supply voltage
n Direct control interface to both the SSRAM and
The SDRAM is available in clock speeds of 125 and
100 MHz, allowing the user to develop a fast external
memory for the SDRAM interface port.
SDRAM ports on the “C6x”
n Common address and databus
n 65% space savings vs. monolithic solution
n Reduced system inductance and capacitance
The WED9LC6816V is available in both commercial
and industrial temperature ranges.
FIG. 1 PIN CONFIGURATION
PIN DESCRIPTION
TOP VIEW
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
1
DQ19
DQ18
VCCQ
DQ17
DQ16
VCCQ
NC
NC
A6
A17
NC
VCCQ
DQ12
DQ13
VCCQ
DQ14
DQ15
August 2002 Rev 0
ECO #14663
2
DQ23
DQ22
VCCQ
DQ21
DQ20
VCCQ
NC
NC
A7
NC/A18
NC
VCCQ
DQ11
DQ10
VCCQ
DQ9
DQ8
3
VCC
VCC
VCC
VCC
VCC
VCC
NC
A8
A9
NC/A19
NC
VCC
VCC
VCC
VCC
VCC
VCC
4
V SS
V SS
SDWE
V SS
V SS
V SS
SDRAS
V SS
V SS
V SS
BWE2
BWE0
V SS
V SS
V SS
SSADC
SSOE
5
V SS
SDCE
SDA10
V SS
SDCLK
V SS
SDCAS
V SS
V SS
V SS
BWE3
BWE3
V SS
SSCLK
V SS
SSWE
SSCE
6
V SS
V SS
NC
V SS
V SS
V SS
V SS
NC
NC
NC
NC
NC
V SS
V SS
V SS
NC
NC
7
VCC
VCC
VCC
VCC
VCC
VCC
A2
A1
A0
NC
NC
NC
VCC
VCC
Vcc
VCC
VCC
1
8
DQ24
DQ25
VCCQ
DQ26
DQ27
VCCQ
A4
A3
A11
A13
A15
A15
DQ4
DQ5
VCCQ
DQ6
DQ7
9
DQ28
DQ29
VCCQ
DQ30
DQ31
VCCQ
A5
A10
A12
A14
A16
A16
DQ0
DQ1
VCCQ
DQ2
DQ3
A0-17
Address Bus
DQ0-31
Data Bus
SSCLK
SSRAM Clock
SSADC SSRAM Address Status Control
SSWE
SSRAM Write Enable
SSOE
SSRAM Output Enable
SDCLK
SDRAM Clock
SDRAS
SDRAM Row Address Strobe
SDCAS SDRAM Column Address Strobe
SDWE
SDRAM Write Enable
SDA10 SDRAM Address 10/auto precharge
BWE0-3
SSRAM Byte Write Enables
SDRAM SDQM 0-3
SSCE
Chip Enable SSRAM Device
SDCE
Chip Enable SDRAM Device
VCC
Power Supply pins, 3.3V
VCCQ
Data Bus Power Supply pins,
3.3V (2.5V future)
V SS
Ground
NC
No Contact
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
FIG. 2 BLOCK DIAGRAM
A0-17
A0
A1
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
DQ1-8
DQ9-16
DQ17-24
DQ25-32
SSWE
BWE0
BWE1
BWE2
BWE3
BWE
BW1
BW2
BW3
BW4
SSCE
SSOE
SSADC
CE2
OE
ADSC
SSCLK
SDA10
DQ16-23
DQ24-31
CLK
A12
A13
SDCE
SDRAS
SDCAS
SDWE
SDCLK
A12
A13
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
DQ0-7
DQ8-15
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A11
A10/AP
BA0
BA1
LDQM
UDQM
CS
RAS
CAS
WE
CLK
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A11
A10/AP
BA0
BA1
LDQM
UDQM
CS
RAS
CAS
WE
CLK
2
DQ0-31
DQ0-7
DQ0-7
DQ8-15
DQ8-15
DQ0-7
DQ16-23
DQ8-15
DQ24-31
White Electronic Designs
WED9LC6816V
OUTPUT FUNCTIONAL DESCRIPTIONS
Symbol
Type
Signal
Polarity
SSCLK
Input
Pulse
Positive Edge
SSADS
SSOE
SSWE
Input
Pulse
Active Low
Function
The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock.
When sampled at the positive rising edge of the clock, SSADS, SSOE, and SSWE define
the operation to be executed by the SSRAM.
SSCE
Input
Pulse
Active Low
SDCLK
Input
Pulse
Positive Edge
The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.
SSCE disable or enable SSRAM device operation.
SDCE
Input
Pulse
Active Low
SDCE disable or enable device operation by masking or enabling all inputs except SDCLK and BWE0-3.
SDRAS
SDCAS
SDWE
Input
Pulse
Active Low
When sampled at the positive rising edge of the clock, SDCAS, SDRAS, and SDWE define
the operation to be executed by the SDRAM.
Address bus for SSRAM and SDRAM
A0 and A1 are the burst address inputs for the SSRAM
During a Bank Active command cycle, A0-11, SDA10 defines the row address (RA0-10)
when sampled at the rising clock edge.
A 0-17 ,
SDA10
Input
Level
—
During a Read or Write command cycle, A0-7 defines the column address (CA0-7) when
sampled at the rising clock edge. In addition to the row address, SDA10 is used to invoke
Autoprecharge operation at the end of the Burst Read or Write Cycle. If SDA10 is high,
autoprecharge is selected and A12 and A13 define the bank to be precharged. If SDA10 is
low, autoprecharge is disabled.
During a Precharge command cycle, SDA10 is used in conjunction with A 12 and A13 to
control which bank(s) to precharge. If SDA10 is high, all banks will be precharged regardless
of the state of A12 and A13. If SDA10 is low, then A12 and A13 are used to define which
bank to precharge.
DQ 0-31
Input
Output
Level
BWE0-3
Input
Pulse
VCC, VSS
Supply
Power and ground for the input buffers and the core logic.
VCCQ
Supply
Data base power supply pins, 3.3V (2.5V future).
—
Data Input/Output are multiplexed on the same pins.
BWE0-3 perform the byte write enable function for the SSRAM and DQM function for the
SDRAM. BWE0 is associated with DQ0-7, BWE1 with DQ8-15, BWE2 with DQ16-23 and BWE3
with DQ24-31.
3
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
ABSOLUTE MAXIMUM RATINGS
Voltage on V CC Relative to VSS
Vin (DQx)
RECOMMENDED DC OPERATING CONDITIONS
(VCC = 3.3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C £ TA £ 70°C,
COMMERCIAL; -40°C£ TA £ 85°C, INDUSTRIAL)
-0.5V to +4.6V
-0.5V to Vcc +0.5V
Storage Temperature (BGA)
Parameter
-55°C to +125°C
Junction Temperature
+150°C
Short Circuit Output Current
100 mA
*Stress greater than those listed under "Absolute Maximum Ratings"
may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other
conditions greater than those indicated in operational sections of
this specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect reliability.
Symbol
Min
Max
Supply Voltage (1)
VCC
3.135
3.6
Units
V
Input High Voltage (1,2)
VIH
2.0
VCC +0.3
V
Input Low Voltage (1,2)
VIL
-0.3
0.8
V
Input Leakage Current
0 £ VIN £ VCC
ILI
-10
10
µA
Output Leakage (Output Disabled)
0 £ VIN £ VCC
ILO
-10
10
µA
SSRAM Output High (IOH = -4mA) (1)
VOH
2.4
—
V
SSRAM Output Low (IOL = 8mA) (1)
VOL
—
0.4
V
SDRAM Output High (IOH = -2mA)
VOH
2.4
—
V
SDRAM Output Low (IOL = 2mA)
VOL
—
0.4
V
NOTES:
1. All voltages referenced to V SS (GND).
2. Overshoot: V IH £ +6.0V for t £ tKC /2
Underershoot: V IL ³ -2.0V for t £ tKC/2
DC ELECTRICAL CHARACTERISTICS
(VCC = 3.3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C £ TA £ 70°C, COMMERCIAL; -40°C £ TA £ 85°C, INDUSTRIAL)
Description
Power Supply Current:
Operating (1,2,3)
Conditions
Symbol Frequency
SSRAM Active / DRAM Auto Refresh
Typ
Max
I CC 1
133MHz
150MHz
166MHz
200MHz
500
500
550
600
625
650
700
800
Units
325
350
400
450
425
450
495
585
500
500
550
625
650
700
mA
mA
Power Supply Current
Operating (1,2,3)
SSRAM Active / DRAM Idle
I CC 2
133MHz
150MHz
166MHz
200MHz
Power Supply Current
Operating (1,2,3)
SSRAM Active / SSRAM Idle
I CC 3
83MHz
100MHz
125MHz
CMOS Standby
SSCE and SDCE £ VCC -0.2V,
All other inputs at VSS +0.2 £ VIN or
VIN £ VCC -0.2V, Clk frequency = 0
I SB 1
20.0
40.0
mA
TTL Standby
SSCE and SDCE £ VIH min
All other inputs at VIL max £ VIN or
VIN £ VCC -0.2V, Clk frequency = 0
I SB 2
30.0
55.0
mA
I CC 5
250
300
mA
Auto Refresh
mA
NOTES:
1. ICC (operating) is specified with no output current. ICC (operating) increases with faster cycle times and greater output loading.
2. "Device idle" means device is deselected (CE = VIH) Clock is running at max frequency and Addresses are switching each cycle.
3. Typical values are measured at 3.3V, 25°C. ICC (operating) is specified at specified frequency.
BGA CAPACITANCE
Description
Conditions
Symbol
Typ
Max
Units
Address Input Capacitance (1)
TA = 25°C; f = 1MHz
CI
5
8
pF
Input/Output Capacitance (DQ) (1)
TA = 25°C; f = 1MHz
CO
8
10
pF
Control Input Capacitance (1)
TA = 25°C; f = 1MHz
CA
5
8
pF
Clock Input Capacitance (1)
TA = 25°C; f = 1MHz
C CK
4
6
pF
NOTE:
1. This parameter is sampled.
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
4
WED9LC6816V
White Electronic Designs
SSRAM AC CHARACTERISTICS
(VCC = 3.3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C £ TA £ 70°C, COMMERCIAL; -40°C £ TA £ 85°C, INDUSTRIAL)
Symbol
Parameter
200MHz
Min
Max
166MHz
Min
Max
150MHz
Min
Max
133MHz
Min
Max
Units
Clock Cycle Time
t KHKH
5
6
7
8
ns
Clock HIGH Time
t KLKH
1.6
2.4
2.6
2.8
ns
Clock LOW Time
t KHKL
1.6
Clock to output valid
t KHQV
Clock to output invalid
t KHQX
1.5
Clock to output on Low-Z
t KQLZ
0
Clock to output in High-Z
t KQHZ
1.5
Output Enable to output valid
t OELQV
Output Enable to output in Low-Z
t OELZ
Output Enable to output in High-Z
t OEHZ
2.4
2.5
2.6
3.5
1.5
1.5
0
3
1.5
2.5
0
1.5
3.5
1.5
3.8
ns
4.0
ns
4.0
ns
3.8
ns
0
3.5
ns
ns
0
3.8
0
3.5
ns
4.0
1.5
0
3.5
0
3.0
2.8
3.8
ns
Address, Control, Data-in Setup Time to Clock
tS
1.5
1.5
1.5
1.5
ns
Address, Control, Data-in Hold Time to Clock
tH
0.5
0.5
0.5
0.5
ns
5
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
SSRAM OPERATION TRUTH TABLE
Operation
Address Used
SSCE
SSADS
SSWE
SSOE
DQ
None
H
L
X
X
High-Z
WRITE Cycle, Begin Burst
External
L
L
L
X
D
READ Cycle, Begin Burst
External
L
L
H
L
Q
READ Cycle, Begin Burst
External
L
L
H
H
High-Z
READ Cycle, Suspend Burst
Current
X
H
H
L
Q
READ Cycle, Suspend Burst
Current
X
H
H
H
High-Z
READ Cycle, Suspend Burst
Current
H
H
H
L
Q
READ Cycle, Suspend Burst
Current
H
H
H
H
High-Z
WRITE Cycle, Suspend Burst
Current
X
H
L
X
D
WRITE Cycle, Suspend Burst
Current
H
H
L
X
D
Deselected Cycle, Power Down
NOTE:
1. X means “don’t care”, H means logic HIGH. L means logic LOW.
2. All inputs except SSOE must meet setup and hold times around the rising edge (LOW to HIGH) of SSCLK.
3. Suspending burst generates wait cycle
4. For a write operation following a read operation, SSOE must be HIGH before the input data required setup time plus High-Z time for SSOE and
staying HIGH through out the input data hold time.
5. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
SSRAM PARTIAL TRUTH TABLE
Function
SSWE
BWE0 BWE1 BWE2 BWE3
READ
H
X
X
X
X
WRITE one Byte (DQ0-7)
L
L
H
H
H
WRITE all Bytes
L
L
L
L
L
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
6
WED9LC6816V
White Electronic Designs
FIG. 3 SSRAM READ TIMING
tKHKL tKLKH
tKHKH
SSCLK
tS
tH
SSADS
tS
SSCE
tH
tS
ADDR
A1
A2
A3
A5
A4
tH
SSOE
tOEHZ
tOELQ V
SSWE
tKHQX
tKQLZ
tKHQV
Q(A1)
DQ
Q(A2)
Q(A3)
Q(A4)
Q(A5)
FIG. 4 SSRAM WRITE TIMING
tKHK H
t KHK L t KLKH
SSCLK
tS
tH
SSADS
tH
SSCE
tH
tS
ADDR
A2
A1
A3
A4
A5
tH
t OEHZ
SSOE
Must be HIGH
KHG WX
tS
tH
SSWE
tS
DQ
D(A1)
tH
D(A2)
7
D(A3)
D (A4)
D(A5)
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
SDRAM AC CHARACTERISTICS
(VCC = 3.3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C£TA£70°C, COMMERCIAL; -40°C£TA£85°C, INDUSTRIAL)
Symbol
125MHz
Parameter
Clock Cycle Time (1)
100MHz
83MHz
Min
Max
Min
Max
Min
Max
CL = 3
t CC
8
1000
10
1000
12
1000
CL = 2
t CC
10
1000
12
1000
15
1000
6
7
ns
Clock to valid Output delay (1,2)
t SAC
Output Data Hold Time (2)
t OH
3
3
3
ns
Clock HIGH Pulse Width (3)
t CH
3
3
3
ns
Clock LOW Pulse Width (3)
t CL
3
3
3
ns
Input Setup Time (3)
tSS
2
2
2
ns
Input Hold Time (3)
t SH
1
1
1
ns
CLK to Output Low-Z (2)
t SLZ
2
2
2
CLK to Output High-Z
t SHZ
Row Active to Row Active Delay (4)
t RRD
20
20
24
ns
RAS\ to CAS\ Delay (4)
t RCD
20
20
24
ns
Row Precharge Time (4)
t RP
20
20
24
Row Active Time (4)
t RAS
50
Row Cycle Time - Operation (4)
t RC
70
80
90
Row Cycle Time - Auto Refresh (4,8)
t RFC
70
80
90
ns
Last Data in to New Column Address Delay (5)
t CDL
1
1
1
CLK
Last Data in to Row Precharge (5)
t RDL
1
1
1
CLK
Last Data in to Burst Stop (5)
t BDL
1
1
1
CLK
Column Address to Column Address Delay (6)
t CCD
1.5
1.5
1.5
CLK
2
2
2
1
2
1
7
Number of Valid Output Data (7)
10,000
8
Units
7
50
10,000
ns
8
60
ns
ns
ns
10,000
ns
ns
ea
NOTES:
1. Parameters depend on programmed CAS latency.
2. If clock rise time is longer than 1ns (trise/2 -0.5)ns should be added to the parameter.
3. Assumed input rise and fall time = 1ns. If trise of tfall are longer than 1ns. [(trise = tfall)/2] - 1ns should be added to the parameter.
4. The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up
to the next higher integer.
5. Minimum delay is required to complete write.
6. All devices allow every cycle column address changes.
7. In case of row precharge interrupt, auto precharge and read burst stop.
8. A new command may be given tRFC after self-refresh exit.
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
8
WED9LC6816V
White Electronic Designs
CLOCK FREQUENCY AND LATENCY PARAMETERS - 125MHZ SDRAM
(UNIT = NUMBER OF CLOCK)
Frequency
CAS
Latency
t RC
t RAS
t RP
t RRD
t RCD
t CCD
tCDL
tRDL
70ns
50ns
20ns
20ns
20ns
10ns
10ns
10ns
125MHz (8.0ns)
3
9
6
3
2
3
1
1
1
100MHz (10.0ns)
3
7
5
2
2
2
1
1
1
83MHz (12.0ns)
2
6
4
2
2
2
1
1
1
CLOCK FREQUENCY AND LATENCY PARAMETERS - 100MHZ SDRAM
(UNIT = NUMBER OF CLOCK)
Frequency
CAS
Latency
t RC
t RAS
t RP
tRRD
t RCD
t CCD
tCDL
t RDL
70ns
50ns
20ns
20ns
20ns
10ns
10ns
10ns
100MHz (12.0ns)
3
7
5
2
2
2
1
1
1
83MHz (12.0ns)
2
6
5
2
2
2
1
1
1
REFRESH CYCLE PARAMETERS
-10
Parameter
Refresh Period (1,2)
-12
Symbol
Min
Max
Min
Max
Units
t REF
—
64
—
64
ms
NOTES:
1. 4096 cycles
2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the device.
SDRAM COMMAND TRUTH TABLE
SDCE
SDRAS
Mode Register Set
L
Auto Refresh (CBR)
L
Precharge
Single Bank
Precharge all Banks
Function
BWE
A12, A13
SDA10
A11-0
SDCAS
SDWE
L
L
L
X
L
L
H
X
X
L
L
H
L
X
BA
L
L
L
H
L
X
X
H
Notes
OP CODE
X
2
Bank Activate
L
L
H
H
X
BA
Row Address
Write
L
H
L
L
X
BA
L
2
2
Write with Auto Precharge
L
H
L
L
X
BA
H
2
Read
L
H
L
L
X
BA
L
2
Read with Auto Precharge
L
H
L
H
X
BA
H
2
Burst Termination
L
H
H
L
X
X
X
3
No Operation
L
H
H
H
X
X
X
Device Deselect
H
X
X
X
X
X
X
Data Write/Output Disable
X
X
X
X
L
X
X
4
Data Mask/Output Disable
X
X
X
X
H
X
X
4
NOTES:
1. All of the SDRAM operations are defined by states of SDCE\, SDWE\, SDRAS\, SDCAS\, and BWE 0-3 at the positive rising edge of the clock.
2. Bank Select (BA), A12 (BA0) and A13 (BA 1) select between different banks.
3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency.
4. The BWE has two functions for the data DQ Read and Write operations. During a Read cycle, when BWE goes high at a clock timing the data
outputs are disabled and become high impedance after a two clock delay. BWE also provides a data mask function for Write cycles. When it
activates, the Write operation at the clock is prohibited (zero clock latency).
9
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
MODE REGISTER SET TABLE
A11 A10 A9
A8
A7
A6
A5
A3
A4
A2
A1 A0
Address Bus
Mode Register (Mx)
Reserved* WB Op Mode
CAS Latency
BT
Burst Length
*Should program
M11, M10 = "0, 0"
to ensure compatibility
with future devices.
Burst Length
M2 M1 M0
M3 = 0
M3 = 1
0
0
0
1
1
0
0
1
2
2
0
1
0
4
4
0
1
1
8
8
1
0
0
Reserved
Reserved
1
0
1
Reserved
Reserved
1
1
0
Reserved
Reserved
1
1
1
Full Page
Reserved
Burst Type
M3
0
Sequential
1
Interleaved
M6 M5 M4
0
0
Reserved
0
0
1
Reserved
0
1
0
2
0
1
1
3
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
M8
M7
M6-M0
0
0
Defined
-
-
-
M9
Write Burst Mode
0
Programmed Burst Length
1
Single Location Access
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
10
CAS Latency
0
Operating Mode
Standard Operation
All other states reserved
White Electronic Designs
WED9LC6816V
SDRAM CURRENT STATE TRUTH TABLE
Command
Current State
SDCE
Idle
Row Active
Read
Write
SDRAS SDCAS SDWE
A12 & A13
(BA)
A11-A0
OP Code
Action
Notes
Description
L
L
L
L
Mode Register Set
Set the Mode Register
1
L
L
L
H
X
X
Auto or Self Refresh
Start Auto
1
L
L
H
L
X
X
Precharge
No Operation
L
L
H
H
BA
Row Address
Bank Activate
Activate the specified bank and row
L
H
L
L
BA
Column
Write w/o Precharge
ILLEGAL
2
L
H
L
H
BA
Column
Read w/o Precharge
ILLEGAL
1
L
H
H
L
X
X
Burst Termination
No Operation
1
L
H
H
H
X
X
No Operation
No Operation
H
X
X
X
X
Device Deselect
No Operation
L
L
L
L
L
L
L
H
L
L
H
L
X
L
L
H
H
BA
L
H
L
L
BA
Column
L
H
L
H
BA
Column
L
H
H
L
X
X
Burst Termination
No Operation
X
OP Code
Mode Register Set
ILLEGAL
Auto or Self Refresh
ILLEGAL
X
Precharge
Precharge
3
Row Address
Bank Activate
ILLEGAL
1
Write
Start Write; Determine if Auto Precharge
4,5
Read
Start Read; Determine if Auto Precharge
4,5
X
X
L
H
H
H
X
X
No Operation
No Operation
H
X
X
X
X
X
Device Deselect
No Operation
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
Terminate Burst; Start the Precharge
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
Terminate Burst; Start the Write cycle
5,6
L
H
L
H
BA
Column
Read
Terminate Burst; Start a new Read cycle
5,6
L
H
H
L
X
X
Burst Termination
Terminate the Burst
OP Code
X
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
Terminate Burst; Start the Precharge
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
Terminate Burst; Start a new Write cycle
5,6
L
H
L
H
BA
Column
Read
Terminate Burst; Start the Read cycle
5,6
L
H
H
L
X
X
Burst Termination
Terminate the Burst
OP Code
X
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto or Self Refresh
ILLEGAL
OP Code
X
L
L
H
L
X
X
Precharge
ILLEGAL
2
Read with
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
Auto Precharge
L
H
L
L
BA
Column
Write
ILLEGAL
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
ILLEGAL
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
11
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
SDRAM CURRENT STATE TRUTH TABLE (CONT.)
Command
Current State
Action
SDCE
SDRAS SDCAS SDWE
L
L
L
L
L
L
L
H
A12 & A13
(BA)
A11-A0
Description
Mode Register Set
ILLEGAL
X
Auto or Self Refresh
ILLEGAL
OP Code
X
Notes
L
L
H
L
X
X
Precharge
ILLEGAL
2
Write with
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
Auto Precharge
L
H
L
L
BA
Column
Write
ILLEGAL
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
ILLEGAL
Precharging
Row Activating
Write Recovering
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
No Operation; Bank(s) idle after tRP
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write w/o Precharge
ILLEGAL
2
20
OP Code
X
L
H
L
H
BA
Column
Read w/o Precharge
ILLEGAL
L
H
H
L
X
X
Burst Termination
No Operation; Bank(s) idle after tRP
L
H
H
H
X
X
No Operation
No Operation; Bank(s) idle after tRP
H
X
X
X
X
X
Device Deselect
No Operation; Bank(s) idle after tRP
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
2
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
ILLEGAL
2
L
H
L
H
BA
Column
Read
ILLEGAL
2
L
H
H
L
X
X
Burst Termination
No Operation; Row active after tRCD
OP Code
X
L
H
H
H
X
X
No Operation
No Operation; Row active after tRCD
H
X
X
X
X
X
Device Deselect
No Operation; Row active after tRCD
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto orSelf Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
2
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
OP Code
X
L
H
L
L
BA
Column
Write
Start Write; Determine if Auto Precharge
6
L
H
L
H
BA
Column
Read
Start Read; Determine if Auto Precharge
6
L
H
H
L
X
X
Burst Termination
No Operation; Row active after tDPL
L
H
H
H
X
X
No Operation
No Operation; Row active after tDPL
H
X
X
X
X
X
Device Deselect
No Operation; Row active after tDPL
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto orSelf Refresh
ILLEGAL
OP Code
X
L
L
H
L
X
X
Precharge
ILLEGAL
2
Write Recovering
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
with Auto
L
H
L
L
BA
Column
Write
ILLEGAL
2,6
Precharge
L
H
L
H
BA
Column
Read
ILLEGAL
2,6
L
H
H
L
X
X
Burst Termination
No Operation; Precharge after tDPL
L
H
H
H
X
X
No Operation
No Operation; Precharge after tDPL
H
X
X
X
X
X
Device Deselect
No Operation; Precharge after tDPL
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
12
WED9LC6816V
White Electronic Designs
SDRAM CURRENT STATE TRUTH TABLE (CONT.)
Command
Current State
Action
SDCE
Refreshing
SDRAS SDCAS SDWE
A12 & A13
(BA)
A11-A0
L
L
L
L
L
L
L
H
OP Code
L
L
H
L
X
X
Precharge
ILLEGAL
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
L
H
L
L
BA
Column
Write
ILLEGAL
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
No Operation; Idle after tRC
L
H
H
H
X
X
No Operation
No Operation; Idle after tRC
H
X
X
X
X
X
Device Deselect
No Operation; Idle after tRC
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
X
X
OP Code
Notes
Description
Mode Register Set
ILLEGAL
Auto or Self Refresh
ILLEGAL
Mode Register
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
Accessing
L
H
L
L
BA
Column
Write
ILLEGAL
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
ILLEGAL
L
H
H
H
X
X
No Operation
No Operation; Idle after two clock cycles
H
X
X
X
X
X
Device Deselect
No Operation; Idle after two clock cycles
NOTES:
1. Both Banks must be idle otherwise it is an illegal action.
2. The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegal. If BA selects the bank not being
referenced by the Current State then the action may be legal depending on the state of that bank.
3. The minimum and maximum Active time (tRAS) must be satisfied.
4. The RAS to CAS Delay (tRCD) must occur before the command is given.
5. Address SDA10 is used to determine if the Auto Precharge function is activated.
6. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.
The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.
13
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
FIG. 5 SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE) @
CAS LATENCY = 3, BURST LENGTH = 1
0
2
1
4
3
6
5
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
tCH
tCC
tCL
tRCD
tRAS
SDCE
tSS
tRCD
tSH
tRP
tSH
tSS
SDRAS
tSS
tCCD
tSH
SDCAS
tSS
tSH
tSH
tSS
ADDR
Ra
Ca
Cb
Cc
BA0, 1
[A12,A13]
BS
BS
BS
BS
SDA10
Ra
Rb
BS
BS
Rb
tRAC
tSS
tSAC
Qa
DQ
tSLZ
tOH
tSH
Qc
Db
tSS
tSH
tSS
tSH
SDWE
BWE
Row Active
Read
Read
Write
Precharge
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
14
Row Active
DON’T CARE
WED9LC6816V
White Electronic Designs
FIG. 6 SDRAM POWER UP SEQUENCE
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
tRFC
tRP
tRFC
SDRAS
SDCAS
ADDR
Key
RAa
BA0,1
[A12,A13]
RAa
SDA10
HIGH-Z
DQ
SDWE
BWE
High level is necessary
Precharge
(All Banks)
Auto Refresh
Auto Refresh
Mode Register Set
Row Active
(A-Bank)
DON’T CARE
15
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
FIG. 7 SDRAM READ & WRITE CYCLE AT SAME BANK @
BURST LENGTH = 4
1
0
2
3
4
6
5
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
tRC
Note 1
SDCE
tRCD
SDRAS
SDCAS
ADDR
Ra
Ca0
Rb
Cb0
BA0, 1
[A12,A13]
SDA10
Ra
Rb
tRAC
Note 3
tOH
tSAC
Qa0
CL=2
tRAC
Note 3
DQ
Qa1
Qa2
Qa1
tRDL
Qa3
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
tSHZ Note 4
tOH
tSAC
Qa0
CL=3
tSHZ Note 4
Qa2
Qa3
tRDL
SDWE
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Precharge
(A-Bank)
Row Active
(A-Bank)
Write
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. Minimum row cycle times are required to complete internal DRAM operation.
2. Row precharge can interrupt burst on any cycle. (CAS Latency - 1) number of valid output data is available after Row precharge. Last
valid output will be Hi-Z (tSHZ) after the clock.
3. Access time from Row active command. tCC *(tRCD + CAS Latency - 1) + tSAC.
4. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
16
WED9LC6816V
White Electronic Designs
FIG. 8 SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @
BURST LENGTH = 4
1
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
tRCD
SDRAS
Note 2
SDCAS
ADDR
Ra
Ca0
Cb0
Cc0
Cd0
BA0, 1
[A12,A13]
SDA10
Ra
tRDL
Qa0
CL=2
Qa1
Qb0
Qb1
Qb2
Qa2
Qa3
Dc0
DQ
Dc1
Dd0
Dd1
Dd0
Dd1
tCDL
Qa0
CL=3
Qa1
Dc0
Dc1
SDWE
Note 3
Note 1
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Read
(A-Bank)
Write
(A-Bank)
Write
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. To write data before burst read ends. BWE should be asserted three cycle prior to write command to avoid bus contention.
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge will be written.
3. BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after
Row precharge cycle will be masked internally.
17
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
FIG. 9 SDRAM PAGE READ CYCLE AT DIFFERENT BANK @
BURST LENGTH = 4
1
0
2
3
4
6
5
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
Note 1
SDCE
SDRAS
Note 2
SDCAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
CAe
BA0, 1
[A12,A13]
SDA10
RAa
RBb
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
CL=2
DQ
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 Qbb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
CL=3
SDWE
BWE
Row Active
(A-Bank)
Row Active
(B-Bank)
Read
(B-Bank)
Read
(A-Bank)
Read
(B-Bank)
Read
(A-Bank)
Read
(A-Bank)
NOTES:
1. SDCE can be “don’t care” when SDRAS, SDCAS and SDWE are high at the clock going high edge.
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
18
Precharge
(A-Bank)
DON’T CARE
WED9LC6816V
White Electronic Designs
FIG. 10 SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @
BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
Note 2
SDCAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBb
BA0, 1
[A12,A13]
SDA10
RAa
RBb
tCDL
tRDL
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0 DBd1
DQ
SDWE
Note 1
BWE
Row Active
(A-Bank)
Row Active
(A-Bank)
Write
(A-Bank)
Write
(B-Bank)
Write
(B-Bank)
Precharge
(Both Banks)
Write
(A-Bank)
DON’T CARE
NOTES:
1. To interrupt burst write by Row precharge, BWE should be asserted to mask invalid input data.
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.
19
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
FIG. 11 SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @
BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
RAa
CAa
RBb
CBb
CAc
RAc
BA0, 1
[A12,A13]
SDA10
RAa
RBb
RAc
tCDL
QAa0 QAa1 QAa2 QAa3
CL=2
Note 1
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1 QAc2
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1
DQ
QAa0 QAa1 QAa2 QAa3
CL=3
SDWE
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Write
(B-Bank)
Precharge
(A-Bank)
Row Active
(A-Bank)
Row Active
(A-Bank)
NOTES:
1. tCDL should be met to complete write.
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
20
Read
(A-Bank)
DON’T CARE
WED9LC6816V
White Electronic Designs
FIG. 12 SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @
BURST LENGTH = 4
1
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
Ra
Rb
Ra
Rb
Ca
Cb
BA0, 1
[A12,A13]
SDA10
Qa0
CL=2
Qa1
Qa2
Qa3
Qa0
Qa1
Qa2
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
DQ
CL=3
Qa3
SDWE
BWE
Row Active
(A-Bank)
Read with
Auto Precharge
(A-Bank)
Row Active
(B-Bank)
Write with
Auto Precharge
(B-Bank)
Auto Precharge
Start Point
(A-Bank)
Auto Precharge
Start Point
(B-Bank)
DON’T CARE
NOTES:
1. tCDL should be controlled to meet minimum tRAS before internal precharge start.
(In the case of Burst Length = 1 & 2 and BRSW mode)
21
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
FIG. 13 SDRAM READ INTERRUPTED BY PRECHARGE COMMAND &
READ BURST STOP @ BURST LENGTH = FULL PAGE
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
RAa
CAa
CAb
BA0, 1
[A12,A13]
SDA10
RAa
CL=2
Note 2 1
1
QAa0 QAa1 QAa2 QAa3 QAa4
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5
DQ
CL=3
2
2
QAa0 QAa1 QAa2 QAa3 QAa4
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5
SDWE
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Burst Stop
Read
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.
2. About the valid DQs after burst stop, it is the same as the case of SDRAS interrupt. Both cases are illustrated in the above timing
diagram. See the label 1, 2 on each of them. But at burst write, burst stop and SDRAS interrupt should be compared carefully. Refer
to the timing diagram of “Full page write burst stop cycle”.
3. Burst stop is valid at every burst length.
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
22
WED9LC6816V
White Electronic Designs
FIG. 14 SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND &
WRITE BURST STOP @ BURST LENGTH = FULL PAGE
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
RAa
CAa
CAb
BA0, 1
[A12,A13]
SDA10
RAa
tRDL
tBDL
Note 2
DAb0 DAb1 DAb2 DAb3 DAB4 DAb5
DAa0 DAa1 DAa2 DAa3 DAa4
DQ
SDWE
BWE
Row Active
(A-Bank)
Write
(A-Bank)
Burst Stop
Write
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.
2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by AC parameter
of tRDL. BWE at write interrupt by precharge command is needed to prevent invalid write.
BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row
precharge cycle will be masked internally.
3. Burst stop is valid at every burst length.
23
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
FIG. 15 SDRAM BURST READ SINGLE BIT WRITE CYCLE @
BURST LENGTH = 2
0
1
2
3
4
5
6
RBb
CAb
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
RAa
CAa
RAc
CBc
CAd
BA0, 1
[A12,A13]
SDA10
RBb
RAa
DAa0
CL=2
RAc
DBc0
QAb0 QAb1
QAd0 QAd1
DQ
DAa0
CL=3
QAa1 QAb1
QAd0 QAd1
DBc0
SDWE
BWE
Row Active
(A-Bank)
Row Active
Write with
(A-Bank) Auto Precharge
(B-Bank)
Row Active
(B-Bank)
Write
(A-Bank)
Read with
Auto Precharge
(A-Bank)
Read
(A-Bank)
Precharge
(Both Banks)
DON’T CARE
NOTES:
1. BRSW modes enabled by setting A9 “High” at MRS (Mode Register Set).
At the BRSW Mode, the burst length at Write is fixed to “1” regardless of programmed burst length.
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is
executed at the burst-end cycle, so in the case of BRSW write command, the next cycle starts the precharge.
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
24
WED9LC6816V
White Electronic Designs
FIG. 16
SDRAM MODE REGISTER
SET CYLE
0
1
2
3
4
5
6
SDRAM AUTO REFRESH CYCLE
7
8
0
1
2
3
4
5
6
7
8
9
10
SDCLK
HIGH
SDCE
Note 2
t RFC
SDRAS
Note 1
SDCAS
Note 3
Key
ADDR
DQ
Ra
HI-Z
HI-Z
SDWE
BWE
MRS
New
Command
Auto Refresh
New Command
DON'T CARE
*Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycle.
NOTES:
MODE REGISTER SET CYCLE
1. SDCE, SDRAS, SDCAS & SDWE activation at the same clock cycle with address key will set internal mode register.
2. Minimum 2 clock cycles should be met before new SDRAS activation.
3. Please refer to Mode Register Set Table.
25
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6816V
White Electronic Designs
PACKAGE DESCRIPTION: 153 LEAD BGA (17 X 9 BALL ARRAY)
JEDEC MP-163
3.50 (0.138)
MAX
14.00 (0.551)
BSC
A
B
PIN 1 INDEX
C
D
E
F
G
H
22.00 (0.866)
BSC
J
K
L
M
N
P
R
T
U
1.27 (0.050) TYP
ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE:
Ball attach pad for above BGA package is 480 microns in diameter. Pad is solder mask defined.
ORDERING INFORMATION
COMMERCIAL (0°C £ TA £ 70°C)
INDUSTRIAL (-40°C £ TA £ 85°C)
SSRAM Access
SDRAM Access
SSRAM Access
SDRAM Access
WED9LC6816V2012BC
200MHz
125MHz
WED9LC6816V2012BI
200MHz
125MHz
WED9LC6816V2010BC
200MHz
100MHz
WED9LC6816V2010BI
200MHz
100MHz
WED9LC6816V1612BC
166MHz
125MHz
WED9LC6816V1612BI
166MHz
125MHz
WED9LC6816V1610BC
166MHz
100MHz
WED9LC6816V1610BI
166MHz
100MHz
WED9LC6816V1512BC
150MHz
125MHz
WED9LC6816V1512BI
150MHz
125MHz
WED9LC6816V1510BC
150MHz
100MHz
WED9LC6816V1510BI
150MHz
100MHz
WED9LC6816V1312BC
133MHz
125MHz
WED9LC6816V1312BI
133MHz
125MHz
WED9LC6816V1310BC
133MHz
100MHz
WED9LC6816V1310BI
133MHz
100MHz
Part Number
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151
Part Number
26
WED9LC6816V
White Electronic Designs
INTERFACING THE TEXAS INSTRUMENTS TMS 320C6x WITH THE
WED9LC6816V (256Kx32 SSRAM/4Mx32 SDRAM)
Address Bus
EA2-21
EA2 A0
EA3 A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
Texas Instruments
TMS320C6x
DSP
SSWE\
CE2\
SSOE\
SSADS\
SSCLK
BE0\
BE1\
BE2\
BE3\
Data Bus
ED0-31
SDA10
CE0\
SDRAS\
SDCAS\
SDWE\
SDCLK
27
EDI9LC644V
128K x 32 SSRAM
1M x 32 SDRAM
DQ0-7
DQ8-15
DQ16-23
DQ24-31
SSWE\
SSCE\
SSOE\
SSADC\
SSCLK
SSRAM
Control
BWE0\
BWE1\
BWE2\
BWE3\
Shared
Controls
SDA10
SDCE\
SDRAS\
SDCAS\
SDWE\
SDCLK
SDRAM
Control
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com