INTEL WGCE5038SL9FY882071

CE5038
DVB-S2 Advanced Modulation
Satellite Tuner
Data Sheet
Features
February 2006
•
Single-chip L band to zero IF quadrature down
converter compliant with 1-45 Msps DVB-S2
•
High dynamic range of -92 dBm to -10 dBm
without RF attenuator or RSSI
•
High total composite power handling
•
Excellent immunity to adjacent channel
interference through programmable and
autocalibrated channel filters
Ordering Information
HGCE5038 882068
WGCE5038 882129
HGCE5038 S L9F8 882067
WGCE5038 S L9FY 882071
40-pin QFN Trays
40-pin QFN* Trays
40-pin QFN Tape & Reel
40-pin QFN* Tape & Reel
*Pb free
Applications
•
Integrated power and forget LO oscillators
•
2 degree integrated phase jitter enables excellent
performance for 8 PSK and 16 QAM applications
•
Less than +/- 3° and +/-0.6 dB I/Q quadrature
balance
•
Integrated RF loop through for cascaded tuner
applications
•
Power saving mode
•
Advanced modulation DVB-S and DSS satellite
receivers requiring upgrade for DVB-S2,
8 PSK / 16 QAM
Figure 1 - Block Diagram
1
Intel Corporation
D55746-001
Intel and the Intel logo are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2006 Intel Corporation. All rights reserved.
CE5038
Data Sheet
Description
CE5038 is a fully integrated tuner for advanced modulation satellite receivers, operating over 950 - 2150 MHz and
symbol rates in the range 1 - 45 MS/s.
It contains a selectable RF bypass for connecting to a second receiver module. CE5038 simply requires a crystal
reference and operates from a 5 V supply. It is designed as a 'simple to use' stand-alone tuner, requiring no training
algorithms or user/demodulator intervention to optimize performance.
The CE5038 can be used with an advanced modulation demodulator to create a highly-integrated front-end
solution, operating from 1-45 MS/s.
2
Intel Corporation
Intel Corporation
RF In
RF Bypass
75R IMPEDANCE
R4
75R
75R IMPEDANCE
C14
C13
LNB Supply
1nF
1nF
C17
1nF
C15 1nF
C7
1nF
5VA
C22
6n8F
1K
R2
Figure 2 - Typical Application Circuit
C16
12pF
L11 2n2H
PUMP
N/C
Vvar
P0
LOCK
VccRF
RFBYPASS
RFBYPASS
VccRF
N/C
D1
BAR63-03W
C8
1nF
21
22
23
24
25
26
27
28
29
30
C23
100pF
R3 2K7
C1
220nF
5VA
C3
220nF
20
19
18
17
16
15
14
13
12
11
CE5038
10nF
C36
C141
C11
47pF
C9
IC1
100pF 10uF
C40
5VA
Paddle
IDC
IDC
IOUT
IOUT
VccBB
VccBB
QOUT
QOUT
QDC
QDC
10pF
SLEEP
DRIVE
VccTU NE
VccDig
DIGDEC
ADD
XT ALCAP
XT AL
SDA
SCL
SL EEP
RF IN
RF IN
N/C
RF AGC
PT EST
VccLO
VccLO
LOT EST
P1
CNT
3
31
32
33
34
35
36
37
38
39
40
C10
47pF
C24
PAD
C25
220nF
100pF
C26
R109
R110
RF AGC Input
10 220nF
9
8
7
5VA
6
5
4
3
2
1
C126
10pF
X1
4.00 MHz
100R
100R
R101
4k7
3V3
DATA2
CLK2
C129
100nF
C128
100nF
C131
100nF
C130
100nF
R102
4k7
Q out
I out
CE5038
Data Sheet
CE5038
Data Sheet
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.0 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Conventions in this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Pin Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Quadrature Down-Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 AGC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Baseband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 RF Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Baseband Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Local Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 LO Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.0 User Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 LOCK - Pin 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 SLEEP - Pin 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Output Ports, P1 & P0 - Pins 39 & 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Device Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Power-On Reset Indicator (POR Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Frequency (& Phase) Lock (FL Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 VCO Sub-Band (SB3:0 Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Tune Unlock State (TU1:0 Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Register Sub-Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Synthesizer Division Ratio (214:20 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.4 RF Gain (RFG Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.5 Baseband Pre-Filter Gain Adjust (BA1:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.6 Baseband Post-Filter Gain (BG1:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.7 RF Bypass Disable (LEN Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.8 Output Port Controls (P1 & P0 Bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.9 Power Down (PD Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.10 Logic Reset (CLR Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.11 Charge Pump Control and Charge Pump Current (CC, C1 & C0 Bits) . . . . . . . . . . . . . . . . . . . . . 26
3.4.12 Reference Division Ratios (R4:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.13 Baseband Filter Resistor Switching (RSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.14 Baseband Filter Bandwidth (BF6:1 & BR4:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.15 Band Switch Algorithm (VSD Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.16 LO Main- & Sub-Band Selection (V2:0 & S3:0 Bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.17 LO Sample Rate (LS2:0 Bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.18 LO Window Level (WS, WH2:0 & WL2:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.19 LO Window Relaxation (WRE Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.20 LO Test (TL Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.0 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1 Power-On Software Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3
Intel Corporation
CE5038
Data Sheet
Table of Contents
4.2 Changing Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Symbol Rate and Filter Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Determining the Filter Bandwidth from the Symbol Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Calculating the Filter Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Determining the Values of BF and BR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Filter Bandwidth Programming Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Programming Sequence for Filter Bandwidth Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.0 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Crystal Oscillator Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4
Intel Corporation
CE5038
Data Sheet
List of Figures
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2 - Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 3 - Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4 - AGC Control Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5 - Typical First Stage RF AGC Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 6 - Variation in IIP2 with AGC Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 7 - Variation in IIP3 with AGC Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8 - Variation in NF with Input Amplitude (typical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9 - RF Input and Output (bypass) Return Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10 - Normalized Filter Transfer Characteristic (setting 20 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 11 - Free Running LO Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 12 - Copper Dimensions for Optimum Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 13 - Paste Mask for Reduced Paste Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 14 - Typical Oscillator Arrangement with Optional Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 15 - Typical Arrangement for External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5
Intel Corporation
CE5038
Data Sheet
List of Tables
Table 1 - Pins by Number Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2 - Pins by Name Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3 - Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4 - Read Data Bit Format (MSB is Transmitted First) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5 - TU1/0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6 - Byte Address Allocation in Write Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7 - Bit Allocations in the Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 8 - Key to Table 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 9 - RFG Register Bit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10 - BA1/0 Register Bits Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11 - BG1/0 Register Bits Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 12 - Port Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 13 - Charge Pump Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 14 - Division Ratios Set with Bits R4 - R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 15 - Frequency Bands and VCO Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16 - LO Sample Rate Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 17 - LO Window Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 18 - LO Recommended Window Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 19 - Crystal Capacitor Values for 4 MHz and 10 MHz Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6
Intel Corporation
CE5038
1.0
Overview
1.1
Conventions in this Manual
Data Sheet
Hexadecimal values are typically shown as 0xABCDEF. Binary values (usually of register bits) are shown as
011002. All other numbers should be considered to be decimal values unless specified otherwise.
1.2
Pin Listings
Table 1 - Pins by Number Order
No.
Name
No.
Name
No.
Name
No.
Name
1
QDC
11
SLEEP
21
PUMP
31
RFIN
2
QDC
12
SCL
22
N/C
32
RFIN
3
QOUT
13
SDA
23
Vvar
33
N/C
4
QOUT
14
XTAL
24
P0
34
RFAGC
5
VccBB
15
XTALCAP
25
LOCK
35
PTEST
6
VccBB
16
ADD
26
VccRF
36
VccLO
7
IOUT
17
DIGDEC
27
RFBYPASS
37
VccLO
8
IOUT
18
VccDIG
28
RFBYPASS
38
LOTEST
9
IDC
19
VccTUNE
29
VccRF
39
P1
10
IDC
20
DRIVE
30
N/C
40
CNT
Table 2 - Pins by Name Order
Name
No.
Name
No.
Name
No.
Name
No.
ADD
16
N/C
22
QOUT
4
VccBB
6
CNT
40
N/C
30
RFAGC
34
VccDIG
18
DIGDEC
17
N/C
33
RFIN
31
VccLO
36
DRIVE
20
P0
24
RFIN
32
VccLO
37
IDC
9
P1
39
RFBYPASS
27
VccRF
26
IDC
10
PTEST
35
RFBYPASS
28
VccRF
29
IOUT
7
PUMP
21
SCL
12
VccTUNE
19
IOUT
8
QDC
1
SDA
13
Vvar
23
LOCK
25
QDC
2
SLEEP
11
XTAL
14
LOTEST
38
QOUT
3
VccBB
5
XTALCAP
15
7
Intel Corporation
CE5038
1.3
Pin
1
Pin Descriptions
Symbol
QDC
Direction
Function
QDC
Schematics
NA
Q Channel DC offset correction
capacitor. Configuration and value as per
application diagram (see Figure 2).
2
Data Sheet
DC
Correction
Internal
Baseband
Signal
NA
10μA
VccBB
3
QOUT
Out
Q Channel baseband differential outputs.
AC couple outputs as per applications
diagram (see Figure 2).
Out
4
QOUT
5
VccBB
+5 v voltage supply for Baseband
6
VccBB
+5 v voltage supply for Baseband
7
IOUT
Out
8
IOUT
Out
9
IDC
NA
10
IDC
NA
11
SLEEP
Output
In
1.2 mA
I Channel baseband differential outputs
AC couple outputs as per applications
diagram (Figure 2).
Same configuration as pins 3 &
4
I Channel DC offset correction capacitor.
Configuration and value as per
application diagram (Figure 2).
Same configuration as pins 1 &
2
Hardware power down input.
Logic ‘0’ – normal mode.
Logic ‘1’ - analogue sections are
powered down.
This function is OR’ed with the PD
control function, see section 3.1.2.
SLEEP
CMOS Digital Input
DIGDEC
12
SCL
In
I²C serial clock input
SDA/SCL
Input
500k
500k
13
SDA
Out
I²C serial data input/output
8
Intel Corporation
SDA
only
CE5038
Pin
Symbol
Direction
Data Sheet
Function
Schematics
DIGDEC
14
15
XTAL
XTALCAP
In
Out
Reference oscillator crystal inputs.
Selected crystal frequency must be
programmed in BR4 to BR0 for correct
baseband filter bandwidth operation.
400 Ω
XTAL
100 Ω
XTALCAP
XTAL pin is used for external reference
input via 10nF capacitor.
0.2mA
DIGDEC
16
ADD
In
Variable I²C address selection allowing
the use of more than one device per I²C
bus system by the voltage on this pin.
See Table 3 for programming details.
60k
ADD
Input
20k
VccDIG
17
DIGDEC
Out
Decouple pin for internal digital 3.3 V
regulator
DIGDEC
18
VccDIG
+5 v voltage supply for digital logic
19
VccTune
Varactor tuning +5 v supply
20
DRIVE
VccTUNE
CPDEC
IO
PUMP
3K
Loop amplifier output and input pins
DRIVE
21
PUMP
22
N/C
IO
Not connected. Ground externally.
Vvar
23
Vvar
In
1k
LO tuning voltage input
Vbias
9
Intel Corporation
CE5038
Pin
Symbol
Direction
Data Sheet
Function
Schematics
P0/P1
24
25
P0
LOCK
26
VccRF
27
RFBYPASS
Out
Switching port P0.
‘0’ = disabled (high impedance).
‘1’ = enabled.
Out
Output which indicates that phase
comparator phase and frequency lock
has been obtained and that the varactor
voltage is within ‘tune unlock’ window.
This powers up in logic ‘0’ state.
LOCK
CMOS Digital Output
+5 v voltage supply for RF
Out
RF Bypass differential outputs.
AC couple outputs. Matching circuitry as
per applications diagram (Figure 2).
Out
In applications where RF Bypass is not
required, pins should not be connected.
28
RFBYPASS
29
VccRF
+5 v voltage supply for RF
30
N/C
Not connected. Ground externally.
31
RFIN
In
RF differential inputs.
AC couple input.
32
RFIN
33
N/C
In
Matching circuitry as per applications
diagram.
Not connected. Ground externally.
VccRF
Vref
34
RFAGC
In
RF analogue gain control input
5k
RFAGC
20k
10
Intel Corporation
CE5038
Pin
Symbol
Direction
Function
Data Sheet
Schematics
PTEST
In
Connected to internal circuit for
monitoring die temperature
35
PTEST
36
VccLO
+5 v voltage supply for LO
37
VccLO
+5 v voltage supply for LO
VccLO
LOTEST
38
LOTEST
IO
Bi-directional test port for accessing
internal LO
AC couple input.
Bias
39
P1
40
CNT
Out
Switching port P1
‘0’ = disabled (high impedance)
‘1’ = enabled
Bonded to paddle. Production continuity
test for paddle soldering
Note: Exposed paddle on rear of package must be connected to GND.
11
Intel Corporation
Same configuration as pin 24,
P0
CE5038
2.0
Data Sheet
Functional Description
Figure 3 - Detailed Block Diagram
2.1
Quadrature Down-Converter
In normal applications the tuner RF input frequency of 950 - 2150 MHz is fed directly to the CE5038 RF input
preamplifier stage, through an appropriate impedance match. The input preamplifier is optimized for NF, S11 and
signal handling.
The signal handling of the front end is designed such that no tracking filter is required to offer immunity to input
composite overload.
12
Intel Corporation
CE5038
2.2
Data Sheet
AGC Functions
The CE5038 contains an analogue RF AGC combined with digitally controlled gain for RF, baseband pre-filter and
post-filter, as described in Figure 4. The baseband AGC is controlled by the I²C bus and is divided into pre- and
post-baseband filter stages, each of which have 12.6 dB of gain adjust in 4.2 dB steps.
The RF AGC is provided as the dynamic system gain adjust under control of the baseband analogue AGC output
function whereas the digitally controlled gains are provided to maximize performance under different signal
conditions. The total AGC gain range will guarantee an operating dynamic range of -92 to -10 dBm.
The digitally controlled RF gain adjust and the baseband pre-filter stage can be adjusted in sympathy to maintain a
fixed overall conversion gain. The lower RF gain setting would be used in situations where for example there is a
high degree of cable tilt or high desired to undesired ratio, whereas the higher RF gain setting would be used in
situations where for example it is desirable to minimize NF.
The baseband post-filter gain stage can be used to provide additional gain to maintain desired output amplitude
with lower symbol rate applications.
Figure 4 - AGC Control Structure
Normalized gain
range in dB:
0 - 72
0 or +4
0 to 12.6 in 4.2 dB steps
0 to 12.6 in 4.2 dB steps
Gain function:
RF AGC
Stepped
Stepped
Stepped
Control
function:
Analogue
voltage
I²C bus
I²C bus
I²C bus
2.2.1
RF
The RF input amplifier feeds an AGC stage, which provides for RF gain control.
Conversion gain relative to max gain (dB)
10
0
-10
-20
-30
-40
-50
-60
-70
-80
0
0.5
1
1.5
2
2.5
3
3.5
4
AGC control voltage V
Figure 5 - Typical First Stage RF AGC Response
13
Intel Corporation
4.5
5
CE5038
Data Sheet
The RF AGC is divided into two stages. The first stage is a continually variable gain control stage, which is
controlled by the AGC sender and provides the main system AGC set under control of the analogue AGC signal
generated by the demodulator section. The second stage is a bus programmable. two-position gain set previous to
the quadrature mixer and provides for 4 dB of gain adjust under software control.
The analogue RF AGC is optimized for S/N and S/I performance across the full dynamic range. The RF AGC
characteristic, variation of IIP2, IIP3 and NF are contained in Figure 6, Figure 7 & Figure 8 respectively.
The RF preamplifier is also coupled to the selectable RF bypass, which is described in 2.3, “RF Bypass“. The
specified electrical parameters of the RF input are unaffected by the RF bypass state.
35
30
25
IIp2 dBm
20
15
10
5
0
-5
-10
10
20
30
40
50
Gain setting dB
60
70
80
Figure 6 - Variation in IIP2 with AGC Setting
(RF gain adjust = +0 dB, prefilter = +4.2 dB and postfilter = 4.2 dB, baseband filter bandwidth = 22 MHz)
20
10
IIP3 dBm
0
-10
-20
-30
-40
-50
20
30
40
50
Gain setting dB
60
70
80
Figure 7 - Variation in IIP3 with AGC Setting
(RF gain adjust = +0 dB, prefilter = +4.2 dB and postfilter = 4.2 dB, baseband filter bandwidth = 22 MHz)
14
Intel Corporation
CE5038
Data Sheet
60
RF programmable gain = 4dB, prefilter gain = 4.2dB, post filter gain = 0dB
Baseband output level = 0.5Vp-p
50
NF (dB)
40
30
20
10
0
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
Input Amplitude (dBm)
Figure 8 - Variation in NF with Input Amplitude (typical)
The output of the RF AGC stage is coupled to the quadrature mixer where the RF input is mixed with quadrature LO
(local oscillator) signals generated by the on-board LO. Operation and control of the LO is described further in
section 2.5 on page 17.
2.2.2
Baseband
The mixer outputs are coupled to the baseband quadrature channel amplifier and filter stage, which is of 7th order
topology. Operation and control of the baseband filter is contained in Section 2.4 on page 16.
The baseband paths are DC coupled, and include a DC correction loop. The high pass characteristic for the DC
correction loop is defined by the off chip capacitor connected to pins ‘IDC/IDC’ and ‘QDC/QDC’. The output of each
channel stage is designed for low impedance drive capability and low intermodulation and can be loaded either
differentially or single-ended; in the case of single-ended load the unused output should be unloaded. The
maximum output load is defined in the Electrical Characteristics Table.
15
Intel Corporation
CE5038
2.3
Data Sheet
RF Bypass
The CE5038 provides an independent bypass function, which can be used for driving a second receiver module.
The electrical characteristics of the RF input are unchanged by the state of the RF bypass.
The bypass provides a differential buffered output from the input signal with a nominal 3.5 dB gain. The unused
output should be terminated as in Figure 2 on page 2.
The bypass function is enabled by a single register bit and is not disabled by either the PD bit or the SLEEP pin.
When disabled the bypass function is in a ‘power-down’ state. On power up the bypass function is enabled.
0
Return Loss (dB)
-5
- 10
S11 RFBypass On
S22 RFBypass On
- 15
-20
-25
-30
9 0 0 10 0
0
110
0
12 0
0
13 0
0
14 0
0
150
0
16 0
0
170
0
18 0
0
19 0 2 0 0 2 10 2 2 0
0
0
0
0
F re que ncy ( M H z)
Figure 9 - RF Input and Output (bypass) Return Losses
2.4
Baseband Filter
The filter bandwidth is controlled by a Frequency Locked Loop (FLL) the timing of which is derived from the
reference crystal source by a reference divider. Five control bits set the system reference division ratio and the
baseband filter bandwidth can be programmed with a further six control bits for a nominal range of 4 - 40 MHz1.
1. specification compliant over the range 8 - 35 MHz.
16
Intel Corporation
CE5038
Data Sheet
Figure 10 - Normalized Filter Transfer Characteristic (setting 20 MHz)
f xtal
1
The -3 dB bandwidth of the filter (Hz) is given by the following expression: f -3dB = --------- × ( BF + 1 ) × ---BR
K
Where:
f-3dB = Baseband filter –3 dB bandwidth (Hz) which should be within the range 8MHz ≤ f –3dB ≤ 35MHz .
fxtal = Crystal oscillator reference frequency (Hz).
K = 1.257 (constant).
BF = Decimal value of the register bits BF6:BF1, range 0 - 62.
BR = Decimal value of the bits BR4:BR0 (baseband filter reference divider ratio), range 4 - 27.
f--------xtal
= 575 kHz to 2.5 MHz.
BR
Methods for determining the values of BR and BF are given in the section on software, please see sect. 4.3 on
page 30.
2.5
Local Oscillator
The LO on the CE5038 is fully integrated and consists of three oscillator stages, each with 16 sub-bands. These are
arranged such that the regions of operation for optimum phase noise are continuous over the required tuning range
of 950 to 2150 MHz and over the specified operating ambient conditions and process spread.
The local oscillators operate at a harmonic of the required frequency and are divided down to the required LO
conversion frequency. For each of the three oscillators, the LO prescaler ratio (NLP) is set to ÷4 or ÷2. The required
divider ratio is automatically selected by the LO control logic, hence programming of the required conversion
frequency across the oscillator bands is automatic and requires no intervention by the user.
17
Intel Corporation
CE5038
Data Sheet
-60
-70
Phase noise (dBc/Hz)
-80
-90
-100
-110
-120
-130
-140
-150
10
100
1000
10000
100000
Frequency offset (log (offset in kHz))
Figure 11 - Free Running LO Phase Noise Performance
The oscillators are designed to deliver good free running phase noise at 10 kHz offset, therefore the required
integrated phase jitter from the LO can be achieved without the requirement for running with a high comparison
frequency and hence large tuning increment and wide loop bandwidth.
The LO section contains an internal tuning controller, which will automatically tune to the appropriate VCO and sub
band for optimum phase noise performance. The internal LO controller function is transparent to the user and no
user intervention is required. The tuning controller will automatically switch bands when required, however this
function can be disabled with the ‘VSD’ bit (see “3.4.15”). This enables the user to select the appropriate VCO and
sub band if required to achieve optimum phase noise performance. For QPSK, automatic mode will be adequate
and should be used. In general for 8 PSK modulation, the automatic mode will also be adequate depending on the
demodulator requirements. 16 QAM may require manual mode to optimize phase noise performance at
frequencies above 1800 MHz.
2.5.1
LO Programming
The controller tunes across the oscillator bands, until lock is achieved. The algorithm for tuning utilises the LO
tuning voltage, Vvar, which is compared at a programmable sample rate against a ‘tune lock’ voltage window and a
‘tune unlock’ voltage window. The sampling rate default on power up is Fcomp/8 however this can be programmed
into further rates through bits LS2-LS0 in byte-10, see “3.4.17” on page 29. The ‘tune lock’ and ‘tune unlock’
windows are set at default values, however, these can be adjusted by bits WS, WH2:0 and WL2:0 in byte 11, see
“3.4.18” on page 29.
In the event that the controller is unable to find lock the ‘tune lock’ window will be automatically widened. This
facility can be disabled by setting bit WRE in byte 11 to logic ‘0’. See 3.4.19 on page 30.
The device has a lock indicator flag, FL, which is derived from a time averaged phase comparison between the LO
divider and reference divider inputs to the phase comparator. The FL flag is read in the status byte. See 3.3.2 on
page 21.
There is a further hardware lock flag (LOCK output, pin 25; see “3.1.1” on page 20) which generates a logic ‘0’ if the
tuning controller detects the varactor line voltage lies within the ‘tune unlock’ window and if FL is set to logic ‘1’. In
other states this output is high impedance.
18
Intel Corporation
CE5038
Data Sheet
The tune lock window is centralised within the tuner unlock window. The tuning controller selects the VCO and sub
band so that the varactor voltage is within this window. If this is not possible the lock windows are relaxed
(assuming the WRE bit is set to '1'). The tuning algorithm maintains a level of hysteresis to prevent short term drift
causing switching to an adjacent band.
The LO control logic has provision for master reset to restore initial set up conditions. This is controlled by bit CLR
within data byte 13, see “3.4.10” on page 25.
2.6
PLL Frequency Synthesizer
The PLL frequency synthesizer section contains all the elements necessary, with the exception of a frequency
reference and loop filter to control a varicap tuned LO, so forming a complete PLL frequency synthesized source.
The device allows for operation with a high comparison frequency and is fabricated in high speed logic, which
enables the generation of a loop with good phase noise performance. The loop can also be operated up to
comparison frequencies of 2 MHz enabling application of a wide loop bandwidth for maximizing the close in phase
noise performance.
The LO input signal is multiplexed from the selected oscillator band to an internal preamplifier, which provides gain
and reverse isolation from the divider signals. The output of the preamplifier interfaces direct with the 15-bit fully
programmable divider, which is of MN+A architecture. A 16/17 dual modulus prescaler is used.
The output of the programmable divider is fed to the phase comparator where it is compared in both phase and
frequency domain with the comparison frequency. This frequency is derived either from the on-board crystal
controlled oscillator or from an external reference source. In both cases the reference frequency is divided down to
the comparison frequency by the reference divider, which is programmable into one of 29 ratios as detailed in
Table 14 on page 26.
The typical application for the crystal oscillator is contained in Figure 2. The output of the phase detector feeds a
charge pump and loop amplifier section. This combined with an external loop filter integrates the current pulses into
the varactor line voltage with an output range of Vee to VccTUNE. The varactor line voltage is externally coupled to
the oscillator section through the input Vvar, enabling application of a third order loop.
Control of the charge pump current can be made in two ways as described in Table 13 on page 26. Either the set
charge pump current can be used at all times, or the charge pump current can be scaled automatically according to
the LO sub-band. The second case allows for reduced loop bandwidth variation as the VCO gain varies with subband.
2.7
Control Logic
The CE5038 is controlled by an I²C data bus and can function as a slave receiver or slave transmitter compatible
with 3V3 or 5 V levels.
Data and Clock are input on the SDA and SCL lines respectively as defined by I²C bus standard. The device can
either accept data (slave receiver, write mode), or send data (slave transmitter, read mode). The LSB of the
address byte (R/W) sets the device into write mode if it is logic ‘0’, and read mode if it is logic ‘1’. Table 4 and Table
7 illustrate the format of the read and write data respectively. The device can be programmed to respond to one of
four addresses, which enables the use of more than one device in an I²C bus system if required for use in PVR1
systems, for example. Table 3 shows how the address is selected by applying a voltage to the address, ‘ADD’,
input. When the device receives a valid address byte, it pulls the SDA line low during the acknowledge period, and
during following acknowledge periods after further data bytes are received. When the device is programmed into
read mode, the controller accepting the data must pull the SDA line low during all status byte acknowledge periods
to read another status byte. If the controller fails to pull the SDA line low during this period, the device generates an
internal STOP condition, which inhibits further reading.
1. PVR - Personal Video Recorder where dual tuners allow the viewer to watch one channel and record another simultaneously, usually to a
hard-disk recording system.
19
Intel Corporation
CE5038
Data Sheet
All the CE5038 functions are controlled by register bits written through the I²C bus interface. The SLEEP pin can be
used to power-down the device, but it can also be put into the power-down mode with the PD register bit, the two
functions being logically OR’ed.
Feedback on the status of the CE5038 is provided through eight bits in the status byte register and the phase lock
state is also available on the LOCK output pin (as well as the FL register bit).
3.0
User Control
3.1
I/O Pins
The I²C interface controls all the major functions. Apart from the various analogue functions, the only pins that
either control the CE5038, or are controlled by the internal logic, are the LOCK, SLEEP, P1, P0 and ADD pins.
Details follow:
3.1.1
LOCK - Pin 25
This is an output which indicates phase frequency lock on the correct VCO sub band for optimum phase noise. The
CMOS output can directly drive a low power LED if required.
3.1.2
SLEEP - Pin 11
The SLEEP pin shuts down the analogue sections of the device to give a considerable power saving, typically
reducing the power to about one third of its normal level. The RF-bypass function is entirely separate and is
unaffected by the state of this pin. The SLEEP pin’s function is OR’ed with the PD register bit (see “3.4.9” on
page 25), so that if either is a logic one, the CE5038 will be powered down, or alternatively, both must be at logic
zero for normal operation.
3.1.3
Output Ports, P1 & P0 - Pins 39 & 24
Two open-collector ports are provided for general purpose use, under control of register bits P1 and P0. The default
at power-up is for the P1 & P0 register bits to be low, hence the outputs will be off, i.e., in their high-impedance
states. If connected to a pull-up resistor this will therefore result in a logic high. Setting a register bit high will turn
the corresponding output on and therefore pull the logic level to near 0 V giving a logic low.
3.2
Device Address Selection
Two internal logic levels, MA1 and MA0, can be set to one of four possible logic states by the voltage applied to the
ADD pin (#16). These four states in turn define four different read and write addresses on the I²C bus, so that as
many as four separate devices can be individually addressed on one bus. This is of particular use in a multi-tuner
environment as required by PVR applications.
Table 3 - Address Selection
ADD pin voltage
MA1
Vee (0 V or Gnd)
Write Address
Read Address
Hex.
Dec.
Hex.
Dec.
MA0
0
0
0xC0
192
0xC1
193
0
1
0xC2
194
0xC3
195
0.5 * DIGDEC (±20%)
1
0
0xC4
196
0xC5
197
DIGDEC
1
1
0xC6
198
0xC7
199
Open circuit
1
1. can be programmed with a single 30 kΩ resistor to DIGDEC
20
Intel Corporation
CE5038
3.3
Data Sheet
Read Register
The CE5038 status can be read by addressing the device in its slave transmitter mode by setting the LSB of the
address byte (the R/W bit) to a one. After the master transmits the correct address byte, the CE5038 will
acknowledge its address, and transmit data in response to further clocks on the SCL input. If the master responds
with an acknowledge and further clocks, the status byte will be retransmitted until such time as the master fails to
send an acknowledge, when the CE5038 will release the data bus, allowing the master to generate a stop
condition.
Table 4 - Read Data Bit Format (MSB is Transmitted First)
Bit No.
Address
Status
7
(MSB)
6
5
4
3
2
1
0
(LSB)
1
1
0
0
0
MA1
MA0
1
POR
FL
SB3
SB2
SB1
SB0
TU1
TU0
The individual bits in the status register have the following meanings:
3.3.1
Power-On Reset Indicator (POR Bit)
This bit is set to a logic ‘1’ if the VccDIG supply to the PLL section has dropped below typically 3.6 V, e.g., when the
device is initially turned on. The bit is reset to ‘0’ when the read sequence is terminated by a STOP command.
When the POR bit is high, this indicates that the programmed information may have been corrupted and the device
reset to power up condition.
3.3.2
Frequency (& Phase) Lock (FL Bit)
Bit 6 (FL) indicates whether the synthesizer is phase locked, a logic ‘1’ is present if the device is locked and a logic
‘0’ if the device is unlocked.
3.3.3
VCO Sub-Band (SB3:0 Bit)
These bits indicate the vco sub-band value chosen by the LO tuning algorithm when tuning the oscillators
automatically. If manual tuning is used then SB3-SB0 will match bits S3-S0 written to register byte 9 (see “3.4.16”
for sub-band details).
3.3.4
Tune Unlock State (TU1:0 Bit)
These bits define the ‘tune unlock’ window state as below:
Table 5 - TU1/0 Functions
TU1
TU0
‘Tune unlock’ window state
0
0
Vvar between lower and upper voltage thresholds
0
1
Vvar above upper voltage threshold
1
0
Vvar below lower voltage threshold
1
1
Undefined - do not use
See “LO Window Level (WS, WH2:0 & WL2:0 Bits)” on page 29 for further information on the threshold voltages.
21
Intel Corporation
CE5038
3.4
Data Sheet
Write Registers
The CE5038 has twelve registers which can be programmed by addressing the device in its slave receiver mode,
setting the LSB of the address byte (the R/W bit) to a zero. After the master transmits the correct address byte, the
CE5038 will acknowledge its address, and accept data in response to further clocks on the SCL line. At the end of
each byte, the CE5038 will generate the acknowledge bit. The master can at this point, generate a stop condition,
or further clocks on the SCL line if further registers are to be programmed. If data is written after the twelfth register
(byte-13), it will be ignored.
3.4.1
Register Sub-Addressing
If some register bits require changing, but not all, it is not necessary to write to all the registers. The registers can be
addressed in pairs starting with the even numbered bytes, i.e., 2 & 3, 4 & 5, etc. Table 6 below shows the protocol
required to address any of the even numbered register bytes. It therefore follows that to write to register byte-7 for
instance, byte-6 must also be written first. Register pairs may be written in any order, as required by the software,
e.g., 10/11 may be followed by 4/5.
Table 6 - Byte Address Allocation in Write Mode
Data Bits
7
6
5
4
Byte Selected
(MSB)
0
X
X
X
2
1
0
X
X
4
1
1
0
0
6
1
1
0
1
8
1
1
1
0
10
1
1
1
1
12
‘X’ = Don’t care (content defines a register bit).
22
Intel Corporation
CE5038
3.4.2
Data Sheet
Register Mapping
Table 7 - Bit Allocations in the Write Registers
Bit No.
7
(MSB)
Function
6
1
Device address
1
1
0
0
0
2
Programmable
Divider
0
214
213
212
211
210
29
28
0x00
27
26
25
24
23
22
21
20
0x00
4
1
0
RFG
BA1
BA0
LEN
0x80
“3.4.4” to “3.4.7” on p. 25
5
P0
C1
C0
R4
R3
R2
R1
R0
0x00
pp. 25 & 26
6
1
1
0
0
RSD
0
0
0
0xC0
see “3.4.13” on page 27
7
P1
BF6
BF5
BF4
BF3
BF2
BF1
0
0x20
pp. 25 & 27
1
1
0
1
0
CC
1
1
0xDB
page 26
VSD
V2
V1
V0
S3
S2
S1
S0
0x30
page 28
10
1
1
1
0
0
LS2
LS1
LS0
0xE1
page 29
11
WS
12
1
1
1
1
0
13
PD
BR4
BR3
BR2
BR1
Byte
3
8
9
Control Data
5
4
3
2
1
0
(LSB)
Reset
state
(hex.)
MA1 MA0
BG1 BG0
Further information
1
0
Table 3 on page 20
See 3.4.3 on page 24
WH2 WH1 WH0 WL2 WL1 WL0 WRE 0x75/F5 page 29
0
0
BR0 CLR
0
0xF0
test function only
TL
0x28
pp. 25, 27 & 30
1. This is the power-on default register value - recommended operating values may be different, see “4.1” on page 30.
Table 8 - Key to Table 7
Symbol
Definition
Symbol
Definition
214-20
Programmable division ratio control bits
R4-R0
Reference division ratio select
BA1-0
Baseband prefilter gain adjust
RFG
RF programmable gain adjust
BF6-1
Baseband bandwidth adjust
RSD
Resistor switch disable
BG1-0
Baseband postfilter gain adjust
S3-0
LO sub-band select
BR4-0
Baseband filter FLL reference frequency select TL
Buffered LO output select
C1,C0
Charge pump current select
PD
Power down
CC
Charge pump control
V2-0
LO main band select
CLR
Control logic reset
VSD
LO tuning algorithm disable
LEN
RF bypass enable
WH2-0
LO window high level adjust
LS2-0
Tuning control sampling rate adjust
WL2-0
LO window low level adjust
MA1,MA0 Variable address bits
WRE
Tuning Window Relaxation Enable
P0, P1
WS
Tuning window select
External switching ports
23
Intel Corporation
CE5038
3.4.3
Data Sheet
Synthesizer Division Ratio (214:20 Bits)
The PLL synthesizer interfaces with the LO multiplex output and runs at the desired frequency for down-conversion.
The step size at the desired conversion frequency, is equal to the loop comparison frequency.
The programmable division ratio, 214 to 20, required for a desired conversion frequency, can be calculated from the
following formula:
Desired conversion frequency =
Δf step × ( 2 14 + 2 13 + 2 12 → 2 2 + 2 1 + 2 0 )
where: Δfstep = Fcomp
3.4.4
RF Gain (RFG Bit)
The RF gain is programmed by setting the RFG bit, bit-5 of register byte-4 as required. See also Figure 4, “AGC
Control Structure” on page 13.
Table 9 - RFG Register Bit Function
RFG
3.4.5
Gain Adjust (dB)
0
0
1
+4
(reset state)
Baseband Pre-Filter Gain Adjust (BA1:0 Bits)
The baseband pre-filter gain is programmed by setting BA1:0, bits-4 & 3 of register byte-4 as required. See also
Figure 4, “AGC Control Structure” on page 13.
Table 10 - BA1/0 Register Bits Function
3.4.6
BA1
BA0
Pre-Filter Gain Adjust (dB)
0
0
0.0
0
1
+4.2
1
0
+8.4
1
1
+12.6
(reset state)
Baseband Post-Filter Gain (BG1:0 Bits)
The baseband post-filter gain is programmed by setting BG1:0, bits-2 & 1 of register byte-4 as required. See also
Figure 4, “AGC Control Structure” on page 13.
Table 11 - BG1/0 Register Bits Function
BG1
BG0
Post-Filter Gain Adjust (dB)
0
0
0.0
0
1
+4.2
1
0
+8.4
1
1
+12.6
24
Intel Corporation
(reset state)
CE5038
3.4.7
Data Sheet
RF Bypass Disable (LEN Bit)
The RF bypass function is disabled by setting LEN, bit-0 of register byte-4 to a logic ‘1’. By default, this bit is at a
logic ‘0’ at power-up, and therefore the function is enabled. If the function is not required, a power saving of
approximately 15% can be made by setting this bit. See also section 2.3 on page 16.
3.4.8
Output Port Controls (P1 & P0 Bits)
Register bits P1 and P0, bit-7 in register bytes-7 & 5 respectively, control the output port pins, P1 & P0, pin numbers
39 & 24 respectively.
Table 12 - Port Control Bits
Bit P1 or P0
3.4.9
Port state
Logic state
(if connected to a pull-up)
0
High impedance
1
1
Low impedance to Vee (Gnd)
0
(reset state)
Power Down (PD Bit)
Bit-7 of byte-13 controls the PD register bit which is an alternative to the SLEEP pin (see “SLEEP - Pin 11” on
page 20). Setting the PD bit to a logic ‘1’ shuts down the analogue sections of the CE5038 effecting a saving of
about 2/3rds of the power required for normal operation. A logic ’0’ restores normal operation. With either hardware
or software power-down, all register settings are unaffected.
3.4.10
Logic Reset (CLR Bit)
Bit-1 of byte-13 controls the CLR register bit. When set to a logic ‘1’, this self-clearing bit resets the CE5038 control
logic. Writing a logic ‘0’ has no effect. The following register numbers are reset to their power-on state: 7, 9, 10, 11,
12 & 13. All other register’s contents are unaffected.
25
Intel Corporation
CE5038
3.4.11
Data Sheet
Charge Pump Control and Charge Pump Current (CC, C1 & C0 Bits)
Register bit CC is programmed by setting bit-2 of register byte-8 and bits C1 and C0 by setting bits-6 & 5 of register
byte-5. These bits determine the charge pump current that is used on the output of the frequency synthesizer phase
detector.
Table 13 - Charge Pump Currents
Typical current in µA
CC
C1
C0
VCO sub-bands 0 - 7
VCO sub-bands 8 - 15
0
0
0
±365
±210
0
0
1
±625
±365
Min.
0
1
0
±1065
±625
±160
±210
±290
0
1
1
±280
±365
±510
1
0
0
±210
±470
±625
±860
1
0
1
±365
±820
±1065
±1470
1
1
0
±625
1
1
1
±1065
3.4.12
(reset state)
Invalid Setting
Current limits
Typ.
Max.
Reference Division Ratios (R4:0 Bits)
Register bits R4:0 control the reference divider ratios as shown in Table 14. They are programmed through bit-4 to
bit-0 respectively, in byte-5.
Table 14 - Division Ratios Set with Bits R4 - R0
R4
0
0
1
1
R3
0
1
0
1
R2
R1
R0
Division Ratios
0
0
0
2
0
0
1
4
5
6
7
0
1
0
8
10
12
14
0
1
1
16
20
24
28
1
0
0
32
40
48
56
1
0
1
64
80
96
112
1
1
0
128
160
192
224
1
1
1
256
320
384
448
Illegal states
26
Intel Corporation
CE5038
3.4.13
Data Sheet
Baseband Filter Resistor Switching (RSD)
The baseband filters use a resistor switching technique that improves bandwidth and phase matching between the
I and Q channels. The bandwidth range is effectively separated into 3 sub-ranges with different resistor values
being used in each sub-range. It is possible for the filter bandwidth accuracy to be degraded if the bandwidth setting
happens to coincide with one of the two transition points between these regions. This can be overcome by disabling
the resistor switching using the RSD bit. For optimum filter performance the RSD bit should first be enabled so that
the correct resistor value is automatically set for the selected bandwidth.
The RSD bit (bit-3 of byte-6) controls the resistor switching. With the default setting of logic '0' it is enabled and the
correct resistor value automatically chosen. With the RSD bit set to a logic '1' then the switching is disabled and this
freezes the resistors at their chosen value. The procedure when selecting a new bandwidth setting is to enable then
disable the switching; set RSD to logic '0' then to logic '1'.
3.4.14
Baseband Filter Bandwidth (BF6:1 & BR4:0 Bits)
Bits 6 to 1 of byte-7 configure bits BF6 to BF1 respectively. These bits set a decimal number in the range 0 to 62
(63 is not allowed) to determine the baseband filter bandwidth in conjunction with other values.
Bits 6 to 2 of byte-13 configure bits BR4 to BR0 respectively. These bits set the reference divider ratio for the
baseband filter. A number in the range 4 to 27 inclusive (values outside this range are not allowed) can be set, with
the proviso that the value of fxtal/BR4:0 must also be in the range 575 kHz to 2,500 kHz.
For further details, please also see “Baseband Filter”
Calculations” (sect. 4.3) on page 30.
3.4.15
(sect. 2.4) on page 16 and “Symbol Rate and Filter
Band Switch Algorithm (VSD Bit)
The controller, which tunes to the appropriate LO and sub band for optimum phase noise performance, can be
disabled with the VSD bit, if required, allowing manual control. The VSD bit is programmed using byte-9, bit-7. The
default is for the controller to be enabled, VSD = ‘0’, and to disable the controller a logic ‘1’ is written to this bit.
27
Intel Corporation
CE5038
3.4.16
Data Sheet
LO Main- & Sub-Band Selection (V2:0 & S3:0 Bits)
If manual control of the LO is selected with the VSD bit, bits V2:0 (main-band) and S3:0 (sub-band) can be used to
set the LO frequency band. Values of V2:0 from 1 to 6 are valid, values 0 and 7 being used for test purposes only.
The prescaler ratio, NLP, is set to ‘4’ for values of V2:0 from 1 to 3 and to ‘2’ for V2:0 from 4 to 6.
Table 15 shows typical minimum and maximum frequencies for each VCO and sub band for a varactor voltage
(Vvar) range of 3 to 4.5 volts. This is the normal varactor operating voltage, however the VCO will operate at lower
voltages if required. The VCO gain is also shown at 3.5 volts varactor voltage.
Divider
V2
V1
V0
S3 S2 S1 S0
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
Divider
V2
V1
V0
S3 S2 S1 S0
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
VCO1
4
0
0
1
VCO2
4
0
1
0
VCO3
4
0
1
1
Min
Max
Kvco
Min
Max
Kvco
Min
Max
Kvco
690
697
706
714
725
735
746
759
769
783
798
814
834
853
874
896
699
708
716
726
737
748
761
774
786
801
817
836
857
879
902
927
6.9
7.3
7.8
8.3
8.9
9.6
10.3
11.2
12.2
13.2
14.4
15.7
17.4
19.0
20.8
23.1
881
892
904
917
931
945
959
975
986
1003
1021
1041
1063
1087
1112
1141
892
905
917
930
946
960
976
992
1005
1024
1044
1066
1092
1119
1148
1182
8.9
9.3
9.7
10.1
10.9
11.6
12.4
13.4
14.5
15.8
17.2
19.0
21.7
24.4
27.5
31.6
1068
1080
1093
1107
1122
1138
1154
1173
1182
1203
1224
1248
1275
1303
1334
1368
1081
1094
1108
1122
1139
1156
1174
1194
1205
1227
1251
1278
1309
1341
1376
1415
10.0
10.6
11.2
11.9
13.1
14.1
15.1
16.4
17.5
19.1
20.8
22.9
26.4
29.6
33.3
37.7
VCO1
2
1
0
0
VCO2
2
1
0
1
VCO3
2
1
1
0
Min
Max
Kvco
Min
Max
Kvco
Min
Max
Kvco
1380
1395
1411
1429
1450
1470
1493
1517
1538
1565
1595
1628
1667
1706
1747
1793
1399
1415
1433
1451
1474
1496
1521
1548
1571
1601
1635
1671
1714
1758
1804
1855
13.8
14.6
15.5
16.5
17.9
19.2
20.7
22.4
24.3
26.4
28.7
31.4
34.7
38.0
41.6
46.1
1761
1785
1809
1834
1862
1889
1918
1949
1972
2006
2042
2082
2126
2174
2225
2282
1785
1809
1835
1861
1891
1920
1951
1985
2011
2048
2088
2132
2183
2238
2296
2364
17.8
18.6
19.3
20.3
21.9
23.2
24.8
26.8
29.1
31.6
34.5
38.1
43.4
48.9
55.1
63.2
2136
2161
2186
2214
2244
2276
2309
2345
2365
2405
2449
2497
2550
2607
2668
2736
2162
2188
2215
2245
2278
2312
2348
2388
2410
2455
2502
2555
2617
2682
2752
2830
19.9
21.2
22.4
23.9
26.1
28.1
30.2
32.7
35.1
38.3
41.7
45.9
52.9
59.1
66.5
75.4
Table 15 - Frequency Bands and VCO Gain
28
Intel Corporation
CE5038
3.4.17
Data Sheet
LO Sample Rate (LS2:0 Bits)
Bits LS2:0 (bit-2 to bit-0 respectively in byte-10) set the LO sample rate according to the following table:
Table 16 - LO Sample Rate Data
3.4.18
LS2
LS1
LS0
Sample Rate
0
0
0
Fcomp/4
0
0
1
Fcomp/8
0
1
0
Fcomp/16
0
1
1
Fcomp/32
1
0
0
Fcomp/64
1
0
1
Fcomp/128
1
1
0
Fcomp/512
1
1
1
Fcomp/2048
(reset state)
LO Window Level (WS, WH2:0 & WL2:0 Bits)
Byte-11 allows the user to change the lock and unlock window voltages that the tuning controller uses in
comparison with the Vvar input. Setting the WS bit to ‘0’ allows the lock levels to be altered, or if set to ‘1’, the
unlock levels are written. The WH2:0 bits set the upper levels and the WL2:0 bits set the lower levels in each case.
Please see “Power-On Software Initialization” (sect. 4.1) on page 30 for recommended values.
Table 17 - LO Window Levels
Lock
Unlock
0
1
WS
WH2
WH1
WH0
WL2
WL1
WL0
0
0
0
1.16
1.54
1.08
1.61
0
0
1
1.64
2.01
1.56
2.08
0
1
0
2.11
2.47
2.03
2.55
0
1
1
2.57
2.94
2.50
3.01
1
0
0
3.03
3.43
2.95
3.51
1
0
1
3.49
3.89
3.42
3.97
1
1
0
3.95
4.36
3.88
4.43
1
1
1
4.41
4.82
4.34
4.89
Key:
Upper
Lower
Upper
Lower
Reset Values
29
Intel Corporation
CE5038
3.4.19
Data Sheet
LO Window Relaxation (WRE Bit)
In the event of the controller failing to lock due to the lock window being too narrow, the window is automatically
widened when WRE (byte-11 bit-0) is ‘1’ in order to achieve lock. The WRE bit, when set to logic ‘0’, disables this
facility.
3.4.20
LO Test (TL Bit)
For test purposes, the LO clock divided by the prescaler ratio can be output on the LOTEST pin by setting bit TL
(byte-13 bit-0) to a logic ‘1’. By default this output is off, i.e., the TL bit is at logic ‘0’.
4.0
Software
In normal operation, only initialization, channel (frequency) changes and symbol rates require programming
intervention. Note that the PLL comparison frequency is set by the crystal frequency divided by the PLL reference
divide ratio. In the following examples of register settings, binary values are frequently used, indicated as e.g.,
01102.
4.1
Power-On Software Initialization
a. Bytes 2 + 3: 214 - 20 = desired channel frequency/PLL comparison frequency (VCO = 3, sub-band = 0,
divider = 4 is default, means that the local oscillator frequency will be about 1.1 GHz).
b. Byte 4: BA1:0 = 012 for initial baseband filter input level.
c. Byte 4: BG1:0 = 012 for target baseband filter output level.
d. Byte 4: LEN = 1 if the RF loop through is to be disabled.
e. Byte 5: R4:0 = PLL reference divider for desired comparison frequency.
f. Byte 8: PS = 0 to give a pre-scaler ratio of 16/17. Bits ‘0’ & ‘1’ should be set to 002.
g. Byte 11: WL2:0 and WH2:0 may require different values from the defaults. Recommended settings are:
Table 18 - LO Recommended Window Levels
WS
WH2
WH1
WH0
WL2
WL1
WL0
WRE
Lower V
Upper V
Lock
0
1
1
0
1
0
1
1
3.49
3.89
Unlock
1
1
1
1
1
0
0
1
2.95
4.89
h. Byte 13: BR4:0 = Crystal frequency in use (see also 4.3.3.1 on page 31).
4.2
Changing Channel
Bytes 2 + 3: 214 - 20 = Channel frequency/PLL comparison frequency.
4.3
Symbol Rate and Filter Calculations
4.3.1
Determining the Filter Bandwidth from the Symbol Rate
fbw = (α * symbol rate)/(2.0 * 0.8) + foffs
where:
α = 1.35 for DVB or 1.20 for DSS, and is the roll-off of the raised-root cosine filter in the transmitter,
foffs is the total offset of the received signal due to all causes (LNB drift, synthesizer step size, etc) and is read back
from the demodulator,
30
Intel Corporation
CE5038
Data Sheet
and fbw is the -3 dB roll-off of the filter for: 8 MHz ≤ fbw ≤ 35 MHz.
For low symbol rates, the energy content within the bandwidth of the filters reduces significantly so incrementing
the baseband post-filter gain helps recover the signal level for the demodulator.
N.B. During channel acquisition or re-acquisition, the filter must be set to its maximum value.
4.3.2
Calculating the Filter Bandwidth
The -3 dB bandwidth of the filter (Hz) is given by the following expression:
1
f xtal
f bw = ---------- × ( BF + 1 ) × ---BR
K
Equation 1 Where:
fbw = Baseband filter –3 dB bandwidth (Hz) which should be within the range 8MHz ≤ f bw ≤ 35MHz .
fxtal = Crystal oscillator reference frequency (Hz).
K = 1.257 (constant).
BF = Decimal value of the register bits BF6:BF1, range 0 - 62.
BR = Decimal value of the bits BR4:BR0 (baseband filter reference divider ratio), range 4 - 27.
f xtal
where: 575 kHz ≤ --------- ≤ 2.5 MHz.
BR
The digital nature of the control loop means that the filter bandwidth setting is quantized: the difference between the
desired filter bandwidth and the actual filter bandwidth possible due to discrete settings causes a bandwidth error.
In order to minimize this bandwidth error, the maximum filter bandwidth setting resolution is needed. From the limits
given above, the best resolution possible is 575 kHz/1.257 = 457.4 kHz. However if this resolution is used, the
maximum bandwidth with BF = 62 is only 28.82 MHz, below the maximum of 35 MHz. Therefore for filter
bandwidths greater than 28.82 MHz the resolution must be decreased. For filter bandwidths around 35 MHz the
resolution is typically reduced to 698 kHz/1.257 = 555.3 kHz.
4.3.3
4.3.3.1
Determining the Values of BF and BR
Calculating the Value of BR
The above description can be described mathematically as:
For fbw ≤ 28.82 MHz,
Equation 2 -
f xtal
BR = -------------------- .
575kHz
For fbw > 28.82 MHz,
Equation 3 -
f xtal
1
BR = -------- × ( 62 + 1 ) × ---- .=
f bw
K
These equations can give non-integer results so rounding must be performed. The values for BR should be
f xtal
rounded DOWN to the nearest integer this ensures that --------- will not be below 575 kHz and that the maximum
BR
programmable bandwidth will not be below the desired bandwidth due to rounding.
31
Intel Corporation
CE5038
4.3.3.2
Data Sheet
Calculating the Value of BF
Equation 4 -
f bw
BF = ⎛ -------- × BR × K⎞ – 1 =
⎝ f xtal
⎠
For non-integer values of BF, the result should be simply rounded to the nearest integer to give the value for BF6:1.
4.3.4
Filter Bandwidth Programming Examples
Example 1, conditions: fxtal = 10.111 MHz, fbw = 9 MHz
Because fbw is below 28.2 MHz, the value of BR can be evaluated with equation 2:
f xtal
10.111MHz
BR = -------------------- = ------------------------------ = 17.583
575kHz
575kHz
This result should be rounded down to 17 to ensure that the result is not below the 575 kHz limit. Using this value
for BR, equation 4 can be evaluated:
f bw
9MHz
BF = ⎛ -------- × BR × K⎞ – 1 = ⎛ --------------------------- × 17 × 1.257⎞ – 1 = 18.02285
⎝ f xtal
⎠
⎝ 10.11MHz
⎠
The result can be rounded to the nearest value, i.e. BF = 18.
Example 2, conditions: fxtal = 10.111 MHz, fbw = 34.6 MHz
In this case, fbw is above 28.2 MHz so using equation 3 to solve for BR:
f xtal
1
10.111MHz
1
BR = -------- × ( 63 ) × ---- = ------------------------------ × ( 63 ) × --------------- = 14.647
f bw
K
34.6MHz
1.257
Using equation 4, this time with the rounded-down value of 14 for BR:
f bw
34.6MHz
BF = ⎛ -------- × BR × K⎞ – 1 = ⎛ --------------------------- × 14 × 1.257⎞ – 1 = 59.227
⎝ f xtal
⎠
⎝ 10.11MHz
⎠
Rounding to the nearest integer thus gives a value of 59 for BF.
4.4
Programming Sequence for Filter Bandwidth Changes
a. Byte 6: Set RSD = 0 to re-enable baseband filter resistor switching.
b. Byte 7: Set BF6:1 to the value derived in 4.3.3.2, “Calculating the Value of BF“ on page 32.
c. Byte 6: Set RSD = 1 to disable baseband filter resistor switching. This must happen no sooner than a
certain time after (b.). This minimum time equals BR/(32 * fxtal) seconds, where BR is the decimal value of
byte BR and fxtal is the reference crystal frequency.
32
Intel Corporation
CE5038
5.0
Application Notes
5.1
Thermal Considerations
Data Sheet
Figure 12 - Copper Dimensions for Optimum Heat Transfer
Figure 13 - Paste Mask for Reduced Paste Coverage
The CE5038 uses the 40-pin QFN package with a thermal ‘paddle’ in the base, which has a very high thermal
conductivity to the die, as well as low electrical resistance to the Vee connections. The CE5038 has a fairly high
power density, and if the excess heat is not efficiently removed, it will rapidly overheat beyond the 125°C limit, and
affect the performance or could even cause permanent damage to the device.
33
Intel Corporation
CE5038
Data Sheet
The paddle is designed to be soldered to a size-matched pad on the PCB (see Figure 10) which is thermally
connected to an efficient heat sink. The heat sink can be as simple as an area of copper ground plane on the
underside of the board, thereby reducing the system cost. To transfer the heat from the paddle to the underside of
the board, an array of 25 x 0·3 mmØ vias are used between the topside pad, which will be soldered to the paddle,
and the ground plane on the underside of the board. It is also possible to use a smaller number of larger vias, e.g.,
16 x 0·5 mmØ, but this arrangement is marginally less efficient.
The area of copper in the ground plane must be at least 2,000 mm² for 1 oz copper. If 2 oz copper board is used or
if multiple ground planes are available, as with a four-layer board, the area could be reduced somewhat, but in
general it is better to have the maximum cooling possible, as reliability will always be enhanced if lower
temperatures are maintained.
While it is possible to use a paste mask that simply duplicates the aperture for the 4.15 mm sq. paddle, the quantity
of solder paste under the device can cause problems and it is preferable to reduce the coverage to a level between
50% and 80% of the area. The pattern shown in Figure 11 reduces the coverage to approximately 60%, which
should reduce out-gassing from under the device and improve the stand-off height of the package from the board.
A very useful publication giving further details is: “Application Notes for Surface Mount Assembly of Amkorþs
MicroLeadFrame (MLF) Packages” which can be found on: www.amkor.com
5.2
Crystal Oscillator Notes
Table 19 - Crystal Capacitor Values for 4 MHz and 10 MHz Operation
(component numbering refers to the example schematic, Figure 2)
Component
4 MHz
10 MHz
C10
47 pF
100 pF
C11
47 pF
100 pF
Note: C12, a 10 pF (15 pF for 10 MHz) capacitor may be added between the crystal and
Gnd if an oscillator output is required. Output is from the crystal/capacitor junction.
Figure 14 - Typical Oscillator Arrangement with Optional Output
Figure 15 - Typical Arrangement for External Oscillator
34
Intel Corporation
CE5038
6.0
Electrical Characteristics
6.1
Test Conditions
Data Sheet
The following conditions apply to all figures in this chapter, except where notes indicate other settings.
Tamb = -10° to 70°C, Vee= 0 V, All Vcc supplies = 5 V±5%
RF gain adjust = +0 dB, prefilter = +4.2 dB and postfilter = 4.2 dB. RFG=0, BA1=0, BA0=1, BG1=0, BG0=1
These characteristics are guaranteed by either production test or design. They apply within the specified ambient
temperature and supply voltage unless otherwise stated.
6.2
Absolute Maximum Ratings
Parameter
Symbol
Min.
Max.
Unit
Supply voltage
VccBB, VccDIG, VccLO,
VccRF, VccTUNE
-0.3
5.5
V
Storage temperature
TSTG
-55
150
°C
Junction temperature
Tj
125
°C
Notes
w.r.t. Vee
Voltage on SDA & SCL
-0.3
6
V
Vcc = Vee to 5.25 V
Voltage on DRIVE
-0.3
VccTUNE+0.3
V
Voltage on RFIN, RFBYPASS
and inverted equivalents
-0.3
VccRF+0.3
V
-0.3
VccLO+0.3
V
-0.3
VccBB+0.3
V
-0.3
3.6
V
-0.3
VccDIG+0.3
V
-0.3
DIGDEC+0.3
V
20
mA
Each output
To Mil-std 883B
method 3015 cat1
Voltage on RFAGC
Voltage on Vvar
Voltage on LOTEST
Voltage on IOUT, QOUT, IDC,
QDC and inverted
equivalents
Voltage on P1
Voltage at DIGDEC
Voltage on PUMP
Voltage on SLEEP and P0
Voltage on ADD, XTAL,
XTALCAP and LOCK
Sink current, P0 or P1
ESD protection, pins 31 &
321
0.5
kV
pins 1-30, 33-40
2.0
kV
1. ESD protection can be increased by adding a protection diode (D1) to the input circuit as shown in the application circuit (Figure 2).
35
Intel Corporation
CE5038
6.3
Data Sheet
Recommended Operating Conditions
Parameter
Symbol
Min.
Max.
Unit
Supply voltage
VccBB, VccDIG, VccLO, VccRF, VccTUNE
4.75
5.25
V
Operating temperature
TOP
-10
70
°C
6.4
Notes
w.r.t. Vee
DC Characteristics
Pins
Characteristic
Min.
Typ.
Max.
Units
Conditions
Normal operating conditions
RF bypass
All Vcc
pins:
5, 6, 18, 19,
26, 29, 36,
37
Supply current
210
259
mA
228
281
mA
243
300
mA
261
322
mA
82
107
mA
disabled
mA
enabled
Ω
Single-ended
kΩ
pF
Maximum load, which can be
applied to output, singleended. If operated single
ended unused output should
be unloaded
115
QOUT,
QOUT,
IOUT,
IOUT: 3, 4,
7, 8
QDC,
QDC, IDC,
IDC: 1, 2,
9, 10
SCL, SDA:
12, 13
Output impedance
Output load
25
1
15
Bias voltage
3.8
Output impedance
enabled
minimum
maximum
minimum
maximum
sleep mode
kΩ
Input high voltage
2.3
5.5
V
Input low voltage
0
1
V
-10
10
µA
Input voltage =Vee to
VccDIG
10
µA
Input voltage = Vee to 5.5 V,
VccDIG=Vee
Input current
Hysteresis
PUMP: 21
disabled
V
11
Leakage current
SDA: 13
filter b.w.
0.4
Output voltage
Charge pump
leakage
+-3
Charge pump
current
V
0.4
V
Isink = 3 mA
0.6
V
Isink = 6 mA
nA
Vpin = 1.8V
+-20
Vpin = 1.8 V. See Table 13
on page 26
36
Intel Corporation
CE5038
Pins
DRIVE: 20
XTAL,
XTALCAP:
14, 15
Characteristic
Min.
Max. voltage
Data Sheet
Typ.
Max.
VccTUNE-0.2
Units
V
Min. voltage
0.3
V
Parallel resonant crystal
1
mA
Vee <= Vvar <= 1.7 V
(on-chip varactors forward
biased)
25
µA
1.7 V <= Vvar <= Vcc
mA
At Vport = 0.7 V
µA
Vport = Vcc
V
Out of lock
V
In lock
10
200
Input current
-1
-25
Sink current
10
Leakage current
10
Low output voltage
LOCK: 25
ADD: 16
0.5
High output voltage
DigDec-0.5
Load current
1
mA
Input high current
1
mA
Vin=DIGDEC
Input low current
-0.5
mA
Vin=Vee
Input high voltage
SLEEP: 11
Input low voltage
RFAGC: 34
Leakage current
LOTEST:
38
Output impedance
at 1 mA
2
3.6
V
Sleep enabled
Vee
0.5
V
Normal mode
10
µA
Vin=Vee to DIGDEC
150
µA
Vee <= Vagc<= Vcc
Input DC current
6.5
On-chip 3 kohm load resistor
to VccTUNE
Ω
Recommended
crystal E.S.R.
Vvar: 23
P0, P1: 24,
39
Conditions
-150
Ω
100
Bias voltage
3.3
V
AC Characteristics
Characteristic
Min.
Typ.
Max.
Units
Conditions
System (See 1)
Noise figure, DSB
9
dB
At -70 dBm operating level 2
12
dB
At -60 dBm operating level 2
10
dB
At -70 dBm operating level
13
dB
At -60 dBm operating level
-1
dB/dB
Above –60 dBm operating level 2
See Figure 8 on page 15
10
dB
dB
Vagc = 0.75 V
Vagc = 4.25 V
dB
AGC monotonic, Vagc from Vee to Vcc
Variation in NF with RF gain
adjust
Conversion gain
Maximum
Minimum
72
AGC control range
68
78
6
72
37
Intel Corporation
CE5038
Characteristic
Min.
Typ.
Max.
Data Sheet
Units
Conditions
System IM2
-35
-40
dBc
dBc
See 3
See 4
System IM3
-15
dBc
See 5
Variation in system second
order intermodulation intercept
-1
dB/dB
See Figure 6 on page 14 and 6
Variation in system third order
intermodulation intercept
-1
dB/dB
See Figure 7 on page 14 and 7
dBm
See 8
Input compression
-10
-6
LO second harmonic
interference level
-50
-35
dBc
See 9, all gain settings
LNA second harmonic
interference level
-35
-20
dBc
See 10
Quadrature gain match
-0.6
0.6
dB
Quadrature phase match
-3
3
deg
I & Q channel in band ripple
1
dB
I/Q Crosstalk
21
dB
Synthesizer and other spurii on
I & Q outputs
LO reference sideband spur
level on I & Q outputs
In band LO leakage to RF input
Filter bandwidth settings 8-35 MHz, up to
0.8 x filter -3 dB bandwidth
-30
dBc
All gain settings below 68 dB
-25
dBc
At maximum gain. Linearly interpolated
between max. and 68 dB gain, see 11
-40
dBc
Synthesizer phase detector comparison
frequency 500-2000 kHz
-65
dBm
Within RF band 950-2150 MHz
-55
dBm
Within RF band 30-950 MHz
RF bypass
Gain
1.5
NF
10
OPIP3
OPIP2
Output return loss
5.5
13
9
26
9
dB
dB
dBm
See 12
dBm
See 13
dB
Z0 = 75 Ω. See Figure 9 on page 16, with
output matching as in Figure 2 on page 2.
Bypass enabled or disabled.
Forward isolation
25
dB
Reverse isolation
25
dB
In band LO leakage
-65
dBm
950-2150 MHz
Single-ended to single-ended, bypass
disabled
Converter
Converter Input return loss (pins
RFIN & RFIN)
8
10
dB
38
Intel Corporation
Z0 = 75 Ω. See Figure 9 on page 16. With
input matching as in Figure 2 on page 2.
Bypass enabled or disabled
CE5038
Characteristic
Min.
Typ.
Max.
-84
-84
-108
L.O. SSB phase noise
-120
L.O. integrated phase jitter
-110
-132
2
LOTEST output amplitude
200
Data Sheet
Units
Conditions
dBc/Hz @ 1 kHz offset
dBc/Hz @ 10 kHz offset
dBc/Hz @ 100 kHz offset
Measured either, at
baseband output of
10 MHz, PLL loop
bandwidth circa
15 kHz, or at
LOTEST output14.
dBc/Hz @ 1 MHz offset
dBc/Hz Noise floor.
Measured at
LOTEST output.
deg
See15
mVp-p
Test output enabled into 50 Ω
Baseband Filters
(specifications apply with both single-ended and differential load unless otherwise stated)
4
40
MHz
See 2.4, “Baseband Filter“ on page 16.
Maximum load as specified
Bandwidth absolute tolerance
-5
+5
%
Filter bandwidth setting, fset, 8-35 MHz.
Slave oscillator enabled, see 16
Channel bandwidth match
-1
+1
%
Filter bandwidth settings 8-35 MHz
Bandwidth
All bandwidth settings, see Figure on
page 17
Characteristic response
Channel gain match
Included in system gain match
Channel phase match
Output total harmonic distortion
Output limiting
-26
1.0
dBc
At 0.8 V p-p, single-ended. Maximum
load as specified
Vp-p
Level at hard clipping, single-ended.
Maximum load as specified
Synthesizer
Crystal frequency
4
20
MHz
See Table 19 on page 34.
External reference input
frequency
4
20
MHz
External reference drive level
0.2
Sinewave coupled through 10 nF blocking
capacitor to pin XTAL. XTALCAP is left
open.
Phase detector comparison
frequency
0.5
31.25
Equivalent phase noise at
phase detector
2000
-148
LO division ratio
240
Maximum SCL clock rate
100
Vp-p
kHz
dBc/Hz SSB, within loop bandwidth. Phase
detector comparison frequency = 1 MHz
32767
kHz
1. All power levels are referred to 75 Ω and assume an ideal impedance match: 0 dBm = 109 dBmV. System specifications refer to
total cascaded system of converter/AGC stage and baseband amplifier/filter stage with maximum terminating load as specified in
“Recommended Operating Conditions” on page 36, with output amplitude of 0.5 Vp-p differential.
2. See Figure 8, RF gain adjust = +4 dB, prefilter = +4.2 dB and postfilter = 0 dB, RFG = 1, BA1 = 0, BA0 = 1, BG1 = 0, BG0 = 0
3. ’Baseband defined IM2’. AGC set to deliver an output of 0.5 Vp-p with an input CW @ frequency fc of -25 dBm. Two undesired
tones at fc+146 and fc+155 MHz @ -11 dBm generating output intermodulation spur at 9 MHz. Baseband filter at 22 MHz
bandwidth setting.
39
Intel Corporation
CE5038
Data Sheet
4. ’Front end defined IM2’. LO set to 2145 MHz and AGC set to deliver a 5 MHz output of 0.5 Vp-p with a desired input CW @
frequency 2150 MHz of -45 dBm. Sum IM2 product from two undesired tones at 1.05 and 1.1 GHz at -25 dBm converted to 5 MHz
baseband with desired input removed. Baseband filter at 22 MHz bandwidth setting.
5. ’IM3’. AGC set to deliver an output of 0.5 Vp-p with an input CW @ frequency fc of -30 dBm. Two undesired tones at fc+55 and
fc+105 MHz at -11 dBm generating output intermodulation spur at 5 MHz. Baseband filter at 22 MHz bandwidth setting.
6. ’Front end defined’ variation in IP2 from two undesired tones at 1.05 and 1.1 GHz at 20 dBc relative to desired at 2.15 GHz
converted to 5 MHz baseband with LO tuned to 2.145 GHz with AGC set to deliver 0.5 Vp-p differential on desired, as desired
amplitude is varied from -45 dBm to -75 dBm.
7. Variation in IP3 product from two undesired tones at fc+55 and fc+105 MHz at 19 dBc relative to desired at fc converted to 5 MHz
baseband with LO tuned to desired at fc GHz with AGC set to deliver 0.5 Vp-p differential on desired, as desired amplitude is
varied from -30 dBm to -75 dBm.
8. AGC set to deliver an output of 0.5 Vp-p with an input CW @ frequency fc of -35 dBm. Input compression defined as the level of
interferer at 100 MHz offset, which leads to a 1 dB compression in gain.
9. The level of 2.01 GHz downconverted to baseband relative to 1.01 GHz with the oscillator tuned to 1 GHz, measured with no input
pre-filtering.
10. The level of second harmonic of 1.01 GHz input at -20 dBm downconverted to baseband relative to 2.01 GHz at -35 dBm with the
oscillator tuned to 2 GHz, measured with no input pre-filtering gain set to deliver 0.5 Vp-p on 2.01 GHz CW signal. RF gain adjust
= +4 dB, prefilter = +4.2 dB and postfilter = 0 dB RFG = 1, BA1 = 0, BA0 = 1, BG1 = 0, BG0 = 0
11. Within 0-100 MHz band, RF input set to deliver 0.5 Vp-p on output. RF gain adjust = +4 dB, prefilter = +4.2 dB and postfilter
= 0 dB RFG = 1, BA1 = 0, BA0 = 1, BG1 = 0, BG0 = 0
12. Two input tones at fc+50 and fc+100 MHz at -9 dBm generating output intermodulation spur at fc.
13. Sum IM2 product from two input tones at 1.05 and 1.1 GHz at -9 dBm converted to 2150 MHz.
14. PLL loop bandwidth ~15 kHz, comparison frequency 1 - 2 MHz.
15. Integrated rms LO jitter measured from 1 kHz to 15 MHz, PLL loop bandwidth 15 kHz. Varactor voltage = 3.5 volts.
16. RSD = 0 for 8 MHz <= fset <= 20 MHz, RSD = 1 for 20 MHz <= fset <= 35 MHz.
40
Intel Corporation