XILINX XC3S2000

0
Spartan-3 FPGA Family
Data Sheet
R
DS099 June 25, 2008
0
0
Product Specification
This document includes all four modules of the Spartan®-3 FPGA data sheet.
Module 1:
Spartan-3 FPGA Family: Introduction
and Ordering Information
Module 3:
Spartan-3 FPGA Family: DC and
Switching Characteristics
DS099-1 (v2.4) June 25, 2008
DS099-3 (v2.4) June 25, 2008
•
•
•
•
•
•
•
Introduction
Features
Architectural Overview
Array Sizes and Resources
User I/O Chart
Ordering Information
•
Module 2:
Spartan-3 FPGA Family: Functional
Description
DS099-2 (v2.4) June 25, 2008
•
•
•
•
•
•
•
Input/Output Blocks (IOBs)
- IOB Overview
- SelectIO™ Interface I/O Standards
Configurable Logic Blocks (CLBs)
Block RAM
Dedicated Multipliers
Digital Clock Manager (DCM)
Clock Network
Configuration
DC Electrical Characteristics
- Absolute Maximum Ratings
- Supply Voltage Specifications
- Recommended Operating Conditions
- DC Characteristics
Switching Characteristics
- I/O Timing
- Internal Logic Timing
- DCM Timing
- Configuration and JTAG Timing
Module 4:
Spartan-3 FPGA Family: Pinout
Descriptions
DS099-4 (v2.4) June 25, 2008
•
•
•
Pin Descriptions
- Pin Behavior During Configuration
Package Overview
Pinout Tables
- Footprints
IMPORTANT NOTE: Each module has its own Revision History at the end. Use the PDF "Bookmarks" for easy navigation
in this volume.
© 2003-2008 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099 June 25, 2008
Product Specification
www.xilinx.com
1
R
2
www.xilinx.com
DS099 June 25, 2008
Product Specification
Spartan-3 FPGA Family:
Introduction and Ordering
Information
R
10
DS099-1 (v2.4) June 25, 2008
0
Product Specification
0
Introduction
Features
Spartan®-3
The
family of Field-Programmable Gate Arrays
is specifically designed to meet the needs of high volume,
cost-sensitive consumer electronic applications. The
eight-member family offers densities ranging from 50,000 to
five million system gates, as shown in Table 1.
The Spartan-3 family builds on the success of the earlier
Spartan-IIE family by increasing the amount of logic
resources, the capacity of internal RAM, the total number of
I/Os, and the overall level of performance as well as by
improving clock management functions. Numerous
enhancements derive from the Virtex®-II platform technology. These Spartan-3 FPGA enhancements, combined with
advanced process technology, deliver more functionality
and bandwidth per dollar than was previously possible, setting new standards in the programmable logic industry.
Because of their exceptionally low cost, Spartan-3 FPGAs
are ideally suited to a wide range of consumer electronics
applications, including broadband access, home networking, display/projection and digital television equipment.
The Spartan-3 family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, the
lengthy development cycles, and the inherent inflexibility of
conventional ASICs. Also, FPGA programmability permits
design upgrades in the field with no hardware replacement
necessary, an impossibility with ASICs.
The Spartan-3 FPGAs are the first platform among several
within the Spartan-3 Generation FPGAs.
•
•
•
•
•
•
Low-cost, high-performance logic solution for high-volume,
consumer-oriented applications
Densities up to 74,880 logic cells
SelectIO™ interface signaling
Up to 633 I/O pins
622 Mb/s data transfer rate per I/O
18 single-ended signal standards
8 differential I/O standards including LVDS, RSDS
Termination by Digitally Controlled Impedance
Signal swing ranging from 1.14V to 3.465V
Double Data Rate (DDR) support
DDR, DDR2 SDRAM support up to 333 Mbps
Logic resources
Abundant logic cells with shift register capability
Wide, fast multiplexers
Fast look-ahead carry logic
Dedicated 18 x 18 multipliers
JTAG logic compatible with IEEE 1149.1/1532
SelectRAM™ hierarchical memory
Up to 1,872 Kbits of total block RAM
Up to 520 Kbits of total distributed RAM
Digital Clock Manager (up to four DCMs)
Clock skew elimination
Frequency synthesis
High resolution phase shifting
Eight global clock lines and abundant routing
•
Fully supported by Xilinx ISE® and WebPACK™
software development systems
•
•
MicroBlaze™ and PicoBlaze™ processor, PCI®, PCI
Express® PIPE Endpoint, and other IP cores
Pb-free packaging options
•
Automotive Spartan-3 XA Family variant
Table 1: Summary of Spartan-3 FPGA Attributes
CLB Array
(One CLB = Four Slices)
System
Gates
Equivalent
Logic
Cells1
Rows
XC3S502
50K
1,728
16
XC3S2002
200K
4,320
XC3S4002
Device
Columns
Total
CLBs
Distributed
RAM Bits
(K=1024)
Block RAM
Bits
(K=1024)
Dedicated
Multipliers
12
192
12K
72K
4
24
20
480
30K
216K
12
32
28
896
56K
288K
16
DCMs
Maximum
User I/O
Maximum
Differential
I/O Pairs
2
124
56
4
173
76
4
264
116
400K
8,064
XC3S10002
1M
17,280
48
40
1,920
120K
432K
24
4
391
175
XC3S1500
1.5M
29,952
64
52
3,328
208K
576K
32
4
487
221
XC3S2000
2M
46,080
80
64
5,120
320K
720K
40
4
565
270
XC3S4000
4M
62,208
96
72
6,912
432K
1,728K
96
4
633
300
XC3S5000
5M
74,880
104
80
8,320
520K
1,872K
104
4
633
300
Notes:
1. Logic Cell = 4-input Look-Up Table (LUT) plus a ‘D’ flip-flop. "Equivalent Logic Cells" equals "Total CLBs" x 8 Logic Cells/CLB x 1.125 effectiveness.
2. These devices are available in Xilinx Automotive versions as described in DS314: Spartan-3 Automotive XA FPGA Family.
© 2003-2008 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-1 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
3
R
Spartan-3 FPGA Family: Introduction and Ordering Information
Architectural Overview
The Spartan-3 family architecture consists of five fundamental programmable functional elements:
•
•
•
•
Configurable Logic Blocks (CLBs) contain RAM-based
Look-Up Tables (LUTs) to implement logic and storage
elements that can be used as flip-flops or latches.
CLBs can be programmed to perform a wide variety of
logical functions as well as to store data.
Input/Output Blocks (IOBs) control the flow of data
between the I/O pins and the internal logic of the
device. Each IOB supports bidirectional data flow plus
3-state operation. Twenty-six different signal standards,
including eight high-performance differential standards,
are available as shown in Table 2. Double Data-Rate
(DDR) registers are included. The Digitally Controlled
Impedance (DCI) feature provides automatic on-chip
terminations, simplifying board designs.
Block RAM provides data storage in the form of 18-Kbit
dual-port blocks.
Multiplier blocks accept two 18-bit binary numbers as
inputs and calculate the product.
•
Digital Clock Manager (DCM) blocks provide
self-calibrating, fully digital solutions for distributing,
delaying, multiplying, dividing, and phase shifting clock
signals.
These elements are organized as shown in Figure 1. A ring
of IOBs surrounds a regular array of CLBs. The XC3S50
has a single column of block RAM embedded in the array.
Those devices ranging from the XC3S200 to the XC3S2000
have two columns of block RAM. The XC3S4000 and
XC3S5000 devices have four RAM columns. Each column
is made up of several 18-Kbit RAM blocks; each block is
associated with a dedicated multiplier. The DCMs are positioned at the ends of the outer block RAM columns.
The Spartan-3 family features a rich network of traces and
switches that interconnect all five functional elements,
transmitting signals among them. Each functional element
has an associated switch matrix that permits multiple connections to the routing.
DS099-1_01_032703
Notes:
1. The two additional block RAM columns of the XC3S4000 and XC3S5000
devices are shown with dashed lines. The XC3S50 has only the block RAM
column on the far left.
Figure 1: Spartan-3 Family Architecture
4
www.xilinx.com
DS099-1 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Introduction and Ordering Information
Configuration
Spartan-3 FPGAs are programmed by loading configuration
data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional
elements and routing resources. Before powering on the
FPGA, configuration data is stored externally in a PROM or
some other nonvolatile medium either on or off the board.
After applying power, the configuration data is written to the
FPGA using any of five different modes: Master Parallel,
Slave Parallel, Master Serial, Slave Serial, and Boundary
Scan (JTAG). The Master and Slave Parallel modes use an
8-bit wide SelectMAP port.
The recommended memory for storing the configuration
data is the low-cost Xilinx Platform Flash PROM family,
which includes the XCF00S PROMs for serial configuration
and the higher density XCF00P PROMs for parallel or serial
configuration.
I/O Capabilities
The SelectIO feature of Spartan-3 devices supports 18 single-ended standards and 8 differential standards as listed in
Table 2. Many standards support the DCI feature, which
uses integrated terminations to eliminate unwanted signal
reflections..
Table 2: Signal Standards Supported by the Spartan-3 Family
Standard
Category
Description
VCCO
(V)
Class
Symbol
(IOSTANDARD)
DCI
Option
N/A
Terminated
GTL
Yes
Plus
GTLP
Yes
I
HSTL_I
Yes
III
HSTL_III
Yes
I
HSTL_I_18
Yes
II
HSTL_II_18
Yes
III
HSTL_III_18
Yes
1.2
N/A
LVCMOS12
No
1.5
N/A
LVCMOS15
Yes
1.8
N/A
LVCMOS18
Yes
2.5
N/A
LVCMOS25
Yes
3.3
N/A
LVCMOS33
Yes
3.3
N/A
LVTTL
No
MHz(1)
PCI33_3
No
N/A (±6.7 mA)
SSTL18_I
Yes
N/A (±13.4 mA)
SSTL18_II
No
I
SSTL2_I
Yes
II
SSTL2_II
Yes
Single-Ended
GTL
HSTL
Gunning Transceiver Logic
High-Speed Transceiver Logic
1.5
1.8
LVCMOS
LVTTL
Low-Voltage CMOS
Low-Voltage Transistor-Transistor Logic
PCI
Peripheral Component Interconnect
3.0
SSTL
Stub Series Terminated Logic
1.8
2.5
33
Differential
LDT
(ULVDS)
Lightning Data Transport (HyperTransport™)
Logic
LVDS
Low-Voltage Differential Signaling
2.5
N/A
LDT_25
No
Standard
LVDS_25
Yes
Bus
BLVDS_25
No
Extended Mode
LVDSEXT_25
Yes
LVPECL
Low-Voltage Positive Emitter-Coupled Logic
2.5
N/A
LVPECL_25
No
RSDS
Reduced-Swing Differential Signaling
2.5
N/A
RSDS_25
No
HSTL
Differential High-Speed Transceiver Logic
1.8
II
DIFF_HSTL_II_18
Yes
SSTL
Differential Stub Series Terminated Logic
2.5
II
DIFF_SSTL2_II
Yes
Notes:
1. 66 MHz PCI is not supported by the Xilinx IP core although PCI66_3 is an available I/O standard.
DS099-1 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
5
R
Spartan-3 FPGA Family: Introduction and Ordering Information
Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.
Table 3: Spartan-3 Device I/O Chart
Available User I/Os and Differential (Diff) I/O Pairs by Package Type
VQ100
VQG100
CP132
CPG132
TQ144
TQG144
PQ208
PQG208
FT256
FTG256
FG320
FGG320
FG456
FGG456
FG676
FGG676
FG900
FGG900
FG1156(1)
FGG1156
User
Diff
User
Diff
User
Diff
User
Diff
User
Diff
User
Diff
User
Diff
User
Diff
User
Diff
User
Diff
XC3S50
63
29
89
44
97
46
124
56
-
-
-
-
-
-
-
-
-
-
-
-
XC3S200
63
29
-
-
97
46
141
62
173
76
-
-
-
-
-
-
-
-
-
-
XC3S400
-
-
-
-
97
46
141
62
173
76
221
100
264
116
-
-
-
-
-
-
XC3S1000
-
-
-
-
-
-
-
-
173
76
221
100
333
149
391
175
-
-
-
-
XC3S1500
-
-
-
-
-
-
-
-
-
-
221
100
333
149
487
221
-
-
-
-
XC3S2000
-
-
-
-
-
-
-
-
-
-
-
-
333
149
489
221
565
270
-
312(1)
344(1)
Device
XC3S4000
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489
221
633
300
712(1)
XC3S5000
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489
221
633
300
784(1)
Notes:
1. The FG(G)1156 package is being discontinued and is not recommended for new designs. See
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm for the latest updates.
2. All device options listed in a given package column are pin-compatible.
3. User = Single-ended user I/O pins. Diff = Differential I/O pairs.
6
www.xilinx.com
DS099-1 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Introduction and Ordering Information
Package Marking
Figure 2 shows the top marking for Spartan-3 FPGAs in the
quad-flat packages. Figure 3 shows the top marking for
Spartan-3 FPGAs in BGA packages except the 132-ball
chip-scale package (CP132 and CPG132). The markings
for the BGA packages are nearly identical to those for the
quad-flat packages, except that the marking is rotated with
respect to the ball A1 indicator. Figure 4 shows the top
marking for Spartan-3 FPGAs in the CP132 and CPG132
packages.
The “5C” and “4I” part combinations may be dual marked
as “5C/4I”. Devices with the dual mark can be used as
either -5C or -4I devices. Devices with a single mark are
only guaranteed for the marked speed grade and temperature range.
Mask Revision Code
Fabrication Code
R
SPARTAN
R
Process Technology
TM
Device Type
Package
XC3S400
PQ208EGQ0525
D1234567A
Speed Grade
4C
Date Code
Lot Code
Temperature Range
Pin P1
DS099-1_03_050305
Figure 2: Spartan-3 QFP Package Marking Example for Part Number XC3S400-4PQ208C
Mask Revision Code
BGA Ball A1
R
SPARTAN
Device Type
Package
Fabrication Code
Process Code
R
XC3S1000TM
FT256EGQ0525
D1234567A
4C
Date Code
Lot Code
Speed Grade
Temperature Range
DS099-1_04_050305
Figure 3: Spartan-3 BGA Package Marking Example for Part Number XC3S1000-4FT256C
Ball A1
3S50
Lot Code
F1234567-0525
PHILIPPINES
Package
C5 = CP132
C6 = CPG132
C5EGQ
Mask Revision Code
Device Type
Date Code
Temperature Range
4C
Speed Grade
Process Code
Fabrication Code
DS099-1_05_050305
Figure 4: Spartan-3 CP132 and CPG132 Package Marking Example for XC3S50-4CP132C
DS099-1 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
7
R
Spartan-3 FPGA Family: Introduction and Ordering Information
Ordering Information
Spartan-3 FPGAs are available in both standard and Pb-free packaging options for all device/package combinations. The
Pb-free packages include a special ‘G’ character in the ordering code.
Standard Packaging
Example: XC3S50 -4 PQ 208 C
Device Type
Temperature Range:
C = Commercial (TJ = 0˚C to 85˚C)
I = Industrial (TJ = -40˚C to 100˚C)
Speed Grade
Package Type
Number of Pins
DS099-1_02a_071304
Pb-Free Packaging
For additional information on Pb-free packaging, see XAPP427: "Implementation and Solder Reflow Guidelines for Pb-Free
Packages".
Example: XC3S50 -4 PQ G 208 C
Device Type
Temperature Range:
C = Commercial (TJ = 0˚C to 85˚C)
I = Industrial (TJ = -40˚C to 100˚C)
Speed Grade
Number of Pins
Pb-free
Package Type
Device
XC3S50
Speed Grade
Package Type / Number of Pins
Temperature Range (TJ )
VQ(G)100
100-pin Very Thin Quad Flat Pack (VQFP)
C Commercial (0°C to 85°C)
CP(G)132
132-pin Chip-Scale Package (CSP)
I Industrial (–40°C to 100°C)
XC3S400
TQ(G)144
144-pin Thin Quad Flat Pack (TQFP)
XC3S1000
PQ(G)208
208-pin Plastic Quad Flat Pack (PQFP)
XC3S1500
FT(G)256
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)
XC3S2000
FG(G)320
320-ball Fine-Pitch Ball Grid Array (FBGA)
XC3S4000
FG(G)456
456-ball Fine-Pitch Ball Grid Array (FBGA)
XC3S200
XC3S5000
-4 Standard Performance
DS099-1_02b_071304
-5 High
Performance(1)
FG(G)676
676-ball Fine-Pitch Ball Grid Array (FBGA)
FG(G)900
900-ball Fine-Pitch Ball Grid Array (FBGA)
FG(G)1156(2) 1156-ball Fine-Pitch Ball Grid Array (FBGA)
Notes:
1. The -5 speed grade is exclusively available in the Commercial temperature range.
2. The FG(G)1156 package is being discontinued and is not recommended for new designs.
See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm for the latest updates.
8
www.xilinx.com
DS099-1 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Introduction and Ordering Information
Revision History
Date
Version No.
04/11/03
1.0
Initial Xilinx release.
04/24/03
1.1
Updated block RAM, DCM, and multiplier counts for the XC3S50.
12/24/03
1.2
Added the FG320 package.
07/13/04
1.3
Added information on Pb-free packaging options.
01/17/05
1.4
Referenced Spartan-3 XA Automotive FPGA families in Table 1. Added XC3S50CP132,
XC3S2000FG456, XC3S4000FG676 options to Table 3. Updated Package Marking to show
mask revision code, fabrication facility code, and process technology code.
08/19/05
1.5
Added package markings for BGA packages (Figure 3) and CP132/CPG132 packages
(Figure 4). Added differential (complementary single-ended) HSTL and SSTL I/O standards.
04/03/06
2.0
Increased number of supported single-ended and differential I/O standards.
04/26/06
2.1
Updated document links.
05/25/07
2.2
Updated Package Marking to allow for dual-marking.
11/30/07
2.3
Added XC3S5000 FG(G)676 to Table 3. Noted that FG(G)1156 package is being discontinued
and updated max I/O count.
06/25/08
2.4
Updated max I/O counts based on FG1156 discontinuation. Clarified dual mark in Package
Marking. Updated formatting and links.
DS099-1 (v2.4) June 25, 2008
Product Specification
Description
www.xilinx.com
9
Spartan-3 FPGA Family: Introduction and Ordering Information
10
www.xilinx.com
R
DS099-1 (v2.4) June 25, 2008
Product Specification
54
Spartan-3 FPGA Family:
Functional Description
R
DS099-2 (v2.4) June 25, 2008
0
Product Specification
New Spartan-3 Generation Design
Documentation Available
For specific hardware examples, please see the Spartan-3
FPGA Starter Kit board web page, which has links to
various design examples and the user guide.
The functionality of the Spartan®-3 FPGA family is now
described and updated in the following documents. The
topics covered in each guide are listed below.
•
•
•
UG331: Spartan-3 Generation FPGA User Guide
http://www.xilinx.com/support/documentation/
user_guides/ug331.pdf
- Clocking Resources
- Digital Clock Managers (DCMs)
- Block RAM
- Configurable Logic Blocks (CLBs)
- Distributed RAM
- SRL16 Shift Registers
- Carry and Arithmetic Logic
- I/O Resources
- Embedded Multiplier Blocks
- Programmable Interconnect
- ISE® Software Design Tools
- IP Cores
- Embedded Processing and Control Solutions
- Pin Types and Package Overview
- Package Drawings
- Powering FPGAs
UG332: Spartan-3 Generation Configuration User
Guide
http://www.xilinx.com/support/documentation/
user_guides/ug332.pdf
- Configuration Overview
·
Configuration Pins and Behavior
·
Bitstream Sizes
- Detailed Descriptions by Mode
·
Master Serial Mode using Xilinx Platform Flash
PROM
·
Slave Parallel (SelectMAP) using a Processor
·
Slave Serial using a Processor
·
JTAG Mode
- ISE iMPACT Programming Examples
•
Spartan-3 FPGA Starter Kit Board Page
http://www.xilinx.com/s3starter
UG130: Spartan-3 FPGA Starter Kit User Guide
http://www.xilinx.com/support/documentation/
boards_and_kits/ug130.pdf
Create a Xilinx MySupport user account and sign up to
receive automatic E-mail notification whenever this data
sheet or the associated user guides are updated.
•
Sign Up for Alerts on Xilinx MySupport
http://www.xilinx.com/support/answers/19380.htm
© 2004-2008 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
11
R
Spartan-3 FPGA Family: Functional Description
IOBs
For additional information, refer to the “Using I/O
Resources” chapter in UG331.
IOB Overview
The Input/Output Block (IOB) provides a programmable,
bidirectional interface between an I/O pin and the FPGA’s
internal logic.
A simplified diagram of the IOB’s internal structure appears
in Figure 5. There are three main signal paths within the
IOB: the output path, input path, and 3-state path. Each
path has its own pair of storage elements that can act as
either registers or latches. For more information, see the
Storage Element Functions section. The three main signal paths are as follows:
•
The input path carries data from the pad, which is
bonded to a package pin, through an optional
programmable delay element directly to the I line.
There are alternate routes through a pair of storage
elements to the IQ1 and IQ2 lines. The IOB outputs I,
IQ1, and IQ2 all lead to the FPGA’s internal logic. The
delay element can be set to ensure a hold time of zero.
The output path, starting with the O1 and O2 lines,
carries data from the FPGA’s internal logic through a
multiplexer and then a three-state driver to the IOB
pad. In addition to this direct path, the multiplexer
provides the option to insert a pair of storage elements.
The 3-state path determines when the output driver is
high impedance. The T1 and T2 lines carry data from
the FPGA’s internal logic through a multiplexer to the
•
•
•
output driver. In addition to this direct path, the
multiplexer provides the option to insert a pair of
storage elements. When the T1 or T2 lines are
asserted High, the output driver is high-impedance
(floating, Hi-Z). The output driver is active-Low
enabled.
All signal paths entering the IOB, including those
associated with the storage elements, have an inverter
option. Any inverter placed on these paths is
automatically absorbed into the IOB.
Storage Element Functions
There are three pairs of storage elements in each IOB, one
pair for each of the three paths. It is possible to configure
each of these storage elements as an edge-triggered
D-type flip-flop (FD) or a level-sensitive latch (LD).
The storage-element-pair on either the Output path or the
Three-State path can be used together with a special multiplexer to produce Double-Data-Rate (DDR) transmission.
This is accomplished by taking data synchronized to the
clock signal’s rising edge and converting them to bits synchronized on both the rising and the falling edge. The combination of two registers and a multiplexer is referred to as a
Double-Data-Rate D-type flip-flop (FDDR).
See Double-Data-Rate Transmission, page 14 for more
information.
The signal paths associated with the storage element are
described in Table 4.
Table 4: Storage Element Signal Description
Storage
Element
Signal
Description
Function
D
Data input
Data at this input is stored on the active edge of CK enabled by CE. For latch operation when the
input is enabled, data passes directly to the output Q.
Q
Data output
The data on this output reflects the state of the storage element. For operation as a latch in
transparent mode, Q will mirror the data at D.
CK
Clock input
A signal’s active edge on this input with CE asserted, loads data into the storage element.
CE
Clock Enable input
When asserted, this input enables CK. If not connected, CE defaults to the asserted state.
SR
Set/Reset
Forces storage element into the state specified by the SRHIGH/SRLOW attributes. The
SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not.
REV
Reverse
Used together with SR. Forces storage element into the state opposite from what SR does.
12
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
T
D
T1
Q
TFF1
CE
CK
SR
REV
DDR
MUX
TCE
D
T2
Q
TFF2
CE
CK
SR
REV
Three-state Path
O1
D
Q
VCCO
OFF1
CE
OTCLK1
CK
SR
Pull-Up
ESD
REV
I/O
Pin
DDR
MUX
OCE
D
O2
Programmable
Output
Driver
Q
OFF2
CE
OTCLK2
CK
SR
DCI
PullDown
ESD
REV
Keeper
Latch
Output Path
I
IQ1
D
CK
SR
ICE
LVCMOS, LVTTL, PCI
Fixed
Delay
Single-ended Standards
using VREF
Q
IFF1
CE
ICLK1
Fixed
Delay
VREF
Pin
REV
Differential Standards
IQ2
D
I/O Pin
from
Adjacent
IOB
Q
IFF2
CE
ICLK2
CK
SR
REV
SR
REV
Input Path
Note: All IOB signals originating from the FPGA's internal logic have an optional polarity inverter.
DS099-2_01_112905
Figure 5: Simplified IOB Diagram
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
13
R
Spartan-3 FPGA Family: Functional Description
According to Figure 5, the clock line OTCLK1 connects the
CK inputs of the upper registers on the output and
three-state paths. Similarly, OTCLK2 connects the CK
inputs for the lower registers on the output and three-state
paths. The upper and lower registers on the input path have
independent clock lines: ICLK1 and ICLK2.
The enable line OCE connects the CE inputs of the upper
and lower registers on the output path. Similarly, TCE connects the CE inputs for the register pair on the three-state
path and ICE does the same for the register pair on the
input path.
The Set/Reset (SR) line entering the IOB is common to all
six registers, as is the Reverse (REV) line.
Each storage element supports numerous options in addition to the control over signal polarity described in the IOB
Overview section. These are described in Table 5.
Table 5: Storage Element Options
Option Switch
Function
Specificity
FF/Latch
Chooses between an edge-sensitive flip-flop or
a level-sensitive latch
Independent for each storage element.
SYNC/ASYNC
Determines whether SR is synchronous or
asynchronous
Independent for each storage element.
SRHIGH/SRLOW
Determines whether SR acts as a Set, which
forces the storage element to a logic “1"
(SRHIGH) or a Reset, which forces a logic “0”
(SRLOW).
Independent for each storage element, except
when using FDDR. In the latter case, the selection
for the upper element (OFF1 or TFF2) applies to
both elements.
INIT1/INIT0
In the event of a Global Set/Reset, after
configuration or upon activation of the GSR net,
this switch decides whether to set or reset a
storage element. By default, choosing SRLOW
also selects INIT0; choosing SRHIGH also
selects INIT1.
Independent for each storage element, except
when using FDDR. In the latter case, selecting
INIT0 for one element applies to both elements
(even though INIT1 is selected for the other).
Double-Data-Rate Transmission
Double-Data-Rate (DDR) transmission describes the technique of synchronizing signals to both the rising and falling
edges of the clock signal. Spartan-3 devices use register-pairs in all three IOB paths to perform DDR operations.
The pair of storage elements on the IOB’s Output path
(OFF1 and OFF2), used as registers, combine with a special multiplexer to form a DDR D-type flip-flop (FDDR). This
primitive permits DDR transmission where output data bits
are synchronized to both the rising and falling edges of a
clock. It is possible to access this function by placing either
an FDDRRSE or an FDDRCPE component or symbol into
the design. DDR operation requires two clock signals (50%
duty cycle), one the inverted form of the other. These signals trigger the two registers in alternating fashion, as
shown in Figure 6. Commonly, the Digital Clock Manager
(DCM) generates the two clock signals by mirroring an
incoming signal, then shifting it 180 degrees. This approach
ensures minimal skew between the two signals.
The storage-element-pair on the Three-State path (TFF1
and TFF2) can also be combined with a local multiplexer to
form an FDDR primitive. This permits synchronizing the out-
14
put enable to both the rising and falling edges of a clock.
This DDR operation is realized in the same way as for the
output path.
The storage-element-pair on the input path (IFF1 and IFF2)
allows an I/O to receive a DDR signal. An incoming DDR
clock signal triggers one register and the inverted clock signal triggers the other register. In this way, the registers take
turns capturing bits of the incoming DDR data signal.
Aside from high bandwidth data transfers, DDR can also be
used to reproduce, or “mirror”, a clock signal on the output.
This approach is used to transmit clock and data signals
together. A similar approach is used to reproduce a clock
signal at multiple outputs. The advantage for both
approaches is that skew across the outputs will be minimal.
Some adjacent I/O blocks (IOBs) share common routing
connecting the ICLK1, ICLK2, OTCLK1, and OTCLK2 clock
inputs of both IOBs. These IOB pairs are identified by their
differential pair names IO_LxxN_# and IO_LxxP_#, where
"xx" is an I/O pair number and ‘#’ is an I/O bank number.
Two adjacent IOBs containing DDR registers must share
common clock inputs, otherwise one or more of the clock
signals will be unroutable.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
transients. Each I/O has two clamp diodes: One diode
extends P-to-N from the pad to VCCO and a second diode
extends N-to-P from the pad to GND. During operation,
these diodes are normally biased in the off state. These
clamp diodes are always connected to the pad, regardless
of the signal standard selected. The presence of diodes limits the ability of Spartan-3 I/Os to tolerate high signal voltages. The VIN absolute maximum rating in Table 27,
page 55 specifies the voltage range that I/Os can tolerate.
DCM
180˚ 0˚
FDDR
D1
Q1
Slew Rate Control and Drive Strength
CLK1
DDR MUX
Two options, FAST and SLOW, control the output slew rate.
The FAST option supports output switching at a high rate.
The SLOW option reduces bus transients. These options are
only available when using one of the LVCMOS or LVTTL
standards, which also provide up to seven different levels of
current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choosing the appropriate drive strength level is yet another means
to minimize bus transients.
Q
D2
Q2
CLK2
Table 6 shows the drive strengths that the LVCMOS and
LVTTL standards support.
Table 6: Programmable Output Drive Current
Signal
Current Drive (mA)
Standard
2
4
6
8
12
16
(IOSTANDARD)
DS099-2_02_070303
Figure 6: Clocking the DDR Register
Pull-Up and Pull-Down Resistors
The optional pull-up and pull-down resistors are intended to
establish High and Low levels, respectively, at unused I/Os.
The pull-up resistor optionally connects each IOB pad to
VCCO. A pull-down resistor optionally connects each pad to
GND. These resistors are placed in a design using the
PULLUP and PULLDOWN symbols in a schematic, respectively. They can also be instantiated as components, set as
constraints or passed as attributes in HDL code. These
resistors can also be selected for all unused I/O using the
Bitstream Generator (BitGen) option UnusedPin. A Low
logic level on HSWAP_EN activates the pull-up resistors on
all I/Os during configuration.
The Spartan-3 I/O pull-up and pull-down resistors are significantly stronger than the "weak" pull-up/pull-down resistors
used in previous Xilinx FPGA families. See Table 32,
page 58 for equivalent resistor strengths.
Keeper Circuit
Each I/O has an optional keeper circuit that retains the last
logic level on a line after all drivers have been turned off.
This is useful to keep bus lines from floating when all connected drivers are in a high-impedance state. This function
is placed in a design using the KEEPER symbol. Pull-up
and pull-down resistors override the keeper circuit.
ESD Protection
Clamp diodes protect all device pads against damage from
Electro-Static Discharge (ESD) as well as excessive voltage
DS099-2 (v2.4) June 25, 2008
Product Specification
24
LVTTL
3
3
3
3
3
3
3
LVCMOS33
3
3
3
3
3
3
3
LVCMOS25
3
3
3
3
3
3
3
LVCMOS18
3
3
3
3
3
3
-
LVCMOS15
3
3
3
3
3
-
-
LVCMOS12
3
3
3
-
-
-
-
Boundary-Scan Capability
All Spartan-3 IOBs support boundary-scan testing compatible with IEEE 1149.1 standards. During boundary scan
operations such as EXTEST and HIGHZ the I/O pull-down
resistor is active. For more information, see Boundary-Scan (JTAG) Mode, page 49, and refer to the “Using
Boundary Scan and BSDL Files” chapter in UG331.
SelectIO Interface Signal Standards
The IOBs support 18 different single-ended signal standards, as listed in Table 7. Furthermore, the majority of
IOBs can be used in specific pairs supporting any of eight
differential signal standards, as shown in Table 8.
To define the SelectIO™ interface signaling standard in a
design, set the IOSTANDARD attribute to the appropriate
setting. Xilinx provides a variety of different methods for
applying the IOSTANDARD for maximum flexibility. For a full
description of different methods of applying attributes to
control IOSTANDARD, refer to the “Using I/O Resources”
chapter in UG331.
www.xilinx.com
15
R
Spartan-3 FPGA Family: Functional Description
Together with placing the appropriate I/O symbol, two externally applied voltage levels, VCCO and VREF select the
desired signal standard. The VCCO lines provide current to
the output driver. The voltage on these lines determines the
output voltage swing for all standards except GTL and
GTLP.
All single-ended standards except the LVCMOS, LVTTL,
and PCI varieties require a Reference Voltage (VREF) to
bias the input-switching threshold. Once a configuration
data file is loaded into the FPGA that calls for the I/Os of a
given bank to use such a signal standard, a few specifically
reserved I/O pins on the same bank automatically convert
to VREF inputs. When using one of the LVCMOS standards,
these pins remain I/Os because the VCCO voltage biases
the input-switching threshold, so there is no need for VREF.
Select the VCCO and VREF levels to suit the desired single-ended standard according to Table 7.
Table 7: Single-Ended I/O Standards (Values in Volts)
VCCO
Signal
Standard
(IOSTANDARD)
GTL
GTLP
For
Outputs
Note 2
For
Inputs
Note 2
VREF for
Inputs(1)
0.8
Board
Termination
Voltage
(VTT)
1.2
introduces the differential signaling capabilities of Spartan-3
devices.
Each device-package combination designates specific I/O
pairs that are specially optimized to support differential
standards. A unique “L-number”, part of the pin name, identifies the line-pairs associated with each bank (see
Figure 38, page 105). For each pair, the letters ‘P’ and ‘N’
designate the true and inverted lines, respectively. For
example, the pin names IO_L43P_7 and IO_L43N_7 indicate the true and inverted lines comprising the line pair L43
on Bank 7. The VCCO lines provide current to the outputs.
The VCCAUX lines supply power to the differential inputs,
making them independent of the VCCO voltage for an I/O
bank. The VREF lines are not used. Select the VCCO level to
suit the desired differential standard according to Table 8.
Table 8: Differential I/O Standards
VCCO (Volts)
For
Outputs
For
Inputs
VREF for
Inputs
(Volts)
LDT_25 (ULVDS_25)
2.5
-
-
LVDS_25
2.5
-
-
BLVDS_25
2.5
-
-
LVDSEXT_25
2.5
-
-
LVPECL_25
2.5
-
-
RSDS_25
2.5
-
-
DIFF_HSTL_II_18
1.8
-
-
DIFF_SSTL2_II
2.5
-
-
Signal Standard
(IOSTANDARD)
Note 2
Note 2
1
1.5
HSTL_I
1.5
-
0.75
0.75
HSTL_III
1.5
-
0.9
1.5
HSTL_I_18
1.8
-
0.9
0.9
HSTL_II_18
1.8
-
0.9
0.9
HSTL_III_18
1.8
-
1.1
1.8
LVCMOS12
1.2
1.2
-
-
LVCMOS15
1.5
1.5
-
-
LVCMOS18
1.8
1.8
-
-
LVCMOS25
2.5
2.5
-
-
LVCMOS33
3.3
3.3
-
-
LVTTL
3.3
3.3
-
-
Digitally Controlled Impedance (DCI)
PCI33_3
3.0
3.0
-
-
SSTL18_I
1.8
-
0.9
0.9
SSTL18_II
1.8
-
0.9
0.9
SSTL2_I
2.5
-
1.25
1.25
SSTL2_II
2.5
-
1.25
1.25
Notes:
1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package
do not support signal standards using VREF.
2. The VCCO level used for the GTL and GTLP standards must
be no lower than the termination voltage (VTT), nor can it be
lower than the voltage at the I/O pad.
3. See Table 9 for a listing of the single-ended DCI standards.
When the round-trip delay of an output signal — i.e., from
output to input and back again — exceeds rise and fall
times, it is common practice to add termination resistors to
the line carrying the signal. These resistors effectively
match the impedance of a device’s I/O to the characteristic
impedance of the transmission line, thereby preventing
reflections that adversely affect signal integrity. However,
with the high I/O counts supported by modern devices, adding resistors requires significantly more components and
board area. Furthermore, for some packages — e.g., ball
grid arrays — it may not always be possible to place resistors close to pins.
Differential standards employ a pair of signals, one the
opposite polarity of the other. The noise canceling (e.g.,
Common-Mode Rejection) properties of these standards
permit exceptionally high data transfer rates. This section
DCI answers these concerns by providing two kinds of
on-chip terminations: Parallel terminations make use of an
integrated resistor network. Series terminations result from
controlling the impedance of output drivers. DCI actively
adjusts both parallel and series terminations to accurately
16
Notes:
1. See Table 9 for a listing of the differential DCI standards.
The need to supply VREF and VCCO imposes constraints on
which standards can be used in the same bank. See The
Organization of IOBs into Banks section for additional
guidelines concerning the use of the VCCO and VREF lines.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
match the characteristic impedance of the transmission line.
This adjustment process compensates for differences in I/O
impedance that can result from normal variation in the
ambient temperature, the supply voltage and the manufacturing process. When the output driver turns off, the series
termination, by definition, approaches a very high impedance; in contrast, parallel termination resistors remain at the
targeted values.
DCI is available only for certain I/O standards, as listed in
Table 9. DCI is selected by applying the appropriate I/O
standard extensions to symbols or components. There are
five basic ways to configure terminations, as shown in
Table 10. The DCI I/O standard determines which of these
terminations is put into effect.
HSTL_I_DCI-, HSTL_III_DCI-, and SSTL2_I_DCI-type outputs do not require the VRN and VRP reference resistors.
Likewise, LVDCI-type inputs do not require the VRN and
VRP reference resistors. In a bank without any DCI I/O or a
bank containing non-DCI I/O and purely HSTL_I_DCI- or
HSTL_III_DCI-type outputs, or SSTL2_I_DCI-type outputs
or LVDCI-type inputs, the associated VRN and VRP pins
can be used as general-purpose I/O pins.
Table 9: DCI I/O Standards
VCCO (V)
Category of Signal
Standard
Signal Standard
(IOSTANDARD)
Termination Type
For
Outputs
For
Inputs
VREF for
Inputs (V)
At Output
At Input
Single
Single
Single-Ended
Gunning
Transceiver Logic
GTL_DCI
1.2
1.2
0.8
GTLP_DCI
1.5
1.5
1.0
High-Speed
Transceiver Logic
HSTL_I_DCI
1.5
1.5
0.75
None
Split
HSTL_III_DCI
1.5
1.5
0.9
None
Single
HSTL_I_DCI_18
1.8
1.8
0.9
None
Split
HSTL_II_DCI_18
DIFF_HSTL_II_18_DCI
1.8
1.8
0.9
Split
HSTL_III_DCI_18
1.8
1.8
1.1
None
Single
LVDCI_15
1.5
1.5
-
None
LVDCI_18
1.8
1.8
-
Controlled
impedance driver
LVDCI_25
2.5
2.5
-
LVDCI_33(3)
3.3
3.3
-
LVDCI_DV2_15
1.5
1.5
-
LVDCI_DV2_18
1.8
1.8
-
LVDCI_DV2_25
2.5
2.5
-
LVDCI_DV2_33
3.3
3.3
-
HSLVDCI_15
1.5
1.5
0.75
HSLVDCI_18
1.8
1.8
0.9
HSLVDCI_25
2.5
2.5
1.25
HSLVDCI_33
3.3
3.3
1.65
SSTL18_I_DCI
1.8
1.8
SSTL2_I_DCI
2.5
SSTL2_II_DCI
DIFF_SSTL2_II_DCI
2.5
Low-Voltage CMOS
Hybrid HSTL Input
and LVCMOS
Output
Stub Series
Terminated Logic
DS099-2 (v2.4) June 25, 2008
Product Specification
Controlled driver with
half-impedance
Controlled
impedance driver
None
0.9
25-Ohm driver
Split
2.5
1.25
25-Ohm driver
2.5
1.25
Split with 25-Ohm
driver
www.xilinx.com
17
R
Spartan-3 FPGA Family: Functional Description
Table 9: DCI I/O Standards (Continued)
VCCO (V)
Category of Signal
Standard
Termination Type
For
Outputs
For
Inputs
VREF for
Inputs (V)
At Output
At Input
LVDS_25_DCI
2.5
2.5
-
None
LVDSEXT_25_DCI
2.5
2.5
-
Split on
each line
of pair
Signal Standard
(IOSTANDARD)
Differential
Low-Voltage
Differential
Signalling
Notes:
1. DCI signal standards are not supported in Bank 5 of any Spartan-3 FPGA packaged in a VQ100, CP132, or TQ144 package.
2. The SSTL18_II signal standard does not have a DCI equivalent.
3. Equivalent to LVTTL DCI.
18
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 10: DCI Terminations
Controlled impedance output driver
Signal Standards
(IOSTANDARD)
Schematic(1)
Termination
IOB
R
Z0
Controlled output driver with half impedance
IOB
R/2
Z0
Single resistor
VCCO
IOB
R
Split resistors
Z0
VCCO
IOB
2R
Z0
2R
Split resistors with output driver impedance
fixed to 25Ω
25Ω
2R
LVDCI_DV2_15
LVDCI_DV2_18
LVDCI_DV2_25
LVDCI_DV2_33
GTL_DCI
GTLP_DCI
HSTL_III_DCI(2)
HSTL_III_DCI_18(2)
HSTL_I_DCI(2)
HSTL_I_DCI_18(2)
HSTL_II_DCI_18
DIFF_HSTL_II_18_DCI
DIFF_SSTL2_II_DCI
LVDS_25_DCI
LVDSEXT_25_DCI
SSTL18_I_DCI(3)
SSTL2_I_DCI(3)
SSTL2_II_DCI
VCCO
IOB
LVDCI_15
LVDCI_18
LVDCI_25
LVDCI_33
HSLVDCI_15
HSLVDCI_18
HSLVDCI_25
HSLVDCI_33
Z0
2R
Notes:
1. The value of R is equivalent to the characteristic impedance of the line connected to the I/O. It is also equal to half the value of RREF
for the DV2 standards and RREF for all other DCI standards.
2. For DCI using HSTL Classes I and III, terminations only go into effect at inputs (not at outputs).
3. For DCI using SSTL Class I, the split termination only goes into effect at inputs (not at outputs).
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
19
R
Spartan-3 FPGA Family: Functional Description
cated VCCO lines. For example, the VCCO Bank 7 lines are
separate from the VCCO lines going to all other banks. Thus,
Spartan-3 devices in these packages support eight independent VCCO supplies.
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 7
Bank 0
Bank 6
The DCI feature operates independently for each of the
device’s eight banks. Each bank has an ‘N’ reference pin
(VRN) and a ‘P’ reference pin, (VRP), to calibrate driver and
termination resistance. Only when using a DCI standard on
a given bank do these two pins function as VRN and VRP.
When not using a DCI standard, the two pins function as
user I/Os. As shown in Figure 7, add an external reference
resistor to pull the VRN pin up to VCCO and another reference resistor to pull the VRP pin down to GND. Also see
Figure 40, page 109. Both resistors have the same value —
commonly 50 Ohms — with one-percent tolerance, which is
either the characteristic impedance of the line or twice that,
depending on the DCI standard in use. Standards having a
symbol name that contains the letters “DV2” use a reference
resistor value that is twice the line impedance. DCI adjusts
the output driver impedance to match the reference resistors’ value or half that, according to the standard. DCI
always adjusts the on-chip termination resistors to directly
match the reference resistors’ value.
DS099-2_03_082104
Figure 8: Spartan-3 I/O Banks (top view)
One of eight
I/O Banks
VCCO
In contrast, the 144-pin Thin Quad Flat Pack (TQ144) package and the 132-pin Chip-Scale Package (CP132) tie VCCO
together internally for the pair of banks on each side of the
device. For example, the VCCO Bank 0 and the VCCO Bank 1
lines are tied together. The interconnected bank-pairs are
0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3 devices in the
CP132 and TQ144 packages support four independent
VCCO supplies.
RREF (1%)
VRN
VRP
RREF (1%)
DS099-2_04_082104
Figure 7: Connection of Reference Resistors (RREF)
The rules guiding the use of DCI standards on banks are as
follows:
1. No more than one DCI I/O standard with a Single
Termination is allowed per bank.
2. No more than one DCI I/O standard with a Split
Termination is allowed per bank.
3. Single Termination, Split Termination, ControlledImpedance Driver, and Controlled-Impedance Driver
with Half Impedance can co-exist in the same bank.
See also The Organization of IOBs into Banks, immediately below, and DCI: User I/O or Digitally Controlled
Impedance Resistor Reference Input, page 109.
The Organization of IOBs into Banks
Within the Spartan-3 family, all devices are pin-compatible
by package. When the need for future logic resources outgrows the capacity of the Spartan-3 device in current use, a
larger device in the same package can serve as a direct
replacement. Larger devices may add extra VREF and VCCO
lines to support a greater number of I/Os. In the larger
device, more pins can convert from user I/Os to VREF lines.
Also, additional VCCO lines are bonded out to pins that were
“not connected” in the smaller device. Thus, it is important
to plan for future upgrades at the time of the board’s initial
design by laying out connections to the extra pins.
The Spartan-3 family is not pin-compatible with any previous Xilinx FPGA family or with other platforms among the
Spartan-3 Generation FPGAs.
Rules Concerning Banks
IOBs are allocated among eight banks, so that each side of
the device has two banks, as shown in Figure 8. For all
packages, each bank has independent VREF lines. For
example, VREF Bank 3 lines are separate from the VREF
lines going to all other banks.
For the Very Thin Quad Flat Pack (VQ), Plastic Quad Flat
Pack (PQ), Fine Pitch Thin Ball Grid Array (FT), and Fine
Pitch Ball Grid Array (FG) packages, each bank has dedi20
Spartan-3 Compatibility
When assigning I/Os to banks, it is important to follow the
following VCCO rules:
1. Leave no VCCO pins unconnected on the FPGA.
2. Set all VCCO lines associated with the (interconnected)
bank to the same voltage level.
3. The VCCO levels used by all standards assigned to the
I/Os of the (interconnected) bank(s) must agree. The
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Xilinx development software checks for this. Tables 7, 8,
and 9 describe how different standards use the VCCO
supply.
4. Only one of the following standards is allowed on
outputs per bank: LVDS, LDT, LVDS_EXT, or RSDS.
5. If none of the standards assigned to the I/Os of the
(interconnected) bank(s) uses VCCO, tie all associated
VCCO lines to 2.5V.
6. In general, apply 2.5V to VCCO Bank 4 from power-on to
the end of configuration. Apply the same voltage to
VCCO Bank 5 during parallel configuration or a
Readback operation. For information on how to
program the FPGA using 3.3V signals and power, see
the 3.3V-Tolerant Configuration Interface section.
If any of the standards assigned to the Inputs of the bank
use VREF, then observe the following additional rules:
1. Connect all VREF pins within the bank to the same
voltage level.
2. The VREF levels used by all standards assigned to the
Inputs of the bank must agree. The Xilinx development
software checks for this. Tables 7 and 9 describe how
different standards use the VREF supply.
If none of the standards assigned to the Inputs of a bank
use VREF for biasing input switching thresholds, all associated VREF pins function as User I/Os.
Exceptions to Banks Supporting I/O
Standards
Bank 5 of any Spartan-3 device in a VQ100, CP132, or
TQ144 package does not support DCI signal standards. In
this case, bank 5 has neither VRN nor VRP pins.
Furthermore, banks 4 and 5 of any Spartan-3 device in a
VQ100 package do not support signal standards using
VREF (see Table 7). In this case, the two banks do not have
any VREF pins.
Supply Voltages for the IOBs
Three different supplies power the IOBs:
1. The VCCO supplies, one for each of the FPGA’s I/O
banks, power the output drivers, except when using the
GTL and GTLP signal standards. The voltage on the
VCCO pins determines the voltage swing of the output
signal.
2. VCCINT is the main power supply for the FPGA’s internal
logic.
DS099-2 (v2.4) June 25, 2008
Product Specification
3. The VCCAUX is an auxiliary source of power, primarily to
optimize the performance of various FPGA functions
such as I/O switching.
The I/Os During Power-On, Configuration, and
User Mode
With no power applied to the FPGA, all I/Os are in a
high-impedance state. The VCCINT (1.2V), VCCAUX (2.5V),
and VCCO supplies may be applied in any order. Before
power-on can finish, VCCINT, VCCO Bank 4, and VCCAUX
must have reached their respective minimum recommended operating levels (see Table 28, page 56). At this
time, all I/O drivers also will be in a high-impedance state.
VCCO Bank 4, VCCINT, and VCCAUX serve as inputs to the
internal Power-On Reset circuit (POR).
A Low level applied to the HSWAP_EN input enables
pull-up resistors on User I/Os from power-on throughout
configuration. A High level on HSWAP_EN disables the
pull-up resistors, allowing the I/Os to float. If the
HSWAP_EN pin is floating, then an internal pull-up resistor
pulls HSWAP_EN High. As soon as power is applied, the
FPGA begins initializing its configuration memory. At the
same time, the FPGA internally asserts the Global
Set-Reset (GSR), which asynchronously resets all IOB storage elements to a Low state.
Upon the completion of initialization, INIT_B goes High,
sampling the M0, M1, and M2 inputs to determine the configuration mode. At this point, the configuration data is
loaded into the FPGA. The I/O drivers remain in a
high-impedance state (with or without pull-up resistors, as
determined by the HSWAP_EN input) throughout configuration.
The Global Three State (GTS) net is released during
Start-Up, marking the end of configuration and the beginning of design operation in the User mode. At this point,
those I/Os to which signals have been assigned go active
while all unused I/Os remain in a high-impedance state. The
release of the GSR net, also part of Start-up, leaves the IOB
registers in a Low state by default, unless the loaded design
reverses the polarity of their respective RS inputs.
In User mode, all internal pull-up resistors on the I/Os are
disabled and HSWAP_EN becomes a “don’t care” input. If it
is desirable to have pull-up or pull-down resistors on I/Os
carrying signals, the appropriate symbol — e.g., PULLUP,
PULLDOWN — must be placed at the appropriate pads in
the design. The Bitstream Generator (Bitgen) option
UnusedPin available in the Xilinx development software
determines whether unused I/Os collectively have pull-up
resistors, pull-down resistors, or no resistors in User mode.
www.xilinx.com
21
R
Spartan-3 FPGA Family: Functional Description
.
Left-Hand SLICEM
(Logic or Distributed RAM
or Shift Register)
Right-Hand SLICEL
(Logic Only)
COUT
CLB
SLICE
X1Y1
SLICE
X1Y0
COUT
Switch
Matrix
CIN
Interconnect
to Neighbors
SLICE
X0Y1
SHIFTOUT
SHIFTIN
SLICE
X0Y0
CIN
DS099-2_05_082104
Figure 9: Arrangement of Slices within the CLB
CLB Overview
For more details on the CLBs, refer to the “Using Configurable Logic Blocks” chapter in UG331.
The Configurable Logic Blocks (CLBs) constitute the main
logic resource for implementing synchronous as well as
combinatorial circuits. Each CLB comprises four interconnected slices, as shown in Figure 9. These slices are
grouped in pairs. Each pair is organized as a column with an
independent carry chain.
The nomenclature that the FPGA Editor — part of the Xilinx
development software — uses to designate slices is as follows: The letter ‘X’ followed by a number identifies columns
of slices. The ‘X’ number counts up in sequence from the
left side of the die to the right. The letter ‘Y’ followed by a
number identifies the position of each slice in a pair as well
as indicating the CLB row. The ‘Y’ number counts slices
starting from the bottom of the die according to the
sequence: 0, 1, 0, 1 (the first CLB row); 2, 3, 2, 3 (the second CLB row); etc. Figure 9 shows the CLB located in the
lower left-hand corner of the die. Slices X0Y0 and X0Y1
make up the column-pair on the left where as slices X1Y0
and X1Y1 make up the column-pair on the right. For each
CLB, the term “left-hand” (or SLICEM) indicates the pair of
slices labeled with an even ‘X’ number, such as X0, and the
term “right-hand” (or SLICEL) designates the pair of slices
with an odd ‘X’ number, e.g., X1.
Elements Within a Slice
All four slices have the following elements in common: two
logic function generators, two storage elements, wide-function multiplexers, carry logic, and arithmetic gates, as
22
shown in Figure 10. Both the left-hand and right-hand slice
pairs use these elements to provide logic, arithmetic, and
ROM functions. Besides these, the left-hand pair supports
two additional functions: storing data using Distributed RAM
and shifting data with 16-bit registers. Figure 10 is a diagram of the left-hand slice; therefore, it represents a superset of the elements and connections to be found in all slices.
See Function Generator, page 24 for more information.
The RAM-based function generator — also known as a
Look-Up Table or LUT — is the main resource for implementing logic functions. Furthermore, the LUTs in each
left-hand slice pair can be configured as Distributed RAM or
a 16-bit shift register. For information on the former, refer to
the “Using Look-Up Tables as Distributed RAM” chapter in
UG331.; for information on the latter, refer to the “Using
Look-Up Tables as Shift Registers” chapter in UG331. The
function generators located in the upper and lower portions
of the slice are referred to as the "G" and "F", respectively.
The storage element, which is programmable as either a
D-type flip-flop or a level-sensitive latch, provides a means
for synchronizing data to a clock signal, among other uses.
The storage elements in the upper and lower portions of the
slice are called FFY and FFX, respectively.
Wide-function multiplexers effectively combine LUTs in
order to permit more complex logic operations. Each slice
has two of these multiplexers with F5MUX in the lower portion of the slice and FiMUX in the upper portion. Depending
on the slice, FiMUX takes on the name F6MUX, F7MUX, or
F8MUX. For more details on the multiplexers, refer to the
“Using Dedicated Multiplexers” chapter in UG331.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
WS
DI
DI
D
WF[4:1]
DS312-2_32_042007
Notes:
1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.
2. The index i can be 6, 7, or 8, depending on the slice. In this position, the upper right-hand slice has an F8MUX,
and the upper left-hand slice has an F7MUX. The lower right-hand and left-hand slices both have an F6MUX.
Figure 10: Simplified Diagram of the Left-Hand SLICEM
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
23
R
Spartan-3 FPGA Family: Functional Description
The carry chain, together with various dedicated arithmetic
logic gates, support fast and efficient implementations of
math operations. The carry chain enters the slice as CIN
and exits as COUT. Five multiplexers control the chain:
CYINIT, CY0F, and CYMUXF in the lower portion as well as
CY0G and CYMUXG in the upper portion. The dedicated
arithmetic logic includes the exclusive-OR gates XORG and
XORF (upper and lower portions of the slice, respectively)
as well as the AND gates GAND and FAND (upper and
lower portions, respectively). For more details on the carry
logic, refer to the “Using Carry and Arithmetic Logic” chapter in UG331.
Main Logic Paths
Central to the operation of each slice are two nearly identical data paths, distinguished using the terms top and bottom. The description that follows uses names associated
with the bottom path. (The top path names appear in parentheses.) The basic path originates at an interconnect-switch
matrix outside the CLB. Four lines, F1 through F4 (or G1
through G4 on the upper path), enter the slice and connect
directly to the LUT. Once inside the slice, the lower 4-bit
path passes through a function generator ‘F’ (or ‘G’) that
performs logic operations. The function generator’s Data
output, ‘D’, offers five possible paths:
1. Exit the slice via line ‘X’ (or ‘Y’) and return to
interconnect.
2. Inside the slice, ‘X’ (or ‘Y’) serves as an input to the
DXMUX (DYMUX) which feeds the data input, ‘D’, of the
FFX (FFY) storage element. The ‘Q’ output of the
storage element drives the line XQ (or YQ) which exits
the slice.
3. Control the CYMUXF (or CYMUXG) multiplexer on the
carry chain.
4. With the carry chain, serve as an input to the XORF (or
XORG) exclusive-OR gate that performs arithmetic
operations, producing a result on ‘X’ (or ‘Y’).
5. Drive the multiplexer F5MUX to implement logic
functions wider than four bits. The ‘D’ outputs of both
the F-LUT and G-LUT serve as data inputs to this
multiplexer.
In addition to the main logic paths described above, there
are two bypass paths that enter the slice as BX and BY.
Once inside the FPGA, BX in the bottom half of the slice (or
BY in the top half) can take any of several possible
branches:
1. Bypass both the LUT and the storage element, then exit
the slice as BXOUT (or BYOUT) and return to
interconnect.
24
2. Bypass the LUT, then pass through a storage element
via the D input before exiting as XQ (or YQ).
3. Control the wide function multiplexer F5MUX (or
F6MUX).
4. Via multiplexers, serve as an input to the carry chain.
5. Drives the DI input of the LUT.
6. BY can control the REV inputs of both the FFY and FFX
storage elements.
7. Finally, the DIG_MUX multiplexer can switch BY onto
the DIG line, which exits the slice.
Other slice signals shown in Figure 10, page 23 are discussed in the sections that follow.
Function Generator
Each of the two LUTs (F and G) in a slice have four logic
inputs (A1-A4) and a single output (D). This permits any
four-variable Boolean logic operation to be programmed
into them. Furthermore, wide function multiplexers can be
used to effectively combine LUTs within the same CLB or
across different CLBs, making logic functions with still more
input variables possible.
The LUTs in both the right-hand and left-hand slice-pairs
not only support the logic functions described above, but
also can function as ROM that is initialized with data at the
time of configuration.
The LUTs in the left-hand slice-pair (even-numbered columns such as X0 in Figure 9) of each CLB support two
additional functions that the right-hand slice-pair (odd-numbered columns such as X1) do not.
First, it is possible to program the “left-hand LUTs” as distributed RAM. This type of memory affords moderate
amounts of data buffering anywhere along a data path. One
left-hand LUT stores 16 bits. Multiple left-hand LUTs can be
combined in various ways to store larger amounts of data. A
dual port option combines two LUTs so that memory access
is possible from two independent data lines. A Distributed
ROM option permits pre-loading the memory with data during FPGA configuration.
Second, it is possible to program each left-hand LUT as a
16-bit shift register. Used in this way, each LUT can delay
serial data anywhere from one to 16 clock cycles. The four
left-hand LUTs of a single CLB can be combined to produce
delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT
lines cascade LUTs to form larger shift registers. It is also
possible to combine shift registers across more than one
CLB. The resulting programmable delays can be used to
balance the timing of data pipelines.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
The aspect ratio — i.e., width vs. depth — of each block
RAM is configurable. Furthermore, multiple blocks can be
cascaded to create still wider and/or deeper memories.
A choice among primitives determines whether the block
RAM functions as dual- or single-port memory. A name of
the form RAMB16_S[wA]_S[wB] calls out the dual-port primitive, where the integers wA and wB specify the total data
path width at ports wA and wB, respectively. Thus, a
RAMB16_S9_S18 is a dual-port RAM with a 9-bit-wide Port
A and an 18-bit-wide Port B. A name of the form
RAMB16_S[w] identifies the single-port primitive, where the
integer w specifies the total data path width of the lone port.
A RAMB16_S18 is a single-port RAM with an 18-bit-wide
port. Other memory functions — e.g., FIFOs, data path
width conversion, ROM, etc. — are readily available using
the CORE Generator™ software, part of the Xilinx development software.
The Internal Structure of the Block RAM
The block RAM has a dual port structure. The two identical
data ports called A and B permit independent access to the
common RAM block, which has a maximum capacity of
18,432 bits — or 16,384 bits when no parity lines are used.
Each port has its own dedicated set of data, control and
clock lines for synchronous read and write operations.
There are four basic data paths, as shown in Figure 11: (1)
write to and read from Port A, (2) write to and read from Port
B, (3) data transfer from Port A to Port B, and (4) data transfer from Port B to Port A.
Read 3
Write
4 Read
Write
Spartan-3
Dual Port
Block RAM
Port B
All Spartan-3 devices support block RAM, which is organized as configurable, synchronous 18Kbit blocks. Block
RAM stores relatively large amounts of data more efficiently
than the distributed RAM feature described earlier. (The latter is better suited for buffering small amounts of data anywhere along signal paths.) This section describes basic
Block RAM functions. For more information, refer to the
“Using Block RAM” chapter in UG331.
Block RAM and multipliers have interconnects between
them that permit simultaneous operation; however, since
the multiplier shares inputs with the upper data bits of block
RAM, the maximum data path width of the block RAM is 18
bits in this case.
Port A
Block RAM Overview
Write
Write
Read
Read
2
1
Arrangement of RAM Blocks on Die
The XC3S50 has one column of block RAM. The Spartan-3
devices ranging from the XC3S200 to XC3S2000 have two
columns of block RAM. The XC3S4000 and XC3S5000
have four columns. The position of the columns on the die is
shown in Figure 1, page 4. For a given device, the total
available RAM blocks are distributed equally among the columns. Table 11 shows the number of RAM blocks, the data
storage capacity, and the number of columns for each
device.
DS099-2_12_030703
Figure 11: Block RAM Data Paths
Block RAM Port Signal Definitions
Representations
of
the
dual-port
primitive
RAMB16_S[wA]_S[wB] and the single-port primitive
RAMB16_S[w] with their associated signals are shown in
Figure 12a and Figure 12b, respectively. These signals are
defined in Table 12.
Table 11: Number of RAM Blocks by Device
Total Number
of RAM Blocks
Total
Addressable
Locations (bits)
Number
of
Columns
XC3S50
4
73,728
1
XC3S200
12
221,184
2
XC3S400
16
294,912
2
XC3S1000
24
442,368
2
XC3S1500
32
589,824
2
XC3S2000
40
737,280
2
XC3S4000
96
1,769,472
4
XC3S5000
104
1,916,928
4
Device
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
25
R
Spartan-3 FPGA Family: Functional Description
WEA
ENA
SSRA
CLKA
ADDRA[rA–1:0]
DIA[wA–1:0]
DIPA[3:0]
RAMB16_SwA_SwB
DOPA[pA–1:0]
DOA[wA–1:0]
WEB
ENB
SSRB
CLKB
ADDRB[rB–1:0]
DIB[wB–1:0]
DIPB[3:0]
WE
EN
SSR
CLK
ADDR[r–1:0]
DI[w–1:0]
DIP[p–1:0]
DOPB[pB–1:0]
DOB[wB–1:0]
(a) Dual-Port
RAMB16_Sw
DOP[p–1:0]
DO[w–1:0]
(b) Single-Port
DS099-2_13_112905
Notes:
1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.
2. pA and pB are integers that indicate the number of data path lines serving as parity bits.
3. rA and rB are integers representing the address bus width at ports A and B, respectively.
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.
Figure 12: Block RAM Primitives
Table 12: Block RAM Port Signals
Signal
Description
Address Bus
Port A
Signal
Name
Port B
Signal
Name
Direction
ADDRA
ADDRB
Input
Function
The Address Bus selects a memory location for read or write
operations. The width (w) of the port’s associated data path
determines the number of available address lines (r).
Whenever a port is enabled (ENA or ENB = High), address
transitions must meet the data sheet setup and hold times with
respect to the port clock (CLKA or CLKB). This requirement
must be met, even if the RAM read output is of no interest.
Data Input Bus
DIA
DIB
Input
Data at the DI input bus is written to the addressed memory
location addressed on an enabled active CLK edge.
It is possible to configure a port’s total data path width (w) to be
1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and
DO paths of a given port. Each port is independent. For a port
assigned a width (w), the number of addressable locations is
16,384/(w-p) where "p" is the number of parity bits. Each
memory location has a width of "w" (including parity bits). See
the DIP signal description for more information of parity.
Parity Data
Input(s)
26
DIPA
DIPB
Input
Parity inputs represent additional bits included in the data input
path to support error detection. The number of parity bits "p"
included in the DI (same as for the DO bus) depends on a port’s
total data path width (w). See Table 13.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 12: Block RAM Port Signals (Continued)
Signal
Description
Data Output
Bus
Port A
Signal
Name
Port B
Signal
Name
Direction
DOA
DOB
Output
Function
Basic data access occurs whenever WE is inactive. The DO
outputs mirror the data stored in the addressed memory
location.
Data access with WE asserted is also possible if one of the
following two attributes is chosen: WRITE_FIRST and
READ_FIRST. WRITE_FIRST simultaneously presents the new
input data on the DO output port and writes the data to the
address RAM location. READ_FIRST presents the previously
stored RAM data on the DO output port while writing new data
to RAM.
A third attribute, NO_CHANGE, latches the DO outputs upon
the assertion of WE.
It is possible to configure a port’s total data path width (w) to be
1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and
DO paths. See the DI signal description.
Parity Data
Output(s)
DOPA
DOPB
Output
Parity inputs represent additional bits included in the data input
path to support error detection. The number of parity bits "p"
included in the DI (same as for the DO bus) depends on a port’s
total data path width (w). See Table 13.
Write Enable
WEA
WEB
Input
When asserted together with EN, this input enables the writing
of data to the RAM. In this case, the data access attributes
WRITE_FIRST, READ_FIRST or NO_CHANGE determines if
and how data is updated on the DO outputs. See the DO signal
description.
When WE is inactive with EN asserted, read operations are still
possible. In this case, a transparent latch passes data from the
addressed memory location to the DO outputs.
Clock Enable
ENA
ENB
Input
When asserted, this input enables the CLK signal to
synchronize Block RAM functions as follows: the writing of data
to the DI inputs (when WE is also asserted), the updating of data
at the DO outputs as well as the setting/resetting of the DO
output latches.
When de-asserted, the above functions are disabled.
Set/Reset
SSRA
SSRB
Input
When asserted, this pin forces the DO output latch to the value
that the SRVAL attribute is set to. A Set/Reset operation on one
port has no effect on the other ports functioning, nor does it
disturb the memory’s data contents. It is synchronized to the
CLK signal.
Clock
CLKA
CLKB
Input
This input accepts the clock signal to which read and write
operations are synchronized. All associated port inputs are
required to meet setup times with respect to the clock signal’s
active edge. The data output bus responds after a clock-to-out
delay referenced to the clock signal’s active edge.
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
27
R
Spartan-3 FPGA Family: Functional Description
Port Aspect Ratios
On a given port, it is possible to select a number of different
possible widths (w – p) for the DI/DO buses as shown in
Table 13. These two buses always have the same width.
This data bus width selection is independent for each port. If
the data bus width of Port A differs from that of Port B, the
Block RAM automatically performs a bus-matching function.
When data are written to a port with a narrow bus, then read
from a port with a wide bus, the latter port will effectively
combine “narrow” words to form “wide” words. Similarly,
when data are written into a port with a wide bus, then read
from a port with a narrow bus, the latter port will divide
“wide” words to form “narrow” words. When the data bus
width is eight bits or greater, extra parity bits become available. The width of the total data path (w) is the sum of the
DI/DO bus width and any parity bits (p).
The width selection made for the DI/DO bus determines the
number of address lines according to the relationship
expressed below:
r = 14 – [log(w–p)/log(2)]
(1)
In turn, the number of address lines delimits the total number (n) of addressable locations or depth according to the
following equation:
n = 2r
(2)
The product of w and n yields the total block RAM capacity.
Equations (1) and (2) show that as the data bus width
increases, the number of address lines along with the number of addressable memory locations decreases. Using the
permissible DI/DO bus widths as inputs to these equations
provides the bus width and memory capacity measures
shown in Table 13.
Table 13: Port Aspect Ratios for Port A or B
DI/DO Bus Width
(w – p bits)
DIP/DOP
Bus Width (p bits)
Total Data Path
Width (w bits)
ADDR Bus
Width (r bits)
No. of
Addressable
Locations (n)
Block RAM
Capacity
(bits)
1
0
1
14
16,384
16,384
2
0
2
13
8,192
16,384
4
0
4
12
4,096
16,384
8
1
9
11
2,048
18,432
16
2
18
10
1,024
18,432
32
4
36
9
512
18,432
Block RAM Data Operations
Writing data to and accessing data from the block RAM are
synchronous operations that take place independently on
each of the two ports.
The waveforms for the write operation are shown in the top
half of the Figure 13, Figure 14, and Figure 15. When the
WE and EN signals enable the active edge of CLK, data at
the DI input bus is written to the block RAM location
addressed by the ADDR lines.
There are a number of different conditions under which data
can be accessed at the DO outputs. Basic data access
always occurs when the WE input is inactive. Under this
condition, data stored in the memory location addressed by
28
the ADDR lines passes through a transparent output latch
to the DO outputs. The timing for basic data access is
shown in the portions of Figure 13, Figure 14, and
Figure 15 during which WE is Low.
Data can also be accessed on the DO outputs when asserting the WE input. This is accomplished using two different
attributes:
Choosing the WRITE_FIRST attribute, data is written to the
addressed memory location on an enabled active CLK edge
and is also passed to the DO outputs. WRITE_FIRST timing
is shown in the portion of Figure 13 during which WE is
High.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
CLK
WE
DI
XXXX
ADDR
DO
aa
0000
1111
2222
bb
cc
MEM(aa)
1111
XXXX
dd
2222
MEM(dd)
EN
DISABLED
READ
WRITE
MEM(bb)=1111
WRITE
MEM(cc)=2222
READ
DS099-2_14_030403
Figure 13: Waveforms of Block RAM Data Operations with WRITE_FIRST Selected
Choosing the READ_FIRST attribute, data already stored in
the addressed location pass to the DO outputs before that
location is overwritten with new data from the DI inputs on
an enabled active CLK edge. READ_FIRST timing is shown
in the portion of Figure 14 during which WE is High.
CLK
WE
DI
XXXX
ADDR
DO
aa
0000
1111
2222
bb
cc
MEM(aa)
old MEM(bb)
XXXX
dd
old MEM(cc)
MEM(dd)
EN
DISABLED
READ
WRITE
MEM(bb)=1111
WRITE
MEM(cc)=2222
READ
DS099-2_15_030403
Figure 14: Waveforms of Block RAM Data Operations with READ_FIRST Selected
Choosing a third attribute called NO_CHANGE puts the DO
outputs in a latched state when asserting WE. Under this
condition, the DO outputs will retain the data driven just
DS099-2 (v2.4) June 25, 2008
Product Specification
before WE was asserted. NO_CHANGE timing is shown in
the portion of Figure 15 during which WE is High.
www.xilinx.com
29
R
Spartan-3 FPGA Family: Functional Description
CLK
WE
DI
XXXX
ADDR
aa
DO
0000
1111
2222
bb
cc
XXXX
dd
MEM(aa)
MEM(dd)
EN
DISABLED
READ
WRITE
MEM(bb)=1111
WRITE
MEM(cc)=2222
READ
DS099-2_16_030403
Figure 15: Waveforms of Block RAM Data Operations with NO_CHANGE Selected
Dedicated Multipliers
All Spartan-3 devices provide embedded multipliers that
accept two 18-bit words as inputs to produce a 36-bit product. This section provides an introduction to multipliers. For
further details, refer to the “Using Embedded Multipliers”
chapter in UG331.
The input buses to the multiplier accept data in two’s-complement form (either 18-bit signed or 17-bit unsigned). One
such multiplier is matched to each block RAM on the die.
The close physical proximity of the two ensures efficient
data handling. Cascading multipliers permits multiplicands
more than three in number as well as wider than 18-bits.
The multiplier is placed in a design using one of two primitives: an asynchronous version called MULT18X18 and a
version with a register called MULT18X18S, as shown in
Figure 16a and Figure 16b, respectively. The signals for
these primitives are defined in Table 14.
The CORE Generator system produces multipliers based
on these primitives that can be configured to suit a wide
range of requirements.
A[17:0]
A[17:0]
MULT18X18S
B[17:0]
MULT18X18
P[35:0]
CLK
P[35:0]
B[17:0]
CE
RST
(a) Asynchronous 18-bit Multiplier
(b) 18-bit Multiplier with Register
DS099-2_17_052705
Figure 16: Embedded Multiplier Primitives
30
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 14: Embedded Multiplier Primitives Descriptions
Signal
Name
Direction
Function
A[17:0]
Input
Apply one 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time
before the enabled rising edge of CLK.
B[17:0]
Input
Apply the other 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup
time before the enabled rising edge of CLK.
P[35:0]
Output
The output on the P bus is a 36-bit product of the multiplicands A and B. In the case of the
MULT18X18S primitive, an enabled rising CLK edge updates the P bus.
CLK
Input
CLK is only an input to the MULT18X18S primitive. The clock signal applied to this input when
enabled by CE, updates the output register that drives the P bus.
CE
Input
CE is only an input to the MULT18X18S primitive. Enable for the CLK signal. Asserting this input
enables the CLK signal to update the P bus.
RST
Input
RST is only an input to the MULT18X18S primitive. Asserting this input resets the output register
on an enabled, rising CLK edge, forcing the P bus to all zeroes.
Notes:
1. The control signals CLK, CE and RST have the option of inverted polarity.
Digital Clock Manager (DCM)
Spartan-3 devices provide flexible, complete control over
clock frequency, phase shift and skew through the use of
the DCM feature. To accomplish this, the DCM employs a
Delay-Locked Loop (DLL), a fully digital control system that
uses feedback to maintain clock signal characteristics with a
high degree of precision despite normal variations in operating temperature and voltage. This section provides a fundamental description of the DCM. For further information,
refer to the “Using Digital Clock Managers” chapter in
UG331.
Each member of the Spartan-3 family has four DCMs,
except the smallest, the XC3S50, which has two DCMs.
The DCMs are located at the ends of the outermost Block
RAM column(s). See Figure 1, page 4. The Digital Clock
Manager is placed in a design as the “DCM” primitive.
•
The DCM supports three major functions:
•
Clock-skew Elimination: Clock skew describes the
extent to which clock signals may, under normal
circumstances, deviate from zero-phase alignment. It
occurs when slight differences in path delays cause the
DS099-2 (v2.4) June 25, 2008
Product Specification
•
clock signal to arrive at different points on the die at
different times. This clock skew can increase set-up
and hold time requirements as well as clock-to-out
time, which may be undesirable in applications
operating at a high frequency, when timing is critical.
The DCM eliminates clock skew by aligning the output
clock signal it generates with another version of the
clock signal that is fed back. As a result, the two clock
signals establish a zero-phase relationship. This
effectively cancels out clock distribution delays that
may lie in the signal path leading from the clock output
of the DCM to its feedback input.
Frequency Synthesis: Provided with an input clock
signal, the DCM can generate a wide range of different
output clock frequencies. This is accomplished by
either multiplying and/or dividing the frequency of the
input clock signal by any of several different factors.
Phase Shifting: The DCM provides the ability to shift
the phase of all its output clock signals with respect to
its input clock signal.
www.xilinx.com
31
R
Spartan-3 FPGA Family: Functional Description
DCM
PSINCDEC
PSEN
PSCLK
Phase
Shifter
PSDONE
Clock
Distribution
Delay
Delay Taps
Input Stage
CLKFB
Output Stage
CLK0
CLKIN
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV
CLKFX
CLKFX180
DFS
DLL
Status
Logic
RST
8
LOCKED
STATUS [7:0]
DS099-2_07_040103
Figure 17: DCM Functional Blocks and Associated Signals
CLKIN
Delay
1
Delay
2
Delay-Locked Loop (DLL)
The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of
an input stage, followed by a series of discrete delay elements or taps, which in turn leads to an output stage. This
path together with logic for phase detection and control
forms a system complete with feedback as shown in
Figure 18.
Delay
n-1
Delay
n
Output Section
The DCM has four functional components: the
Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), the Phase Shifter (PS), and the Status Logic.
Each component has its associated signals, as shown in
Figure 17.
Control
CLKFB
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV
LOCKED
Phase
Detection
RST
DS099-2_08_041103
Figure 18: Simplified Functional Diagram of DLL
32
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
The DLL component has two clock inputs, CLKIN and
CLKFB, as well as seven clock outputs, CLK0, CLK90,
CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as
described in Table 15. The clock outputs drive simultaneously; however, the High Frequency mode only supports
a subset of the outputs available in the Low Frequency
mode. See DLL Frequency Modes, page 35. Signals that
initialize and report the state of the DLL are discussed in
The Status Logic Component, page 40.
Table 15: DLL Signals
Mode Support
Signal
Direction
Description
Low
Frequency
High
Frequency
CLKIN
Input
Accepts original clock signal.
Yes
Yes
CLKFB
Input
Accepts either CLK0 or CLK2X as feed back signal. (Set
CLK_FEEDBACK attribute accordingly).
Yes
Yes
CLK0
Output
Generates clock signal with same frequency and phase as CLKIN.
Yes
Yes
CLK90
Output
Generates clock signal with same frequency as CLKIN, only
phase-shifted 90°.
Yes
No
CLK180
Output
Generates clock signal with same frequency as CLKIN, only
phase-shifted 180°.
Yes
Yes
CLK270
Output
Generates clock signal with same frequency as CLKIN, only
phase-shifted 270°.
Yes
No
CLK2X
Output
Generates clock signal with same phase as CLKIN, only twice the
frequency.
Yes
No
CLK2X180
Output
Generates clock signal with twice the frequency of CLKIN,
phase-shifted 180° with respect to CLKIN.
Yes
No
CLKDV
Output
Divides the CLKIN frequency by CLKDV_DIVIDE value to generate
lower frequency clock signal that is phase-aligned to CLKIN.
Yes
Yes
The clock signal supplied to the CLKIN input serves as a
reference waveform, with which the DLL seeks to align the
feedback signal at the CLKFB input. When eliminating clock
skew, the common approach to using the DLL is as follows:
The CLK0 signal is passed through the clock distribution
network to all the registers it synchronizes. These registers
are either internal or external to the FPGA. After passing
through the clock distribution network, the clock signal
returns to the DLL via a feedback line called CLKFB. The
control block inside the DLL measures the phase error
between CLKFB and CLKIN. This phase error is a measure
of the clock skew that the clock distribution network intro-
DS099-2 (v2.4) June 25, 2008
Product Specification
duces. The control block activates the appropriate number
of delay elements to cancel out the clock skew. Once the
DLL has brought the CLK0 signal in phase with the CLKIN
signal, it asserts the LOCKED output, indicating a “lock” on
to the CLKIN signal.
DLL Attributes and Related Functions
A number of different functional options can be set for the
DLL component through the use of the attributes described
in Table 16. Each attribute is described in detail in the sections that follow:
www.xilinx.com
33
R
Spartan-3 FPGA Family: Functional Description
Table 16: DLL Attributes
Attribute
Description
Values
CLK_FEEDBACK
Chooses either the CLK0 or CLK2X output to drive the
CLKFB input
NONE, 1X, 2X
DLL_FREQUENCY_MODE
Chooses between High Frequency and Low
Frequency modes
LOW, HIGH
CLKIN_DIVIDE_BY_2
Halves the frequency of the CLKIN signal just as it
enters the DCM
TRUE, FALSE
CLKDV_DIVIDE
Selects constant used to divide the CLKIN input
frequency to generate the CLKDV output frequency
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5,
6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11,
12, 13, 14, 15, and 16.
DUTY_CYCLE_CORRECTION
Enables 50% duty cycle correction for the CLK0,
CLK90, CLK180, and CLK270 outputs
TRUE, FALSE
DLL Clock Input Connections
An external clock source enters the FPGA using a Global
Clock Input Buffer (IBUFG), which directly accesses the global clock network or an Input Buffer (IBUF). Clock signals
within the FPGA drive a global clock net using a Global
Clock Multiplexer Buffer (BUFGMUX). The global clock net
connects directly to the CLKIN input. The internal and external connections are shown in Figure 19a and Figure 19c,
respectively. A differential clock (e.g., LVDS) can serve as
an input to CLKIN.
DLL Clock Output and Feedback Connections
As many as four of the nine DCM clock outputs can simultaneously drive the four BUFGMUX buffers on the same die
edge (top or bottom). All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to OBUF buffers.
The feedback loop is essential for DLL operation and is
established by driving the CLKFB input with either the CLK0
34
or the CLK2X signal so that any undesirable clock distribution delay is included in the loop. It is possible to use either
of these two signals for synchronizing any of the seven DLL
outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X,
or CLK2X180. The value assigned to the CLK_FEEDBACK
attribute must agree with the physical feedback connection:
a value of 1X for the CLK0 case, 2X for the CLK2X case. If
the DCM is used in an application that does not require the
DLL — i.e., only the DFS is used — then there is no feedback loop so CLK_FEEDBACK is set to NONE.
CLK2X feedback is only supported on all mask revision ‘E’
and later devices (see Mask and Fab Revisions, page 55),
on devices with the "GQ" fabrication code, and on all versions of the XC3S50 and XC3S1000.
There are two basic cases that determine how to connect
the DLL clock outputs and feedback connections: on-chip
synchronization and off-chip synchronization, which are
illustrated in Figure 19a through Figure 19d.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
FPGA
FPGA
BUFGMUX
BUFGMUX
BUFG
CLKIN
DCM
CLK90
CLK180
CLK270
CLKDV
CLK2X
CLK2X180
CLKFB
BUFG
CLKIN
DCM
Clock
Net Delay
CLK0
CLK90
CLK180
CLK270
CLKDV
CLK2X180
CLK2X
CLKFB
CLK0
BUFGMUX
BUFGMUX
CLK2X
CLK0
(a) On-Chip with CLK0 Feedback
(b) On-Chip with CLK2X Feedback
FPGA
IBUFG
CLKIN
DCM
FPGA
CLK90
CLK180
CLK270
CLKDV
CLK2X
CLK2X180
CLKFB
Clock
Net Delay
OBUF
IBUFG
CLKIN
Clock
Net Delay
DCM
CLKFB
CLK0
OBUF
IBUFG
CLK0
CLK90
CLK180
CLK270
CLKDV
CLK2X180
OBUF
Clock
Net Delay
CLK2X
IBUFG
OBUF
CLK2X
CLK0
(c) Off-Chip with CLK0 Feedback
(d) Off-Chip with CLK2X Feedback
DS099-2_09_082104
Notes:
1. In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180,
and CLKDV outputs are available.
Figure 19: Input Clock, Output Clock, and Feedback Connections for the DLL
In the on-chip synchronization case (Figure 19a and
Figure 19b), it is possible to connect any of the DLL’s seven
output clock signals through general routing resources to
the FPGA’s internal registers. Either a Global Clock Buffer
(BUFG) or a BUFGMUX affords access to the global clock
network. As shown in Figure 19a, the feedback loop is created by routing CLK0 (or CLK2X, in Figure 19b) to a global
clock net, which in turn drives the CLKFB input.
attribute chooses between the two modes. When the
attribute is set to LOW, the Low Frequency mode permits all
seven DLL clock outputs to operate over a low-to-moderate
frequency range. When the attribute is set to HIGH, the High
Frequency mode allows the CLK0, CLK180 and CLKDV outputs to operate at the highest possible frequencies. The
remaining DLL clock outputs are not available for use in High
Frequency mode.
In the off-chip synchronization case (Figure 19c and
Figure 19d), CLK0 (or CLK2X) plus any of the DLL’s other
output clock signals exit the FPGA using output buffers
(OBUF) to drive an external clock network plus registers on
the board. As shown in Figure 19c, the feedback loop is
formed by feeding CLK0 (or CLK2X, in Figure 19d) back
into the FPGA using an IBUFG, which directly accesses the
global clock network, or an IBUF. Then, the global clock net
is connected directly to the CLKFB input.
Accommodating High Input Frequencies
DLL Frequency Modes
In addition to CLK0 for zero-phase alignment to the CLKIN
signal, the DLL also provides the CLK90, CLK180 and
CLK270 outputs for 90°, 180° and 270° phase-shifted signals, respectively. These signals are described in Table 15.
The DLL supports two distinct operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DLL_FREQUENCY_MODE
DS099-2 (v2.4) June 25, 2008
Product Specification
If the frequency of the CLKIN signal is high such that it
exceeds the maximum permitted, divide it down to an
acceptable value using the CLKIN_DIVIDE_BY_2 attribute.
When this attribute is set to TRUE, the CLKIN frequency is
divided by a factor of two just as it enters the DCM.
Coarse Phase Shift Outputs of the DLL Component
www.xilinx.com
35
R
Spartan-3 FPGA Family: Functional Description
Their relative timing in the Low Frequency Mode is shown in
Figure 20. The CLK90, CLK180 and CLK270 outputs are
not available when operating in the High Frequency mode.
(See the description of the DLL_FREQUENCY_MODE
attribute in Table 16.) For control in finer increments than
90°, see the Phase Shifter (PS), page 38 section.
Basic Frequency Synthesis Outputs of the DLL
Component
The DLL component provides basic options for frequency
multiplication and division in addition to the more flexible
synthesis capability of the DFS component, described in a
later section. These operations result in output clock signals
with frequencies that are either a fraction (for division) or a
multiple (for multiplication) of the incoming clock frequency.
The CLK2X output produces an in-phase signal that is twice
the frequency of CLKIN. The CLK2X180 output also doubles the frequency, but is 180° out-of-phase with respect to
CLKIN. The CLKDIV output generates a clock frequency
that is a predetermined fraction of the CLKIN frequency.
The CLKDV_DIVIDE attribute determines the factor used to
divide the CLKIN frequency. The attribute can be set to various values as described in Table 16. The basic frequency
synthesis outputs are described in Table 15. Their relative
timing in the Low Frequency Mode is shown in Figure 20.
Phase:
o
o
o
90 180 270
o
0
o
o
o
90 180 270
o
0
Input Signal (40% Duty Cycle)
t
CLKIN
Output Signal - Duty Cycle is Always Corrected
CLK2X
CLK2X180
(1)
CLKDV
Output Signal - Attribute Corrects Duty Cycle
DUTY_CYCLE_CORRECTION = FALSE
CLK0
CLK90
The CLK2X and CLK2X180 outputs are not available when
operating in the High Frequency mode. (See the description
of the DLL_FREQUENCY_MODE attribute in Table 17.)
CLK180
Duty Cycle Correction of DLL Clock Outputs
CLK270
CLK2X(1),
o
0
CLKDV(2)
The
CLK2X180, and
output signals
ordinarily exhibit a 50% duty cycle – even if the incoming
CLKIN signal has a different duty cycle. Fifty-percent duty
cycle means that the High and Low times of each clock
cycle are equal. The DUTY_CYCLE_CORRECTION
attribute determines whether or not duty cycle correction is
applied to the CLK0, CLK90, CLK180 and CLK270 outputs.
If DUTY_CYCLE_CORRECTION is set to TRUE, then the
duty cycle of these four outputs is corrected to 50%. If
DUTY_CYCLE_CORRECTION is set to FALSE, then these
outputs exhibit the same duty cycle as the CLKIN signal.
Figure 20 compares the characteristics of the DLL’s output
signals to those of the CLKIN signal.
DUTY_CYCLE_CORRECTION = TRUE
CLK0
CLK90
CLK180
CLK270
DS099-2_10_051907
Notes:
1. The DLL attribute CLKDV_DIVIDE is set to 2.
Figure 20: Characteristics of the DLL Clock Outputs
1. The CLK2X output generates a 25% duty cycle clock at the same frequency as the CLKIN signal until the DLL has achieved lock.
2. The duty cycle of the CLKDV outputs may differ somewhat from 50% (i.e., the signal will be High for less than 50% of the period) when
the CLKDV_DIVIDE attribute is set to a non-integer value and the DLL is operating in the High Frequency mode.
36
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Digital Frequency Synthesizer (DFS)
The DFS component generates clock signals the frequency
of which is a product of the clock frequency at the CLKIN
input and a ratio of two user-determined integers. Because
of the wide range of possible output frequencies such a ratio
permits, the DFS feature provides still further flexibility than
the DLL’s basic synthesis options as described in the preceding section. The DFS component’s two dedicated outputs, CLKFX and CLKFX180, are defined in Table 18.
The signal at the CLKFX180 output is essentially an inversion of the CLKFX signal. These two outputs always exhibit
a 50% duty cycle. This is true even when the CLKIN signal
does not. These DFS clock outputs are driven at the same
time as the DLL’s seven clock outputs.
The numerator of the ratio is the integer value assigned to
the attribute CLKFX_MULTIPLY and the denominator is the
integer value assigned to the attribute CLKFX_DIVIDE.
These attributes are described in Table 17.
The output frequency (fCLKFX) can be expressed as a function of the incoming clock frequency (fCLKIN) as follows:
fCLKFX = fCLKIN*(CLKFX_MULTIPLY/CLKFX_DIVIDE) (3)
Regarding the two attributes, it is possible to assign any
combination of integer values, provided that two conditions
are met:
1. The two values fall within their corresponding ranges,
as specified in Table 17.
2. The fCLKFX frequency calculated from the above
expression accords with the DCM’s operating frequency
specifications.
For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE
= 3, then the frequency of the output clock signal would be
5/3 that of the input clock signal.
DFS Frequency Modes
The DFS supports two operating modes, High Frequency
and Low Frequency, with each specified over a different
clock frequency range. The DFS_FREQUENCY_MODE
attribute chooses between the two modes. When the
attribute is set to LOW, the Low Frequency mode permits
the two DFS outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High
Frequency mode allows both these outputs to operate at the
highest possible frequencies.
DFS With or Without the DLL
The DFS component can be used with or without the DLL
component:
Without the DLL, the DFS component multiplies or divides
the CLKIN signal frequency according to the respective
CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating
a clock with the new target frequency on the CLKFX and
CLKFX180 outputs. Though classified as belonging to the
DLL component, the CLKIN input is shared with the DFS
component. This case does not employ feedback loop;
therefore, it cannot correct for clock distribution delay.
With the DLL, the DFS operates as described in the preceding case, only with the additional benefit of eliminating the
clock distribution delay. In this case, a feedback loop from
the CLK0 output to the CLKFB input must be present.
The DLL and DFS components work together to achieve
this phase correction as follows: Given values for the
CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL
selects the delay element for which the output clock edge
coincides with the input clock edge whenever mathematically possible. For example, when CLKFX_MULTIPLY = 5
and CLKFX_DIVIDE = 3, the input and output clock edges
will coincide every three input periods, which is equivalent in
time to five output periods.
Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values
achieve faster lock times. With no factors common to the
two attributes, alignment will occur once with every number
of cycles equal to the CLKFX_DIVIDE value. Therefore, it is
recommended that the user reduce these values by factoring
wherever
possible.
For
example,
given
CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing
a factor of three yields CLKFX_MULTIPLY = 3 and
CLKFX_DIVIDE = 2. While both value-pairs will result in the
multiplication of clock frequency by 3/2, the latter value-pair
will enable the DLL to lock more quickly.
Table 17: DFS Attributes
Attribute
Description
Values
DFS_FREQUENCY_MODE
Chooses between High Frequency and Low Frequency modes
Low, High
CLKFX_MULTIPLY
Frequency multiplier constant
Integer from 2 to 32
CLKFX_DIVIDE
Frequency divisor constant
Integer from 1 to 32
Table 18: DFS Signals
Signal
Direction
Description
CLKFX
Output
Multiplies the CLKIN frequency by the attribute-value ratio
(CLKFX_MULTIPLY/CLKFX_DIVIDE) to generate a clock signal with a new target frequency.
CLKFX180
Output
Generates a clock signal with same frequency as CLKFX, only shifted 180° out-of-phase.
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
37
R
Spartan-3 FPGA Family: Functional Description
DFS Clock Output Connections
PS Component Enabling and Mode Selection
There are two basic cases that determine how to connect
the DFS clock outputs: on-chip and off-chip, which are illustrated in Figure 19a and Figure 19c, respectively. This is
similar to what has already been described for the DLL component. See the DLL Clock Output and Feedback Connections, page 34 section.
The CLKOUT_PHASE_SHIFT attribute enables the PS
component for use in addition to selecting between two
operating modes. As described in Table 19, this attribute
has three possible values: NONE, FIXED and VARIABLE.
When CLKOUT_PHASE_SHIFT is set to NONE, the PS
component is disabled and its inputs, PSEN, PSCLK, and
PSINCDEC, must be tied to GND. The set of waveforms in
Figure 21a shows the disabled case, where the DLL maintains a zero-phase alignment of signals CLKFB and CLKIN
upon which the PS component has no effect. The PS component is enabled by setting the attribute to either the
FIXED or VARIABLE values, which select the Fixed Phase
mode and the Variable Phase mode, respectively. These
two modes are described in the sections that follow
In the on-chip case, it is possible to connect either of the
DFS’s two output clock signals through general routing
resources to the FPGA’s internal registers. Either a Global
Clock Buffer (BUFG) or a BUFGMUX affords access to the
global clock network. The optional feedback loop is formed
in this way, routing CLK0 to a global clock net, which in turn
drives the CLKFB input.
In the off-chip case, the DFS’s two output clock signals, plus
CLK0 for an optional feedback loop, can exit the FPGA
using output buffers (OBUF) to drive a clock network plus
registers on the board. The feedback loop is formed by
feeding the CLK0 signal back into the FPGA using an
IBUFG, which directly accesses the global clock network, or
an IBUF. Then, the global clock net is connected directly to
the CLKFB input.
Phase Shifter (PS)
The DCM provides two approaches to controlling the phase
of a DCM clock output signal relative to the CLKIN signal:
First, there are nine clock outputs that employ the DLL to
achieve a desired phase relationship: CLK0, CLK90,
CLK180, CLK270, CLK2X, CLK2X180, CLKDV CLKFX, and
CLKFX180. These outputs afford “coarse” phase control.
The second approach uses the PS component described in
this section to provide a still finer degree of control. The PS
component is only available when the DLL is operating in its
low-frequency mode. The PS component phase shifts the
DCM output clocks by introducing a "fine phase shift" (TPS)
between the CLKFB and CLKIN signals inside the DLL
component. The user can control this fine phase shift down
to a resolution of 1/256 of a CLKIN cycle or one tap delay
(DCM_TAP), whichever is greater. When in use, the PS
component shifts the phase of all nine DCM clock output
signals together. If the PS component is used together with
a DCM clock output such as the CLK90, CLK180, CLK270,
CLK2X180 and CLKFX180, then the fine phase shift of the
former gets added to the coarse phase shift of the latter.
Determining the Fine Phase Shift
The user controls the phase shift of CLKFB relative to
CLKIN by setting and/or adjusting the value of the
PHASE_SHIFT attribute. This value must be an integer
ranging from –255 to +255. The PS component uses this
value to calculate the desired fine phase shift (TPS) as a
fraction of the CLKIN period (TCLKIN). Given values for
PHASE-SHIFT and TCLKIN, it is possible to calculate TPS as
follows:
TPS = (PHASE_SHIFT/256)*TCLKIN
(4)
Both the Fixed Phase and Variable Phase operating modes
employ this calculation. If the PHASE_SHIFT value is zero,
then CLKFB and CLKIN will be in phase, the same as when
the PS component is disabled. When the PHASE_SHIFT
value is positive, the CLKFB signal will be shifted later in
time with respect to CLKIN. If the attribute value is negative,
the CLKFB signal will be shifted earlier in time with respect
to CLKIN.
The Fixed Phase Mode
This mode fixes the desired fine phase shift to a fraction of
the TCLKIN, as determined by Equation (4) and its
user-selected PHASE_SHIFT value P. The set of waveforms in Figure 21b illustrates the relationship between
CLKFB and CLKIN in the Fixed Phase mode. In the Fixed
Phase mode, the PSEN, PSCLK and PSINCDEC inputs are
not used and must be tied to GND.
Table 19: PS Attributes
Attribute
Description
Values
CLKOUT_PHASE_SHIFT
Disables PS component or chooses between Fixed Phase
and Variable Phase modes.
NONE, FIXED, VARIABLE
PHASE_SHIFT
Determines size and direction of initial fine phase shift.
Integers from –255 to +255(1)
Notes:
1. The practical range of values will be less when TCLKIN > FINE_SHIFT_RANGE in the Fixed Phase mode, also when TCLKIN >
(FINE_SHIFT_RANGE)/2 in the Variable Phase mode. the FINE_SHIFT_RANGE represents the sum total delay of all taps.
38
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
a. CLKOUT_PHASE_SHIFT = NONE
CLKIN
CLKFB
b. CLKOUT_PHASE_SHIFT = FIXED
CLKIN
Shift Range over all P Values:
0
–255
+255
P
256 * TCLKIN
CLKFB
c. CLKOUT_PHASE_SHIFT = VARIABLE
CLKIN
Shift Range over all P Values:
–255
+255
0
P
* TCLKIN
256
CLKFB before
Decrement
–255
Shift Range over all N Values:
0
+255
N
*T
256 CLKIN
CLKFB after
Decrement
DS099-2_11_031303
Notes:
1. P represents the integer value ranging from –255 to +255 to which the PHASE_SHIFT attribute is assigned.
2. N is an integer value ranging from –255 to +255 that represents the net phase shift effect from a series of increment and/or
decrement operations.
N = {Total number of increments} – {Total number of decrements}
A positive value for N indicates a net increment; a negative value indicates a net decrement.
Figure 21: Phase Shifter Waveforms
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
39
R
Spartan-3 FPGA Family: Functional Description
Table 20: Signals for Variable Phase Mode
Signal
Direction
Description
PSEN(1)
Input
Enables PSCLK for variable phase adjustment.
PSCLK(1)
Input
Clock to synchronize phase shift adjustment.
PSINCDEC(1)
Input
Chooses between increment and decrement for phase adjustment. It is synchronized to the
PSCLK signal.
PSDONE
Output
Goes High to indicate that present phase adjustment is complete and PS component is
ready for next phase adjustment request. It is synchronized to the PSCLK signal.
Notes:
1. It is possible to program this input for either a true or inverted polarity
The Variable Phase Mode
The “Variable Phase” mode dynamically adjusts the fine
phase shift over time using three inputs to the PS component, namely PSEN, PSCLK and PSINCDEC, as defined in
Table 20.
After device configuration, the PS component initially determines TPS by evaluating Equation (4) for the value assigned
to the PHASE_SHIFT attribute. Then to dynamically adjust
that phase shift, use the three PS inputs to increase or
decrease the fine phase shift.
PSINCDEC is synchronized to the PSCLK clock signal,
which is enabled by asserting PSEN. It is possible to drive
the PSCLK input with the CLKIN signal or any other clock
signal. A request for phase adjustment is entered as follows:
For each PSCLK cycle that PSINCDEC is High, the PS
component adds 1/256 of a CLKIN cycle to TPS. Similarly,
for each enabled PSCLK cycle that PSINCDEC is Low, the
PS component subtracts 1/256 of a CLKIN cycle from TPS.
The phase adjustment may require as many as 100 CLKIN
cycles plus three PSCLK cycles to take effect, at which
point the output PSDONE goes High for one PSCLK cycle.
This pulse indicates that the PS component has finished the
present adjustment and is now ready for the next request.
Asserting the Reset (RST) input, returns TPS to its original
shift time, as determined by the PHASE_SHIFT attribute
value. The set of waveforms in Figure 21c illustrates the
relationship between CLKFB and CLKIN in the Variable
Phase mode.
The Status Logic Component
The Status Logic component not only reports on the state of
the DCM but also provides a means of resetting the DCM to
an initial known state. The signals associated with the Status Logic component are described in Table 21.
As a rule, the Reset (RST) input is asserted only upon configuring the device or changing the CLKIN frequency. A
DCM reset does not affect attribute values (e.g.,
CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST
must be tied to GND.
The eight bits of the STATUS bus are defined in Table 22.
Table 21: Status Logic Signals
Signal
Direction
Description
Input
A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay
of zero. Sets the LOCKED output Low. This input is asynchronous.
STATUS[7:0]
Output
The bit values on the STATUS bus provide information regarding the state of DLL and PS
operation
LOCKED
Output
Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signals
are out-of-phase when Low.
RST
40
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 22: DCM STATUS Bus
Bit
Name
Description
0
Phase Shift
Overflow
A value of 1 indicates a phase shift overflow when one of two conditions occurs:
• Incrementing (or decrementing) TPS beyond 255/256 of a CLKIN cycle.
• The DLL is producing its maximum possible phase shift (i.e., all delay taps are
active).(1)
1
CLKIN Input
Stopped Toggling
A value of 1 indicates that the CLKIN input signal is not toggling. A value of 0 indicates
toggling. This bit functions only when the CLKFB input is connected.(2)
2
CLKFX/CLKFX180
Output Stopped
Toggling
A value of 1 indicates that the CLKFX or CLKFX180 output signals are not toggling. A value
of 0 indicates toggling. This bit functions only when using the Digital Frequency
Synthesizer (DFS).
Reserved
-
3:7
Notes:
1. The DLL phase shift with all delay taps active is specified as the parameter FINE_SHIFT_RANGE.
2. If only the DFS clock outputs are used, but none of the DLL clock outputs, this bit will not go High when the CLKIN signal stops.
Table 23: Status Attributes
Attribute
STARTUP_WAIT
Description
Values
Delays transition from configuration to user mode until lock condition is achieved. TRUE, FALSE
Stabilizing DCM Clocks Before User Mode
It is possible to delay the completion of device configuration
until after the DLL has achieved a lock condition using the
STARTUP_WAIT attribute described in Table 23. This
option ensures that the FPGA does not enter user mode —
i.e., begin functional operation — until all system clocks
generated by the DCM are stable. In order to achieve the
delay, it is necessary to set the attribute to TRUE as well as
set the BitGen option LCK_cycle to one of the six cycles
making up the Startup phase of configuration. The selected
cycle defines the point at which configuration will halt until
the LOCKED output goes High.
Global Clock Network
Spartan-3 devices have eight Global Clock inputs called
GCLK0 - GCLK7. These inputs provide access to a
low-capacitance, low-skew network that is well-suited to
carrying high-frequency signals. The Spartan-3 clock network is shown in Figure 22. GCLK0 through GCLK3 are
located in the center of the bottom edge. GCLK4 through
GCLK7 are located in the center of the top edge.
Eight Global Clock Multiplexers (also called BUFGMUX elements) are provided that accept signals from Global Clock
inputs and route them to the internal clock network as well
as DCMs. Four BUFGMUX elements are located in the center of the bottom edge, just above the GCLK0 - GCLK3
inputs. The remaining four BUFGMUX elements are located
DS099-2 (v2.4) June 25, 2008
Product Specification
in the center of the top edge, just below the GCLK4 GCLK7 inputs.
Pairs of BUFGMUX elements share global inputs, as shown
in Figure 22. For example, the GCLK4 and GCLK5 inputs
both potentially connect to BUFGMUX4 and BUFGMUX5
located in the upper right center. A differential clock input
uses a pair of GCLK inputs to connect to a single BUFGMUX element.
Each BUFGMUX element, shown in Figure 22, is a 2-to-1
multiplexer that can receive signals from any of the four following sources:
1. One of the four Global Clock inputs on the same side of
the die — top or bottom — as the BUFGMUX element in
use.
2. Any of four nearby horizontal Double lines.
3. Any of four outputs from the DCM in the right-hand
quadrant that is on the same side of the die as the
BUFGMUX element in use.
4. Any of four outputs from the DCM in the left-hand
quadrant that is on the same side of the die as the
BUFGMUX element in use.
The multiplexer select line, S, chooses which of the two
inputs, I0 or I1, drives the BUFGMUX’s output signal, O, as
described in Table 24. The switching from one clock to the
other is glitchless, and done in such a way that the output
High and Low times are never shorter than the shortest
High or Low time of either input clock.
www.xilinx.com
41
R
Spartan-3 FPGA Family: Functional Description
reach the eight-line horizontal spine, which spans the
width of the die. In turn, the horizontal spine branches
out into a subsidiary clock interconnect that accesses
the CLBs.
Table 24: BUFGMUX Select Mechanism
S Input
O Output
0
I0 Input
1
I1 Input
The two clock inputs can be asynchronous with regard to
each other, and the S input can change at any time, except
for a short setup time prior to the rising edge of the presently
selected clock (I0 or I1). Violating this setup time requirement can result in an undefined runt pulse output.
The BUFG clock buffer primitive drives a single clock signal
onto the clock network and is essentially the same element
as a BUFGMUX, just without the clock select mechanism.
Similarly, the BUFGCE primitive creates an enabled clock
buffer using the BUFGMUX select mechanism.
Each BUFGMUX buffers incoming clock signals to two possible destinations:
1. The vertical spine belonging to the same side of the die
— top or bottom — as the BUFGMUX element in use.
The two spines — top and bottom — each comprise
four vertical clock lines, each running from one of the
BUFGMUX elements on the same side towards the
center of the die. At the center of the die, clock signals
42
2. The clock input of either DCM on the same side of the
die — top or bottom — as the BUFGMUX element in
use.
Use either a BUFGMUX element or a BUFG (Global Clock
Buffer) element to place a Global input in the design. For the
purpose of minimizing the dynamic power dissipation of the
clock network, the Xilinx development software automatically disables all clock line segments that a design does not
use.
A global clock line ideally drives clock inputs on the various
clocked elements within the FPGA, such as CLB or IOB
flip-flops or block RAMs. A global clock line also optionally
drives combinatorial inputs. However, doing so provides
additional loading on the clock line that might also affect
clock jitter. Ideally, drive combinatorial inputs using the signal that also drives the input to the BUFGMUX or BUFG element.
For more details, refer to the “Using Global Clock
Resources” chapter in UG331.
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
GCLK4
GCLK6
GCLK5
GCLK7
4
4
4
DCM
4
DCM
4 BUFGMUX
4
8
•
Top Spine
•
•
•
•
Array Dependent
•
8
8
8
Horizontal Spine
•
Bottom Spine
•
•
•
•
Array Dependent
•
4
4
DCM
4
4 BUFGMUX
4
4
GCLK3
GCLK1
GCLK0
GCLK2
DCM
DS099-2_18_050505
Figure 22: Spartan-3 Clock Network (Top View)
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
43
R
Spartan-3 FPGA Family: Functional Description
Interconnect
ble lines in terms of capability: Hex lines approach the
high-frequency characteristics of Long lines at the same
time, offering greater connectivity.
Interconnect (or routing) passes signals among the various
functional elements of Spartan-3 devices. There are four
kinds of interconnect: Long lines, Hex lines, Double lines,
and Direct lines.
Double lines connect to every other CLB (see Figure 23c).
Compared to the types of lines already discussed, Double
lines provide a higher degree of flexibility when making connections.
Long lines connect to one out of every six CLBs (see
Figure 23a). Because of their low capacitance, these lines
are well-suited for carrying high-frequency signals with minimal loading effects (e.g. skew). If all eight Global Clock
Inputs are already committed and there remain additional
clock signals to be assigned, Long lines serve as a good
alternative.
Direct lines afford any CLB direct access to neighboring
CLBs (see Figure 23d). These lines are most often used to
conduct a signal from a "source" CLB to a Double, Hex, or
Long line and then from the longer interconnect back to a
Direct line accessing a "destination" CLB.
6
CLB
6
CLB
CLB
CLB
6
CLB
CLB
6
••
•
CLB
••
•
CLB
••
•
••
•
CLB
••
•
For more details, refer to the “Using Interconnect” chapter in
UG331.
Hex lines connect one out of every three CLBs (see
Figure 23b). These lines fall between Long lines and Dou-
CLB
6
DS099-2_19_040103
(a) Long Line
8
CLB
CLB
CLB
CLB
CLB
CLB
CLB
DS099-2_20_040103
(b) Hex Line
CLB
CLB
CLB
CLB
CLB
CLB
CLB
CLB
CLB
2
CLB
CLB
CLB
DS099-2_21_040103
(c) Double Line
DS099-2_22_040103
(d) Direct Lines
Figure 23: Types of Interconnect
44
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Configuration
Spartan-3 devices are configured by loading application
specific configuration data into the internal configuration
memory. Configuration is carried out using a subset of the
device pins, some of which are "Dedicated" to one function
only, while others, indicated by the term "Dual-Purpose",
can be re-used as general-purpose User I/Os once configuration is complete.
Depending on the system design, several configuration
modes are supported, selectable via mode pins. The mode
pins M0, M1, and M2 are Dedicated pins. The mode pin settings are shown in Table 25.
Table 25: Spartan-3 Configuration Mode Pin Settings
Configuration Mode (1)
M0
M1
M2
Synchronizing Clock
Data Width
Serial DOUT (2)
Master Serial
0
0
0
CCLK Output
1
Yes
Slave Serial
1
1
1
CCLK Input
1
Yes
Master Parallel
1
1
0
CCLK Output
8
No
Slave Parallel
0
1
1
CCLK Input
8
No
JTAG
1
0
1
TCK Input
1
No
Notes:
1. The voltage levels on the M0, M1, and M2 pins select the configuration mode.
2. The daisy chain is possible only in the Serial modes when DOUT is used.
The HSWAP_EN input pin defines whether the I/O pins that
are not actively used during configuration have pull-up
resistors during configuration. By default, HSWAP_EN is
tied High (via an internal pull-up resistor if left floating)
which shuts off the pull-up resistors on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os
have pull-ups during configuration. The Dedicated configuration pins (CCLK, DONE, PROG_B, M2, M1, M0,
HSWAP_EN) and the JTAG pins (TDI, TMS, TCK, and
TDO) always have a pull-up resistor to VCCAUX during configuration, regardless of the value on the HSWAP_EN pin.
Similarly, the Dual-prupose INIT_B pin has an internal
pull-up resistor to VCCO_4 or VCCO_BOTTOM, depending
on the package style.
Depending on the chosen configuration mode, the FPGA
either generates a CCLK output, or CCLK is an input
accepting an externally generated clock.
A persist option is available which can be used to force the
configuration pins to retain their configuration function even
after device configuration is complete. If the persist option is
not selected then the configuration pins with the exception
of CCLK, PROG_B, and DONE can be used as user I/O in
normal operation. The persist option does not apply to the
boundary-scan related pins. The persist feature is valuable
in applications that readback configuration data after entering the User mode.
Table 26 lists the total number of bits required to configure
each FPGA as well as the PROMs suitable for storing those
bits. See DS123: Platform Flash In-System Programmable
Configuration PROMs data sheet for more information.
The maximum bitstream length that Spartan-3 FPGAs support in serial daisy-chains is 4,294,967,264 bits (4 Gbits),
roughly equivalent to a daisy-chain with 323 XC3S5000
FPGAs. This is a limit only for serial daisy-chains where
DS099-2 (v2.4) June 25, 2008
Product Specification
configuration data is passed via the FPGA’s DOUT pin.
There is no such limit for JTAG chains.
The Standard Configuration Interface
Configuration signals belong to one of two different categories: Dedicated or Dual-Purpose. Which category determines which of the FPGA’s power rails supplies the signal’s
driver and, thus, helps describe the electrical at the pin.
The Dedicated configuration pins include PROG_B,
HSWAP_EN, TDI, TMS, TCK, TDO, CCLK, DONE, and
M0-M2. These pins are powered by the VCCAUX supply.
Table 26: Spartan-3 Configuration Data
Xilinx Platform Flash PROM
Device
File Sizes
Serial
Configuration
Parallel
Configuration
XC3S50
439,264
XCF01S
XCF08P
XC3S200
1,047,616
XCF01S
XCF08P
XC3S400
1,699,136
XCF02S
XCF08P
XC3S1000
3,223,488
XCF04S
XCF08P
XC3S1500
5,214,784
XCF08P
XCF08P
XC3S2000
7,673,024
XCF08P
XCF08P
XC3S4000
11,316,864
XCF16P
XCF16P
XC3S5000
13,271,936
XCF16P
XCF16P
The Dual-Purpose configuration pins comprise INIT_B,
DOUT, BUSY, RDWR_B, CS_B, and DIN/D0-D7. Each of
these pins, according to its bank placement, uses the VCCO
lines for either Bank 4 (VCCO_4 on most packages,
VCCO_BOTTOM on TQ144 and CP132 packages) or Bank
www.xilinx.com
45
R
Spartan-3 FPGA Family: Functional Description
5 (VCCO_5). All the signals used in the serial configuration
modes rely on VCCO_4 power. Signals used in the parallel
configuration modes and Readback require from VCCO_5
as well as from VCCO_4.
Both the Dedicated signals described above and the
Dual-Purpose signals constitute the configuration interface.
The Dedicated pins, powered by the 2.5V VCCAUX supply,
always use the LVCMOS25 I/O standard. The Dual-Purpose signals, however, are powered by the VCCO_4 supply
and also by the VCCO_5 supply in the Parallel configuration
modes. The simplest configuration interface uses 2.5V for
VCCO_4 and VCCO_5, if required. However, VCCO_4 and,
if needed, VCCO_5 can be voltages other than 2.5V but
then the configuration interface will have two voltage levels:
2.5V for VCCAUX and a separate VCCO supply. The
Dual-Purpose signals default to the LVCMOS input and output levels for the associated VCCO voltage supply.
3.3V-Tolerant Configuration Interface
A 3.3V-tolerant configuration interface simply requires adding a few external resistors as described in detail in "The
3.3V Configuration of Spartan-3 FPGAs" (XAPP453).
The 3.3V-tolerance is implemented as follows (a similar
approach can be used for other supply voltage levels):
Apply 3.3V to VCCO_4 and, in some configuration modes,
to VCCO_5 to power the Dual-Purpose configuration pins.
This scales the output voltages and input thresholds associated with these pins so that they become 3.3V-compatible.
series resistors to limit the incoming current to 10 mA or
less. The Dedicated outputs have reduced noise margin
when the FPGA drives a High logic level into another
device’s 3.3V receiver. Choose a power regulator or supply
that can tolerate reverse current on the VCCAUX lines.
Configuration Modes
Spartan-3 supports the following five configuration modes:
•
•
•
•
•
Slave Serial mode
Master Serial mode
Slave Parallel (SelectMAP) mode
Master Parallel (SelectMAP) mode
Boundary-Scan (JTAG) mode (IEEE 1532/IEEE
1149.1)
Slave Serial Mode
In Slave Serial mode, the FPGA receives configuration data
in bit-serial form from a serial PROM or other serial source
of configuration data. The FPGA on the far right of Figure 24
is set for the Slave Serial mode. The CCLK pin on the FPGA
is an input in this mode. The serial bitstream must be set up
at the DIN input pin a short time before each rising edge of
the externally generated CCLK.
Multiple FPGAs can be daisy-chained for configuration from
a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the
DOUT pin. The data on the DOUT pin changes on the falling
edge of CCLK.
Apply 2.5V to VCCAUX to power the Dedicated configuration
pins. For 3.3V-tolerance, the Dedicated inputs require
46
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
3.3V: XCF0xS
1.8V: XCFxxP
2.5V
2.5V
2.5V
1.2V
1.2V
VCCO Bank 4
VCCO
VCCINT
VCCAUX
VCCJ
D0
VCCINT
DIN
Platform
Flash PROM
VCCO Bank 4
DOUT
VCCAUX
VCCINT
DIN
Spartan-3
FPGA
Spartan-3
FPGA
Master
Slave
2.5V
2.5V
XCF0xS
or
XCFxxP
M0
M1
M2
All
4.7KΩ
M0
M1
M2
CE
DONE
DONE
OE/RESET
INIT_B
INIT_B
CF
CLK
PROG_B
PROG_B
CCLK
CCLK
GND
GND
GND
DS099_23_112905
Notes:
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the
last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables
the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining
FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain
and require the pull-up resistor shown in grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient.
However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may
necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.
2. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration
Interface.
Figure 24: Connection Diagram for Master and Slave Serial Configuration
Slave Serial mode is selected by applying <111> to the
mode pins (M0, M1, and M2). A pull-up on the mode pins
makes slave serial the default mode if the pins are left
unconnected.
Master Serial Mode
In Master Serial mode, the FPGA drives CCLK pin, which
behaves as a bidirectional I/O pin (see ). The FPGA in the
center of Figure 24 is set for Master Serial mode and connects to the serial configuration PROM and to the CCLK
inputs of any slave FPGAs in a configuration daisy-chain.
The master FPGA drives the configuration clock on the
CCLK pin to the Xilinx Serial PROM, which, in response,
provides bit-serial data to the FPGA’s DIN input. The FPGA
accepts this data on each rising CCLK edge. After the master FPGA finishes configuring, it passes data on its DOUT
pin to the next FPGA device in a daisy-chain. The DOUT
data appears after the falling CCLK clock edge.
The Master Serial mode interface is identical to Slave Serial
except that an internal oscillator generates the configuration
clock (CCLK). A wide range of frequencies can be selected
for CCLK, which always starts at a default frequency of
DS099-2 (v2.4) June 25, 2008
Product Specification
6 MHz. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration.
Slave Parallel Mode (SelectMAP)
The Parallel or SelectMAP modes support the fastest configuration. Byte-wide data is written into the FPGA with a
BUSY flag controlling the flow of data. An external source
provides 8-bit-wide data, CCLK, an active-Low Chip Select
(CS_B) signal and an active-Low Write signal (RDWR_B). If
BUSY is asserted (High) by the FPGA, the data must be
held until BUSY goes Low. Data can also be read using the
Slave Parallel mode. If RDWR_B is asserted, configuration
data is read out of the FPGA as part of a readback operation.
After configuration, it is possible to use any of the Multipurpose pins (DIN/D0-D7, DOUT/BUSY, INIT_B, CS_B, and
RDWR_B) as User I/Os. To do this, simply set the BitGen
option Persist to No and assign the desired signals to multipurpose configuration pins using the Xilinx development
software. Alternatively, it is possible to continue using the
configuration port (e.g. all configuration pins taken together)
www.xilinx.com
47
R
Spartan-3 FPGA Family: Functional Description
when operating in the User mode. This is accomplished by
setting the Persist option to Yes.
tiple devices in this way, wire the individual CCLK, Data,
RDWR_B, and BUSY pins of all the devices in parallel. The
individual devices are loaded separately by deasserting the
CS_B pin of each device in turn and writing the appropriate
data.
Multiple FPGAs can be configured using the Slave Parallel
mode and can be made to start-up simultaneously.
Figure 25 shows the device connections. To configure mulD[0:7]
CCLK
RDWR_B
BUSY
2.5V
2.5V
VCCO Banks 4 & 5
VCCAUX
1.2V
VCCO Banks 4 & 5
VCCAUX
VCCINT
Spartan-3
Slave
VCCINT
Spartan-3
Slave
D[0:7]
D[0:7]
CCLK
CCLK
RDWR_B
RDWR_B
BUSY
BUSY
2.5V
CS_B
CS_B
DONE
4.7KΩ
M1
M2
M0
PROG_B
2.5V
4.7KΩ
1.2V
INIT_B
GND
2.5V
CS_B
CS_B
M1
M2
M0
PROG_B
DONE
INIT_B
GND
DONE
INIT_B
PROG_B
DS099_24_041103
Notes:
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA
to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive
High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second,
DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in
grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously with a long
chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise
time within one clock cycle.
2. If the FPGAs use different configuration data files, configure them in sequence by first asserting the CS_B of one FPGA then
asserting the CS_B of the other FPGA.
3. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.
Figure 25: Connection Diagram for Slave Parallel Configuration
48
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
2.5V
1.8V
2.5V
VCCO Banks 4 & 5
VCCAUX
VCCO
DATA[0:7]
D[0:7]
CCLK
Platform Flash
PROM
XCFxxP
VCCINT
Spartan-3
Master
VCCJ
VCCINT
1.2V
CCLK
2.5V
All
4.7KΩ
CF
PROG_B
CE
DONE
OE/RESET
INIT_B
GND
RDWR_B
CS_B
GND
DS099_25_112905
Notes:
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes"
only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be
the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone
is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all
FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most
cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously
with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g.
down to 330Ω) in order to ensure a rise time within one clock cycle.
Figure 26: Connection Diagram for Master Parallel Configuration
Master Parallel Mode
In this mode, the FPGA configures from byte-wide data, and
the FPGA supplies the CCLK configuration clock. In Master
configuration modes, CCLK behaves as a bidirectional I/O
pin (see . Timing is similar to the Slave Parallel mode except
that CCLK is supplied by the FPGA. The device connections are shown in Figure 26.
Boundary-Scan (JTAG) Mode
In Boundary-Scan mode, dedicated pins are used for configuring the FPGA. The configuration is done entirely
through the IEEE 1149.1 Test Access Port (TAP). FPGA
configuration using the Boundary-Scan mode is compliant
with the IEEE 1149.1-1993 standard and the new IEEE
1532 standard for In-System Configurable (ISC) devices.
Configuration through the boundary-scan port is always
available, regardless of the selected configuration mode. In
some cases, however, the mode pin setting may affect
proper programming of the device due to various interactions. For example, if the mode pins are set to Master Serial
DS099-2 (v2.4) June 25, 2008
Product Specification
or Master Parallel mode, and the associated PROM is
already programmed with a valid configuration image, then
there is potential for configuration interference between the
JTAG and PROM data. Selecting the Boundary-Scan mode
disables the other modes and is the most reliable mode
when programming via JTAG.
Configuration Sequence
The configuration of Spartan-3 devices is a three-stage process that occurs after Power-On Reset or the assertion of
PROG_B. POR occurs after the VCCINT, VCCAUX, and VCCO
Bank 4 supplies have reached their respective maximum
input threshold levels (see Table 28, page 56). After POR,
the three-stage process begins.
First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the
logic is activated by a start-up process. A flow diagram for
the configuration sequence of the Serial and Parallel modes
is shown in Figure 27. The flow diagram for the Boundary-Scan configuration sequence appears in Figure 28.
www.xilinx.com
49
R
Spartan-3 FPGA Family: Functional Description
Set PROG_B Low
after Power-On
Power-On
VCCINT >1V
and VCCAUX > 2V
and VCCO Bank 4 > 1V
No
Yes
Yes
Clear configuration
memory
PROG_B = Low
No
No
INIT_ B = High?
Yes
Sample mode pins
Load configuration
data frames
CRC
correct?
No
INIT_B goes Low.
Abort Start-Up
Yes
Start-Up
sequence
User mode
No
Reconfigure?
Yes
DS099_26_041103
Figure 27: Configuration Flow Diagram for the Serial and Parallel Modes
50
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
Set PROG_B Low
after Power-On
Power-On
VCCINT >1V
and VCCAUX > 2V
and VCCO Bank 4 > 1V
No
Yes
Clear
configuration
memory
Yes
PROG_B = Low
No
No
INIT_B = High?
Yes
Sample
mode pins
(JTAG port becomes
available)
Shutdown
sequence
Load CFG_IN
instruction
Load
JShutdown
instruction
Load configuration
data frames
CRC
correct?
No
INIT_B goes Low.
Abort Start-Up
Yes
Synchronous
TAP reset
(Clock five 1's
on TMS)
Load JSTART
instruction
Start-Up
sequence
User mode
No
Reconfigure?
Yes
DS099_27_041103
Figure 28: Boundary-Scan Configuration Flow Diagram
DS099-2 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
51
R
Spartan-3 FPGA Family: Functional Description
Configuration is automatically initiated after power-on
unless it is delayed by the user. INIT_B is an open-drain line
that the FPGA holds Low during the clearing of the configuration memory. Extending the time that the pin is Low
causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where
data is loaded.
The configuration process can also be initiated by asserting
the PROG_B pin. The end of the memory-clearing phase is
signaled by the INIT_B pin going High. At this point, the configuration data is written to the FPGA. The FPGA pulses the
Global Set/Reset (GSR) signal at the end of configuration,
resetting all flip-flops. The completion of the entire process
is signaled by the DONE pin going High.
Default Cycles
0
1
2
3
4
5
The relative timing of configuration events can be changed
via the BitGen options in the Xilinx development software. In
addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High,
forcing the devices to start synchronously. The sequence
can also be paused at any stage, until lock has been
achieved on any DCM.
Readback
Using Slave Parallel mode, configuration data from the
FPGA can be read back. Readback is supported only in the
Slave Parallel and Boundary-Scan modes.
Along with the configuration data, it is possible to read back
the contents of all registers, distributed RAM, and block
RAM resources. This capability is used for real-time debugging.
Start-Up Clock
Phase
become active. One CCLK cycle later, the Global Write
Enable (GWE) signal is released. This permits the internal
storage elements to begin changing state in response to the
design logic and the user clock.
6 7
Additional Configuration Details
DONE
Additional details about the Spartan-3 FPGA configuration
architecture and command set are available in the “Spartan-3 Generation Configuration User Guide” (UG332) and
the "Spartan-3 Advanced Configuration Architecture" application note (XAPP452).
GTS
GWE
Sync-to-DONE
Powering Spartan-3 FPGAs
Start-Up Clock
Voltage Regulators
Phase
0
1
2
3
4
5
Various power supply manufacturers offer complete power
solutions for Xilinx FPGAs, including some with integrated
multi-rail regulators specifically designed for Spartan-3
FPGAs. The Xilinx Power Corner website provides links to
vendor solution guides as well as Xilinx power estimation
and analysis tools.
6 7
DONE High
DONE
GTS
Power Distribution System (PDS) Design and
Bypass/Decoupling Capacitors
GWE
DS099_028_060905
Notes:
1. The BitGen option StartupClk in the Xilinx
development software selects the CCLK input,
TCK input, or a user-designated clock input (via the
STARTUP_SPARTAN3 primitive) for receiving the
clock signal that synchronizes Start-Up.
Figure 29: Default Start-Up Sequence
Power-On Behavior
The default start-up sequence, shown in Figure 29, serves
as a transition to the User mode. The default start-up
sequence is that one CCLK cycle after DONE goes High,
the Global Three-State signal (GTS) is released. This permits device outputs to which signals have been assigned to
52
Good power distribution system (PDS) design is important
for all FPGA designs, especially for high-performance applications. Proper design results in better overall performance,
lower clock and DCM jitter, and a generally more robust system. Before designing the printed circuit board (PCB) for the
FPGA design, review "Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors" (XAPP623).
Spartan-3 FPGAs have a built-in Power-On Reset (POR)
circuit that monitors the three power rails required to successfully configure the FPGA. At power-up, the POR circuit
holds the FPGA in a reset state until the VCCINT, VCCAUX,
and VCCO Bank 4 supplies reach their respective input
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Functional Description
threshold levels (see Table 28, page 56). After all three supplies reach their respective threshold, the POR reset is
released and the FPGA begins its configuration process.
Because the three supply inputs must be valid to release
the POR reset and can be supplied in any order, there are
no specific voltage sequencing requirements. However,
applying the FPGA’s VCCAUX supply before the VCCINT supply uses the least ICCINT current.
Once all three supplies are valid, the minimum current
required to power-on the FPGA is equal to the worst-case
quiescent current, as specified in Table 33, page 60. Spartan-3 FPGAs do not require Power-On Surge (POS) current
to successfully configure.
Surplus ICCINT if VCCINT Applied before VCCAUX
Initial Spartan-3 FPGA mask revisions have a limit on how
fast the VCCO supply can ramp. The minimum allowed VCCO
ramp rate appears as TCCO in Table 29, page 57. The minimum rate is affected by the package inductance. Consequently, the ball grid array and chip-scale packages
(CP132, FT256, FG456, FG676, and FG900) allow a faster
ramp rate than the quad-flat packages (VQ100, TQ144, and
PQ208).
Configuration Data Retention, Brown-Out
The FPGA’s configuration data is stored in robust CMOS
configuration latches. The data in these latches is retained
even when the voltages drop to the minimum levels necessary to preserve RAM contents. This is specified in
Table 30, page 57.
If the VCCINT supply is applied before the VCCAUX supply,
the FPGA may draw a surplus ICCINT current in addition to
the ICCINT quiescent current levels specified in Table 33.
The momentary additional ICCINT surplus current might be a
few hundred milliamperes under nominal conditions, significantly less than the instantaneous current consumed by the
bypass capacitors at power-on. However, the surplus current immediately disappears when the VCCAUX supply is
applied, and, in response, the FPGA’s ICCINT quiescent current demand drops to the levels specified in Table 33. The
FPGA does not use nor does it require the surplus current
to successfully power-on and configure. If applying VCCINTbefore VCCAUX, ensure that the regulator does not have a
foldback feature that could inadvertently shut down in the
presence of the surplus current.
If, after configuration, the VCCAUX or VCCINT supply drops
below its data retention voltage, clear the current device
configuration using one of the following methods:
Maximum Allowed VCCINT Ramp Rate on Early
Devices, if VVCCINTSupply is Last in Sequence
Some system applications are sensitive to sources of analog noise. Spartan-3 FPGA circuitry is fully static and does
not employ internal charge pumps.
All devices with a mask revision code ‘E’ or later do not have
a VCCINT ramp rate requirement. See Mask and Fab Revisions, page 55.
Early Spartan-3 FPGAs were produced at a 200 mm wafer
production facility and are identified by a fabrication/process
code of "FQ" on the device top marking, as shown in Package Marking, page 7. These "FQ" devices have a maximum VCCINT ramp rate requirement if and only if VCCINT is
the last supply to ramp, after the VCCAUX and VCCO Bank 4
supplies. This maximum ramp rate appears as TCCINT in
Table 29, page 57.
Minimum Allowed VCCO Ramp Rate on Early
Devices
Devices shipped since 2006 essentially have no VCCO ramp
rate limits, shown in Table 29, page 57. Similarly, all devices
with a mask revision code ‘E’ or later do not have a VCCO
ramp rate limit. See Mask and Fab Revisions, page 55.
DS099-2 (v2.4) June 25, 2008
Product Specification
•
•
Force the VCCAUX or VCCINT supply voltage below the
minimum Power On Reset (POR) voltage threshold
Table 28, page 56).
Assert PROG_B Low.
The POR circuit does not monitor the VCCO_4 supply after
configuration. Consequently, dropping the VCCO_4 voltage
does not reset the device by triggering a Power-On Reset
(POR) event.
No Internal Charge Pumps or Free-Running
Oscillators
The CCLK configuration clock is active during the FPGA
configuration process. After configuration completes, the
CCLK oscillator is automatically disabled unless the Bitstream Generator (BitGen) option Persist=Yes. See Module 4: Table 79, page 117.
Spartan-3 FPGAs optionally support a featured called Digitally Controlled Impedance (DCI). When used in an application, the DCI logic uses an internal oscillator. The DCI
logic is only enabled if the FPGA application specifies an I/O
standard that requires DCI (LVDCI_33, LVDCI_25, etc.). If
DCI is not used, the associated internal oscillator is also disabled.
In summary, unless an application uses the Persist=Yes
option or specifies a DCI I/O standard, an FPGA with no
external switching remains fully static.
www.xilinx.com
53
R
Spartan-3 FPGA Family: Functional Description
Revision History
Date
Version No.
04/11/03
1.0
Initial Xilinx release
05/19/03
1.1
Added Block RAM column, DCMs, and multipliers to XC3S50 descriptions.
07/11/03
1.2
Explained the configuration port Persist option in Slave Parallel Mode (SelectMAP) section.
Updated Figure 6 and Double-Data-Rate Transmission section to indicate that DDR clocking
for the XC3S50 is the same as that for all other Spartan-3 devices. Updated description of I/O
voltage tolerance in ESD Protection section. In Table 9, changed input termination type for
DCI version of the LVCMOS standard to None. Added additional flexibility for making DLL
connections in Figure 19 and accompanying text. In the Configuration section, inserted an
explanation of how to choose power supplies for the configuration interface, including
guidelines for achieving 3.3V-tolerance.
08/24/04
1.3
Showed inversion of 3-state signal (Figure 5). Clarified description of pull-up and pull-down
resistors (Table 5 and page 15). Added information on operating block RAM with multipliers to
page 25. Corrected output buffer name in Figure 19. Corrected description of how DOUT is
synchronized to CCLK (page 46).
08/19/05
1.4
Corrected description of WRITE_FIRST and READ_FIRST in Table 12. Added note regarding
address setup and hold time requirements whenever a block RAM port is enabled (Table 12).
Added information in the maximum length of a Configuration daisy-chain. Added reference
to XAPP453 in 3.3V-Tolerant Configuration Interface section. Added information on the
STATUS[2] DCM output (Table 22). Added information on CCLK behavior and termination
recommendations to Configuration. Added Additional Configuration Details section.
Added Powering Spartan-3 FPGAs section. Removed GSR from Figure 29 because its
timing is not programmable.
04/03/06
2.0
Updated Figure 5. Updated Figure 12. Updated Table 9. Updated Figure 20. Corrected
Platform Flash supply voltage name and value in Figure 24 and Figure 26. Added No Internal
Charge Pumps or Free-Running Oscillators. Corrected a few minor typographical errors.
04/26/06
2.1
Added more information on the pull-up resistors that are active during configuration to
Configuration. Added information to Boundary-Scan (JTAG) Mode about potential
interactions when configuring via JTAG if the mode select pins are set for other than JTAG.
05/25/07
2.2
Added New Spartan-3 Generation Design Documentation Available. Noted SSTL2_I_DCI
25-Ohm driver in Table 9 and Table 10. Added note that pull-down is active during boundary
scan tests.
11/30/07
2.3
Updated links to documentation on xilinx.com.
06/25/08
2.4
Added HSLVDCI to Table 9. Updated formatting and links.
54
Description
www.xilinx.com
DS099-2 (v2.4) June 25, 2008
Product Specification
98
Spartan-3 FPGA Family:
DC and Switching Characteristics
R
DS099-3 (v2.4) June 25, 2008
0
Product Specification
DC Electrical Characteristics
In this section, specifications may be designated as
Advance, Preliminary, or Production. These terms are
defined as follows:
Advance: Initial estimates are based on simulation, early
characterization, and/or extrapolation from the characteristics of other families. Values are subject to change.
Although speed grades with this designation are considered
relatively stable and conservative, some under-reporting
might still occur. Use as estimates, not for production.
Preliminary: Based on complete early silicon characterization. Devices and speed grades with this designation are
intended to give a better indication of the expected performance of production silicon. The probability of
under-reported delays is greatly reduced compared to
Advance data. Use as estimates, not for production.
Production: These specifications are approved only after
silicon has been characterized over numerous production
lots. There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes.
Parameter values are considered stable with no future
changes expected.
Production-quality systems must only use FPGA designs
compiled with a Production status speed file. FPGA designs
using a less mature speed file designation should only be
used during system prototyping or preproduction qualification. FPGA designs with speed files designated as Preview,
Advance, or Preliminary should not be used in a production-quality system.
Whenever a speed file designation changes, as a device
matures toward Production status, rerun the latest Xilinx
ISE® software on the FPGA design to ensure that the FPGA
design incorporates the latest timing information and software updates.
applies unless otherwise noted: The parameter values
published in this module apply to all Spartan®-3
devices. AC and DC characteristics are specified using
the same numbers for both commercial and industrial
grades. All parameters representing voltages are measured with respect to GND.
If a particular Spartan-3 FPGA differs in functional behavior
or electrical characteristic from this data sheet, those differences are described in a separate errata document. The
errata notices for Spartan-3 FPGAs are living documents
and are available online. Also, create a Xilinx MySupport
user account and sign up for automatic E-mail notification
whenever this data sheet or an errata notice is updated.
•
Spartan-3 FPGA Errata Notices
http://www.xilinx.com/support/documentation/
spartan-3_errata.htm
•
To Sign Up for Alerts on Xilinx MySupport
http://www.xilinx.com/support/answers/19380.htm
Mask and Fab Revisions
Some specifications list different values for one or more
mask or fab revisions, indicated by the device top marking
(see Package Marking, page 7). The revision differences
involve the power ramp rates, differential DC specifications,
and DCM characteristics. The most recent revision (mask
rev E and GQ fab/geometry code) is errata-free with
improved specifications than earlier revisions.
Mask rev E with fab rev GQ has been shipping since 2005
(see XCN05009) and has been 100% of Xilinx Spartan-3
device shipments since 2006. SCD 0974 was provided to
ensure the receipt of the rev E silicon, but it is no longer
needed. Parts ordered under the SCD appended “0974” to
the
standard
part
number.
For
example,
“XC3S50-4VQ100C” became “XC3S50-4VQ100C0974”.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. The following
Table 27: Absolute Maximum Ratings
Symbol
Description
Conditions
Min
Max
Units
VCCINT
Internal supply voltage relative to GND
–0.5
1.32
V
VCCAUX
Auxiliary supply voltage relative to GND
–0.5
3.00
V
VCCO
Output driver supply voltage relative to GND
–0.5
3.75
V
VREF
Input reference voltage relative to GND
–0.5
VCCO + 0.5
V
© 2003-2008 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
55
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 27: Absolute Maximum Ratings (Continued)
Symbol
VIN
Description
Conditions
Voltage applied to all User I/O pins and
Dual-Purpose pins relative to GND(2, 4)
Driver in a
high-impedance
state
Voltage applied to all Dedicated pins
relative to GND(3)
IIK
VESD
Min
Max
Units
Commercial
–0.95
4.4
V
Industrial
–0.85
4.3
All temp. ranges
–0.5
VCCAUX + 0.5
V
-
±100
mA
±2000
V
Input clamp current per I/O pin
–0.5 V < VIN < (VCCO + 0.5 V)
Electrostatic Discharge Voltage pins relative
to GND
Human body model
Charged device model
-
±500
V
Machine model
-
±200
V
TJ
Junction temperature
-
125
°C
TSOL
Soldering temperature
-
220
°C
TSTG
Storage temperature
–65
150
°C
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended
Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely
affects device reliability.
2. All User I/O and Dual-Purpose pins (DIN/D0, D1–D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) draw power from the VCCO power
rail of the associated bank. Keeping VIN within 500 mV of the associated VCCO rails or ground rail ensures that the internal diode
junctions that exist between each of these pins and the VCCO and GND rails do not turn on. Table 31 specifies the VCCO range used
to determine the max limit. Input voltages outside the -0.5V to VCCO+0.5V voltage range are permissible provided that the IIK input
clamp diode rating is met and no more than 100 pins exceed the range simultaneously. The VIN limits apply to both the DC and AC
components of signals. Simple application solutions are available that show how to handle overshoot/undershoot as well as achieve
PCI compliance. Refer to the following application notes: "Powering and Configuring Spartan-3 Generation FPGAs in Compliant PCI
Applications" (XAPP457) and "Virtex®-II Pro / Virtex-II Pro X 3.3V I/O Design Guidelines” (XAPP659).
3. All Dedicated pins (M0–M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail
(2.5V). Meeting the VIN max limit ensures that the internal diode junctions that exist between each of these pins and the VCCAUX rail
do not turn on. Table 31 specifies the VCCAUX range used to determine the max limit. When VCCAUX is at its maximum recommended
operating level (2.625V), VIN max < 3.125V. As long as the VIN max specification is met, oxide stress is not possible. For information
concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface, page 46See XAPP459, “Eliminating I/O
Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.”
4. For soldering guidelines, see "Device Packaging and Thermal Characteristics" (UG112) and "Implementation and Solder Reflow
Guidelines for Pb-Free Packages" (XAPP427).
Table 28: Supply Voltage Thresholds for Power-On Reset
Symbol
Description
Min
Max
Units
VCCINTT
Threshold for the VCCINT supply
0.4
1.0
V
VCCAUXT
Threshold for the VCCAUX supply
0.8
2.0
V
VCCO4T
Threshold for the VCCO Bank 4 supply
0.4
1.0
V
Notes:
1. VCCINT, VCCAUX, and VCCO supplies may be applied in any order. When applying VCCINT power before VCCAUX power, the FPGA may
draw a surplus current in addition to the quiescent current levels specified in Table 33. Applying VCCAUX eliminates the surplus
current. The FPGA does not use any of the surplus current for the power-on process. For this power sequence, make sure that
regulators with foldback features will not shut down inadvertently.
2. To ensure successful power-on, VCCINT, VCCO Bank 4, and VCCAUX supplies must rise through their respective threshold-voltage
ranges with no dips at any point.
3. If a brown-out condition occurs where VCCAUX or VCCINT drops below the retention voltage indicated in Table 30, then VCCAUX or
VCCINT must drop below the minimum power-on reset voltage in order to clear out the device configuration content.
56
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 29: Power Voltage Ramp Time Requirements
Symbol
TCCO
Description
VCCO ramp time for
all eight banks
Top Marking(2)
Mask revisions ‘A’
through ‘D’
Device
VCCINT ramp time,
only if VCCINT is last
in three-rail power-on
sequence
Min
Max
Units
No limit
-
ms
XC3S50
All
XC3S200
FT and FG
0.6
-
ms
Other
2.0
-
ms
FT and FG
0.6
-
ms
Other
2.0
-
ms
XC3S400
TCCINT
Package
XC3S1000
All
No limit
-
XC3S1500
All
0.6
-
XC3S2000
All
No limit
-
XC3S4000
All
0.6
-
XC3S5000
All
No limit
-
Mask revisions ‘E’ or
later
All
All
No limit
-
Devices with ‘FQ’
fabrication/process
code
All
All
No limit
500
Devices with ‘GQ’
fabrication/process
code or parts ordered
with SCD0974(6,7)
All
All
No limit
No limit
ms
ms
μs
Notes:
1. If a limit exists, this specification is based on characterization.
2. The mask revision code appears on the device top marking. See Package Marking, page 7
3. The ramp time is measured from 10% to 90% of the full nominal voltage swing for all I/O standards.
4. For information on power-on current needs, see Power-On Behavior, page 52
5. Mask revision, fabrication, and process codes appear in Package Marking, page 7. Devices ordered with SCD0974 or with ‘GQ’
fabrication/process code are also described in XCN05009.
6. To specifically order mask revision ’E’ devices, append “0974” to the standard part number. For example, “XC3S50-4VQ100C”
becomes “XC3S50-4VQ100C0974”. Mask revision ‘E’ devices are errata free and have improved specifications. See Mask and Fab
Revisions, page 55.
7. Also applies to now-obsolete SCD0961
Table 30: Power Voltage Levels Necessary for Preserving RAM Contents
Symbol
Description
Min
Units
VDRINT
VCCINT level required to retain RAM data
1.0
V
VDRAUX
VCCAUX level required to retain RAM data
2.0
V
Notes:
1. RAM contents include data stored in CMOS configuration latches.
2. The level of the VCCO supply has no effect on data retention.
3. If a brown-out condition occurs where VCCAUX or VCCINT drops below the retention voltage, then VCCAUX or VCCINT must drop below
the minimum power-on reset voltage indicated in Table 28 in order to clear out the device configuration content.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
57
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 31: General Recommended Operating Conditions
Symbol
TJ
Description
Junction temperature
Commercial
Industrial
Min
Nom
Max
Units
0
25
85
°C
–40
25
100
°C
VCCINT
Internal supply voltage
1.140
1.200
1.260
V
VCCO (1)
Output driver supply voltage
1.140
-
3.465
V
VCCAUX
Auxiliary supply voltage
2.375
2.500
2.625
V
-
-
10
mV/ms
VCCO = 3.3V
–0.3
-
3.75
V
VCCO ≤ 2.5V
–0.3
-
VCCO + 0.3(4)
V
–0.3
-
VCCAUX + 0.3(5)
V
ΔVCCAUX(2)
VIN(3)
Voltage variance on VCCAUX when using a DCM
Voltage applied to all User
I/O pins and Dual-Purpose
pins relative to GND(4, 6)
Voltage applied to all
Dedicated pins relative to
GND(5)
Notes:
1. The VCCO range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended VCCO
range specific to each of the single-ended I/O standards is given in Table 34, and that specific to the differential standards is given in
Table 36.
2. Only during DCM operation is it recommended that the rate of change of VCCAUX not exceed 10 mV/ms.
3. Input voltages outside the recommended range are permissible provided that the IIK input diode clamp diode rating is met.
4. Each of the User I/O and Dual-Purpose pins is associated with one of the VCCO rails. Meeting the VIN limit ensures that the internal
diode junctions that exist between these pins and their associated VCCO and GND rails do not turn on. The absolute maximum rating
is provided in Table 27.
5. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail (2.5V). Meeting the VIN max limit
ensures that the internal diode junctions that exist between each of these pins and the VCCAUX and GND rails do not turn on.
6. See XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.”
Table 32: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins
Symbol
IL(2)
IRPU(3)
RPU(3)
IRPD(3)
58
Description
Leakage current at User I/O,
Dual-Purpose, and Dedicated pins
Current through pull-up resistor at User
I/O, Dual-Purpose, and Dedicated pins
Equivalent resistance of pull-up resistor at
User I/O, Dual-Purpose, and Dedicated
pins, derived from IRPU
Current through pull-down resistor at User
I/O, Dual-Purpose, and Dedicated pins
Test Conditions
Min
Typ
Max
Units
VCCO > 3.0V
-
-
±25
μA
VCCO < 3.0V
-
-
±10
μA
VIN = 0V, VCCO = 3.3V
–0.84
-
–2.35
mA
VIN = 0V, VCCO = 3.0V
–0.69
-
–1.99
mA
VIN = 0V, VCCO = 2.5V
–0.47
-
–1.41
mA
VIN = 0V, VCCO = 1.8V
–0.21
-
–0.69
mA
VIN = 0V, VCCO = 1.5V
–0.13
-
–0.43
mA
VIN = 0V, VCCO = 1.2V
–0.06
-
–0.22
mA
VCCO = 3.0V to 3.465V
1.27
-
4.11
kΩ
VCCO = 2.3V to 2.7V
1.15
-
3.25
kΩ
VCCO = 1.7V to 1.9V
2.45
-
9.10
kΩ
VCCO = 1.4V to 1.6V
3.25
-
12.10
kΩ
VCCO = 1.14 to 1.26V
5.15
-
21.00
kΩ
VIN = VCCO
0.37
-
1.67
mA
Driver is Hi-Z, VIN =
0V or VCCO max,
sample-tested
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 32: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (Continued)
Symbol
Description
Test Conditions
Min
Typ
Max
Units
RPD(3)
Equivalent resistance of pull-down resistor
at User I/O, Dual-Purpose, and Dedicated
pins, driven from IRPD
VIN =VCCO = 3.0V to 3.465V
1.75
-
9.35
kΩ
VIN =VCCO = 2.3V to 2.7V
1.35
-
7.30
kΩ
VIN =VCCO = 1.7V to 1.9V
1.00
-
5.15
kΩ
VIN =VCCO = 1.4V to 1.6V
0.85
-
4.35
kΩ
VIN =VCCO = 1.14 to 1.26V
0.68
-
3.465
kΩ
20
-
100
Ω
VCCO > 3.0V
-
-
±25
μA
VCCO < 3.0V
-
-
±10
μA
3
-
10
pF
RDCI
Value of external reference resistor to
support DCI I/O standards
IREF
VREF current per pin
CIN
Input capacitance
Notes:
1.
2.
3.
The numbers in this table are based on the conditions set forth in Table 31.
The IL specification applies to every I/O pin throughout power-on as long as the voltage on that pin stays between the absolute VIN
minimum and maximum values (Table 27). For hot-swap applications, at the time of card connection, be sure to keep all I/O voltages
within this range before applying VCCO power. Consider applying VCCO power before connecting the signal lines, to avoid turning on
the ESD protection diodes, shown in Module 2: Figure 5, page 13. When the FPGA is completely unpowered, the I/O pins are high
impedance, but there is a path through the upper and lower ESD protection diodes.
This parameter is based on characterization. The pull-up resistance RPU = VCCO / IRPU. The pull-down resistance RPD = VIN / IRPD.
Spartan-3 family values for both resistances are stronger than they have been for previous FPGA families.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
59
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 33: Quiescent Supply Current Characteristics
Symbol
ICCINTQ
ICCOQ
ICCAUXQ
Description
Quiescent VCCINT supply current
Quiescent VCCO supply current
Quiescent VCCAUX supply current
Typical(1)
Commercial
Maximum(1)
Industrial
Maximum(1)
Units
XC3S50
5
24
31
mA
XC3S200
10
54
80
mA
XC3S400
15
110
157
mA
XC3S1000
35
160
262
mA
XC3S1500
45
260
332
mA
XC3S2000
60
360
470
mA
XC3S4000
100
450
810
mA
XC3S5000
120
600
870
mA
XC3S50
1.5
2.0
2.5
mA
XC3S200
1.5
3.0
3.5
mA
XC3S400
1.5
3.0
3.5
mA
XC3S1000
2.0
4.0
5.0
mA
XC3S1500
2.5
4.0
5.0
mA
XC3S2000
3.0
5.0
6.0
mA
XC3S4000
3.5
5.0
6.0
mA
XC3S5000
3.5
5.0
6.0
mA
XC3S50
7
20
22
mA
XC3S200
10
30
33
mA
XC3S400
15
40
44
mA
XC3S1000
20
50
55
mA
XC3S1500
35
75
85
mA
XC3S2000
45
90
100
mA
XC3S4000
55
110
125
mA
XC3S5000
70
130
145
mA
Device
Notes:
1. The numbers in this table are based on the conditions set forth in Table 31. Quiescent supply current is measured with all I/O drivers
in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using
devices with typical processing at ambient room temperature (TA of 25°C at VCCINT = 1.2V, VCCO = 3.3V, and VCCAUX = 2.5V).
Maximum values are the production test limits measured for each device at the maximum specified junction temperature and at
maximum voltage limits with VCCINT = 1.26V, VCCO = 3.465V, and VCCAUX = 2.625V. The FPGA is programmed with a "blank"
configuration data file (i.e., a design with no functional elements instantiated). For conditions other than those described above, (e.g.,
a design including functional elements, the use of DCI standards, etc.), measured quiescent current levels may be different than the
values in the table. Use the XPower Estimator or XPower Analyzer for more accurate estimates. See Note 2.
2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The
Spartan-3 XPower Estimator at http://www.xilinx.com/power provides quick, approximate, typical estimates, and does not require
a netlist of the design. b) XPower Analyzer, part of the Xilinx ISE development software, uses the FPGA netlist as input to provide
more accurate maximum and typical estimates.
3. The maximum numbers in this table also indicate the minimum current each power rail requires in order for the FPGA to power-on
successfully, once all three rails are supplied. If VCCINT is applied before VCCAUX, there may be temporary additional ICCINT current
until VCCAUX is applied. See Surplus ICCINT if VCCINT Applied before VCCAUX, page 53
60
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 34: Recommended Operating Conditions for User I/Os Using Single-Ended Standards
Signal Standard
(IOSTANDARD)
VREF
VCCO
VIL
VIH
Min (V)
Nom (V)
Max (V)
Min (V)
Nom (V)
Max (V)
Max (V)
Min (V)
GTL(3)
-
-
-
0.74
0.8
0.86
VREF - 0.05
VREF + 0.05
GTL_DCI
-
1.2
-
0.74
0.8
0.86
VREF - 0.05
VREF + 0.05
GTLP(3)
-
-
-
0.88
1
1.12
VREF - 0.1
VREF + 0.1
GTLP_DCI
-
1.5
-
0.88
1
1.12
VREF - 0.1
VREF + 0.1
HSLVDCI_15
1.4
1.5
1.6
-
0.75
-
VREF - 0.1
VREF + 0.1
HSLVDCI_18
1.7
1.8
1.9
-
0.9
-
VREF - 0.1
VREF + 0.1
HSLVDCI_25
2.3
2.5
2.7
-
1.25
-
VREF - 0.1
VREF + 0.1
HSLVDCI_33
3.0
3.3
3.465
-
1.65
-
VREF - 0.1
VREF + 0.1
HSTL_I, HSTL_I_DCI
1.4
1.5
1.6
0.68
0.75
0.9
VREF - 0.1
VREF + 0.1
HSTL_III, HSTL_III_DCI
1.4
1.5
1.6
-
0.9
-
VREF - 0.1
VREF + 0.1
HSTL_I_18,
HSTL_I_DCI_18
1.7
1.8
1.9
0.8
0.9
1.1
VREF - 0.1
VREF + 0.1
HSTL_II_18,
HSTL_II_DCI_18
1.7
1.8
1.9
-
0.9
-
VREF - 0.1
VREF + 0.1
HSTL_III_18,
HSTL_III_DCI_18
1.7
1.8
1.9
-
1.1
-
VREF - 0.1
VREF + 0.1
LVCMOS12(4)
1.14
1.2
1.3
-
-
-
0.37VCCO
0.58VCCO
LVCMOS15, LVDCI_15,
LVDCI_DV2_15(4)
1.4
1.5
1.6
-
-
-
0.30VCCO
0.70VCCO
LVCMOS18, LVDCI_18,
LVDCI_DV2_18(4)
1.7
1.8
1.9
-
-
-
0.30VCCO
0.70VCCO
LVCMOS25(4,5),
LVDCI_25,
LVDCI_DV2_25(4)
2.3
2.5
2.7
-
-
-
0.7
1.7
LVCMOS33, LVDCI_33,
LVDCI_DV2_33(4)
3.0
3.3
3.465
-
-
-
0.8
2.0
LVTTL
3.0
3.3
3.465
-
-
-
0.8
2.0
PCI33_3(7)
3.0
3.3
3.465
-
-
-
0.30VCCO
0.50VCCO
SSTL18_I,
SSTL18_I_DCI
1.7
1.8
1.9
0.833
0.900
0.969
VREF - 0.125
VREF + 0.125
SSTL18_II
1.7
1.8
1.9
0.833
0.900
0.969
VREF - 0.125
VREF + 0.125
SSTL2_I, SSTL2_I_DCI
2.3
2.5
2.7
1.15
1.25
1.35
VREF - 0.15
VREF + 0.15
SSTL2_II,
SSTL2_II_DCI
2.3
2.5
2.7
1.15
1.25
1.35
VREF - 0.15
VREF + 0.15
Notes:
1. Descriptions of the symbols used in this table are as follows:
VCCO – the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs
VREF – the reference voltage for setting the input switching threshold
VIL – the input voltage that indicates a Low logic level
VIH – the input voltage that indicates a High logic level
2. For device operation, the maximum signal voltage (VIH max) may be as high as VIN max. See Table 27.
3. Because the GTL and GTLP standards employ open-drain output buffers, VCCO lines do not supply current to the I/O circuit, rather this current is
provided using an external pull-up resistor connected from the I/O pin to a termination voltage (VTT). Nevertheless, the voltage applied to the
associated VCCO lines must always be at or above VTT and I/O pad voltages.
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS25 or LVCMOS33 standards.
5. All Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the
VCCAUX rail (2.5V). The Dual-Purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) use the LVCMOS25 standard
before the User mode. For these pins, apply 2.5V to the VCCO Bank 4 and VCCO Bank 5 rails at power-on as well as throughout configuration. For
information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface, page 46
6. The Global Clock Inputs (GCLK0-GCLK7) are Dual-Purpose pins to which any signal standard may be assigned.
7. For more information, see (XAPP457).
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
61
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 35: DC Characteristics of User I/Os Using Single-Ended Standards
Signal Standard
(IOSTANDARD) and Current
Drive Attribute (mA)
GTL
GTL_DCI
GTLP
Test Conditions
Logic Level Characteristics
IOL
IOH
VOL
VOH
(mA)
(mA)
Max (V)
Min (V)
32
-
0.4
-
Note 3
Note 3
0.6
-
36
-
GTLP_DCI
Note 3
Note 3
HSLVDCI_15
Note 3
Note 3
0.4
VCCO - 0.4
8
–8
0.4
VCCO - 0.4
Note 3
Note 3
0.4
VCCO - 0.4
0.4
VCCO - 0.4
0.4
VCCO - 0.4
0.4
VCCO - 0.4
0.4
VCCO - 0.4
0.4
VCCO - 0.4
0.4
VCCO - 0.4
0.4
VCCO - 0.4
HSLVDCI_18
HSLVDCI_25
HSLVDCI_33
HSTL_I
HSTL_I_DCI
HSTL_III
HSTL_III_DCI
HSTL_I_18
HSTL_I_DCI_18
HSTL_II_18
HSTL_II_DCI_18
HSTL_III_18
HSTL_III_DCI_18
LVCMOS12(4)
LVCMOS15(4)
LVDCI_25,
LVDCI_DV2_25
62
8
–8
Note 3
Note 3
16
–16
Note 3
Note 3
24
–8
Note 3
Note 3
2
2
–2
4
–4
6
6
–6
2
2
–2
4
4
–4
6
6
–6
8
8
–8
12
12
–12
Note 3
Note 3
2
2
–2
4
4
–4
6
6
–6
8
8
–8
12
12
–12
16
16
–16
Note 3
Note 3
2
2
–2
4
4
–4
6
6
–6
LVDCI_18,
LVDCI_DV2_18
LVCMOS25(4,5)
–8
Note 3
4
LVDCI_15,
LVDCI_DV2_15
LVCMOS18(4)
24
Note 3
8
8
–8
12
12
–12
16
16
–16
24
24
–24
Note 3
Note 3
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 35: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)
Signal Standard
(IOSTANDARD) and Current
Drive Attribute (mA)
LVCMOS33(4)
Logic Level Characteristics
IOH
VOL
VOH
(mA)
(mA)
Max (V)
Min (V)
2
2
–2
0.4
VCCO - 0.4
4
4
–4
6
6
–6
0.4
2.4
8
8
–8
12
12
–12
16
16
–16
24
24
–24
Note 3
Note 3
2
2
–2
4
4
–4
6
6
–6
8
8
–8
12
12
–12
16
16
–16
LVDCI_33,
LVDCI_DV2_33
LVTTL(4)
Test Conditions
IOL
24
PCI33_3
SSTL18_I
24
–24
Note 6
Note 6
0.10VCCO
0.90VCCO
VTT - 0.475
VTT + 0.475
6.7
–6.7
Note 3
Note 3
SSTL18_II
13.4
–13.4
VTT - 0.475
VTT + 0.475
SSTL2_I
8.1
–8.1
VTT - 0.61
VTT + 0.61
Note 3
Note 3
16.2
–16.2
VTT - 0.80
VTT + 0.80
Note 3
Note 3
SSTL18_I_DCI
SSTL2_I_DCI
SSTL2_II(7)
SSTL2_II_DCI(7)
Notes:
1. The numbers in this table are based on the conditions set forth in Table 31 and Table 34.
2. Descriptions of the symbols used in this table are as follows:
IOL – the output current condition under which VOL is tested
IOH – the output current condition under which VOH is tested
VOL – the output voltage that indicates a Low logic level
VOH – the output voltage that indicates a High logic level
VIL – the input voltage that indicates a Low logic level
VIH – the input voltage that indicates a High logic level
VCCO – the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs
VREF – the reference voltage for setting the input switching threshold
VTT – the voltage applied to a resistor termination
3. Tested according to the standard’s relevant specifications. When using the DCI version of a standard on a given I/O bank, that bank
will consume more power than if the non-DCI version had been used instead. The additional power is drawn for the purpose of
impedance-matching at the I/O pins. A portion of this power is dissipated in the two RREF resistors.
4. For the LVCMOS and LVTTL standards: the same VOL and VOH limits apply for both the Fast and Slow slew attributes.
5. All Dedicated output pins (CCLK, DONE, and TDO) as well as Dual-Purpose totem-pole output pins (D0-D7 and BUSY/DOUT)
exhibit the characteristics of LVCMOS25 with 12 mA drive and Fast slew rate. For information concerning the use of 3.3V signals,
see the 3.3V-Tolerant Configuration Interface, page 46
6. Tested according to the relevant PCI specifications. For more information, see XAPP457.
7. The minimum usable VTT voltage is 1.25V
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
63
R
Spartan-3 FPGA Family: DC and Switching Characteristics
VINP
Internal
Logic
VINN
VINP
Differential
I/O Pair Pins
P
N
VINN
VID
50%
VICM
GND level
VICM = Input common mode voltage =
VINP + VINN
2
VID = Differential input voltage = VINP - VINN
DS099-3_01_012304
Figure 30: Differential Input Voltages
Table 36: Recommended Operating Conditions for User I/Os Using Differential Signal Standards
VCCO(1)
Signal Standard
(IOSTANDARD)
VID
VICM
VIH
VIL
Min
(V)
Nom
(V)
Max
(V)
Min
(mV)
Nom
(mV)
Max
(mV)
Min
(V)
Nom
(V)
Max
(V)
Min
(V)
Max
(V)
Min
(V)
Max
(V)
LDT_25 (ULVDS_25)
2.375
2.50
2.625
200
600
1000
0.44
0.60
0.78
-
-
-
-
LVDS_25,
LVDS_25_DCI
2.375
2.50
2.625
100
350
600
0.30
1.25
2.20
-
-
-
-
BLVDS_25
2.375
2.50
2.625
-
350
-
-
1.25
-
-
-
-
-
LVDSEXT_25,
LVDSEXT_25_DCI
2.375
2.50
2.625
100
540
1000
0.30
1.20
2.20
-
-
-
-
LVPECL_25
2.375
2.50
2.625
100
-
-
0.30
1.20
2.20
0.8
2.0
0.5
1.7
RSDS_25
2.375
2.50
2.625
100
200
-
-
1.20
-
-
-
-
-
DIFF_HSTL_II_18,
DIFF_HSTL_II_18_DCI
1.70
1.80
1.90
200
-
-
0.80
-
1.00
-
-
-
-
DIFF_SSTL2_II,
DIFF_SSTL2_II_DCI
2.375
2.50
2.625
300
-
-
1.05
-
1.45
-
-
-
-
Notes:
1. VCCO only supplies differential output drivers, not input circuits.
2. VREF inputs are not used for any of the differential I/O standards.
3. VID is a differential measurement.
64
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
VOUTP
Internal
Logic
P
N
VOUTN
Differential
I/O Pair Pins
VOH
VOUTN
VOD
50%
VOUTP
VOL
VOCM
GND level
VOCM = Output common mode voltage =
VOUTP + VOUTN
2
VOD = Output differential voltage = VOUTP - VOUTN
VOH = Output voltage indicating a High logic level
VOL = Output voltage indicating a Low logic level
DS099-3_02_012304
Figure 31: Differential Output Voltages
Table 37: DC Characteristics of User I/Os Using Differential Signal Standards
Signal Standard
LDT_25 (ULVDS_25)
VOCM
Min (mV) Typ (mV)
430(3)
All
LVDS_25
VOH
VOL
Max (mV)
Min (V)
Typ (V)
Max (V)
Min (V)
Max (V)
670
0.495
0.600
0.715
0.71
0.50
VOD
Mask(1)
Revision
600
All
100
-
600
0.80
-
1.6
0.85
1.55
‘E’
200
-
500
1.0
-
1.5
1.10
1.40
BLVDS_25(6)
All
250
350
450
-
1.20
-
-
-
LVDSEXT_25
All
100
-
600
0.80
-
1.6
0.85
1.55
‘E’
300
-
700
1.0
-
1.5
1.15
1.35
LVPECL_25(6)
All
-
-
-
-
-
-
1.35
1.005
RSDS_25(5)
All
100
-
600
0.80
-
1.6
0.85
1.55
‘E’
200
-
500
1.0
-
1.5
1.10
1.40
DIFF_HSTL_II_18
All
-
-
-
-
-
-
VCCO – 0.40
0.40
DIFF_SSTL2_II
All
-
-
-
-
-
-
VTT + 0.80
VTT – 0.80
Notes:
1. The mask revision code appears on the device top marking. See Mask revision ‘E’ devices have tighter output ranges but can be used
in any design created using a previous revision. See Mask and Fab Revisions, page 55.
2. The numbers in this table are based on the conditions set forth in Table 31 and Table 36.
3. This value must be compatible with the receiver to which the FPGA’s output pair is connected.
4. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins
of the differential signal pair.
5. Only one of the differential standards RSDS_25, LDT_25, LVDS_25, and LVDSEXT_25 may be used for outputs within a bank.
Each differential standard input-pair requires an external 100Ω termination resistor.
6. Each LVPECL_25 or BLVDS_25 output-pair requires three external resistors for proper output operation as shown in Figure 32. Each
LVPECL_25 or BLVDS_25 input-pair uses a 100Ω termination resistor at the receiver.
LVPECL 70Ω
LVPECL
BLVDS
240Ω
BLVDS
165Ω
Z0=50Ω
Z0=50Ω
140Ω
100Ω
100Ω
Z0=50Ω
Z0=50Ω
165Ω
70Ω
ds099-3_08_112105
Figure 32: External Termination Required for LVPECL and BLVDS Output and Input
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
65
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Switching Characteristics
All Spartan-3 devices are available in two speed grades: –4
and the higher performance –5. Switching characteristics in
this document may be designated as Advance, Preliminary,
or Production. Each category is defined as follows:
Advance: These specifications are based on simulations
only and are typically available soon after establishing
FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative,
some under-reported delays may still occur.
Preliminary: These specifications are based on complete
early silicon characterization. Devices and speed grades
with this designation are intended to give a better indication
of the expected performance of production silicon. The
probability of under-reporting preliminary delays is greatly
reduced compared to Advance data.
Production: These specifications are approved once
enough production silicon of a particular device family member has been characterized to provide full correlation
between speed files and devices over numerous production
lots. There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production
before faster speed grades.
Production-quality systems must use FPGA designs compiled using a Production status speed file. FPGAs designs
using a less mature speed file designation may only be
used during system prototyping or preproduction qualification. FPGA designs using Advance or Preliminary status
speed files should never be used in a production-quality
system.
Whenever a speed file designation changes, as a device
matures toward Production status, rerun the Xilinx ISE software on the FPGA design to ensure that the FPGA design
incorporates the latest timing information and software
updates.
•
All specified limits are representative of worst-case supply
voltage and junction temperature conditions. Unless otherwise noted, the following applies: Parameter values apply to
all Spartan-3 devices. All parameters representing voltages
are measured with respect to GND.
Selected timing parameters and their representative values
are included below either because they are important as
general design requirements or they indicate fundamental
device performance characteristics. The Spartan-3 v1.38
speed files are the original source for many but not all of the
values. The v1.38 speed files are available in Xilinx Integrated Software Environment (ISE) software version 8.2i.
The speed grade designations for these files are shown in
Table 38. For more complete, more precise, and worst-case
data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and
back-annotated to the simulation netlist.
Table 38: Spartan-3 Speed Grade Designations (ISE
v8.2i or later)
Device
Advance
Preliminary
Production
XC3S50
–4, –5
XC3S200
(v1.37 and
later)
XC3S400
XC3S1000
XC3S1500
XC3S2000
XC3S4000
XC3S5000
–4, –5
(v1.38 and
later)
Xilinx ISE Software Updates
http://www.xilinx.com/support/download/index.htm
66
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
I/O Timing
Table 39: Pin-to-Pin Clock-to-Output Times for the IOB Output Path
Speed Grade
Symbol
Description
Clock-to-Output Times
TICKOFDCM
When reading from the Output
Flip-Flop (OFF), the time from the
active transition on the Global
Clock pin to data appearing at the
Output pin. The DCM is in use.
TICKOF
When reading from OFF, the time
from the active transition on the
Global Clock pin to data appearing
at the Output pin. The DCM is not
in use.
Conditions
LVCMOS25(2), 12mA
output drive, Fast slew
rate, with DCM(3)
LVCMOS25(2),
12mA
output drive, Fast slew
rate, without DCM
-5
-4
Max
Max
Units
XC3S50
2.04
2.35
ns
XC3S200
1.45
1.75
ns
XC3S400
1.45
1.75
ns
XC3S1000
2.07
2.39
ns
XC3S1500
2.05
2.36
ns
XC3S2000
2.03
2.34
ns
XC3S4000
1.94
2.24
ns
XC3S5000
2.00
2.30
ns
XC3S50
3.70
4.24
ns
XC3S200
3.89
4.46
ns
XC3S400
3.91
4.48
ns
XC3S1000
4.00
4.59
ns
XC3S1500
4.07
4.66
ns
XC3S2000
4.19
4.80
ns
XC3S4000
4.44
5.09
ns
XC3S5000
4.38
5.02
ns
Device
Notes:
1. The numbers in this table are tested using the methodology presented in Table 47 and are based on the operating conditions set
forth in Table 31 and Table 34.
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock
Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true,
add the appropriate Input adjustment from Table 43. If the latter is true, add the appropriate Output adjustment from Table 46.
3. DCM output jitter is included in all measurements.
4. For minimums, use the values reported by the Xilinx timing analyzer.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
67
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 40: System-Synchronous Pin-to-Pin Setup and Hold Times for the IOB Input Path
Speed Grade
Symbol
Description
Conditions
-5
-4
Min
Min
Units
XC3S50
2.37
2.71
ns
XC3S200
2.13
2.35
ns
XC3S400
2.15
2.36
ns
XC3S1000
2.58
2.95
ns
XC3S1500
2.55
2.91
ns
XC3S2000
2.59
2.96
ns
XC3S4000
2.76
3.15
ns
Device
Setup Times
TPSDCM
TPSFD
When writing to the Input
Flip-Flop (IFF), the time from the
setup of data at the Input pin to
the active transition at a Global
Clock pin. The DCM is in use. No
Input Delay is programmed.
When writing to IFF, the time
from the setup of data at the
Input pin to an active transition at
the Global Clock pin. The DCM is
not in use. The Input Delay is
programmed.
LVCMOS25(2),
IOBDELAY = NONE,
with DCM(4)
LVCMOS25(2),
IOBDELAY = IFD,
without DCM
XC3S5000
2.69
3.08
ns
XC3S50
3.00
3.46
ns
XC3S200
2.63
3.02
ns
XC3S400
2.50
2.87
ns
XC3S1000
3.50
4.03
ns
XC3S1500
3.78
4.35
ns
XC3S2000
4.98
5.73
ns
XC3S4000
5.25
6.05
ns
XC3S5000
5.37
6.18
ns
XC3S50
–0.45
–0.40
ns
XC3S200
–0.12
–0.05
ns
Hold Times
TPHDCM
TPHFD
When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
when data must be held at the
Input pin. The DCM is in use. No
Input Delay is programmed.
When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
when data must be held at the
Input pin. The DCM is not in use.
The Input Delay is programmed.
LVCMOS25(3),
IOBDELAY = NONE,
with DCM(4)
XC3S400
–0.12
–0.05
ns
XC3S1000
–0.43
–0.38
ns
XC3S1500
–0.45
–0.40
ns
XC3S2000
–0.47
–0.42
ns
XC3S4000
–0.61
–0.56
ns
XC3S5000
–0.62
–0.57
ns
LVCMOS25(3),
XC3S50
–0.98
–0.93
ns
IOBDELAY = IFD,
without DCM
XC3S200
–0.40
–0.35
ns
XC3S400
–0.27
–0.22
ns
XC3S1000
–1.19
–1.14
ns
XC3S1500
–1.43
–1.38
ns
XC3S2000
–2.33
–2.28
ns
XC3S4000
–2.47
–2.42
ns
XC3S5000
–2.66
–2.61
ns
Notes:
1. The numbers in this table are tested using the methodology presented in Table 47 and are based on the operating conditions set
forth in Table 31 and Table 34.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the
data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 43. If this is true of the data Input,
add the appropriate Input adjustment from the same table.
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the
data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 43. If this is true of the data Input,
subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data
before the clock’s active edge.
4. DCM output jitter is included in all measurements.
68
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 41: Setup and Hold Times for the IOB Input Path
Speed Grade
Symbol
Description
Conditions
-5
-4
Min
Min
Units
XC3S50
1.65
1.89
ns
XC3S200
1.37
1.57
ns
XC3S400
1.37
1.57
ns
XC3S1000
1.65
1.89
ns
XC3S1500
1.65
1.89
ns
XC3S2000
1.65
1.89
ns
XC3S4000
1.73
1.99
ns
Device
Setup Times
TIOPICK
TIOPICKD
Time from the setup of data at the Input
pin to the active transition at the ICLK
input of the Input Flip-Flop (IFF). No Input
Delay is programmed.
Time from the setup of data at the Input
pin to the active transition at the IFF’s
ICLK input. The Input Delay is
programmed.
LVCMOS25(2),
IOBDELAY = NONE
LVCMOS25(2),
IOBDELAY = IFD
XC3S5000
1.82
2.09
ns
XC3S50
4.39
5.04
ns
XC3S200
4.76
5.47
ns
XC3S400
4.63
5.32
ns
XC3S1000
5.02
5.76
ns
XC3S1500
5.40
6.20
ns
XC3S2000
6.68
7.68
ns
XC3S4000
7.16
8.24
ns
XC3S5000
7.33
8.42
ns
XC3S50
-0.55
-0.55
ns
XC3S200
-0.29
-0.29
ns
XC3S400
-0.29
-0.29
ns
XC3S1000
-0.55
-0.55
ns
XC3S1500
-0.55
-0.55
ns
XC3S2000
-0.55
-0.55
ns
XC3S4000
-0.61
-0.61
ns
Hold Times
TIOICKP
TIOICKPD
Time from the active transition at the IFF’s
ICLK input to the point where data must
be held at the Input pin. No Input Delay is
programmed.
Time from the active transition at the IFF’s
ICLK input to the point where data must
be held at the Input pin. The Input Delay
is programmed.
LVCMOS25(2),
IOBDELAY = NONE
LVCMOS25(2),
IOBDELAY = IFD
XC3S5000
-0.68
-0.68
ns
XC3S50
-2.74
-2.74
ns
XC3S200
-3.00
-3.00
ns
XC3S400
-2.90
-2.90
ns
XC3S1000
-3.24
-3.24
ns
XC3S1500
-3.55
-3.55
ns
XC3S2000
-4.57
-4.57
ns
XC3S4000
-4.96
-4.96
ns
XC3S5000
-5.09
-5.09
ns
0.66
0.76
ns
Set/Reset Pulse Width
TRPW_IOB
Minimum pulse width to SR control input
on IOB
All
Notes:
1. The numbers in this table are tested using the methodology presented in Table 47 and are based on the operating conditions set forth in
Table 31 and Table 34.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the
appropriate Input adjustment from Table 43.
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract
the appropriate Input adjustment from Table 43. When the hold time is negative, it is possible to change the data before the clock’s active
edge.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
69
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 42: Propagation Times for the IOB Input Path
Speed Grade
Symbol
Description
Conditions
-5
-4
Max
Max
Units
XC3S50
2.01
2.31
ns
XC3S200
1.50
1.72
ns
XC3S400
1.50
1.72
ns
XC3S1000
2.01
2.31
ns
XC3S1500
2.01
2.31
ns
XC3S2000
2.01
2.31
ns
XC3S4000
2.09
2.41
ns
XC3S5000
2.18
2.51
ns
XC3S50
4.75
5.46
ns
XC3S200
4.89
5.62
ns
XC3S400
4.76
5.48
ns
XC3S1000
5.38
6.18
ns
XC3S1500
5.76
6.62
ns
XC3S2000
7.04
8.09
ns
XC3S4000
7.52
8.65
ns
XC3S5000
7.69
8.84
ns
Device
Propagation Times
TIOPLI
TIOPLID
The time it takes for data to
travel from the Input pin
through the IFF latch to the I
output with no input delay
programmed
The time it takes for data to
travel from the Input pin
through the IFF latch to the I
output with the input delay
programmed
LVCMOS25(2),
IOBDELAY = NONE
LVCMOS25(2),
IOBDELAY = IFD
Notes:
1. The numbers in this table are tested using the methodology presented in Table 47 and are based on the operating conditions set forth
in Table 31 and Table 34.
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When
this is true, add the appropriate Input adjustment from Table 43.
70
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 43: Input Timing Adjustments for IOB (Continued)
Table 43: Input Timing Adjustments for IOB
Convert Input Time from
LVCMOS25 to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Speed Grade
-5
-4
Units
Single-Ended Standards
Convert Input Time from
LVCMOS25 to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Speed Grade
-5
-4
Units
LVDCI_DV2_25
0.04
0.04
ns
LVCMOS33, LVDCI_33,
LVDCI_DV2_33
–0.05
–0.02
ns
LVTTL
0.18
0.21
ns
PCI33_3
0.20
0.22
ns
SSTL18_I, SSTL18_I_DCI
0.39
0.45
ns
SSTL18_II
0.39
0.45
ns
SSTL2_I, SSTL2_I_DCI
0.40
0.46
ns
SSTL2_II, SSTL2_II_DCI
0.36
0.41
ns
LDT_25 (ULVDS_25)
0.76
0.88
ns
LVDS_25, LVDS_25_DCI
0.65
0.75
ns
GTL, GTL_DCI
0.44
0.50
ns
GTLP, GTLP_DCI
0.36
0.42
ns
HSLVDCI_15
0.51
0.59
ns
HSLVDCI_18
0.29
0.33
ns
HSLVDCI_25
0.51
0.59
ns
HSLVDCI_33
0.51
0.59
ns
HSTL_I, HSTL_I_DCI
0.51
0.59
ns
HSTL_III, HSTL_III_DCI
0.37
0.42
ns
HSTL_I_18,
HSTL_I_DCI_18
0.36
0.41
ns
HSTL_II_18,
HSTL_II_DCI_18
0.39
0.45
ns
BLVDS_25
0.34
0.39
ns
HSTL_III_18,
HSTL_III_DCI_18
0.45
0.52
ns
LVDSEXT_25,
LVDSEXT_25_DCI
0.80
0.92
ns
LVCMOS12
0.63
0.72
ns
LVPECL_25
0.18
0.21
ns
LVCMOS15
0.42
0.49
ns
RSDS_25
0.43
0.50
ns
LVDCI_15
0.38
0.43
ns
0.39
ns
0.38
0.44
ns
DIFF_HSTL_II_18,
DIFF_HSTL_II_18_DCI
0.34
LVDCI_DV2_15
LVCMOS18
0.24
0.28
ns
0.65
0.75
ns
LVDCI_18
0.29
0.33
ns
DIFF_SSTL2_II
DIFF_SSTL2_II_DCI
LVDCI_DV2_18
0.28
0.33
ns
0
0
ns
0.05
0.05
ns
LVCMOS25
LVDCI_25
DS099-3 (v2.4) June 25, 2008
Product Specification
Differential Standards
Notes:
1. The numbers in this table are tested using the methodology
presented in Table 47 and are based on the operating
conditions set forth in Table 31, Table 34, and Table 36.
2. These adjustments are used to convert input path times
originally specified for the LVCMOS25 standard to times that
correspond to other signal standards.
www.xilinx.com
71
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 44: Timing for the IOB Output Path
Speed Grade
Symbol
Description
Conditions
When reading from the Output
Flip-Flop (OFF), the time from the
active transition at the OTCLK
input to data appearing at the
Output pin
LVCMOS25(2), 12mA
output drive, Fast slew rate
-5
-4
Device
Max
Max
Units
XC3S200
XC3S400
1.28
1.47
ns
XC3S50
XC3S1000
XC3S1500
XC3S2000
XC3S4000
XC3S5000
1.95
2.24
ns
XC3S200
XC3S400
1.28
1.46
ns
XC3S50
XC3S1000
XC3S1500
XC3S2000
XC3S4000
XC3S5000
1.94
2.23
ns
XC3S200
XC3S400
1.28
1.47
ns
XC3S50
XC3S1000
XC3S1500
XC3S2000
XC3S4000
XC3S5000
1.95
2.24
ns
XC3S200
XC3S400
2.10
2.41
ns
XC3S50
XC3S1000
XC3S1500
XC3S2000
XC3S4000
XC3S5000
2.77
3.18
ns
All
8.07
9.28
ns
Clock-to-Output Times
TIOCKP
Propagation Times
TIOOP
TIOOLP
The time it takes for data to travel
from the IOB’s O input to the
Output pin
LVCMOS25(2), 12mA
output drive, Fast slew rate
The time it takes for data to travel
from the O input through the OFF
latch to the Output pin
Set/Reset Times
TIOSRP
TIOGSRQ
Time from asserting the OFF’s SR
input to setting/resetting data at
the Output pin
LVCMOS25(2), 12mA
output drive, Fast slew rate
Time from asserting the Global
Set Reset (GSR) net to
setting/resetting data at the
Output pin
Notes:
1. The numbers in this table are tested using the methodology presented in Table 47 and are based on the operating conditions set
forth in Table 31 and Table 34.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned
to the data Output. When this is true, add the appropriate Output adjustment from Table 46.
3. For minimums, use the values reported by the Xilinx timing analyzer.
72
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 45: Timing for the IOB Three-State Path
Speed Grade
Symbol
Description
-5
-4
Conditions
Device
Max
Max
Units
LVCMOS25, 12mA
output drive, Fast slew
rate
All
0.74
0.85
ns
All
0.72
0.82
ns
XC3S200
XC3S400
7.71
8.87
ns
XC3S50
XC3S1000
XC3S1500
XC3S2000
XC3S4000
XC3S5000
8.38
9.63
ns
All
1.55
1.78
ns
XC3S200
XC3S400
2.24
2.57
ns
XC3S50
XC3S1000
XC3S1500
XC3S2000
XC3S4000
XC3S5000
2.91
3.34
ns
Synchronous Output Enable/Disable Times
TIOCKHZ
Time from the active transition at the
OTCLK input of the Three-state
Flip-Flop (TFF) to when the Output pin
enters the high-impedance state
TIOCKON(2)
Time from the active transition at TFF’s
OTCLK input to when the Output pin
drives valid data
Asynchronous Output Enable/Disable Times
TGTS
Time from asserting the Global Three
State (GTS) net to when the Output pin
enters the high-impedance state
LVCMOS25, 12mA
output drive, Fast slew
rate
TIOSRHZ
Time from asserting TFF’s SR input to
when the Output pin enters a
high-impedance state
LVCMOS25, 12mA
output drive, Fast slew
rate
TIOSRON(2)
Time from asserting TFF’s SR input at
TFF to when the Output pin drives
valid data
Set/Reset Times
Notes:
1. The numbers in this table are tested using the methodology presented in Table 47 and are based on the operating conditions set
forth in Table 31 and Table 34.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned
to the data Output. When this is true, add the appropriate Output adjustment from Table 46.
3. For minimums, use the values reported by the Xilinx timing analyzer.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
73
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 46: Output Timing Adjustments for IOB (Continued)
Table 46: Output Timing Adjustments for IOB
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the Adjustment Below
Speed Grade
-5
-4
Units
Single-Ended Standards
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the Adjustment Below
Speed Grade
-5
-4
Units
LVDCI_15
1.51
1.74
ns
1.32
1.52
ns
2 mA
5.49
6.31
ns
0
0.02
ns
LVDCI_DV2_15
GTL_DCI
0.13
0.15
ns
LVCMOS18
GTLP
0.03
0.04
ns
4 mA
3.45
3.97
ns
GTLP_DCI
0.23
0.27
ns
6 mA
2.84
3.26
ns
HSLVDCI_15
1.51
1.74
ns
8 mA
2.62
3.01
ns
HSLVDCI_18
0.81
0.94
ns
12 mA
2.11
2.43
ns
HSLVDCI_25
0.27
0.31
ns
16 mA
2.07
2.38
ns
HSLVDCI_33
0.28
0.32
ns
2 mA
2.50
2.88
ns
HSTL_I
0.60
0.69
ns
4 mA
1.15
1.32
ns
HSTL_I_DCI
0.59
0.68
ns
6 mA
0.96
1.10
ns
HSTL_III
0.19
0.22
ns
8 mA
0.87
1.01
ns
HSTL_III_DCI
0.20
0.23
ns
12 mA
0.79
0.91
ns
HSTL_I_18
0.18
0.21
ns
16 mA
0.76
0.87
ns
HSTL_I_DCI_18
0.17
0.19
ns
LVDCI_18
0.81
0.94
ns
HSTL_II_18
–0.02
–0.01
ns
LVDCI_DV2_18
0.67
0.77
ns
HSTL_II_DCI_18
0.75
0.86
ns
LVCMOS25
2 mA
6.43
7.39
ns
HSTL_III_18
0.28
0.32
ns
4 mA
4.15
4.77
ns
HSTL_III_DCI_18
0.28
0.32
ns
6 mA
3.38
3.89
ns
2 mA
7.60
8.73
ns
8 mA
2.99
3.44
ns
4 mA
7.42
8.53
ns
12 mA
2.53
2.91
ns
6 mA
6.67
7.67
ns
16 mA
2.50
2.87
ns
2 mA
3.16
3.63
ns
24 mA
2.22
2.55
ns
4 mA
2.70
3.10
ns
2 mA
3.27
3.76
ns
6 mA
2.41
2.77
ns
4 mA
1.87
2.15
ns
2 mA
4.55
5.23
ns
6 mA
0.32
0.37
ns
4 mA
3.76
4.32
ns
8 mA
0.19
0.22
ns
6 mA
3.57
4.11
ns
12 mA
0
0
ns
8 mA
3.55
4.09
ns
16 mA
–0.02
–0.01
ns
12 mA
3.00
3.45
ns
24 mA
–0.04
–0.02
ns
2 mA
3.11
3.57
ns
LVDCI_25
0.27
0.31
ns
4 mA
1.71
1.96
ns
LVDCI_DV2_25
0.16
0.19
ns
6 mA
1.44
1.66
ns
8 mA
1.26
1.44
ns
12 mA
1.11
1.27
ns
GTL
LVCMOS12
Slow
Fast
LVCMOS15
Slow
Fast
74
Slow
Fast
Slow
Fast
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 46: Output Timing Adjustments for IOB (Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the Adjustment Below
Speed Grade
-5
-4
Units
2 mA
6.38
7.34
ns
4 mA
4.83
5.55
6 mA
4.01
8 mA
Table 46: Output Timing Adjustments for IOB (Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the Adjustment Below
Speed Grade
-5
-4
Units
PCI33_3
0.74
0.85
ns
ns
SSTL18_I
0.07
0.07
ns
4.61
ns
SSTL18_I_DCI
0.22
0.25
ns
3.92
4.51
ns
SSTL18_II
0.30
0.34
ns
12 mA
2.91
3.35
ns
SSTL2_I
0.23
0.26
ns
16 mA
2.81
3.23
ns
SSTL2_I_DCI
0.19
0.22
ns
24 mA
2.49
2.86
ns
SSTL2_II
0.13
0.15
ns
2 mA
3.86
4.44
ns
SSTL2_II_DCI
0.10
0.11
ns
4 mA
1.87
2.15
ns
Differential Standards
6 mA
0.62
0.71
ns
LDT_25 (ULVDS_25)
–0.06
–0.05
ns
8 mA
0.61
0.70
ns
LVDS_25
–0.09
–0.07
ns
12 mA
0.16
0.19
ns
BLVDS_25
0.02
0.04
ns
16 mA
0.14
0.16
ns
LVDSEXT_25
–0.15
–0.13
ns
24 mA
0.06
0.07
ns
LVPECL_25
0.16
0.18
ns
LVDCI_33
0.28
0.32
ns
RSDS_25
0.05
0.06
ns
LVDCI_DV2_33
0.26
0.30
ns
DIFF_HSTL_II_18
–0.02
–0.01
ns
2 mA
7.27
8.36
ns
DIFF_HSTL_II_18_DCI
0.75
0.86
ns
4 mA
4.94
5.69
ns
DIFF_SSTL2_II
0.13
0.15
ns
6 mA
3.98
4.58
ns
DIFF_SSTL2_II_DCI
0.10
0.11
ns
8 mA
3.98
4.58
ns
12 mA
2.97
3.42
ns
16 mA
2.84
3.26
ns
24 mA
2.65
3.04
ns
2 mA
4.32
4.97
ns
4 mA
1.87
2.15
ns
6 mA
1.27
1.47
ns
8 mA
1.19
1.37
ns
12 mA
0.42
0.48
ns
16 mA
0.27
0.32
ns
24 mA
0.16
0.18
ns
LVCMOS33
Slow
Fast
LVTTL
Slow
Fast
DS099-3 (v2.4) June 25, 2008
Product Specification
Notes:
1. The numbers in this table are tested using the methodology
presented in Table 47 and are based on the operating
conditions set forth in Table 31, Table 34, and Table 36.
2. These adjustments are used to convert output- and
three-state-path times originally specified for the LVCMOS25
standard with 12 mA drive and Fast slew rate to times that
correspond to other signal standards. Do not adjust times
that measure when outputs go into a high-impedance state.
3. For minimums, use the values reported by the Xilinx timing
analyzer.
www.xilinx.com
75
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Timing Measurement Methodology
When measuring timing parameters at the programmable
I/Os, different signal standards call for different test conditions. Table 47 presents the conditions to use for each standard.
LVTTL), then RT is set to 1MΩ to indicate an open connection, and VT is set to zero. The same measurement point
(VM) that was used at the Input is also used at the Output.
VT (VREF)
The method for measuring Input timing is as follows: A signal that swings between a Low logic level of VL and a High
logic level of VH is applied to the Input under test. Some
standards also require the application of a bias voltage to
the VREF pins of a given bank to properly set the
input-switching threshold. The measurement point of the
Input signal (VM) is commonly located halfway between VL
and VH.
FPGA Output
RT (RREF)
VM (VMEAS)
CL (CREF)
ds099-3_07_012004
Notes:
1. The names shown in parentheses are
used in the IBIS file.
The Output test setup is shown in Figure 33. A termination
voltage VT is applied to the termination resistor RT, the other
end of which is connected to the Output. For each standard,
RT and VT generally take on the standard values recommended for minimizing signal reflections. If the standard
does not ordinarily use terminations (e.g., LVCMOS,
Figure 33: Output Test Setup
Table 47: Test Methods for Timing Measurement at I/Os
Signal Standard
(IOSTANDARD)
Inputs
Inputs and
Outputs
Outputs
VREF (V)
VL (V)
VH (V)
RT (Ω)
VT (V)
VM (V)
0.8
VREF - 0.2
VREF + 0.2
25
1.2
VREF
50
1.2
25
1.5
50
1.5
1M
0
Single-Ended
GTL
GTL_DCI
GTLP
1.0
VREF - 0.2
VREF + 0.2
GTLP_DCI
HSLVDCI_15
0.9
VREF - 0.5
VREF + 0.5
VREF
0.75
HSLVDCI_18
0.90
HSLVDCI_25
1.25
HSLVDCI_33
HSTL_I
1.65
0.75
VREF - 0.5
VREF + 0.5
50
0.75
VREF
0.90
VREF - 0.5
VREF + 0.5
50
1.5
VREF
0.90
VREF - 0.5
VREF + 0.5
50
0.9
VREF
0.90
VREF - 0.5
VREF + 0.5
50
0.9
VREF
1.1
VREF - 0.5
VREF + 0.5
50
1.8
VREF
HSTL_I_DCI
HSTL_III
HSTL_III_DCI
HSTL_I_18
HSTL_I_DCI_18
HSTL_II_18
HSTL_II_DCI_18
HSTL_III_18
HSTL_III_DCI_18
LVCMOS12
-
0
1.2
1M
0
0.6
LVCMOS15
-
0
1.5
1M
0
0.75
LVDCI_15
LVDCI_DV2_15
HSLVDCI_15
76
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 47: Test Methods for Timing Measurement at I/Os (Continued)
Signal Standard
(IOSTANDARD)
Inputs
Inputs and
Outputs
Outputs
VREF (V)
VL (V)
VH (V)
RT (Ω)
VT (V)
VM (V)
-
0
1.8
1M
0
0.9
-
0
2.5
1M
0
1.25
-
0
3.3
1M
0
1.65
-
0
3.3
1M
0
1.4
-
Note 3
Note 3
25
0
0.94
25
3.3
2.03
0.9
VREF - 0.5
VREF + 0.5
50
0.9
VREF
SSTL18_II
0.9
VREF - 0.5
VREF + 0.5
50
0.9
VREF
SSTL2_I
1.25
VREF - 0.75
VREF + 0.75
50
1.25
VREF
1.25
VREF - 0.75
VREF + 0.75
25
1.25
VREF
50
1.25
LVCMOS18
LVDCI_18
LVDCI_DV2_18
HSLVDCI_18
LVCMOS25
LVDCI_25
LVDCI_DV2_25
HSLVDCI_25
LVCMOS33
LVDCI_33
LVDCI_DV2_33
HSLVDCI_33
LVTTL
PCI33_3
Rising
Falling
SSTL18_I
SSTL18_I_DCI
SSTL2_I_DCI
SSTL2_II
SSTL2_II_DCI
Differential
LDT_25 (ULVDS_25)
-
VICM - 0.125
VICM + 0.125
60
0.6
VICM
LVDS_25
-
VICM - 0.125
VICM + 0.125
50
1.2
VICM
1M
0
BLVDS_25
-
VICM - 0.125
VICM + 0.125
1M
0
VICM
LVDSEXT_25
-
VICM - 0.125
VICM + 0.125
50
1.2
VICM
N/A
N/A
LVDS_25_DCI
LVDSEXT_25_DCI
LVPECL_25
-
VICM - 0.3
VICM + 0.3
1M
0
VICM
RSDS_25
-
VICM - 0.1
VICM + 0.1
50
1.2
VICM
DIFF_HSTL_II_18
-
VICM - 0.5
VICM + 0.5
50
1.8
VICM
DIFF_HSTL_II_18_DCI
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
77
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 47: Test Methods for Timing Measurement at I/Os (Continued)
Signal Standard
(IOSTANDARD)
DIFF_SSTL2_II
Inputs
Inputs and
Outputs
Outputs
VREF (V)
VL (V)
VH (V)
RT (Ω)
VT (V)
VM (V)
-
VICM - 0.75
VICM + 0.75
50
1.25
VICM
DIFF_SSTL2_II_DCI
Notes:
1. Descriptions of the relevant symbols are as follows:
VREF – The reference voltage for setting the input switching threshold
VICM – The common mode input voltage
VM – Voltage of measurement point on signal transition
VL – Low-level test voltage at Input pin
VH – High-level test voltage at Input pin
RT – Effective termination resistance, which takes on a value of 1MΩ when no parallel termination is required
VT – Termination voltage
2.
3.
The load capacitance (CL) at the Output pin is 0 pF for all signal standards.
According to the PCI specification.
The capacitive load (CL) is connected between the output
and GND. The Output timing for all standards, as published
in the speed files and the data sheet, is always based on a
CL value of zero. High-impedance probes (less than 1 pF)
are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted
from those measurements to produce the final timing numbers as published in the speed files and data sheet.
Using IBIS Models to Simulate Load
Conditions in Application
http://www.xilinx.com/support/download/index.htm
Simulate delays for a given application according to its specific load conditions as follows:
1. Simulate the desired signal standard with the output
driver connected to the test setup shown in Figure 33.
Use parameter values VT, RT, and VM from Table 47.
CREF is zero.
2. Record the time to VM.
IBIS Models permit the most accurate prediction of timing
delays for a given application. The parameters found in the
IBIS model (VREF, RREF, and VMEAS) correspond directly
with the parameters used in Table 47, VT, RT, and VM. Do
not confuse VREF (the termination voltage) from the IBIS
model with VREF (the input-switching threshold) from the
table. A fourth parameter, CREF, is always zero. The four
parameters describe all relevant output test conditions. IBIS
78
models are found in the Xilinx development software as well
as at the following link.
3. Simulate the same signal standard with the output
driver connected to the PCB trace with load. Use the
appropriate IBIS model (including VREF, RREF, CREF,
and VMEAS values) or capacitive value to represent the
load.
4. Record the time to VMEAS.
5. Compare the results of steps 2 and 4. The increase (or
decrease) in delay should be added to (or subtracted
from) the appropriate Output standard adjustment
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Simultaneously Switching Output Guidelines
output signal standard and drive strength, Table 49 recommends the maximum number of SSOs, switching in the
same direction, allowed per VCCO/GND pair within an I/O
bank. The Table 49 guidelines are categorized by package
style. Multiply the appropriate numbers from Table 48 and
Table 49 to calculate the maximum number of SSOs
allowed within an I/O bank. Exceeding these SSO guidelines may result in increased power or ground bounce,
degraded signal integrity, or increased system jitter.
This section provides guidelines for the maximum allowable
number of Simultaneous Switching Outputs (SSOs). These
guidelines describe the maximum number of user I/O pins,
of a given output signal standard, that should simultaneously switch in the same direction, while maintaining a
safe level of switching noise. Meeting these guidelines for
the stated test conditions ensures that the FPGA operates
free from the adverse effects of ground and power bounce.
Ground or power bounce occurs when a large number of
outputs simultaneously switch in the same direction. The
output drive transistors all conduct current to a common
voltage rail. Low-to-High transitions conduct to the VCCO
rail; High-to-Low transitions conduct to the GND rail. The
resulting cumulative current transient induces a voltage difference across the inductance that exists between the die
pad and the power supply or ground return. The inductance
is associated with bonding wires, the package lead frame,
and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers.
Any SSO-induced voltage consequently affects internal
switching noise margins and ultimately signal quality.
SSOMAX/IO Bank = Table 48 x Table 49
The recommended maximum SSO values assume that the
FPGA is soldered on the printed circuit board and that the
board uses sound design practices. The SSO values do not
apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.
The number of SSOs allowed for quad-flat packages (VQ,
TQ, PQ) is lower than for ball grid array packages (FG) due
to the larger lead inductance of the quad-flat packages. The
results for chip-scale packaging (CP132) are better than
quad-flat packaging but not as high as for ball grid array
packaging. Ball grid array packages are recommended for
applications with a large number of simultaneously switching outputs.
Table 48 and Table 49 provide the essential SSO guidelines. For each device/package combination, Table 48 provides the number of equivalent VCCO/GND pairs. For each
Table 48: Equivalent VCCO/GND Pairs per Bank
VQ100
CP132(1)
TQ144(1)
PQ208
FT256
FG320
FG456
FG676
FG900
FG1156(2)
XC3S50
1
1.5
1.5
2
-
-
-
-
-
-
XC3S200
1
-
1.5
2
3
-
-
-
-
-
XC3S400
-
-
1.5
2
3
3
5
-
-
-
XC3S1000
-
-
-
-
3
3
5
5
-
-
XC3S1500
-
-
-
-
-
3
5
6
-
-
XC3S2000
-
-
-
-
-
-
5
6
9
-
XC3S4000
-
-
-
-
-
-
-
6
10
12
XC3S5000
-
-
-
-
-
-
-
6
10
12
Device
Notes:
1. The VCCO lines for the pair of banks on each side of the CP132 and TQ144 packages are internally tied together. Each
pair of interconnected banks shares three VCCO/GND pairs. Consequently, the per bank number is 1.5.
2. The FG(G)1156 package is being discontinued and is not recommended for new designs. See
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm for the latest updates.
3. The information in this table also applies to Pb-free packages.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
79
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 49: Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair
Table 49: Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair (Continued)
Package
Package
Signal Standard
(IOSTANDARD)
VQ
100
TQ
144
PQ
208
CP
132
VQ
100
TQ
144
PQ
208
CP
132
FT256,
FG320,
FG456,
FG676,
FG900,
FG1156
2
19
13
13
29
64
14
4
13
8
8
19
34
6
8
8
8
9
22
FT256,
FG320,
FG456,
FG676,
FG900,
FG1156
LVCMOS18
Single-Ended Standards
GTL
Signal Standard
(IOSTANDARD)
0
0
0
1
Slow
GTL_DCI
0
0
0
1
14
GTLP
0
0
0
1
19
8
7
7
7
9
18
12
5
5
5
5
13
GTLP_DCI
0
0
0
1
19
HSLVDCI_15
6
6
6
6
14
Fast
16
5
5
5
5
10
2
13
13
13
19
36
HSLVDCI_18
7
7
7
7
10
HSLVDCI_25
7
7
7
7
11
4
8
8
8
13
21
6
8
8
8
8
13
HSLVDCI_33
10
10
10
10
10
HSTL_I
11
11
11
11
17
8
7
7
7
7
10
12
5
5
5
5
9
HSTL_I_DCI
11
11
11
11
17
HSTL_III
7
7
7
7
7
16
5
5
5
5
6
7
7
7
7
10
HSTL_III_DCI
7
7
7
7
7
LVDCI_18
HSTL_I_18
13
13
13
13
17
LVDCI_DV2_18
7
7
7
7
10
7
7
7
7
10
2
28
16
12
42
76
13
10
10
19
46
HSTL_I_DCI_18
13
13
13
13
17
HSLVDCI_18
HSTL_II_18
9
9
9
9
9
LVCMOS25
Slow
HSTL_II_DCI_18
9
9
9
9
9
4
HSTL_III_18
8
8
8
8
8
6
13
8
8
19
33
7
7
7
9
24
HSTL_III_DCI_18
LVCMOS12
Slow
Fast
LVCMOS15
Slow
Fast
2
8
8
8
8
8
8
17
17
17
17
55
12
6
6
6
9
18
16
6
6
6
6
11
4
13
13
13
13
32
6
10
10
10
10
18
24
5
5
5
5
7
2
17
12
12
26
42
2
12
12
12
12
31
4
11
11
11
11
13
4
10
10
10
13
20
6
8
8
8
13
15
6
9
9
9
9
9
2
16
12
12
19
55
8
7
7
7
7
13
6
6
6
6
11
4
8
7
7
9
31
12
6
7
7
7
9
18
16
6
6
6
6
8
24
5
5
5
5
5
8
6
6
6
6
15
12
5
5
5
5
10
LVDCI_25
7
7
7
7
11
7
7
7
7
11
7
7
7
7
11
2
10
10
10
13
25
LVDCI_DV2_25
4
6
7
7
7
16
HSLVDCI_25
6
7
7
7
7
13
8
6
6
6
6
11
6
6
6
6
7
LVDCI_15
12
6
6
6
6
14
LVDCI_DV2_15
6
6
6
6
14
HSLVDCI_15
6
6
6
6
14
80
Fast
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 49: Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair (Continued)
Table 49: Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair (Continued)
Package
VQ
100
TQ
144
PQ
208
CP
132
2
34
24
24
52
76
PCI33_3
4
17
14
14
26
46
SSTL18_I
13
13
13
13
17
6
17
11
11
26
27
SSTL18_I_DCI
13
13
13
13
17
Signal Standard
(IOSTANDARD)
LVCMOS33
Slow
Fast
Package
FT256,
FG320,
FG456,
FG676,
FG900,
FG1156
Signal Standard
(IOSTANDARD)
VQ
100
TQ
144
PQ
208
CP
132
FT256,
FG320,
FG456,
FG676,
FG900,
FG1156
9
9
9
9
9
8
10
10
10
13
20
SSTL18_II
8
8
8
8
9
12
9
9
9
13
13
SSTL2_I
10
10
10
10
13
16
8
8
8
8
10
SSTL2_I_DCI
10
10
10
10
13
24
8
8
8
8
9
SSTL2_II
6
6
6
6
9
2
20
20
20
26
44
SSTL2_II_DCI
6
6
6
6
9
4
15
15
15
15
26
Differential Standards (Number of I/O Pairs or Channels)
6
11
11
11
13
16
LDT_25 (ULVDS_25)
5
5
5
5
5
8
10
10
10
10
12
LVDS_25
7
5
5
12
20
12
8
8
8
8
10
BLVDS_25
2
1
1
16
8
8
8
8
8
LVDSEXT_25
5
5
5
24
LVDCI_33
7
7
7
7
7
LVPECL_25
2
1
1
10
10
10
10
10
RSDS_25
7
5
5
4
5
5
12
20
4
LVDCI_DV2_33
10
10
10
10
10
DIFF_HSTL_II_18
4
4
4
4
4
HSLVDCI_33
10
10
10
10
10
DIFF_HSTL_II_18_DCI
4
4
4
4
4
2
34
25
25
52
60
DIFF_SSTL2_II
3
3
3
3
4
4
17
16
16
26
41
DIFF_SSTL2_II_DCI
3
3
3
3
4
6
17
15
15
26
29
8
12
12
12
13
22
12
10
10
10
13
13
16
10
10
10
10
11
LVTTL
Slow
Fast
24
8
8
8
8
9
2
20
20
20
26
34
4
13
13
13
13
20
6
11
11
11
13
15
8
10
10
10
10
12
12
9
9
9
9
10
16
8
8
8
8
9
24
7
7
7
7
7
DS099-3 (v2.4) June 25, 2008
Product Specification
Notes:
1. The numbers in this table are recommendations that assume the
FPGA is soldered on a printed circuit board using sound practices.
This table assumes the following parasitic factors: combined PCB
trace and land inductance per VCCO and GND pin of 1.0 nH, receiver
capacitive load of 15 pF. Test limits are the VIL/VIH voltage limits for
the respective I/O standard.
2. Regarding the SSO numbers for all DCI standards, the RREF resistors
connected to the VRN and VRP pins of the FPGA are 50Ω .
3. If more than one signal standard is assigned to the I/Os of a given
bank, refer to XAPP689: "Managing Ground Bounce in Large
FPGAs" for information on how to perform weighted average SSO
calculations.
4. Results are based on actual silicon testing using an FPGA soldered
on a typical printed-circuit board.
www.xilinx.com
81
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Internal Logic Timing
Table 50: CLB Timing
Speed Grade
-5
Symbol
-4
Description
Min
Max
Min
Max
Units
When reading from the FFX (FFY) Flip-Flop,
the time from the active transition at the CLK
input to data appearing at the XQ (YQ) output
-
0.63
-
0.72
ns
TAS
Time from the setup of data at the F or G input
to the active transition at the CLK input of the
CLB
0.46
-
0.53
-
ns
TDICK
Time from the setup of data at the BX or BY
input to the active transition at the CLK input of
the CLB
1.27
-
1.57
-
ns
TAH
Time from the active transition at the CLK input
to the point where data is last held at the F or
G input
0
-
0
-
ns
TCKDI
Time from the active transition at the CLK input
to the point where data is last held at the BX or
BY input
0.25
-
0.29
-
ns
TCH
CLB CLK signal High pulse width
0.69
∞
0.79
∞
ns
TCL
CLB CLK signal Low pulse width
0.69
∞
0.79
∞
ns
FTOG
Maximum toggle frequency (for export control)
-
725
-
630
MHz
The time it takes for data to travel from the
CLB’s F (G) input to the X (Y) output
-
0.53
-
0.61
ns
0.76
-
0.87
-
ns
Clock-to-Output Times
TCKO
Setup Times
Hold Times
Clock Timing
Propagation Times
TILO
Set/Reset Pulse Width
TRPW_CLB
The minimum allowable pulse width, High or
Low, to the CLB’s SR input
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31.
2. The timing shown is for SLICEM.
3. For minimums, use the values reported by the Xilinx timing analyzer.
82
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 51: CLB Distributed RAM Switching Characteristics
-5
Symbol
Description
-4
Min
Max
Min
Max
Units
-
1.87
-
2.15
ns
Clock-to-Output Times
TSHCKO
Time from the active edge at the CLK input to data
appearing on the distributed RAM output
Setup Times
TDS
Setup time of data at the BX or BY input before the active
transition at the CLK input of the distributed RAM
0.46
-
0.52
-
ns
TAS
Setup time of the F/G address inputs before the active
transition at the CLK input of the distributed RAM
0.46
-
0.53
-
ns
TWS
Setup time of the write enable input before the active
transition at the CLK input of the distributed RAM
0.33
-
0.37
-
ns
0
-
0
-
ns
0.85
-
0.97
-
ns
Hold Times
TDH, TAH, TWH
Hold time of the BX, BY data inputs, the F/G address
inputs, or the write enable input after the active transition
at the CLK input of the distributed RAM
Clock Pulse Width
TWPH, TWPL
Minimum High or Low pulse width at CLK input
Table 52: CLB Shift Register Switching Characteristics
-5
Symbol
Description
-4
Min
Max
Min
Max
Units
-
3.30
-
3.79
ns
0.46
-
0.52
-
ns
0
-
0
-
ns
0.85
-
0.97
-
ns
Clock-to-Output Times
TREG
Time from the active edge at the CLK input to data
appearing on the shift register output
Setup Times
TSRLDS
Setup time of data at the BX or BY input before the active
transition at the CLK input of the shift register
Hold Times
TSRLDH
Hold time of the BX or BY data input after the active
transition at the CLK input of the shift register
Clock Pulse Width
TWPH, TWPL
Minimum High or Low pulse width at CLK input
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
83
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 53: Synchronous 18 x 18 Multiplier Timing
Speed Grade
-5
Symbol
-4
Description
P Outputs
Min
Max
Min
Max
Units
When reading from the
Multiplier, the time from the
active transition at the C
clock input to data
appearing at the P outputs
P[0]
0.38
1.00
0.38
1.15
ns
P[15]
0.44
1.15
0.44
1.32
ns
P[17]
0.50
1.30
0.50
1.50
ns
P[19]
0.55
1.45
0.55
1.67
ns
P[23]
0.67
1.76
0.67
2.02
ns
P[31]
0.90
2.37
0.90
2.72
ns
P[35]
1.02
2.67
1.02
3.07
ns
Time from the setup of data
at the A and B inputs to the
active transition at the C
input of the Multiplier
-
1.84
-
2.11
-
ns
Time from the active
transition at the Multiplier’s
C input to the point where
data is last held at the A
and B inputs
-
0
-
0
-
ns
Clock-to-Output Times
TMULTCK
Setup Times
TMULIDCK
Hold Times
TMULCKID
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31.
Table 54: Asynchronous 18 x 18 Multiplier Timing
Speed Grade
Symbol
Description
-MIN
-5
-4
P Outputs
Min
Max
Max
Units
P[0]
0.59
1.55
1.78
ns
P[15]
1.20
3.15
3.62
ns
P[17]
1.28
3.36
3.86
ns
P[19]
1.33
3.49
4.01
ns
P[23]
1.42
3.73
4.29
ns
P[31]
1.61
4.23
4.86
ns
P[35]
1.7
4.47
5.14
ns
Propagation Times
TMULT
The time it takes for data to travel
from the A and B inputs to the P
outputs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31.
84
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 55: Block RAM Timing
Speed Grade
-5
Symbol
Description
-4
Min
Max
Min
Max
Units
-
2.09
-
2.40
ns
Time from the setup of data at
the DIN inputs to the active
transition at the CLK input of the
Block RAM
0.43
-
0.49
-
ns
Time from the active transition
at the Block RAM’s CLK input to
the point where data is last held
at the DIN inputs
0
-
0
-
ns
Clock-to-Output Times
TBCKO
When reading from the Block
RAM, the time from the active
transition at the CLK input to
data appearing at the DOUT
output
Setup Times
TBDCK
Hold Times
TBCKD
Clock Timing
TBPWH
Block RAM CLK signal High
pulse width
1.19
∞
1.37
∞
ns
TBPWL
Block RAM CLK signal Low
pulse width
1.19
∞
1.37
∞
ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31.
2. For minimums, use the values reported by the Xilinx timing analyzer.
Clock Distribution Switching Characteristics
Table 56: Clock Distribution Switching Characteristics
Maximum
Speed Grade
Description
Symbol
-5
-4
Units
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I-input to O-output delay
TGIO
0.36
0.41
ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0- and
I1-inputs. Same as BUFGCE enable CE-input
TGSI
0.53
0.60
ns
Notes:
1. For minimums, use the values reported by the Xilinx timing analyzer.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
85
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Digital Clock Manager (DCM) Timing
For specification purposes, the DCM consists of three key
components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).
Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the
CLKFB inputs connected to either the CLK0 or the CLK2X
feedback, respectively. Thus, specifications in the DLL
tables (Table 57 and Table 58) apply to any application that
only employs the DLL component. When the DFS and/or
the PS components are used together with the DLL, then
the specifications listed in the DFS and PS tables (Table 59
through Table 62) supersede any corresponding ones in the
DLL tables. DLL specifications that do not change with the
addition of DFS or PS functions are presented in Table 57
and Table 58.
Period jitter and cycle-cycle jitter are two (of many) different
ways of characterizing clock jitter. Both specifications
describe statistical variation from a mean value.
Period jitter is the worst-case deviation from the average
clock period of all clock cycles in the collection of clock periods sampled (usually from 100,000 to more than a million
samples for specification purposes). In a histogram of
period jitter, the mean value is the clock period.
Cycle-cycle jitter is the worst-case difference in clock period
between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean
value is zero.
Delay-Locked Loop (DLL)
Table 57: Recommended Operating Conditions for the DLL
Speed Grade
Symbol
-5
-4
Frequency Mode/
FCLKIN Range
Min
Max
Min
Max
Units
Low
18(2)
167(3)
18(2)
167(3)
MHz
High
48
280(3)
48
280(3,4)
MHz
FCLKIN < 100 MHz
40%
60%
40%
60%
-
FCLKIN > 100 MHz
45%
55%
45%
55%
-
Low
-
±300
-
±300
ps
High
-
±150
-
±150
ps
Period jitter at the CLKIN input
All
-
±1
-
±1
ns
Allowable variation of off-chip
feedback delay from the DCM
output to the CLKFB input
All
-
±1
-
±1
ns
Description
Input Frequency Ranges
FCLKIN
CLKIN_FREQ_DLL_LF
Frequency for the CLKIN input
CLKIN_FREQ_DLL_HF
Input Pulse Requirements
CLKIN_PULSE
CLKIN pulse width as a
percentage of the CLKIN period
Input Clock Jitter Tolerance and Delay Path
CLKIN_CYC_JITT_DLL_LF
CLKIN_CYC_JITT_DLL_HF
CLKIN_PER_JITT_DLL_LF
Variation(4)
Cycle-to-cycle jitter at the CLKIN
input
CLKIN_PER_JITT_DLL_HF
CLKFB_DELAY_VAR_EXT
Notes:
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 59.
3. To double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE.
4. Industrial temperature range devices have additional requirements for continuous clocking, as specified in Table 63.
5. CLKIN input jitter beyond these limits may cause the DCM to lose lock. See UG331 for more details.
86
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 58: Switching Characteristics for the DLL
Speed Grade
Symbol
Description
-5
-4
Frequency Mode /
FCLKIN Range
Device
Min
Max
Min
Max
Units
All
18
167
18
167
MHz
Output Frequency Ranges
CLKOUT_FREQ_1X_LF
Frequency for the CLK0,
CLK90, CLK180, and CLK270
outputs
Low
CLKOUT_FREQ_1X_HF
Frequency for the CLK0 and
CLK180 outputs
High
48
280
48
280
MHz
CLKOUT_FREQ_2X_LF(3)
Frequency for the CLK2X and
CLK2X180 outputs
Low
36
334
36
334
MHz
CLKOUT_FREQ_DV_LF
Frequency for the CLKDV
output
Low
1.125
110
1.125
110
MHz
High
3
185
3
185
MHz
-
±100
-
±100
ps
CLKOUT_FREQ_DV_HF
Output Clock Jitter(4)
CLKOUT_PER_JITT_0
Period jitter at the CLK0 output
All
All
CLKOUT_PER_JITT_90
Period jitter at the CLK90 output
-
±150
-
±150
ps
CLKOUT_PER_JITT_180
Period jitter at the CLK180
output
-
±150
-
±150
ps
CLKOUT_PER_JITT_270
Period jitter at the CLK270
output
-
±150
-
±150
ps
CLKOUT_PER_JITT_2X
Period jitter at the CLK2X and
CLK2X180 outputs
-
±200
-
±200
ps
CLKOUT_PER_JITT_DV1
Period jitter at the CLKDV
output when performing integer
division
-
±150
-
±150
ps
CLKOUT_PER_JITT_DV2
Period jitter at the CLKDV
output when performing
non-integer division
-
±300
-
±300
ps
XC3S50
-
±150
-
±150
ps
XC3S200
-
±150
-
±150
ps
XC3S400
-
±250
-
±250
ps
XC3S1000
-
±400
-
±400
ps
XC3S1500
-
±400
-
±400
ps
XC3S2000
-
±400
-
±400
ps
XC3S4000
-
±400
-
±400
ps
XC3S5000
-
±400
-
±400
ps
All
-
±150
-
±150
ps
Duty Cycle
CLKOUT_DUTY_CYCLE_DLL(5)
Duty cycle variation for the
CLK0, CLK90, CLK180,
CLK270, CLK2X, CLK2X180,
and CLKDV outputs
All
Phase Alignment
CLKIN_CLKFB_PHASE
Phase offset between the
CLKIN and CLKFB inputs
CLKOUT_PHASE
Phase offset between any two
DLL outputs (except CLK2X
and CLK0)
-
±140
-
±140
ps
Phase offset between the
CLK2X and CLK0 outputs
-
±250
-
±250
ps
DS099-3 (v2.4) June 25, 2008
Product Specification
All
www.xilinx.com
87
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 58: Switching Characteristics for the DLL (Continued)
Speed Grade
Symbol
-5
-4
Frequency Mode /
FCLKIN Range
Device
Min
Max
Min
Max
Units
18 MHz < FCLKIN < 30 MHz
All
-
2.88
-
2.88
ms
30 MHz < FCLKIN < 40 MHz
-
2.16
-
2.16
ms
40 MHz < FCLKIN < 50 MHz
-
1.20
-
1.20
ms
50 MHz < FCLKIN < 60 MHz
-
0.60
-
0.60
ms
FCLKIN > 60 MHz
-
0.48
-
0.48
ms
30.0
60.0
30.0
60.0
ps
Description
Lock Time
LOCK_DLL
When using the DLL alone: The
time from deassertion at the
DCM’s Reset input to the rising
transition at its LOCKED output.
When the DCM is locked, the
CLKIN and CLKFB signals are
in phase
Delay Lines
DCM_TAP
Delay tap resolution
All
All
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31 and Table 57.
2. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
3. Only mask revision ‘E’ and later devices (see Mask and Fab Revisions, page 55) and all revisions of the XC3S50 and the XC3S1000 support DLL
feedback using the CLK2X output. For all other Spartan-3 devices, use feedback from the CLK0 output (instead of the CLK2X output) and set the
CLK_FEEDBACK attribute to 1X.
4. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
5. This specification only applies if the attribute DUTY_CYCLE_CORRECTION = TRUE.
Digital Frequency Synthesizer (DFS)
Table 59: Recommended Operating Conditions for the DFS
Speed Grade
Symbol
Input Frequency
FCLKIN
Description
-5
-4
Frequency
Mode
Min
Max
Min
Max
Units
All
1
280
1
280
MHz
Low
-
-
-
All
-
±300
±150
±1
ps
High
±300
±150
±1
Ranges(2)
CLKIN_FREQ_FX
Input Clock Jitter
Frequency for the CLKIN input
Tolerance(3)
CLKIN_CYC_JITT_FX_LF
CLKIN_CYC_JITT_FX_HF
Cycle-to-cycle jitter at the
CLKIN input
CLKIN_PER_JITT_FX
Period jitter at the CLKIN input
-
ps
ns
Notes:
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 57.
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
88
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 60: Switching Characteristics for the DFS
Speed Grade
Symbol
Frequency
Mode
Description
-5
Device
-4
Min
Max
Min
Max
Units
Output Frequency Ranges
CLKOUT_FREQ_FX_LF
CLKOUT_FREQ_FX_HF
Frequency for the CLKFX and CLKFX180
outputs
Low
All
18
210
18
210
MHz
High
Mask
revisions
‘A’ – ‘D’(5)
210
280
210
280
MHz
Mask
revisions
‘E’ and
later(5)
210
326
210
307
MHz
All
Note 3
Note 3
Note 3
Note 3
ps
XC3S50
-
XC3S400
-
XC3S1000
-
XC3S1500
-
XC3S2000
-
XC3S4000
-
XC3S5000
-
-
±100
±100
±250
±400
±400
±400
±400
±400
ps
-
±100
±100
±250
±400
±400
±400
±400
±400
-
XC3S200
Output Clock Jitter
CLKOUT_PER_JITT_FX
Period jitter at the CLKFX and CLKFX180
outputs
All
Duty cycle precision for the CLKFX and
CLKFX180 outputs
All
Duty Cycle(4)
CLKOUT_DUTY_CYCLE_FX
-
ps
ps
ps
ps
ps
ps
ps
Phase Alignment
Phase offset between the DFS output and
the CLK0 output
All
All
-
±300
-
±300
ps
LOCK_DLL_FX
When using the DFS in conjunction with the
DLL: The time from deassertion at the DCM’s
Reset input to the rising transition at its
LOCKED output. When the DCM is locked,
the CLKIN and CLKFB signals are in phase.
All
All
-
10.0
-
10.0
ms
LOCK_FX
When using the DFS without the DLL: The
time from deassertion at the DCM’s Reset
input to the rising transition at its LOCKED
output. By asserting the LOCKED signal, the
DFS indicates valid CLKFX and CLKFX180
signals.
All
All
-
10.0
-
10.0
ms
CLKOUT_PHASE
Lock Time
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31 and Table 59.
2. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is in use.
3. The Virtex-II FPGA Jitter Calculator at http://www.xilinx.com/applications/web_ds_v2/jitter_calc.htm provides an estimate. Use the DCM Clock
Wizard in the ISE software for a Spartan-3 device specific number. Jitter number assumes 150 ps of input clock jitter.
4. The CLKFX and CLKFX180 outputs always approximate 50% duty cycles.
5. The mask revision code appears on the device top marking. See Mask and Fab Revisions, page 55.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
89
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Phase Shifter (PS)
Phase Shifter operation is only supported if the DLL is in the Low frequency mode, see Table 57.
Table 61: Recommended Operating Conditions for the PS in Variable Phase Mode
Speed Grade
Symbol
Description
-5
-4
Device
Revision
Frequency Mode/
FCLKIN Range
Min
Max
Min
Max
Units
All
Low
1
167
1
167
MHz
FCLKIN < 100 MHz
40%
60%
40%
60%
-
FCLKIN > 100 MHz
45%
55%
45%
55%
-
Operating Frequency Ranges
PSCLK_FREQ
(FPSCLK)
Frequency for the
PSCLK input
Input Pulse Requirements
PSCLK_PULSE
PSCLK pulse width
as a percentage of
the PSCLK period
All
Low
Table 62: Switching Characteristics for the PS in Variable or Fixed Phase Shift Mode
Speed Grade
Symbol
Description
-5
-4
Frequency Mode/
FCLKIN Range
Min
Max
Min
Max
Units
Low
-
10.0
-
10.0
ns
18 MHz < FCLKIN < 30 MHz
-
3.28
-
3.28
ms
30 MHz < FCLKIN < 40 MHz
-
2.56
-
2.56
ms
40 MHz < FCLKIN < 50 MHz
-
1.60
-
1.60
ms
50 MHz < FCLKIN < 60 MHz
-
1.00
-
1.00
ms
60 MHz < FCLKIN < 165 MHz
-
0.88
-
0.88
ms
Low
-
10.40
-
10.40
ms
Phase Shifting Range
FINE_SHIFT_RANGE
Phase shift range
Lock Time
LOCK_DLL_PS
LOCK_DLL_PS_FX
When using the PS in conjunction
with the DLL: The time from
deassertion at the DCM’s Reset
input to the rising transition at its
LOCKED output. When the DCM
is locked, the CLKIN and CLKFB
signals are in phase.
When using the PS in conjunction
with the DLL and DFS: The time
from deassertion at the DCM’s
Reset input to the rising transition
at its LOCKED output. When the
DCM is locked, the CLKIN and
CLKFB signals are in phase.
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31 and Table 61.
2. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE or FIXED.
90
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Miscellaneous DCM Timing
Table 63: Miscellaneous DCM Timing
Symbol
Description
DLL
Frequency
Mode
Temperature Range
Commercial
Industrial
Units
DCM_INPUT_CLOCK_STOP
Maximum duration that the CLKIN and
CLKFB signals can be stopped(1, 2)
Any
100
100
ms
DCM_RST_PW_MIN
Minimum duration of a RST pulse width
Any
3
3
CLKIN
cycles
DCM_RST_PW_MAX(3)
Maximum duration of a RST pulse width(1, 2)
Low
N/A
N/A
seconds
High
N/A
10
seconds
Low
N/A
N/A
minutes
High
N/A
10
minutes
DCM_CONFIG_LAG_TIME(4)
Maximum duration from VCCINT applied to
FPGA configuration successfully completed
(DONE pin goes High) and clocks applied to
DCM DLL(1, 2)
Notes:
1. These limits only apply to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and
CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected. Required due to effects of device cooling - see “Momentarily
Stopping CLKIN” in Chapter 3 of UG331.
2. Industrial-temperature applications that use the DLL in High-Frequency mode must use a continuous or increasing operating
frequency. The DLL under these conditions does not support reducing the operating frequency once establishing an initial operating
frequency.
3. This specification is equivalent to the Virtex-4 FPGA DCM_RESET specification.
4. This specification is equivalent to the Virtex-4 FPGA TCONFIG specification.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
91
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Configuration and JTAG Timing
1.2V
VCCINT
(Supply)
1.0V
VCCAUX
(Supply)
2.0V
VCCO Bank 4
(Supply)
1.0V
2.5V
TPOR
PROG_B
(Input)
TPROG
INIT_B
(Open-Drain)
TPL
TICCK
CCLK
(Output)
DS099-3_03_120604
Notes:
1. The VCCINT, VCCAUX, and VCCO supplies may be applied in any order.
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).
Figure 34: Waveforms for Power-On and the Beginning of Configuration
Table 64: Power-On Timing and the Beginning of Configuration
All Speed Grades
Symbol
Description
TPOR(2)
The time from the application of VCCINT, VCCAUX, and VCCO
Bank 4 supply voltage ramps (whichever occurs last) to the
rising transition of the INIT_B pin
Min
Max
Units
XC3S50
Device
-
5
ms
XC3S200
-
5
ms
XC3S400
-
5
ms
XC3S1000
-
5
ms
XC3S1500
-
7
ms
XC3S2000
-
7
ms
XC3S4000
-
7
ms
-
7
ms
0.3
-
μs
XC3S50
-
2
ms
XC3S200
-
2
ms
XC3S400
-
2
ms
XC3S1000
-
2
ms
XC3S1500
-
3
ms
XC3S2000
-
3
ms
XC3S4000
-
3
ms
XC3S5000
-
3
ms
XC3S5000
TPROG
The width of the low-going pulse on the PROG_B pin
All
TPL(2)
The time from the rising edge of the PROG_B pin to the
rising transition on the INIT_B pin
TINIT
TICCK(3)
Minimum Low pulse width on INIT_B output
All
250
-
ns
The time from the rising edge of the INIT_B pin to the
generation of the configuration clock signal at the CCLK
output pin
All
0.25
4.0
μs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31. This means power must be applied to all
VCCINT, VCCO, and VCCAUX lines.
2. Power-on reset and the clearing of configuration memory occurs during this period.
3. This specification applies only for the Master Serial and Master Parallel modes.
92
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
PROG_B
(Input)
INIT_B
(Open-Drain)
TCCL
TCCH
CCLK
(Input/Output)
TDCC
DIN
(Input)
1/FCCSER
TCCD
Bit 0
Bit n
Bit 1
Bit n+1
TCCO
DOUT
(Output)
Bit n-64
Bit n-63
DS099-3_04_071604
Figure 35: Waveforms for Master and Slave Serial Configuration
Table 65: Timing for the Master and Slave Serial Configuration Modes
Symbol
Slave/
Master
Description
All Speed Grades
Min
Max
Units
Both
1.5
12.0
ns
The time from the setup of data at the DIN pin to the rising transition
at the CCLK pin
Both
10.0
-
ns
The time from the rising transition at the CCLK pin to the point when
data is last held at the DIN pin
Both
0
-
ns
Slave
5.0
∞
ns
5.0
∞
ns
No bitstream compression
0
66(2)
MHz
With bitstream compression
0
20
MHz
During STARTUP phase
0
50
MHz
–50%
+50%
-
Clock-to-Output Times
TCCO
The time from the falling transition on the CCLK pin to data
appearing at the DOUT pin
Setup Times
TDCC
Hold Times
TCCD
Clock Timing
TCCH
CCLK input pin High pulse width
TCCL
CCLK input pin Low pulse width
FCCSER
Frequency of the clock signal at
the CCLK input pin
ΔFCCSER
Variation from the CCLK output frequency set using the ConfigRate
BitGen option
Master
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31.
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
93
R
Spartan-3 FPGA Family: DC and Switching Characteristics
PROG_B
(Input)
INIT_B
(Open-Drain)
TSMCSCC
TSMCCCS
CS_B
(Input)
TSMCCW
TSMWCC
RDWR_B
(Input)
TCCH
TCCL
CCLK
(Input/Output)
TSMDCC
D0 - D7
(Inputs)
1/FCCPAR
TSMCCD
Byte 0
Byte 1
Byte n
TSMCKBY
Byte n+1
TSMCKBY
High-Z
BUSY
(Output)
High-Z
BUSY
DS099-3_05_041103
Notes:
1. Switching RDWR_B High or Low while holding CS_B Low asynchronously aborts configuration.
Figure 36: Waveforms for Master and Slave Parallel Configuration
Table 66: Timing for the Master and Slave Parallel Configuration Modes
Symbol
Description
Slave/
Master
All Speed Grades
Min
Max
Units
Clock-to-Output Times
TSMCKBY
The time from the rising transition on the CCLK pin to a signal
transition at the BUSY pin
Slave
-
12.0
ns
TSMDCC
The time from the setup of data at the D0-D7 pins to the rising
transition at the CCLK pin
Both
10.0
-
ns
TSMCSCC
The time from the setup of a logic level at the CS_B pin to the rising
transition at the CCLK pin
10.0
-
ns
TSMCCW(2)
The time from the setup of a logic level at the RDWR_B pin to the
rising transition at the CCLK pin
10.0
-
ns
Setup Times
94
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 66: Timing for the Master and Slave Parallel Configuration Modes (Continued)
Symbol
Slave/
Master
Description
All Speed Grades
Min
Max
Units
0
-
ns
Hold Times
TSMCCD
The time from the rising transition at the CCLK pin to the point
when data is last held at the D0-D7 pins
Both
TSMCCCS
The time from the rising transition at the CCLK pin to the point
when a logic level is last held at the CS_B pin
0
-
ns
TSMWCC(2)
The time from the rising transition at the CCLK pin to the point
when a logic level is last held at the RDWR_B pin
0
-
ns
5
∞
ns
Clock Timing
TCCH
CCLK input pin High pulse width
TCCL
CCLK input pin Low pulse width
FCCPAR
ΔFCCPAR
Frequency of the
clock signal at the
CCLK input pin
Slave
5
∞
ns
Not using the BUSY pin(3)
0
50
MHz
Using the BUSY pin
0
66
MHz
With bitstream compression
0
20
MHz
During STARTUP phase
0
50
MHz
–50%
+50%
-
No bitstream
compression
Variation from the CCLK output frequency set using the BitGen
option ConfigRate
Master
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31.
2. RDWR_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the
driver impedance of the D0 - D7 pins. To avoid contention when writing configuration data to the D0 - D7 bus, do not bring RDWR_B
High when CS_B is Low.
3. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.
4. Some Xilinx documents may refer to Parallel modes as "SelectMAP" modes.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
95
R
Spartan-3 FPGA Family: DC and Switching Characteristics
TCCH
TCCL
TCK
(Input)
1/FTCK
TTCKTMS
TTMSTCK
TMS
(Input)
TTDITCK
TTCKTDI
TDI
(Input)
TTCKTDO
TDO
(Output)
DS099_06_040703
Figure 37: JTAG Waveforms
Table 67: Timing for the JTAG Test Access Port
All Speed Grades
Symbol
Description
Min
Max
Units
The time from the falling transition on the TCK pin to data
appearing at the TDO pin
1.0
11.0
ns
TTDITCK
The time from the setup of data at the TDI pin to the rising
transition at the TCK pin
7.0
-
ns
TTMSTCK
The time from the setup of a logic level at the TMS pin to the
rising transition at the TCK pin
7.0
-
ns
TTCKTDI
The time from the rising transition at the TCK pin to the point
when data is last held at the TDI pin
0
-
ns
TTCKTMS
The time from the rising transition at the TCK pin to the point
when a logic level is last held at the TMS pin
0
-
ns
TTCKH
TCK pin High pulse width
5
∞
ns
TTCKL
TCK pin Low pulse width
5
∞
ns
FTCK
Frequency of the TCK signal
JTAG Configuration
0
33
MHz
Boundary-Scan
0
25
MHz
Clock-to-Output Times
TTCKTDO
Setup Times
Hold Times
Clock Timing
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 31.
96
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Revision History
Date
Version No.
Description
04/11/03
1.0
Initial Xilinx release.
07/11/03
1.1
Extended Absolute Maximum Rating for junction temperature in Table 27. Added numbers for typical quiescent
supply current (Table 33) and DLL timing.
02/06/04
1.2
Revised VIN maximum rating (Table 27). Added power-on requirements (Table 29), leakage current number
(Table 32), and differential output voltage levels (Table 37) for Rev. 0. Published new quiescent current numbers
(Table 33). Updated pull-up and pull-down resistor strengths (Table 32). Added LVDCI_DV2 and LVPECL
standards (Table 36 and Table 37). Changed CCLK setup time (Table 65 and Table 66).
03/04/04
1.3
Added timing numbers from v1.29 speed files as well as DCM timing (Table 57 through Table 62).
08/24/04
1.4
Added reference to errata documents on page 55. Clarified Absolute Maximum Ratings and added ESD
information (Table 27). Explained VCCO ramp time measurement (Table 29). Clarified IL specification
(Table 32). Updated quiescent current numbers and added information on power-on and surplus current
(Table 33). Adjusted VREF range for HSTL_III and HSTL_I_18 and changed VIH min for LVCMOS12 (Table 34).
Added note limiting VTT range for SSTL2_II signal standards (Table 35). Calculated VOH and VOL levels for
differential standards (Table 37). Updated Switching Characteristics with speed file v1.32 (Table 39 through
Table 47 and Table 50 through Table 55). Corrected IOB test conditions (Table 40). Updated DCM timing with
latest characterization data (Table 57 through Table 61). Improved DCM CLKIN pulse width specification
(Table 57). Recommended use of Virtex-II FPGA Jitter calculator (Table 60). Improved DCM PSCLK pulse
width specification (Table 61). Changed Phase Shifter lock time parameter (Table 62). Because the BitGen
option Centered_x#_y# is not necessary for Variable Phase Shift mode, removed BitGen command table and
referring text. Adjusted maximum CCLK frequency for the slave serial and parallel configuration modes
(Table 65). Inverted CCLK waveform (Figure 35). Adjusted JTAG setup times (Table 67).
12/17/04
1.5
Updated timing parameters to match v1.35 speed file. Improved VCCO ramp time specification (Table 29).
Added a note limiting the rate of change of VCCAUX (Table 31). Added typical quiescent current values for the
XC3S2000, XC3S4000, and XC3S5000 (Table 33). Increased IOH and IOL for SSTL2-I and SSTL2-II standards
(Table 35). Added SSO guidelines for the VQ, TQ, and PQ packages as well as edited SSO guidelines for the
FT and FG packages (Table 49). Added maximum CCLK frequencies for configuration using compressed
bitstreams (Table 65 and Table 66). Added specifications for the HSLVDCI standards (Table 34, Table 35,
Table 43, Table 46, Table 47, and Table 49).
08/19/05
1.6
Updated timing parameters to match v1.37 speed file. All Spartan-3 part types, except XC3S5000, promoted
to Production status. Removed VCCO ramp rate restriction from all mask revision ‘E’ and later devices
(Table 29). Added equivalent resistance values for internal pull-up and pull-down resistors (Table 32). Added
worst-case quiescent current values for XC3S2000, XC3S4000, XC3S5000 (Table 33). Added industrial
temperature range specification and improved typical quiescent current values (Table 33). Improved the DLL
minimum clock input frequency specification from 24 MHz down to 18 MHz (Table 57). Improved the DFS
minimum and maximum clock output frequency specifications (Table 59, Table 60). Added new miscellaneous
DCM specifications (Table 63), primarily affecting Industrial temperature range applications. Updated
Simultaneously Switching Output Guidelines and Table 49 for QFP packages. Added information on
SSTL18_II I/O standard and timing to support DDR2 SDRAM interfaces. Added differential (or complementary
single-ended) DIFF_HSTL_II_18 and DIFF_SSTL2_II I/O standards, including DCI terminated versions. Added
electro-static discharge (ESD) data for the XC3S2000 and larger FPGAs (Table 27). Added link to Spartan-3
errata notices and how to receive automatic notifications of data sheet or errata changes.
04/03/06
2.0
Upgraded Module 3, removing Preliminary status. Moved XC3S5000 to Production status in Table 38.
Finalized I/O timing on XC3S5000 for v1.38 speed files. Added minimum timing values for various logic
and I/O paths. Corrected labels for RPU and RPD and updated RPD conditions for in Table 32. Added final
mask revision ‘E’ specifications for LVDS_25, RSDS_25, LVDSEXT_25 differential outputs to Table 37.
Added BLVDS termination requirements to Figure 32. Improved recommended Simultaneous Switching
Outputs (SSOs) limits in Table 49 for quad-flat packaged based on silicon testing using devices soldered
on a printed circuit board. Updated Note 2 in Table 62. Updated Note 6 in Table 29. Added INIT_B
minimum pulse width specification, TINIT, to Table 64.
04/26/06
2.1
Updated document links.
DS099-3 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
97
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Date
Version No.
Description
05/25/07
2.2
Improved absolute maximum voltage specifications in Table 27, providing additional overshoot
allowance. Improved XC3S50 HBM ESD to 2000V in Table 27. Based on extensive 90 nm production
data, improved (reduced) the maximum quiescent current limits for the ICCINTQ and ICCOQ specifications
in Table 33. Widened the recommended voltage range for the PCI standard and clarified the hysteresis
footnote in Table 34. Noted restriction on combining differential outputs in Table 37. Updated footnote 1
in Table 63.
11/30/07
2.3
Updated 3.3V VCCO max from 3.45V to 3.465V in Table 31 and elsewhere. Reduced tICCK minimum from
0.50μs to 0.25μs in Table 64. Updated links to technical documentation.
06/25/08
2.4
Clarified dual marking. Added Mask and Fab Revisions. Added references to XAPP459 in Table 27 and
Table 31. Removed absolute minimum and added footnote referring to timing analyzer for minimum delay
values. Added HSLVDCI to Table 47 and Table 49. Updated tDICK in Table 50 to match largest possible
value in speed file. Updated formatting and links.
98
www.xilinx.com
DS099-3 (v2.4) June 25, 2008
Product Specification
216
Spartan-3 FPGA Family:
Pinout Descriptions
R
DS099-4 (v2.4) June 25, 2008
0
Product Specification
Introduction
This data sheet module describes the various pins on a
Spartan®-3 FPGA and how they connect to the supported
component packages.
•
•
•
•
The Pin Types section categorizes all of the FPGA
pins by their function type.
The Pin Definitions section provides a top-level
description for each pin on the device.
The Detailed, Functional Pin Descriptions section
offers significantly more detail about each pin,
especially for the dual- or special-function pins used
during device configuration.
Some pins have associated behavior that is controlled
by settings in the configuration bitstream. These
options are described in the Bitstream Options
section.
•
The Package Overview section describes the various
packaging options available for Spartan-3 FPGAs.
Detailed pin list tables and footprint diagrams are
provided for each package solution.
Pin Descriptions
Pin Types
A majority of the pins on a Spartan-3 FPGA are general-purpose, user-defined I/O pins. There are, however, up
to 12 different functional types of pins on Spartan-3 device
packages, as outlined in Table 68. In the package footprint
drawings that follow, the individual pins are color-coded
according to pin type as in the table.
Table 68: Types of Pins on Spartan-3 FPGAs
Type/
Color
Code
I/O
Description
Pin Name(s) in Type
Unrestricted, general-purpose user-I/O pin. Most pins can be paired
together to form differential I/Os.
IO,
IO_Lxxy_#
DUAL
Dual-purpose pin used in some configuration modes during the
configuration process and then usually available as a user I/O after
configuration. If the pin is not used during configuration, this pin behaves
as an I/O-type pin. There are 12 dual-purpose configuration pins on every
package. The INIT_B pin has an internal pull-up resistor to VCCO_4 or
VCCO_BOTTOM during configuration.
IO_Lxxy_#/DIN/D0,
IO_Lxxy_#/D1, IO_Lxxy_#/D2,
IO_Lxxy_#/D3, IO_Lxxy_#/D4,
IO_Lxxy_#/D5, IO_Lxxy_#/D6,
IO_Lxxy_#/D7,
IO_Lxxy_#/CS_B,
IO_Lxxy_#/RDWR_B,
IO_Lxxy_#/BUSY/DOUT,
IO_Lxxy_#/INIT_B
CONFIG
Dedicated configuration pin. Not available as a user-I/O pin. Every
package has seven dedicated configuration pins. These pins are powered
by VCCAUX and have a dedicated internal pull-up resistor to VCCAUX
during configuration.
CCLK, DONE, M2, M1, M0,
PROG_B, HSWAP_EN
JTAG
Dedicated JTAG pin. Not available as a user-I/O pin. Every package has
four dedicated JTAG pins. These pins are powered by VCCAUX and have
a dedicated internal pull-up resistor to VCCAUX during configuration.
TDI, TMS, TCK, TDO
DCI
Dual-purpose pin that is either a user-I/O pin or used to calibrate output
buffer impedance for a specific bank using Digital Controlled Impedance
(DCI). There are two DCI pins per I/O bank.
IO/VRN_#
IO_Lxxy_#/VRN_#
IO/VRP_#
IO_Lxxy_#/VRP_#
© 2003-2008 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
99
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 68: Types of Pins on Spartan-3 FPGAs (Continued)
Type/
Color
Code
Description
Pin Name(s) in Type
VREF
Dual-purpose pin that is either a user-I/O pin or, along with all other VREF
pins in the same bank, provides a reference voltage input for certain I/O
standards. If used for a reference voltage within a bank, all VREF pins
within the bank must be connected.
IO/VREF_#
IO_Lxxy_#/VREF_#
GND
Dedicated ground pin. The number of GND pins depends on the package
used. All must be connected.
GND
VCCAUX
Dedicated auxiliary power supply pin. The number of VCCAUX pins
depends on the package used. All must be connected to +2.5V.
VCCAUX
VCCINT
Dedicated internal core logic power supply pin. The number of VCCINT
pins depends on the package used. All must be connected to +1.2V.
VCCINT
VCCO
Dedicated I/O bank, output buffer power supply pin. Along with other
VCCO pins in the same bank, this pin supplies power to the output buffers
within the I/O bank and sets the input threshold voltage for some I/O
standards.
VCCO_#
CP132 and TQ144 Packages
Only:
VCCO_LEFT, VCCO_TOP,
VCCO_RIGHT,
VCCO_BOTTOM
GCLK
Dual-purpose pin that is either a user-I/O pin or an input to a specific global
buffer input. Every package has eight dedicated GCLK pins.
IO_Lxxy_#/GCLK0,
IO_Lxxy_#/GCLK1,
IO_Lxxy_#/GCLK2,
IO_Lxxy_#/GCLK3,
IO_Lxxy_#/GCLK4,
IO_Lxxy_#/GCLK5,
IO_Lxxy_#/GCLK6,
IO_Lxxy_#/GCLK7
N.C.
This package pin is not connected in this specific device/package
combination but may be connected in larger devices in the same package.
N.C.
Notes:
1. # = I/O bank number, an integer between 0 and 7.
I/Os with Lxxy_# are part of a differential output pair. ‘L’ indicates differential output capability. The “xx” field is a
two-digit integer, unique to each bank that identifies a differential pin-pair. The ‘y’ field is either ‘P’ for the true signal or
‘N’ for the inverted signal in the differential pair. The ‘#’ field
is the I/O bank number.
100
Pin Definitions
Table 69 provides a brief description of each pin listed in the
Spartan-3 FPGA pinout tables and package footprint diagrams. Pins are categorized by their pin type, as listed in
Table 68. See Detailed, Functional Pin Descriptions for
more information.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 69: Spartan-3 FPGA Pin Definitions
Pin Name
Direction
Description
I/O: General-purpose I/O pins
I/O
I/O_Lxxy_#
User-defined as input,
output, bidirectional,
three-state output,
open-drain output,
open-source output
User I/O:
User-defined as input,
output, bidirectional,
three-state output,
open-drain output,
open-source output
User I/O, Half of Differential Pair:
Unrestricted single-ended user-I/O pin. Supports all I/O standards
except the differential standards.
Unrestricted single-ended user-I/O pin or half of a differential pair.
Supports all I/O standards including the differential standards.
DUAL: Dual-purpose configuration pins
IO_Lxxy_#/DIN/D0,
IO_Lxxy_#/D1,
IO_Lxxy_#/D2,
IO_Lxxy_#/D3,
IO_Lxxy_#/D4,
IO_Lxxy_#/D5,
IO_Lxxy_#/D6,
IO_Lxxy_#/D7
Input during configuration
Configuration Data Port:
Possible bidirectional I/O
after configuration if
SelectMap port is retained
In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration
data pins. These pins become user I/Os after configuration unless
the SelectMAP port is retained via the Persist bitstream option.
Otherwise, user I/O after
configuration
In Serial modes, DIN (D0) serves as the single configuration data
input. This pin becomes a user I/O after configuration unless
retained by the Persist bitstream option.
IO_Lxxy_#/CS_B
Input during Parallel mode
configuration
Chip Select for Parallel Mode Configuration:
Possible input after
configuration if SelectMap
port is retained
In Parallel (SelectMAP) modes, this is the active-Low Chip Select
signal. This pin becomes a user I/O after configuration unless the
SelectMAP port is retained via the Persist bitstream option.
Otherwise, user I/O after
configuration
IO_Lxxy_#/RDWR_B
Input during Parallel mode
configuration
Possible input after
configuration if SelectMap
port is retained
Read/Write Control for Parallel Mode Configuration:
In Parallel (SelectMAP) modes, this is the active-Low Write
Enable, active-High Read Enable signal. This pin becomes a user
I/O after configuration unless the SelectMAP port is retained via
the Persist bitstream option.
Otherwise, user I/O after
configuration
IO_Lxxy_#/
BUSY/DOUT
Output during configuration
Possible output after
configuration if SelectMap
port is retained
Otherwise, user I/O after
configuration
Configuration Data Rate Control for Parallel Mode, Serial Data
Output for Serial Mode:
In Parallel (SelectMAP) modes, BUSY throttles the rate at which
configuration data is loaded. This pin becomes a user I/O after
configuration unless the SelectMAP port is retained via the Persist
bitstream option.
In Serial modes, DOUT provides preamble and configuration data
to downstream devices in a multi-FPGA daisy-chain. This pin
becomes a user I/O after configuration.
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
101
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 69: Spartan-3 FPGA Pin Definitions (Continued)
Pin Name
IO_Lxxy_#/INIT_B
Direction
Bidirectional (open-drain)
during configuration
User I/O after configuration
Description
Initializing Configuration Memory/Detected Configuration Error:
When Low, this pin indicates that configuration memory is being
cleared. When held Low, this pin delays the start of configuration.
After this pin is released or configuration memory is cleared, the
pin goes High. During configuration, a Low on this output indicates
that a configuration data error occurred. This pin always has an
internal pull-up resistor to VCCO_4 or VCCO_BOTTOM during
configuration, regardless of the HSWAP_EN pin. This pin
becomes a user I/O after configuration.
DCI: Digitally Controlled Impedance reference resistor input pins
IO_Lxxy_#/VRN_# or
IO/VRN_#
Input when using DCI
DCI Reference Resistor for NMOS I/O Transistor (per bank):
Otherwise, same as I/O
If using DCI, a 1% precision impedance-matching resistor is
connected between this pin and the VCCO supply for this bank.
Otherwise, this pin is a user I/O.
IO_Lxxy_#/VRP_# or
IO/VRP_#
Input when using DCI
DCI Reference Resistor for PMOS I/O Transistor (per bank):
Otherwise, same as I/O
If using DCI, a 1% precision impedance-matching resistor is
connected between this pin and the ground supply. Otherwise, this
pin is a user I/O.
GCLK: Global clock buffer inputs
IO_Lxxy_#/GCLK0,
IO_Lxxy_#/GCLK1,
IO_Lxxy_#/GCLK2,
IO_Lxxy_#/GCLK3,
IO_Lxxy_#/GCLK4,
IO_Lxxy_#/GCLK5,
IO_Lxxy_#/GCLK6,
IO_Lxxy_#/GCLK7
Input if connected to global
clock buffers
Otherwise, same as I/O
Global Buffer Input:
Direct input to a low-skew global clock buffer. If not connected to a
global clock buffer, this pin is a user I/O.
VREF: I/O bank input reference voltage pins
IO_Lxxy_#/VREF_#
or
IO/VREF_#
Voltage supply input when
VREF pins are used within a
bank.
Otherwise, same as I/O
Input Buffer Reference Voltage for Special I/O Standards (per
bank):
If required to support special I/O standards, all the VREF pins
within a bank connect to a input threshold voltage source.
If not used as input reference voltage pins, these pins are available
as individual user-I/O pins.
CONFIG: Dedicated configuration pins (pull-up resistor to VCCAUX always active during configuration, regardless of
HSWAP_EN pin)
CCLK
PROG_B
Input in Slave configuration
modes
Configuration Clock:
Output in Master
configuration modes
The configuration clock signal synchronizes configuration data.
This pin has an internal pull-up resistor to VCCAUX during
configuration.
Input
Program/Configure Device:
Active Low asynchronous reset to configuration logic. Asserting
PROG_B Low for an extended period delays the configuration
process. This pin has an internal pull-up resistor to VCCAUX
during configuration.
102
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 69: Spartan-3 FPGA Pin Definitions (Continued)
Pin Name
DONE
Direction
Bidirectional with open-drain
or totem-pole Output
Description
Configuration Done, Delay Start-up Sequence:
A Low-to-High output transition on this bidirectional pin signals the
end of the configuration process.
The FPGA produces a Low-to-High transition on this pin to
indicate that the configuration process is complete. The DriveDone
bitstream generation option defines whether this pin functions as
a totem-pole output that actively drives High or as an open-drain
output. An open-drain output requires a pull-up resistor to produce
a High logic level. The open-drain option permits the DONE lines
of multiple FPGAs to be tied together, so that the common node
transitions High only after all of the FPGAs have completed
configuration. Externally holding the open-drain output Low delays
the start-up sequence, which marks the transition to user mode.
M0, M1, M2
Input
Configuration Mode Selection:
These inputs select the configuration mode. The logic levels
applied to the mode pins are sampled on the rising edge of INIT_B.
See Table 74. These pins have an internal pull-up resistor to
VCCAUX during configuration, making Slave Serial the default
configuration mode.
HSWAP_EN
Input
Disable Pull-up Resistors During Configuration:
A Low on this pin enables pull-up resistors on all pins that are not
actively involved in the configuration process. A High value
disables all pull-ups, allowing the non-configuration pins to float.
JTAG: JTAG interface pins (pull-up resistor to VCCAUX always active during configuration, regardless of HSWAP_EN pin)
TCK
Input
JTAG Test Clock:
The TCK clock signal synchronizes all JTAG port operations. This
pin has an internal pull-up resistor to VCCAUX during
configuration.
TDI
Input
JTAG Test Data Input:
TDI is the serial data input for all JTAG instruction and data
registers. This pin has an internal pull-up resistor to VCCAUX
during configuration.
TMS
Input
JTAG Test Mode Select:
The serial TMS input controls the operation of the JTAG port. This
pin has an internal pull-up resistor to VCCAUX during
configuration.
TDO
Output
JTAG Test Data Output:
TDO is the serial data output for all JTAG instruction and data
registers. This pin has an internal pull-up resistor to VCCAUX
during configuration.
VCCO: I/O bank output voltage supply pins
VCCO_#
Supply
Power Supply for Output Buffer Drivers (per bank):
These pins power the output drivers within a specific I/O bank.
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
103
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 69: Spartan-3 FPGA Pin Definitions (Continued)
Pin Name
Direction
Description
VCCAUX: Auxiliary voltage supply pins
VCCAUX
Power Supply for Auxiliary Circuits:
Supply
+2.5V power pins for auxiliary circuits, including the Digital Clock
Managers (DCMs), the dedicated configuration pins (CONFIG),
and the dedicated JTAG pins. All VCCAUX pins must be
connected.
VCCINT: Internal core voltage supply pins
VCCINT
Power Supply for Internal Core Logic:
Supply
+1.2V power pins for the internal logic. All pins must be connected.
GND: Ground supply pins
GND
Ground:
Supply
Ground pins, which are connected to the power supply’s return
path. All pins must be connected.
N.C.: Unconnected package pins
N.C.
Unconnected Package Pin:
These package pins are unconnected.
Notes:
1. All unused inputs and bidirectional pins must be tied either High or Low. For unused enable inputs, apply the level that disables the
associated function. One common approach is to activate internal pull-up or pull-down resistors. An alternative approach is to
externally connect the pin to either VCCO or GND.
2. All outputs are of the totem-pole type — i.e., they can drive High as well as Low logic levels — except for the cases where “Open
Drain” is indicated. The latter can only drive a Low logic level and require a pull-up resistor to produce a High logic level.
Detailed, Functional Pin Descriptions
•
I/O Type: Unrestricted, General-purpose I/O
Pins
•
After configuration, I/O-type pins are inputs, outputs, bidirectional I/O, three-state outputs, open-drain outputs, or
open-source outputs, as defined in the application
•
Pins labeled "IO" support all SelectIO™ interface signal
standards except differential standards. A given device at
most only has a few of these pins.
A majority of the general-purpose I/O pins are labeled in the
format “IO_Lxxy_#”. These pins support all SelectIO signal
standards, including the differential standards such as
LVDS, ULVDS, BLVDS, RSDS, or LDT.
For additional information, see IOBs, page 12
Differential Pair Labeling
A pin supports differential standards if the pin is labeled in
the format “Lxxy_#”. The pin name suffix has the following
significance. Figure 38 provides a specific example showing
a differential input to and a differential output from Bank 2.
•
104
"xx" is a two-digit integer, unique for each bank, that
identifies a differential pin-pair.
‘y’ is replaced by ‘P’ for the true signal or ‘N’ for the
inverted. These two pins form one differential pin-pair.
‘#’ is an integer, 0 through 7, indicating the associated
I/O bank.
If unused, these pins are in a high impedance state. The Bitstream generator option UnusedPin enables a pull-up or
pull-down resistor on all unused I/O pins.
Behavior from Power-On through End of Configuration
During the configuration process, all pins that are not
actively involved in the configuration process are in a
high-impedance state. The CONFIG- and JTAG-type pins
have an internal pull-up resistor to VCCAUX during configuration. For all other I/O pins, the HSWAP_EN input determines whether or not pull-up resistors are activated during
configuration. HSWAP_EN = 0 enables the pull-up resistors. HSWAP_EN = 1 disables the pull-up resistors allowing
the pins to float, which is the desired state for hot-swap
applications.
‘L’ indicates differential capability.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Pair Number
Bank 1
IO_L38P_2
B ank 6
B ank 3 Bank 2
Bank 7
Bank 0
Bank 5
IO_L38N_2
Bank Number
Positive Polarity,
True Driver
IO_L39P_2
IO_L39N_2
Negative Polarity,
Inverted Driver
Bank 4
DS099-4_01_042303
Figure 38: Differential Pair Labelling
DUAL Type: Dual-Purpose Configuration and
I/O Pins
These pins serve dual purposes. The user-I/O pins are temporarily borrowed during the configuration process to load
configuration data into the FPGA. After configuration, these
pins are then usually available as a user I/O in the application. If a pin is not applicable to the specific configuration
mode—controlled by the mode select pins M2, M1, and
M0—then the pin behaves as an I/O-type pin.
There are 12 dual-purpose configuration pins on every
package, six of which are part of I/O Bank 4, the other six
part of I/O Bank 5. Only a few of the pins in Bank 4 are used
in the Serial configuration modes.
See “Pin Behavior During Configuration, page 114”.
DS099-4 (v2.4) June 25, 2008
Product Specification
Serial Configuration Modes
This section describes the dual-purpose pins used during
either Master or Slave Serial mode. See Table 74 for Mode
Select pin settings required for Serial modes. All such pins
are in Bank 4 and powered by VCCO_4.
In both the Master and Slave Serial modes, DIN is the serial
configuration data input. The D1-D7 inputs are unused in
serial mode and behave like general-purpose I/O pins.
In all the cases, the configuration data is synchronized to
the rising edge of the CCLK clock signal.
The DIN, DOUT, and INIT_B pins can be retained in the
application to support reconfiguration by setting the Persist
bitstream generation option. However, the serial modes do
not support device readback.
www.xilinx.com
105
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 70: Dual-Purpose Pins Used in Master or Slave Serial Mode
Pin Name
DIN
Direction
Input
Description
Serial Data Input:
During the Master or Slave Serial configuration modes, DIN is the serial configuration data
input, and all data is synchronized to the rising CCLK edge. After configuration, this pin is
available as a user I/O.
This signal is located in Bank 4 and its output voltage determined by VCCO_4.
The BitGen option Persist permits this pin to retain its configuration function in the User
mode.
DOUT
Output
Serial Data Output:
In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of
one FPGA—in either Master or Slave Serial mode—to the DIN input of the next FPGA—in
Slave Serial mode—so that configuration data passes from one to the next, in daisy-chain
fashion. This “daisy chain” permits sequential configuration of multiple FPGAs.
This signal is located in Bank 4 and its output voltage determined by VCCO_4.
The BitGen option Persist permits this pin to retain its configuration function in the User
mode.
INIT_B
Bidirectional
(open-drain)
Initializing Configuration Memory/Configuration Error:
Just after power is applied, the FPGA produces a Low-to-High transition on this pin
indicating that initialization (i.e., clearing) of the configuration memory has finished. Before
entering the User mode, this pin functions as an open-drain output, which requires a pull-up
resistor in order to produce a High logic level. In a multi-FPGA design, tie (wire AND) the
INIT_B pins from all FPGAs together so that the common node transitions High only after
all of the FPGAs have been successfully initialized.
Externally holding this pin Low beyond the initialization phase delays the start of
configuration. This action stalls the FPGA at the configuration step just before the mode
select pins are sampled.
During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by
asserting INIT_B Low.
This signal is located in Bank 4 and its output voltage determined by VCCO_4.
The BitGen option Persist permits this pin to retain its configuration function in the User
mode.
I/O Bank 4 (VCCO_4)
I/O Bank 5 (VCCO_5)
High Nibble
Low Nibble
Configuration Data Byte
D0
D1
D2
D3
D4
D5
D6
D7
0xFC =
1
1
1
1
1
1
0
0
(MSB)
(LSB)
Figure 39: Configuration Data Byte Mapping to D0-D7 Bits
Parallel Configuration Modes (SelectMAP)
This section describes the dual-purpose configuration pins
used during the Master and Slave Parallel configuration
modes, sometimes also called the SelectMAP modes. In
both Master and Slave Parallel configuration modes, D0-D7
form the byte-wide configuration data input. See Table 74
for Mode Select pin settings required for Parallel modes.
106
As shown in Figure 39, D0 is the most-significant bit while
D7 is the least-significant bit. Bits D0-D3 form the high nibble of the byte and bits D4-D7 form the low nibble.
In the Parallel configuration modes, both the VCCO_4 and
VCCO_5 voltage supplies are required and must both equal
the voltage of the attached configuration device, typically
either 2.5V or 3.3V.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Assert Low both the chip-select pin, CS_B, and the
read/write control pin, RDWR_B, to write the configuration
data byte presented on the D0-D7 pins to the FPGA on a
rising-edge of the configuration clock, CCLK. The order of
CS_B and RDWR_B does not matter, although RDWR_B
must be asserted throughout the configuration process. If
RDWR_B is de-asserted during configuration, the FPGA
aborts the configuration operation.
reconfiguration. To use these SelectMAP pins after configuration, set the Persist bitstream generation option.
After configuration, these pins are available as general-purpose user I/O. However, the SelectMAP configuration interface is optionally available for debugging and dynamic
In all the cases, the configuration data and control signals
are synchronized to the rising edge of the CCLK clock signal.
The Readback debugging option, for example, requires the
Persist bitstream generation option. During Readback
mode, assert CS_B Low, along with RDWR_B High, to read
a configuration data byte from the FPGA to the D0-D7 bus
on a rising CCLK edge. During Readback mode, D0-D7 are
output pins.
Table 71: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes
Pin
Name
D0,
D1,
D2,
D3
Direction
Input during
configuration
Output during
readback
Description
Configuration Data Port (high nibble):
Collectively, the D0-D7 pins are the byte-wide configuration data port for the Parallel
(SelectMAP) configuration modes. Configuration data is synchronized to the rising edge of
CCLK clock signal.
The D0-D3 pins are the high nibble of the configuration data byte and located in Bank 4 and
powered by VCCO_4.
The BitGen option Persist permits this pin to retain its configuration function in the User mode.
D4,
D5,
D6,
D7
CS_B
Input during
configuration
Configuration Data Port (low nibble):
Output during
readback
The BitGen option Persist permits this pin to retain its configuration function in the User mode.
Input
The D4-D7 pins are the low nibble of the configuration data byte. However, these signals are
located in Bank 5 and powered by VCCO_5.
Chip Select for Parallel Mode Configuration:
Assert this pin Low, together with RDWR_B to write a configuration data byte from the D0-D7
bus to the FPGA on a rising CCLK edge.
During Readback, assert this pin Low, along with RDWR_B High, to read a configuration data
byte from the FPGA to the D0-D7 bus on a rising CCLK edge.
This signal is located in Bank 5 and powered by VCCO_5.
The BitGen option Persist permits this pin to retain its configuration function in the User mode.
CS_B
DS099-4 (v2.4) June 25, 2008
Product Specification
Function
0
FPGA selected. SelectMAP inputs are valid on the next rising edge of CCLK.
1
FPGA deselected. All SelectMAP inputs are ignored.
www.xilinx.com
107
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 71: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes (Continued)
Pin
Name
Direction
RDWR_B
Input
Description
Read/Write Control for Parallel Mode Configuration:
In Master and Slave Parallel modes, assert this pin Low together with CS_B to write a
configuration data byte from the D0-D7 bus to the FPGA on a rising CCLK edge. Once
asserted during configuration, RDWR_B must remain asserted until configuration is
complete.
During Readback, assert this pin High with CS_B Low to read a configuration data byte from
the FPGA to the D0-D7 bus on a rising CCLK edge.
This signal is located in Bank 5 and powered by VCCO_5.
The BitGen option Persist permits this pin to retain its configuration function in the User mode.
RDWR_B
BUSY
Output
Function
0
If CS_B is Low, then load (write) configuration data to the FPGA.
1
This option is valid only if the Persist bitstream option is set to Yes. If CS_B is
Low, then read configuration data from the FPGA.
Configuration Data Rate Control for Parallel Mode:
In the Slave and Master Parallel modes, BUSY throttles the rate at which configuration data
is loaded. BUSY is only necessary if CCLK operates at greater than 50 MHz. Ignore BUSY
for frequencies of 50 MHz and below.
When BUSY is Low, the FPGA accepts the next configuration data byte on the next rising
CCLK edge for which CS_B and RDWR_B are Low. When BUSY is High, the FPGA ignores
the next configuration data byte. The next configuration data value must be held or reloaded
until the next rising CCLK edge when BUSY is Low. When CS_B is High, BUSY is in a high
impedance state.
BUSY
Function
0
The FPGA is ready to accept the next configuration data byte.
1
The FPGA is busy processing the current configuration data byte and is not
ready to accept the next byte.
Hi-Z
If CS_B is High, then BUSY is high impedance.
This signal is located in Bank 4 and its output voltage is determined by VCCO_4. The BitGen
option Persist permits this pin to retain its configuration function in the User mode.
INIT_B
Bidirectional
(open-drain)
Initializing Configuration Memory/Configuration Error (active-Low):
See description under Serial Configuration Modes, page 105.
JTAG Configuration Mode
In the JTAG configuration mode all dual-purpose configuration pins are unused and behave exactly like user-I/O pins,
as shown in Table 78. See Table 74 for Mode Select pin settings required for JTAG mode.
Dual-Purpose Pin I/O Standard During Configuration
During configuration, the dual-purpose pins default to
CMOS input and output levels for the associated VCCO
voltage supply pins. For example, in the Parallel configuration modes, both VCCO_4 and VCCO_5 are required. If
connected to +2.5V, then the associated pins conform to the
108
LVCMOS25 I/O standard. If connected to +3.3V, then the
pins drive LVCMOS output levels and accept either LVTTL
or LVCMOS input levels.
Dual-Purpose Pin Behavior After Configuration
After the configuration process completes, these pins, if
they were borrowed during configuration, become user-I/O
pins available to the application. If a dual-purpose configuration pin is not used during the configuration process—i.e.,
the parallel configuration pins when using serial
mode—then the pin behaves exactly like a general-purpose
I/O. See I/O Type: Unrestricted, General-purpose I/O
Pins section above.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
One of eight
I/O Banks
One of eight
I/O Banks
One of eight
I/O Banks
VCCO
RREF (1%)
User I/O
VRN
VRN
User I/O
VRP
VRP
RREF (1%)
(a) No termination
(b) Single termination
RREF (1%)
(c) Split termination
DS099-4_03_071304
Figure 40: DCI Termination Types
DCI: User I/O or Digitally Controlled
Impedance Resistor Reference Input
DCI Termination Types
These pins are individual user-I/O pins unless one of the I/O
standards used in the bank requires the Digitally Controlled
Impedance (DCI) feature. If DCI is used, then 1% precision
resistors connected to the VRP_# and VRN_# pins match
the impedance on the input or output buffers of the I/O standards that use DCI within the bank.
The ‘#’ character in the pin name indicates the associated
I/O bank and is an integer, 0 through 7.
There are two DCI pins per I/O bank, except in the CP132
and TQ144 packages, which do not have any DCI inputs for
Bank 5.
VRP and VRN Impedance Resistor Reference
Inputs
The 1% precision impedance-matching resistor attached to
the VRP_# pin controls the pull-up impedance of PMOS
transistor in the input or output buffer. Consequently, the
VRP_# pin must connect to ground. The ‘P’ character in
“VRP” indicates that this pin controls the I/O buffer’s PMOS
transistor impedance. The VRP_# pin is used for both single
and split termination.
The 1% precision impedance-matching resistor attached to
the VRN_# pin controls the pull-down impedance of NMOS
transistor in the input or output buffer. Consequently, the
VRN_# pin must connect to VCCO. The ‘N’ character in
“VRN” indicates that this pin controls the I/O buffer’s NMOS
transistor impedance. The VRN_# pin is only used for split
termination.
Each VRN or VRP reference input requires its own resistor.
A single resistor cannot be shared between VRN or VRP
pins associated with different banks.
During configuration, these pins behave exactly like
user-I/O pins. The associated DCI behavior is not active or
valid until after configuration completes.
Also see Digitally Controlled Impedance (DCI), page 16.
DS099-4 (v2.4) June 25, 2008
Product Specification
If the I/O in an I/O bank do not use the DCI feature, then no
external resistors are required and both the VRP_# and
VRN_# pins are available for user I/O, as shown in
Figure 40a.
If the I/O standards within the associated I/O bank require
single termination—such as GTL_DCI, GTLP_DCI, or
HSTL_III_DCI—then only the VRP_# signal connects to a
1% precision impedance-matching resistor, as shown in
Figure 40b. A resistor is not required for the VRN_# pin.
Finally, if the I/O standards with the associated I/O bank
require
split
termination—such
as
HSTL_I_DCI,
SSTL2_I_DCI, SSTL2_II_DCI, or LVDS_25_DCI and
LVDSEXT_25_DCI receivers—then both the VRP_# and
VRN_# pins connect to separate 1% precision impedance-matching resistors, as shown in Figure 40c. Neither
pin is available for user I/O.
GCLK: Global Clock Buffer Inputs or
General-Purpose I/O Pins
These pins are user-I/O pins unless they specifically connect to one of the eight low-skew global clock buffers on the
device, specified using the IBUFG primitive.
There are eight GCLK pins per device and two each appear
in the top-edge banks, Bank 0 and 1, and the bottom-edge
banks, Banks 4 and 5. See Figure 38 for a picture of bank
labeling.
During configuration, these pins behave exactly like
user-I/O pins.
Also see Global Clock Network, page 41.
CONFIG: Dedicated Configuration Pins
The dedicated configuration pins control the configuration
process and are not available as user-I/O pins. Every package has seven dedicated configuration pins. All CONFIG-type pins are powered by the +2.5V VCCAUX supply.
Also see Configuration, page 45.
www.xilinx.com
109
R
Spartan-3 FPGA Family: Pinout Descriptions
CCLK: Configuration Clock
The configuration clock signal on this pin synchronizes the
reading or writing of configuration data. The CCLK pin is an
input-only pin for the Slave Serial and Slave Parallel configuration modes. In the Master Serial and Master Parallel
configuration modes, the FPGA drives the CCLK pin and
CCLK should be treated as a full bidirectional I/O pin for signal integrity analysis.
Although the CCLK frequency is relatively low, Spartan-3
FPGA output edge rates are fast. Any potential signal integrity problems on the CCLK board trace can cause FPGA
configuration to fail. Therefore, pay careful attention to the
CCLK signal integrity on the printed circuit board. Signal
integrity simulation with IBIS is recommended. For all configuration modes except JTAG, consider the signal integrity
at every CCLK trace destination, including the FPGA’s
CCLK pin.
During configuration, the CCLK pin has a pull-up resistor to
VCCAUX, regardless of the HSWAP_EN pin. After configuration, the CCLK pin is pulled High to VCCAUX by default as
defined by the CclkPin bitstream selection, although this
behavior is programmable. Any clocks applied to CCLK
after configuration are ignored unless the bitstream option
Persist is set to Yes, which retains the configuration interface. Persist is set to No by default. However, if Persist is
set to Yes, then all clock edges are potentially active events,
depending on the other configuration control signals.
The bitstream generator option ConfigRate determines the
frequency of the internally-generated CCLK oscillator
required for the Master configuration modes. The actual frequency is approximate due to the characteristics of the silicon oscillator and varies by up to 50% over the temperature
and voltage range. By default, CCLK operates at approximately 6 MHz. Via the ConfigRate option, the oscillator frequency is set at approximately 3, 6, 12, 25, or 50 MHz. At
power-on, CCLK always starts operation at its lowest frequency. The device does not start operating at the higher
frequency until the ConfigRate control bits are loaded during the configuration process.
PROG_B: Program/Configure Device
This asynchronous pin initiates the configuration or re-configuration processes. A Low-going pulse resets the configuration logic, initializing the configuration memory. This
initialization process cannot finish until PROG_B returns
High. Asserting PROG_B Low for an extended period
delays the configuration process. At power-up, there is
always a pull-up resistor to VCCAUX on this pin, regardless
of the HSWAP_EN input. After configuration, the bitstream
generator option ProgPin determines whether or not the
pull-up resistor is present. By default, the ProgPin option
retains the pull-up resistor.
110
After configuration, hold the PROG_B input High. Any
Low-going pulse on PROG_B, lasting 300 ns or longer,
restarts the configuration process.
Table 72: PROG_B Operation
PROG_B Input
Power-up
Response
Automatically initiates configuration
process.
Low-going pulse
Initiate (re-)configuration process and
continue to completion.
Extended Low
Initiate (re-)configuration process and
stall process at step where
configuration memory is cleared.
Process is stalled until PROG_B
returns High.
1
If the configuration process is started,
continue to completion. If
configuration process is complete,
stay in User mode.
DONE: Configuration Done, Delay Start-Up
Sequence
The FPGA produces a Low-to-High transition on this pin
indicating that the configuration process is complete. The
bitstream generator option DriveDone determines whether
this pin functions as a totem-pole output that can drive High
or as an open-drain output. If configured as an open-drain
output—which is the default behavior—then a pull-up resistor is required to produce a High logic level. There is a bitstream option that provides an internal pull-up resistor,
otherwise an external pull-up resistor is required.
The open-drain option permits the DONE lines of multiple
FPGAs to be tied together, so that the common node transitions High only after all of the FPGAs have completed configuration. Externally holding the open-drain DONE pin Low
delays the start-up sequence, which marks the transition to
user mode.
Once the FPGA enters User mode after completing configuration, the DONE pin no longer drives the DONE pin Low. The bitstream generator option DonePin determines whether or not a
pull-up resistor is present on the DONE pin to pull the pin to
VCCAUX. If the pull-up resistor is eliminated, then the DONE
pin must be pulled High using an external pull-up resistor or
one of the FPGAs in the design must actively drive the DONE
pin High via the DriveDone bitstream generator option.
The bitstream generator option DriveDone causes the FPGA
to actively drive the DONE output High after configuration. This
option should only be used in single-FPGA designs or on the
last FPGA in a multi-FPGA daisy-chain.
By default, the bitstream generator software retains the pull-up
resistor and does not actively drive the DONE pin as highlighted in Table 73. Table 73 shows the interaction of these bitstream options in single- and multi-FPGA designs.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 73: DonePin and DriveDone Bitstream Option Interaction
DonePin
DriveDone
Single- or MultiFPGA Design
Pullnone
No
Single
External pull-up resistor, with value between 330Ω to 3.3kΩ, required on
DONE.
Pullnone
No
Multi
External pull-up resistor, with value between 330Ω to 3.3kΩ, required on
common node connecting to all DONE pins.
Pullnone
Yes
Single
Pullnone
Yes
Multi
Pullup
No
Single
Pullup
No
Multi
Pullup
Yes
Single
Pullup
Yes
Multi
Comments
OK, no external requirements.
DriveDone on last device in daisy-chain only. No external requirements.
OK, but pull-up on DONE pin has slow rise time. May require 330Ω
pull-up resistor for high CCLK frequencies.
External pull-up resistor, with value between 330Ω to 3.3kΩ, required on
common node connecting to all DONE pins.
OK, no external requirements.
DriveDone on last device in daisy-chain only. No external requirements.
M2, M1, M0: Configuration Mode Selection
The M2, M1, and M0 inputs select the FPGA configuration
mode, as described in Table 74. The logic levels applied to
the mode pins are sampled on the rising edge of INIT_B.
Table 74: Spartan-3 Mode Select Settings
Configuration Mode
M2
M1
M0
Master Serial
0
0
0
Slave Serial
1
1
1
Master Parallel
0
1
1
Slave Parallel
1
1
0
JTAG
1
0
1
Reserved
0
0
1
Reserved
0
1
0
Reserved
1
0
0
After Configuration
X
X
X
configuration process, although only until device configuration
completes. A High disables the pull-up resistors during configuration, which is the desired state for some applications.
The dedicated configuration CONFIG pins (CCLK, DONE,
PROG_B, HSWAP_EN, M2, M1, M0), the JTAG pins (TDI,
TMS, TCK, TDO) and the INIT_B always have active pull-up
resistors during configuration, regardless of the value on
HSWAP_EN.
After configuration, HSWAP_EN becomes a "don’t care" input
and any pull-up resistors previously enabled by HSWAP_EN
are disabled. If a user I/O in the application requires a pull-up
resistor after configuration, place a PULLUP primitive on the
associated I/O pin or, for some pins, set the associated bitstream generator option.
Table 75: HSWAP_EN Encoding
HSWAP_EN
During Configuration
0
Enable pull-up resistors on all pins not
actively involved in the configuration
process. Pull-ups are only active until
configuration completes. See Table 78.
1
No pull-up resistors during configuration.
Notes:
1. X = don’t care, either 0 or 1.
Before and during configuration, the mode pins have an internal pull-up resistor to VCCAUX, regardless of the HSWAP_EN
pin. If the mode pins are unconnected, then the FPGA defaults
to the Slave Serial configuration mode. After configuration successfully completes, any levels applied to these input are
ignored. Furthermore, the bitstream generator options M0Pin,
M1Pin, and M2Pin determines whether a pull-up resistor,
pull-down resistor, or no resistor is present on its respective
mode pin, M0, M1, or M2.
HSWAP_EN: Disable Pull-up Resistors During
Configuration
Function
After Configuration, User Mode
X
This pin has no function except during
device configuration.
Notes:
1. X = don’t care, either 0 or 1.
The Bitstream generator option HswapenPin determines
whether a pull-up resistor to VCCAUX, a pull-down resistor,
or no resistor is present on HSWAP_EN after configuration.
As shown in Table 75, a Low on this asynchronous pin enables
pull-up resistors on all user I/Os not actively involved in the
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
111
R
Spartan-3 FPGA Family: Pinout Descriptions
.
Table 76: JTAG Pin Descriptions
Pin Name
Direction
Description
Bitstream Generation Option
TCK
Input
Test Clock: The TCK clock signal synchronizes all
boundary scan operations on its rising edge.
The BitGen option TckPin
determines whether a pull-up
resistor, pull-down resistor or no
resistor is present.
TDI
Input
Test Data Input: TDI is the serial data input for all JTAG
instruction and data registers. This input is sampled on
the rising edge of TCK.
The BitGen option TdiPin
determines whether a pull-up
resistor, pull-down resistor or no
resistor is present.
TMS
Input
Test Mode Select: The TMS input controls the
sequence of states through which the JTAG TAP state
machine passes. This input is sampled on the rising
edge of TCK.
The BitGen option TmsPin
determines whether a pull-up
resistor, pull-down resistor or no
resistor is present.
TDO
Output
Test Data Output: The TDO pin is the data output for
all JTAG instruction and data registers. This output is
sampled on the rising edge of TCK. The TDO output is
an active totem-pole driver and is not like the
open-collector TDO output on Virtex®-II Pro FPGAs.
The BitGen option TdoPin
determines whether a pull-up
resistor, pull-down resistor or no
resistor is present.
JTAG: Dedicated JTAG Port Pins
These pins are dedicated connections to the four-wire IEEE
1532/IEEE 1149.1 JTAG port, shown in Figure 41 and
described in Table 76. The JTAG port is used for boundary-scan testing, device configuration, application debugging, and possibly an additional serial port for the
application. These pins are dedicated and are not available
as user-I/O pins. Every package has four dedicated JTAG
pins and these pins are powered by the +2.5V VCCAUX
supply.
For additional information on JTAG configuration, see
Boundary-Scan (JTAG) Mode, page 49.
JTAG Port
TDI
Data In
TMS
Mode Select
Data Out
Table 77: Spartan-3 JTAG IDCODE Register Values
(hexadecimal)
Part Number
IDCODE Register
XC3S50
0x0140C093
XC3S200
0x01414093
XC3S400
0x0141C093
XC3S1000
0x01428093
XC3S1500
0x01434093
XC3S2000
0x01440093
XC3S4000
0x01448093
XC3S5000
0x01450093
TDO
Using JTAG Port After Configuration
TCK
Clock
DS099-4_04_042103
Figure 41: JTAG Port
IDCODE Register
Spartan-3 FPGAs contain a 32-bit identification register
called the IDCODE register, as defined in the IEEE 1149.1
JTAG standard. The fixed value electrically identifies the
manufacture (Xilinx) and the type of device being addressed
over a JTAG chain. This register allows the JTAG host to
identify the device being tested or programmed via JTAG.
112
The JTAG port is always active and available before, during,
and after FPGA configuration. Add the BSCAN_SPARTAN3
primitive to the design to create user-defined JTAG instructions and JTAG chains to communicate with internal logic.
Furthermore, the contents of the User ID register within the
JTAG port can be specified as a Bitstream Generation
option. By default, the 32-bit User ID register contains
0xFFFFFFFF.
Precautions When Using the JTAG Port in 3.3V
Environments
The JTAG port is powered by the +2.5V VCCAUX power
supply. When connecting to a 3.3V interface, the JTAG input
pins must be current-limited using a series resistor. Similarly, the TDO pin is a CMOS output powered from +2.5V.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
The TDO output can directly drive a 3.3V input but with
reduced noise immunity. See 3.3V-Tolerant Configuration
Interface, page 46 or XAPP453: The 3.3V Configuration of
Spartan-3 FPGAs for additional details.
The following interface precautions are recommended when
connecting the JTAG port to a 3.3V interface.
1. Avoid actively driving the JTAG input signals High with
3.3V signal levels. If required in the application, use
series current-limiting resistors to keep the current
below 10 mA per pin.
2. If possible, drive the FPGA JTAG inputs with drivers that
can be placed in high-impedance (Hi-Z) after using the
JTAG port. Alternatively, drive the FPGA JTAG inputs
with open-drain outputs, which only drive Low. In both
cases, pull-up resistors are required. The FPGA JTAG
pins have pull-up resistors to VCCAUX before
configuration and optional pull-up resistors after
configuration, controlled by Bitstream Options,
page 117.
VREF: User I/O or Input Buffer Reference
Voltage for Special Interface Standards
These pins are individual user-I/O pins unless collectively
they supply an input reference voltage, VREF_#, for any
SSTL, HSTL, GTL, or GTLP I/Os implemented in the associated I/O bank.
The ‘#’ character in the pin name represents an integer, 0
through 7, that indicates the associated I/O bank.
The VREF function becomes active for this pin whenever a
signal standard requiring a reference voltage is used in the
associated bank.
If used as a user I/O, then each pin behaves as an independent I/O described in the I/O type section. If used for a reference voltage within a bank, then all VREF pins within the
bank must be connected to the same reference voltage.
Spartan-3 devices are designed and characterized to support certain I/O standards when VREF is connected to
+1.25V, +1.10V, +1.00V, +0.90V, +0.80V, and +0.75V.
tion. In both the pinout tables and the footprint diagrams,
unconnected pins are noted with either a black diamond
symbol (‹) or a black square symbol („).
If designing for footprint compatibility across multiple device
densities, check the pin types of the other Spartan-3
devices available in the same footprint. If the N.C. pin
matches to VREF pins in other devices, and the VREF pins
are used in the associated I/O bank, then connect the N.C.
to the VREF voltage source.
VCCO Type: Output Voltage Supply for I/O
Bank
Each I/O bank has its own set of voltage supply pins that
determines the output voltage for the output buffers in the
I/O bank. Furthermore, for some I/O standards such as
LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input
threshold voltage on the associated input buffers.
Spartan-3 devices are designed and characterized to support various I/O standards for VCCO values of +1.2V, +1.5V,
+1.8V, +2.5V, and +3.3V.
Most VCCO pins are labeled as VCCO_# where the ‘#’
symbol represents the associated I/O bank number, an integer ranging from 0 to 7. In the 144-pin TQFP package
(TQ144) however, the VCCO pins along an edge of the
device are combined into a single VCCO input. For example, the VCCO inputs for Bank 0 and Bank 1 along the top
edge of the package are combined and relabeled
VCCO_TOP. The bottom, left, and right edges are similarly
combined.
In Serial configuration mode, VCCO_4 must be at a level
compatible with the attached configuration memory or data
source. In Parallel configuration mode, both VCCO_4 and
VCCO_5 must be at the same compatible voltage level.
All VCCO inputs to a bank must be connected together and
to the voltage supply. Furthermore, there must be sufficient
supply decoupling to guarantee problem-free operation, as
described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.
During configuration, the VREF pins behave exactly like
user-I/O pins.
VCCINT Type: Voltage Supply for Internal
Core Logic
If designing for footprint compatibility across the range of
devices in a specific package, and if the VREF_# pins within
a bank connect to an input reference voltage, then also connect any N.C. (not connected) pins on the smaller devices in
that package to the input reference voltage. More details are
provided later for each package type.
Internal core logic circuits such as the configurable logic
blocks (CLBs) and programmable interconnect operate
from the VCCINT voltage supply inputs. VCCINT must be
+1.2V.
N.C. Type: Unconnected Package Pins
Pins marked as “N.C.” are unconnected for the specific
device/package combination. For other devices in this same
package, this pin may be used as an I/O or VREF connec-
DS099-4 (v2.4) June 25, 2008
Product Specification
All VCCINT inputs must be connected together and to the
+1.2V voltage supply. Furthermore, there must be sufficient
supply decoupling to guarantee problem-free operation, as
described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.
www.xilinx.com
113
R
Spartan-3 FPGA Family: Pinout Descriptions
VCCAUX Type: Voltage Supply for Auxiliary
Logic
JTAG configuration mode, none of the DUAL-type pins are
used for configuration and all behave as user-I/O pins.
The VCCAUX pins supply power to various auxiliary circuits, such as to the Digital Clock Managers (DCMs), the
JTAG pins, and to the dedicated configuration pins (CONFIG type). VCCAUX must be +2.5V.
All DUAL-type pins not actively used during configuration
and all I/O-type, DCI-type, VREF-type, GCLK-type pins are
high impedance (floating, three-stated, Hi-Z) during the
configuration process. These pins are indicated in Table 78
as shaded table entries or cells. These pins have a pull-up
resistor to their associated VCCO if the HSWAP_EN pin is
Low. When HSWAP_EN is High, these pull-up resistors are
disabled during configuration.
All VCCAUX inputs must be connected together and to the
+2.5V voltage supply. Furthermore, there must be sufficient
supply decoupling to guarantee problem-free operation, as
described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.
Because VCCAUX connects to the DCMs and the DCMs
are sensitive to voltage changes, be sure that the VCCAUX
supply and the ground return paths are designed for low
noise and low voltage drop, especially that caused by a
large number of simultaneous switching I/Os.
Some pins always have an active pull-up resistor during
configuration, regardless of the value applied to the
HSWAP_EN pin. After configuration, these pull-up resistors
are controlled by Bitstream Options.
•
GND Type: Ground
•
All GND pins must be connected and have a low resistance
path back to the various VCCO, VCCINT, and VCCAUX
supplies.
•
Pin Behavior During Configuration
Table 78 shows how various pins behave during the FPGA
configuration process. The actual behavior depends on the
values applied to the M2, M1, and M0 mode select pins and
the HSWAP_EN pin. The mode select pins determine which
of the DUAL type pins are active during configuration. In
All the dedicated CONFIG-type configuration pins
(CCLK, PROG_B, DONE, M2, M1, M0, and
HSWAP_EN) have a pull-up resistor to VCCAUX.
All JTAG-type pins (TCK, TDI, TMS, TDO) have a
pull-up resistor to VCCAUX.
The INIT_B DUAL-purpose pin has a pull-up resistor to
VCCO_4 or VCCO_BOTTOM, depending on package
style.
After configuration completes, some pins have optional
behavior controlled by the configuration bitstream loaded
into the part. For example, via the bitstream, all unused I/O
pins can be collectively configured as input pins with either
a pull-up resistor, a pull-down resistor, or be left in a
high-impedance state.
Table 78: Pin Behavior After Power-Up, During Configuration
Configuration Mode Settings <M2:M1:M0>
Serial Modes
Pin Name
Master
<0:0:0>
Slave
<1:1:1>
SelectMap Parallel Modes
Master
<0:1:1>
Slave
<1:1:0>
JTAG Mode
<1:0:1>
Bitstream
Configuration
Option
I/O: General-purpose I/O pins
IO
UnusedPin
IO_Lxxy_#
UnusedPin
DUAL: Dual-purpose configuration pins
IO_Lxxy_#/
DIN/D0
D0 (I/O)
D0 (I/O)
Persist
UnusedPin
IO_Lxxy_#/
D1
D1 (I/O)
D1 (I/O)
Persist
UnusedPin
IO_Lxxy_#/
D2
D2 (I/O)
D2 (I/O)
Persist
UnusedPin
IO_Lxxy_#/
D3
D3 (I/O)
D3 (I/O)
Persist
UnusedPin
IO_Lxxy_#/
D4
D4 (I/O)
D4 (I/O)
Persist
UnusedPin
114
DIN (I)
DIN (I)
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 78: Pin Behavior After Power-Up, During Configuration (Continued)
Configuration Mode Settings <M2:M1:M0>
Serial Modes
Slave
<1:1:0>
IO_Lxxy_#/
D5
D5 (I/O)
D5 (I/O)
Persist
UnusedPin
IO_Lxxy_#/
D6
D6 (I/O)
D6 (I/O)
Persist
UnusedPin
IO_Lxxy_#/
D7
D7 (I/O)
D7 (I/O)
Persist
UnusedPin
IO_Lxxy_#/
CS_B
CS_B (I)
CS_B (I)
Persist
UnusedPin
IO_Lxxy_#/
RDWR_B
RDWR_B (I)
RDWR_B (I)
Persist
UnusedPin
BUSY (O)
BUSY (O)
Persist
UnusedPin
IO_Lxxy_#/
BUSY/DOUT
DOUT (O)
Slave
<1:1:1>
DOUT (O)
JTAG Mode
<1:0:1>
Bitstream
Configuration
Option
Master
<0:1:1>
Pin Name
Master
<0:0:0>
SelectMap Parallel Modes
DUAL: Dual-purpose configuration pins (INIT_B has a pull-up resistor to VCCO_4 or VCCO_BOTTOM always active
during configuration, regardless of HSWAP_EN pin)
IO_Lxxy_#/
INIT_B
INIT_B (I/OD)
INIT_B (I/OD)
INIT_B (I/OD)
INIT_B (I/OD)
UnusedPin
DCI: Digitally Controlled Impedance reference resistor input pins
IO_Lxxy_#/
VRN_#
UnusedPin
IO/VRN_#
UnusedPin
IO_Lxxy_#/
VRP_#
UnusedPin
IO/VRP_#
UnusedPin
GCLK: Global clock buffer inputs
IO_Lxxy_#/
GCLK0 through
GCLK7
UnusedPin
VREF: I/O bank input reference voltage pins
IO_Lxxy_#/
VREF_#
UnusedPin
IO/VREF_#
UnusedPin
CONFIG: Dedicated configuration pins (pull-up resistor to VCCAUX always active during configuration, regardless of
HSWAP_EN pin)
CCLK
CCLK (I/O)
CCLK (I)
CCLK (I/O)
CCLK (I)
PROG_B
PROG_B (I)
(pull-up)
PROG_B (I)
(pull-up)
PROG_B (I)
(pull-up)
PROG_B (I)
(pull-up)
PROG_B (I),
Via JPROG_B
instruction
ProgPin
DONE
DONE (I/OD)
DONE (I/OD)
DONE (I/OD)
DONE (I/OD)
DONE (I/OD)
DriveDone
DonePin
DonePipe
M2=0 (I)
M2=1 (I)
M2=0 (I)
M2=1 (I)
M2=1 (I)
M2Pin
M2
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
CclkPin
ConfigRate
115
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 78: Pin Behavior After Power-Up, During Configuration (Continued)
Configuration Mode Settings <M2:M1:M0>
Serial Modes
SelectMap Parallel Modes
Master
<0:0:0>
Slave
<1:1:1>
Master
<0:1:1>
Slave
<1:1:0>
JTAG Mode
<1:0:1>
Bitstream
Configuration
Option
M1
M1=0 (I)
M1=1 (I)
M1=1 (I)
M1=1 (I)
M1=0 (I)
M1Pin
M0
M0=0 (I)
M0=1 (I)
M0=1 (I)
M0=0 (I)
M0=1 (I)
M0Pin
HSWAP_EN
(I)
HSWAP_EN
(I)
HSWAP_EN
(I)
HSWAP_EN
(I)
HSWAP_EN
(I)
HswapenPin
Pin Name
HSWAP_EN
JTAG: JTAG interface pins (pull-up resistor to VCCAUX always active during configuration, regardless of HSWAP_EN pin)
TDI
TDI (I)
TDI (I)
TDI (I)
TDI (I)
TDI (I)
TdiPin
TMS
TMS (I)
TMS (I)
TMS (I)
TMS (I)
TMS (I)
TmsPin
TCK
TCK (I)
TCK (I)
TCK (I)
TCK (I)
TCK (I)
TckPin
TDO
TDO (O)
TDO (O)
TDO (O)
TDO (O)
TDO (O)
TdoPin
VCCO: I/O bank output voltage supply pins
VCCO_4
(for DUAL pins)
Same voltage
as external
interface
Same voltage
as external
interface
Same voltage
as external
interface
Same voltage
as external
interface
VCCO_4
VCCO_5
(for DUAL pins)
VCCO_5
VCCO_5
Same voltage
as external
interface
Same voltage
as external
interface
VCCO_5
VCCO_#
VCCO_#
VCCO_#
VCCO_#
VCCO_#
VCCO_#
+2.5V
+2.5V
+2.5V
+1.2V
+1.2V
+1.2V
+1.2V
GND
GND
GND
GND
VCCAUX: Auxiliary voltage supply pins
VCCAUX
+2.5V
+2.5V
VCCINT: Internal core voltage supply pins
VCCINT
+1.2V
GND: Ground supply pins
GND
GND
Notes:
1. #= I/O bank number, an integer from 0 to 7.
2. (I) = input, (O) = output, (OD) = open-drain output, (I/O) = bidirectional, (I/OD) = bidirectional with open-drain output. Open-drain
output requires pull-up to create logic High level.
3.
Shaded cell indicates that the pin is high-impedance during configuration. To enable a soft pull-up resistor during configuration,
drive or tie HSWAP_EN Low.
116
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Bitstream Options
Table 79 lists the various bitstream options that affect pins
on a Spartan-3 FPGA. The table shows the names of the
affected pins, describes the function of the bitstream option,
the name of the bitstream generator option variable, and the
legal values for each variable. The default option setting for
each variable is indicated with bold, underlined text.
Table 79: Bitstream Options Affecting Spartan-3 Pins
Affected Pin
Name(s)
Bitstream Generation Function
Option
Variable
Name
Values
(default
value)
All unused I/O pins of
type I/O, DUAL,
GCLK, DCI, VREF
For all I/O pins that are unused in the application after
configuration, this option defines whether the I/Os are individually
tied to VCCO via a pull-up resistor, tied ground via a pull-down
resistor, or left floating. If left floating, the unused pins should be
connected to a defined logic level, either from a source internal to
the FPGA or external.
UnusedPin
•
•
•
Pulldown
Pullup
Pullnone
IO_Lxxy_#/DIN,
IO_Lxxy_#/DOUT,
IO_Lxxy_#/INIT_B
Serial configuration mode: If set to Yes, then these pins retain their
functionality after configuration completes, allowing for device
(re-)configuration. Readback is not supported in with serial mode.
Persist
•
•
No
Yes
IO_Lxxy_#/D0,
IO_Lxxy_#/D1,
IO_Lxxy_#/D2,
IO_Lxxy_#/D3,
IO_Lxxy_#/D4,
IO_Lxxy_#/D5,
IO_Lxxy_#/D6,
IO_Lxxy_#/D7,
IO_Lxxy_#/CS_B,
IO_Lxxy_#/RDWR_B,
IO_Lxxy_#/BUSY,
IO_Lxxy_#/INIT_B
Parallel configuration mode (also called SelectMAP): If set to Yes,
then these pins retain their SelectMAP functionality after
configuration completes, allowing for device readback and for
partial or complete (re-)configuration.
Persist
•
•
No
Yes
CCLK
After configuration, this bitstream option either pulls CCLK to
VCCAUX via a pull-up resistor, or allows CCLK to float.
CclkPin
•
•
Pullup
Pullnone
CCLK
For Master configuration modes, this option sets the approximate
frequency, in MHz, for the internal silicon oscillator.
PROG_B
A pull-up resistor to VCCAUX exists on PROG_B during
configuration. After configuration, this bitstream option either
pulls PROG_B to VCCAUX via a pull-up resistor, or allows
PROG_B to float.
ProgPin
•
•
Pullup
Pullnone
DONE
After configuration, this bitstream option either pulls DONE to
VCCAUX via a pull-up resistor, or allows DONE to float. See also
DriveDone option.
DonePin
•
•
Pullup
Pullnone
DONE
If set to Yes, this option allows the FPGA’s DONE pin to drive High
when configuration completes. By default, the DONE is an
open-drain output and can only drive Low. Only single FPGAs and
the last FPGA in a multi-FPGA daisy-chain should use this option.
DriveDone
•
•
No
Yes
M2
After configuration, this bitstream option either pulls M2 to
VCCAUX via a pull-up resistor, to ground via a pull-down resistor,
or allows M2 to float.
M2Pin
M1
After configuration, this bitstream option either pulls M1 to
VCCAUX via a pull-up resistor, to ground via a pull-down resistor,
or allows M1 to float.
M1Pin
•
•
•
•
•
•
Pullup
Pulldown
Pullnone
Pullup
Pulldown
Pullnone
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
ConfigRate
3, 6, 12, 25,
50
117
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 79: Bitstream Options Affecting Spartan-3 Pins (Continued)
Affected Pin
Name(s)
Bitstream Generation Function
M0
After configuration, this bitstream option either pulls M0 to
VCCAUX via a pull-up resistor, to ground via a pull-down resistor,
or allows M0 to float.
HSWAP_EN
After configuration, this bitstream option either pulls HSWAP_EN
to VCCAUX via a pull-up resistor, to ground via a pull-down
resistor, or allows HSWAP_EN to float.
TDI
After configuration, this bitstream option either pulls TDI to
VCCAUX via a pull-up resistor, to ground via a pull-down resistor,
or allows TDI to float.
TMS
After configuration, this bitstream option either pulls TMS to
VCCAUX via a pull-up resistor, to ground via a pull-down resistor,
or allows TMS to float.
TCK
After configuration, this bitstream option either pulls TCK to
VCCAUX via a pull-up resistor, to ground via a pull-down resistor,
or allows TCK to float.
TDO
After configuration, this bitstream option either pulls TDO to
VCCAUX via a pull-up resistor, to ground via a pull-down resistor,
or allows TDO to float.
Option
Variable
Name
•
•
•
HswapenPin •
•
•
•
TdiPin
•
•
•
TmsPin
•
•
•
TckPin
•
•
•
TdoPin
•
•
M0Pin
Values
(default
value)
Pullup
Pulldown
Pullnone
Pullup
Pulldown
Pullnone
Pullup
Pulldown
Pullnone
Pullup
Pulldown
Pullnone
Pullup
Pulldown
Pullnone
Pullup
Pulldown
Pullnone
Setting Bitstream Generator Options
Refer to the “BitGen” chapter in the Xilinx ISE® software
documentation.
118
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Package Overview
Table 80 shows the 10 low-cost, space-saving production
package styles for the Spartan-3 family. Each package style
is available as a standard and an environmentally-friendly
lead-free (Pb-free) option. The Pb-free packages include an
extra ‘G’ in the package style name. For example, the standard "VQ100" package becomes "VQG100" when ordered
as the Pb-free option. The mechanical dimensions of the
standard and Pb-free packages are similar, as shown in the
mechanical drawings provided in Table 82.
Not all Spartan-3 densities are available in all packages.
However, for a specific package there is a common footprint
for that supports the various devices available in that package. See the footprint diagrams that follow.
Table 80: Spartan-3 Family Package Options
Maximum
I/O
Pitch
(mm)
Area
(mm)
Height
(mm)
Very-thin Quad Flat Pack
63
0.5
16 x 16
1.20
132
Chip-Scale Package
89
0.5
8x8
1.10
TQ144 / TQG144
144
Thin Quad Flat Pack
97
0.5
22 x 22
1.60
PQ208 / PQG208
208
Quad Flat Pack
141
0.5
30.6 x 30.6
4.10
FT256 / FTG256
256
Fine-pitch, Thin Ball Grid Array
173
1.0
17 x 17
1.55
FG320 / FGG320
320
Fine-pitch Ball Grid Array
221
1.0
19 x 19
2.00
FG456 / FGG456
456
Fine-pitch Ball Grid Array
333
1.0
23 x 23
2.60
FG676 / FGG676
676
Fine-pitch Ball Grid Array
489
1.0
27 x 27
2.60
FG900 / FGG900
900
Fine-pitch Ball Grid Array
633
1.0
31 x 31
2.60
1156
Fine-pitch Ball Grid Array
784
1.0
35 x 35
2.60
Package
Leads
VQ100 / VQG100
100
CP132 / CPG132
FG1156 /
FGG1156(1)
Type
Notes:
1. The FG(G)1156 package is being discontinued and is not recommended for new designs. See
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm for the latest updates.
Selecting the Right Package Option
Spartan-3 FPGAs are available in both quad-flat pack
(QFP) and ball grid array (BGA) packaging options. While
QFP packaging offers the lowest absolute cost, the BGA
packages are superior in almost every other aspect, as
summarized in Table 81. Consequently, Xilinx recommends
using BGA packaging whenever possible.
Table 81: Comparing Spartan-3 Packaging Options
Characteristic
Maximum User I/O
Packing Density (Logic/Area)
Signal Integrity
Simultaneous Switching Output (SSO) Support
Thermal Dissipation
Minimum Printed Circuit Board (PCB) Layers
Hand Assembly/Rework
DS099-4 (v2.4) June 25, 2008
Product Specification
Quad Flat-Pack (QFP)
Ball Grid Array (BGA)
141
633
Good
Better
Fair
Better
Limited
Better
Fair
Better
4
6
Possible
Very Difficult
www.xilinx.com
119
R
Spartan-3 FPGA Family: Pinout Descriptions
Mechanical Drawings
Detailed mechanical drawings for each package type are
available from the Xilinx website at the specified location in
Table 82.
Material Declaration Data Sheets (MDDS) are also available on the Xilinx website for each package.
Table 82: Xilinx Package Mechanical Drawings
Package
Web Link (URL)
VQ100 / VQG100
http://www.xilinx.com/support/documentation/package_specs/vq100.pdf
CP132/ CPG132
http://www.xilinx.com/support/documentation/package_specs/cp132.pdf
TQ144 / TQG144
http://www.xilinx.com/support/documentation/package_specs/tq144.pdf
PQ208 / PQG208
http://www.xilinx.com/support/documentation/package_specs/pq208.pdf
FT256 / FTG256
http://www.xilinx.com/support/documentation/package_specs/ft256.pdf
FG320 / FGG320
http://www.xilinx.com/support/documentation/package_specs/fg320.pdf
FG456 / FGG456
http://www.xilinx.com/support/documentation/package_specs/fg456.pdf
FG676 / FGG676
http://www.xilinx.com/support/documentation/package_specs/fg676.pdf
FG900 /FGG900
http://www.xilinx.com/support/documentation/package_specs/fg900.pdf
FG1156 / FGG1156(1)
http://www.xilinx.com/support/documentation/package_specs/fg1156.pdf
Notes:
1. The FG(G)1156 package is being discontinued and is not recommended for new designs. See
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm for the latest updates.
Power, Ground, and I/O by Package
Each package has three separate voltage supply
inputs—VCCINT, VCCAUX, and VCCO—and a common
ground return, GND. The numbers of pins dedicated to
these functions varies by package, as shown in Table 83.
Table 83: Power and Ground Supply Pins by Package
Package
VCCINT
VCCAUX
VCCO
GND
VQ100
4
4
8
10
CP132
4
4
12
12
TQ144
4
4
12
16
PQ208
4
8
12
28
FT256
8
8
24
32
FG320
12
8
28
40
FG456
12
8
40
52
FG676
20
16
64
76
FG900
32
24
80
120
FG1156(1)
40
32
104
184
A majority of package pins are user-defined I/O pins. However, the numbers and characteristics of these I/O depends
on the device type and the package in which it is available,
as shown in Table 84. The table shows the maximum number of single-ended I/O pins available, assuming that all
I/O-, DUAL-, DCI-, VREF-, and GCLK-type pins are used as
general-purpose I/O. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user
I/Os are distributed by pin type, including the number of
unconnected—i.e., N.C.—pins on the device.
Notes:
1. The FG(G)1156 package is being discontinued and is not
recommended for new designs. See
http://www.xilinx.com/support/documentation/
spartan-3_customer_notices.htm for the latest updates.
120
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 84: Maximum User I/Os by Package
Maximum
Differential
Pairs
All Possible I/O Pins by Type
I/O
DUAL
DCI
VREF
GCLK
N.C.
Device
Package
Maximum
User I/Os
XC3S50
VQ100
63
29
22
12
14
7
8
0
XC3S200
VQ100
63
29
22
12
14
7
8
0
XC3S50
CP132
89
44
44
12
14
11
8
0
XC3S50
TQ144
97
46
51
12
14
12
8
0
XC3S200
TQ144
97
46
51
12
14
12
8
0
XC3S400
TQ144
97
46
51
12
14
12
8
0
XC3S50
PQ208
124
56
72
12
16
16
8
17
XC3S200
PQ208
141
62
83
12
16
22
8
0
XC3S400
PQ208
141
62
83
12
16
22
8
0
XC3S200
FT256
173
76
113
12
16
24
8
0
XC3S400
FT256
173
76
113
12
16
24
8
0
XC3S1000
FT256
173
76
113
12
16
24
8
0
XC3S400
FG320
221
100
156
12
16
29
8
0
XC3S1000
FG320
221
100
156
12
16
29
8
0
XC3S1500
FG320
221
100
156
12
16
29
8
0
XC3S400
FG456
264
116
196
12
16
32
8
69
XC3S1000
FG456
333
149
261
12
16
36
8
0
XC3S1500
FG456
333
149
261
12
16
36
8
0
XC3S2000
FG456
333
149
261
12
16
36
8
0
XC3S1000
FG676
391
175
315
12
16
40
8
98
XC3S1500
FG676
487
221
403
12
16
48
8
2
XC3S2000
FG676
489
221
405
12
16
48
8
0
XC3S4000
FG676
489
221
405
12
16
48
8
0
XC3S5000
FG676
489
221
405
12
16
48
8
0
XC3S2000
FG900
565
270
481
12
16
48
8
68
XC3S4000
FG900
633
300
549
12
16
48
8
0
XC3S5000
FG900
633
300
549
12
16
48
8
0
XC3S4000
FG1156(1)
712
312
621
12
16
55
8
73
XC3S5000
FG1156(1)
784
344
692
12
16
56
8
1
Notes:
1. The FG(G)1156 package is being discontinued and is not recommended for new designs. See
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm for the latest updates.
Electronic versions of the package pinout tables and footprints are available for download from the Xilinx website.
Using a spreadsheet program, the data can be sorted and
reformatted according to any specific needs. Similarly, the
DS099-4 (v2.4) June 25, 2008
Product Specification
ASCII-text file is easily parsed by most scripting programs.
Download the files from the following location:
http://www.xilinx.com/support/documentation/
data_sheets/s3_pin.zip
www.xilinx.com
121
R
Spartan-3 FPGA Family: Pinout Descriptions
Package Thermal Characteristics
The power dissipated by an FPGA application has implications on package selection and system design. The power
consumed by a Spartan-3 FPGA is reported using either
the XPower Estimator (XPE) or the XPower Analyzer integrated in the Xilinx ISE development software. Table 85 provides the thermal characteristics for the various Spartan-3
package offerings.
The junction-to-case thermal resistance (θJC) indicates the
difference between the temperature measured on the pack-
122
age body (case) and the die junction temperature per watt
of power consumption. The junction-to-board (θJB) value
similarly reports the difference between the board and junction temperature. The junction-to-ambient (θJA) value
reports the temperature difference per watt between the
ambient environment and the junction temperature. The θJA
value is reported at different air velocities, measured in linear feet per minute (LFM). The “Still Air (0 LFM)” column
shows the θJA value in a system without a fan. The thermal
resistance drops with increasing air flow.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 85: Spartan-3 Package Thermal Characteristics
Junction-to-Ambient (θJA)
at Different Air Flows
Units
Junction-toCase (θJC)
Junction-toBoard (θJB)
Still Air
(0 LFM)
250 LFM
500 LFM
750 LFM
XC3S50
12.0
-
46.2
38.4
35.8
34.9
XC3S200
10.0
-
40.5
33.7
31.3
30.5
CP(G)132
XC3S50
14.5
32.8
53.0
46.4
44.0
42.5
TQ(G)144
XC3S50
7.6
-
41.0
31.9
27.2
25.6
XC3S200
6.6
-
34.5
26.9
23.0
21.6
XC3S400
6.1
-
32.8
25.5
21.8
20.4
XC3S50
10.6
-
37.4
27.6
24.4
22.6
XC3S200
8.6
-
36.2
26.7
23.6
21.9
XC3S400
7.5
-
35.4
26.1
23.1
21.4
XC3S200
9.9
22.9
31.7
25.6
24.5
24.2
XC3S400
7.9
19.0
28.4
22.8
21.5
21.0
XC3S1000
5.6
14.7
24.8
19.2
18.0
17.5
XC3S400
8.9
13.9
24.4
19.0
17.8
17.0
XC3S1000
7.8
11.8
22.3
17.0
15.8
15.0
XC3S1500
6.7
9.8
20.3
15.18
13.8
13.1
XC3S400
8.4
13.6
20.8
15.1
13.9
13.4
XC3S1000
6.4
10.6
19.3
13.4
12.3
11.7
XC3S1500
4.9
8.3
18.3
12.4
11.2
10.7
XC3S2000
3.7
6.5
17.7
11.7
10.5
10.0
XC3S1000
6.0
10.4
17.9
13.7
12.6
12.0
XC3S1500
4.9
8.8
16.8
12.4
11.3
10.7
XC3S2000
4.1
7.9
15.6
11.1
9.9
9.3
XC3S4000
3.6
7.0
15.0
10.5
9.3
8.7
XC3S5000
3.4
6.3
14.7
10.3
9.1
8.5
XC3S2000
3.7
7.0
14.3
10.3
9.3
8.8
XC3S4000
3.3
6.4
13.6
9.7
8.7
8.2
XC3S5000
2.9
5.9
13.1
9.2
8.1
7.6
XC3S4000
1.9
-
14.7
11.4
10.1
9.0
XC3S5000
1.9
8.9
14.5
11.3
10.0
8.9
Package
VQ(G)100
PQ(G)208
FT(G)256
FG(G)320
FG(G)456
FG(G)676
FG(G)900
FG(G)1156(1)
Device
°C/Watt
Notes:
1. The FG(G)1156 package is being discontinued and is not recommended for new designs. See
http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm for the latest updates.
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
123
R
Spartan-3 FPGA Family: Pinout Descriptions
VQ100: 100-lead Very-thin Quad Flat
Package
The XC3S50 and the XC3S200 devices are available in the
100-lead very-thin quad flat package, VQ100. Both devices
share a common footprint for this package as shown in
Table 86 and Figure 42.
Table 86: VQ100 Package Pinout
XC3S50
XC3S200
Pin Name
Bank
3
IO_L01N_3/VRP_3
VQ100 Pin
Number
Type
P54
DCI
3
IO_L01P_3/VRN_3
P53
DCI
All the package pins appear in Table 86 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
3
IO_L24N_3
P61
I/O
3
IO_L24P_3
P60
I/O
3
IO_L40N_3/VREF_3
P63
VREF
3
IO_L40P_3
P62
I/O
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
3
VCCO_3
P57
VCCO
4
IO_L01N_4/VRP_4
P50
DCI
4
IO_L01P_4/VRN_4
P49
DCI
4
IO_L27N_4/DIN/D0
P48
DUAL
Pinout Table
4
IO_L27P_4/D1
P47
DUAL
4
IO_L30N_4/D2
P44
DUAL
4
IO_L30P_4/D3
P43
DUAL
Table 86: VQ100 Package Pinout
XC3S50
XC3S200
Pin Name
Bank
124
VQ100 Pin
Number
4
IO_L31N_4/INIT_B
P42
DUAL
Type
4
IO_L31P_4/DOUT/BUSY
P40
DUAL
GCLK
0
IO_L01N_0/VRP_0
P97
DCI
4
IO_L32N_4/GCLK1
P39
0
IO_L01P_0/VRN_0
P96
DCI
4
IO_L32P_4/GCLK0
P38
GCLK
0
IO_L31N_0
P92
I/O
4
VCCO_4
P46
VCCO
0
IO_L31P_0/VREF_0
P91
VREF
5
IO_L01N_5/RDWR_B
P28
DUAL
0
IO_L32N_0/GCLK7
P90
GCLK
5
IO_L01P_5/CS_B
P27
DUAL
0
IO_L32P_0/GCLK6
P89
GCLK
5
IO_L28N_5/D6
P32
DUAL
0
VCCO_0
P94
VCCO
5
IO_L28P_5/D7
P30
DUAL
1
IO
P81
I/O
5
IO_L31N_5/D4
P35
DUAL
1
IO_L01N_1/VRP_1
P80
DCI
5
IO_L31P_5/D5
P34
DUAL
1
IO_L01P_1/VRN_1
P79
DCI
5
IO_L32N_5/GCLK3
P37
GCLK
1
IO_L31N_1/VREF_1
P86
VREF
5
IO_L32P_5/GCLK2
P36
GCLK
1
IO_L31P_1
P85
I/O
5
VCCO_5
P31
VCCO
1
IO_L32N_1/GCLK5
P88
GCLK
6
IO
P17
I/O
1
IO_L32P_1/GCLK4
P87
GCLK
6
IO
P21
I/O
1
VCCO_1
P83
VCCO
6
IO_L01N_6/VRP_6
P23
DCI
2
IO_L01N_2/VRP_2
P75
DCI
6
IO_L01P_6/VRN_6
P22
DCI
2
IO_L01P_2/VRN_2
P74
DCI
6
IO_L24N_6/VREF_6
P16
VREF
2
IO_L21N_2
P72
I/O
6
IO_L24P_6
P15
I/O
2
IO_L21P_2
P71
I/O
6
IO_L40N_6
P14
I/O
2
IO_L24N_2
P68
I/O
6
IO_L40P_6/VREF_6
P13
VREF
VCCO_6
P19
VCCO
2
IO_L24P_2
P67
I/O
6
2
IO_L40N_2
P65
I/O
7
IO_L01N_7/VRP_7
P2
DCI
2
IO_L40P_2/VREF_2
P64
VREF
7
IO_L01P_7/VRN_7
P1
DCI
2
VCCO_2
P70
VCCO
7
IO_L21N_7
P5
I/O
3
IO
P55
I/O
7
IO_L21P_7
P4
I/O
3
IO
P59
I/O
7
IO_L23N_7
P9
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 86: VQ100 Package Pinout
XC3S50
XC3S200
Pin Name
Bank
Table 86: VQ100 Package Pinout
VQ100 Pin
Number
Type
Bank
XC3S50
XC3S200
Pin Name
VQ100 Pin
Number
Type
7
IO_L23P_7
P8
I/O
N/A
VCCINT
P45
VCCINT
7
IO_L40N_7/VREF_7
P12
VREF
N/A
VCCINT
P69
VCCINT
7
IO_L40P_7
P11
I/O
N/A
VCCINT
P93
VCCINT
7
VCCO_7
P6
VCCO
VCCAUX
CCLK
P52
CONFIG
N/A
GND
P3
GND
VCCAUX
DONE
P51
CONFIG
N/A
GND
P10
GND
VCCAUX
HSWAP_EN
P98
CONFIG
N/A
GND
P20
GND
VCCAUX
M0
P25
CONFIG
N/A
GND
P29
GND
VCCAUX
M1
P24
CONFIG
N/A
GND
P41
GND
VCCAUX
M2
P26
CONFIG
N/A
GND
P56
GND
VCCAUX
PROG_B
P99
CONFIG
N/A
GND
P66
GND
VCCAUX
TCK
P77
JTAG
N/A
GND
P73
GND
VCCAUX
TDI
P100
JTAG
N/A
GND
P82
GND
VCCAUX
TDO
P76
JTAG
N/A
GND
P95
GND
VCCAUX
TMS
P78
JTAG
N/A
VCCAUX
P7
VCCAUX
N/A
VCCAUX
P33
VCCAUX
N/A
VCCAUX
P58
VCCAUX
N/A
VCCAUX
P84
VCCAUX
N/A
VCCINT
P18
VCCINT
User I/Os by Bank
Table 87 indicates how the available user-I/O pins are distributed between the eight I/O banks on the VQ100 package.
Table 87: User I/Os Per Bank in VQ100 Package
Package Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
6
1
0
2
1
2
1
7
2
0
2
1
2
2
8
5
0
2
1
0
3
8
5
0
2
1
0
4
10
0
6
2
0
2
5
8
0
6
0
0
2
6
8
4
0
2
2
0
7
8
5
0
2
1
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
125
R
Spartan-3 FPGA Family: Pinout Descriptions
IO_L01P_7/VRN_7
1
IO_L01N_7/VRP_7
2
GND
IO_L21P_7
IO_L21N_7
IO
IO_L01N_1/VRP_1
IO_L01P_1/VRN_1
TMS
TCK
TDO
80
79
78
77
76
IO_L31P_1
85
GND
IO_L31N_1/VREF_1
86
81
IO_L32P_1/GCLK4
87
VCCO_1
IO_L32N_1/GCLK5
88
82
IO_L32P_0/GCLK6
89
VCCAUX
IO_L32N_0/GCLK7
90
83
IO_L31P_0/VREF_0
91
Bank 0
84
IO_L31N_0
92
GN D
95
VCCINT
IO_L01P_0/VRN_0
96
VCCO_0
IO_L01N_0/VRP_0
97
93
HSWAP_EN
98
94
PROG_B
99
100 TDI
VQ100 Footprint
75
Bank 1
IO_L01N_2/VRP_2
IO_L01P_2/VRN_2
3
73
GND
4
72
IO_L21N_2
5
71
IO_L21P_2
VCCO_7
6
70
VCCO_2
VCCAUX
IO_L23P_7
69
VCCINT
8
68
IO_L24N_2
Bank 7
7
Bank 2
74
67
IO_L24P_2
10
66
GND
11
65
IO_L40N_2
IO_L40N_7/VREF_7
12
64
IO_L40P_2/VREF_2
IO_L40P_6/VREF_6
13
63
IO_L40N_3/VREF_3
IO_L40N_6
14
62
IO_L40P_3
IO_L24P_6
IO_L24N_6/VREF_6
15
61
IO_L24N_3
16
60
IO_L24P_3
59
IO
58
VCCAUX
IO
17
VCCINT
18
VCCO_6
19
GND
Bank 3
9
GND
IO_L40P_7
Bank 6
IO_L23N_7
53
IO_L01P_3/VRN_3
M1
24
Bank 4
52
CCLK
M0
25
(no VREF)
51
DONE
Bank 5
38
39
40
41
42
43
44
45
IO_L32P_4/GCLK0
IO_L32N_4/GCLK1
IO_L31P_4/DOUT/BUSY
GND
IO_L31N_4/INIT_B
IO_L30P_4/D3
IO_L30N_4/D2
VCCINT
37
33
VCCAUX
IO_L32N_5/GCLK3
32
IO_L28N_5/D6
36
31
VCCO_5
IO_L32P_5/GCLK2
30
IO_L28P_5/D7
35
29
GND
34
28
IO_L01N_5/RDWR_B
IO_L31P_5/D5
27
IO_L31N_5/D4
26
M2
IO_L01P_5/CS_B
(no VREF, no DCI)
50
23
IO_L01N_4/VRP_4
IO_L01N_3/VRP_3
IO_L01N_6/VRP_6
49
IO
54
IO_L01P_4/VRN_4
55
22
48
21
IO_L27N_4/DIN/D0
IO
IO_L01P_6/VRN_6
47
GND
46
56
VCCO_4
VCCO_3
20
IO_L27P_4/D1
57
DS099-4_15_042303
Figure 42: VQ100 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
22
14
7
0
126
I/O: Unrestricted, general-purpose user I/O
DCI: User I/O or reference resistor input for
bank
CONFIG: Dedicated configuration pins
N.C.: No unconnected pins in this package
12
DUAL: Configuration pin, then possible
user I/O
7
8
GCLK: User I/O or global clock buffer
input
8
4
10
JTAG: Dedicated JTAG port pins
GND: Ground
www.xilinx.com
4
4
VREF: User I/O or input voltage reference for
bank
VCCO: Output voltage supply for bank
VCCINT: Internal core voltage supply (+1.2V)
VCCAUX: Auxiliary voltage supply (+2.5V)
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
CP132: 132-ball Chip-Scale Package
The XC3S50 is available in the 132-ball chip-scale package,
CP132. The pinout and footprint for this package appear in
Table 88 and Figure 44.
Table 88: CP132 Package Pinout
Bank
XC3S50 Pin Name
CP132
Ball
Type
2
IO_L21N_2
E14
I/O
All the package pins appear in Table 88 and are sorted by
bank number, then by pin name. Pins that form a differential
I/O pair appear together in the table. The table also shows
the pin number for each pin and the pin type, as defined earlier.
2
IO_L21P_2
F12
I/O
2
IO_L23N_2/VREF_2
F13
VREF
2
IO_L23P_2
F14
I/O
2
IO_L24N_2
G12
I/O
The CP132 footprint has eight I/O banks. However, the voltage supplies for the two I/O banks along an edge are connected together internally. Consequently, there are four
output
voltage
supplies,
labeled
VCCO_TOP,
VCCO_RIGHT, VCCO_BOTTOM, and VCCO_LEFT.
2
IO_L24P_2
G13
I/O
2
IO_L40N_2
G14
I/O
2
IO_L40P_2/VREF_2
H12
VREF
3
IO_L01N_3/VRP_3
N13
DCI
3
IO_L01P_3/VRN_3
N14
DCI
3
IO_L20N_3
L12
I/O
3
IO_L20P_3
M14
I/O
3
IO_L22N_3
L14
I/O
3
IO_L22P_3
L13
I/O
3
IO_L23N_3
K13
I/O
3
IO_L23P_3/VREF_3
K12
VREF
3
IO_L24N_3
J12
I/O
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
Pinout Table
Table 88: CP132 Package Pinout
Bank
0
XC3S50 Pin Name
IO_L01N_0/VRP_0
CP132
Ball
Type
A3
DCI
0
IO_L01P_0/VRN_0
C4
DCI
0
IO_L27N_0
C5
I/O
0
IO_L27P_0
B5
I/O
0
IO_L30N_0
B6
I/O
0
IO_L30P_0
A6
I/O
0
IO_L31N_0
C7
I/O
0
IO_L31P_0/VREF_0
B7
VREF
0
IO_L32N_0/GCLK7
A7
GCLK
0
IO_L32P_0/GCLK6
C8
GCLK
1
IO_L01N_1/VRP_1
A13
DCI
1
IO_L01P_1/VRN_1
B13
DCI
1
IO_L27N_1
C11
I/O
1
IO_L27P_1
A12
I/O
1
IO_L28N_1
A11
I/O
1
IO_L28P_1
B11
I/O
1
IO_L31N_1/VREF_1
C9
VREF
1
IO_L31P_1
A10
I/O
1
IO_L32N_1/GCLK5
A8
GCLK
1
IO_L32P_1/GCLK4
A9
GCLK
2
IO_L01N_2/VRP_2
D12
DCI
2
IO_L01P_2/VRN_2
C14
DCI
2
IO_L20N_2
E12
I/O
2
IO_L20P_2
E13
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
3
IO_L24P_3
K14
I/O
3
IO_L40N_3/VREF_3
H14
VREF
3
IO_L40P_3
J13
I/O
4
IO/VREF_4
N12
VREF
4
IO_L01N_4/VRP_4
P12
DCI
4
IO_L01P_4/VRN_4
M11
DCI
4
IO_L27N_4/DIN/D0
M10
DUAL
4
IO_L27P_4/D1
N10
DUAL
4
IO_L30N_4/D2
N9
DUAL
4
IO_L30P_4/D3
P9
DUAL
4
IO_L31N_4/INIT_B
M8
DUAL
4
IO_L31P_4/DOUT/BUSY
N8
DUAL
4
IO_L32N_4/GCLK1
P8
GCLK
4
IO_L32P_4/GCLK0
M7
GCLK
5
IO_L01N_5/RDWR_B
P2
DUAL
5
IO_L01P_5/CS_B
N2
DUAL
5
IO_L27N_5/VREF_5
M4
VREF
5
IO_L27P_5
P3
I/O
5
IO_L28N_5/D6
P4
DUAL
5
IO_L28P_5/D7
N4
DUAL
5
IO_L31N_5/D4
M6
DUAL
5
IO_L31P_5/D5
P5
DUAL
5
IO_L32N_5/GCLK3
P7
GCLK
5
IO_L32P_5/GCLK2
P6
GCLK
6
IO_L01N_6/VRP_6
L3
DCI
www.xilinx.com
127
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 88: CP132 Package Pinout
Bank
128
XC3S50 Pin Name
Table 88: CP132 Package Pinout
CP132
Ball
Type
Bank
XC3S50 Pin Name
CP132
Ball
Type
6
IO_L01P_6/VRN_6
M1
DCI
6,7
VCCO_LEFT
C3
VCCO
6
IO_L20N_6
K3
I/O
N/A
GND
B4
GND
6
IO_L20P_6
K2
I/O
N/A
GND
B9
GND
6
IO_L22N_6
K1
I/O
N/A
GND
C2
GND
6
IO_L22P_6
J3
I/O
N/A
GND
C12
GND
6
IO_L23N_6
J2
I/O
N/A
GND
D14
GND
6
IO_L23P_6
J1
I/O
N/A
GND
F1
GND
6
IO_L24N_6/VREF_6
H3
VREF
N/A
GND
J14
GND
6
IO_L24P_6
H2
I/O
N/A
GND
L1
GND
6
IO_L40N_6
H1
I/O
N/A
GND
M3
GND
6
IO_L40P_6/VREF_6
G3
VREF
N/A
GND
M13
GND
7
IO_L01N_7/VRP_7
B2
DCI
N/A
GND
N6
GND
7
IO_L01P_7/VRN_7
B1
DCI
N/A
GND
N11
GND
7
IO_L21N_7
C1
I/O
N/A
VCCAUX
A5
VCCAUX
7
IO_L21P_7
D3
I/O
N/A
VCCAUX
C10
VCCAUX
7
IO_L22N_7
D1
I/O
N/A
VCCAUX
M5
VCCAUX
7
IO_L22P_7
D2
I/O
N/A
VCCAUX
P10
VCCAUX
7
IO_L23N_7
E2
I/O
N/A
VCCINT
B10
VCCINT
7
IO_L23P_7
E3
I/O
N/A
VCCINT
C6
VCCINT
7
IO_L24N_7
F3
I/O
N/A
VCCINT
M9
VCCINT
7
IO_L24P_7
E1
I/O
N/A
VCCINT
N5
VCCINT
7
IO_L40N_7/VREF_7
G1
VREF
VCCAUX
CCLK
P14
CONFIG
7
IO_L40P_7
F2
I/O
VCCAUX
DONE
P13
CONFIG
0,1
VCCO_TOP
B12
VCCO
VCCAUX
HSWAP_EN
B3
CONFIG
0,1
VCCO_TOP
A4
VCCO
VCCAUX
M0
N1
CONFIG
0,1
VCCO_TOP
B8
VCCO
VCCAUX
M1
M2
CONFIG
2,3
VCCO_RIGHT
D13
VCCO
VCCAUX
M2
P1
CONFIG
2,3
VCCO_RIGHT
H13
VCCO
VCCAUX
PROG_B
A2
CONFIG
2,3
VCCO_RIGHT
M12
VCCO
VCCAUX
TCK
B14
JTAG
4,5
VCCO_BOTTOM
N7
VCCO
VCCAUX
TDI
A1
JTAG
4,5
VCCO_BOTTOM
P11
VCCO
VCCAUX
TDO
C13
JTAG
4,5
VCCO_BOTTOM
N3
VCCO
VCCAUX
TMS
A14
JTAG
6,7
VCCO_LEFT
G2
VCCO
6,7
VCCO_LEFT
L2
VCCO
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
User I/Os by Bank
Table 89 indicates how the 89 available user-I/O pins are
distributed between the eight I/O banks on the CP132 pack-
age. There are only four output banks, each with its own
VCCO voltage input.
Table 89: User I/Os Per Bank for XC3S50 in CP132 Package
Package Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
10
5
0
2
1
2
1
10
5
0
2
1
2
2
12
8
0
2
2
0
3
12
8
0
2
2
0
4
11
0
6
2
1
2
5
10
1
6
0
1
2
6
12
8
0
2
2
0
7
12
9
0
2
1
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
129
R
Spartan-3 FPGA Family: Pinout Descriptions
CP132 Footprint
VCCO_TOP for Top Edge Outputs
4
VCCO_
TOP
5
Bank 1
6
7
8
9
10
VCCAUX
I/O
L30P_0
I/O
L32N_0
GCLK7
I/O
L32N_1
GCLK5
I/O
L32P_1
GCLK4
I/O
L31P_1
11
12
13
14
I/O
L28N_1
I/O
L27P_1
I/O
L01N_1
VRP_1
TMS
A
TDI
PROG_B
I/O
L01N_0
VRP_0
B
I/O
L01P_7
VRN_7
I/O
L01N_7
VRP_7
HSWAP_
EN
GND
I/O
L27P_0
I/O
L30N_0
I/O
L31P_0
VREF_0
VCCO_
TOP
GND
VCCINT
I/O
L28P_1
VCCO_
TOP
I/O
L01P_1
VRN_1
TCK
C
I/O
L21N_7
GND
VCCO_
LEFT
I/O
L01P_0
VRN_0
I/O
L27N_0
VCCINT
I/O
L31N_0
I/O
L32P_0
GCLK6
I/O
L31N_1
VREF_1
VCCAUX
I/O
L27N_1
GND
TDO
I/O
L01P_2
VRN_2
D
I/O
L22N_7
I/O
L22P_7
I/O
L21P_7
I/O
L01N_2
VRP_2
VCCO_
RIGHT
GND
E
I/O
L24P_7
I/O
L23N_7
I/O
L23P_7
I/O
L20N_2
I/O
L20P_2
I/O
L21N_2
F
GND
I/O
L40P_7
I/O
L24N_7
I/O
L21P_2
I/O
L23N_2
VREF_2
I/O
L23P_2
G
I/O
L40N_7
VREF_7
VCCO_
LEFT
I/O
L40P_6
VREF_6
I/O
L24N_2
I/O
L24P_2
I/O
L40N_2
H
I/O
L40N_6
I/O
L24P_6
I/O
L24N_6
VREF_6
I/O
L40P_2
VREF_2
VCCO_
RIGHT
I/O
L40N_3
VREF_3
J
I/O
L23P_6
I/O
L23N_6
I/O
L22P_6
I/O
L24N_3
I/O
L40P_3
GND
K
I/O
L22N_6
I/O
L20P_6
I/O
L20N_6
I/O
L23P_3
VREF_3
I/O
L23N_3
I/O
L24P_3
L
GND
VCCO_
LEFT
I/O
L01N_6
VRP_6
I/O
L20N_3
I/O
L22P_3
I/O
L22N_3
M
I/O
L01P_6
VRN_6
M1
GND
I/O
L27N_5
VREF_5
VCCAUX
I/O
L31N_5
D4
I/O
L32P_4
GCLK0
I/O
L31N_4
INIT_B
VCCINT
I/O
L27N_4
DIN
D0
I/O
L01P_4
VRN_4
VCCO_
RIGHT
GND
I/O
L20P_3
N
M0
I/O
L01P_5
CS_B
VCCO_
BOTTOM
I/O
L28P_5
D7
VCCINT
GND
VCCO_
BOTTOM
I/O
L31P_4
DOUT
BUSY
I/O
L30N_4
D2
I/O
L27P_4
D1
GND
I/O
VREF_4
I/O
L01N_3
VRP_3
I/O
L01P_3
VRN_3
P
M2
I/O
L01N_5
RDWR_B
I/O
L27P_5
I/O
L28N_5
D6
I/O
L31P_5
D5
I/O
L32P_5
GCLK2
I/O
L32N_5
GCLK3
I/O
L32N_4
GCLK1
I/O
L30P_4
D3
VCCAUX
VCCO_
BOTTOM
I/O
L01N_4
VRP_4
DONE
CCLK
Bank 5
VCCO_RIGHT for Right Edge Outputs
3
Bank 2
Bank 7
Bank 6
VCCO_LEFT for Left Edge Outputs
2
Bank 3
Bank 0
1
Bank 4
VCCO_BOTTOM for Bottom Edge Outputs
DS099-4_17_011005
Figure 43: CP132 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
44
I/O: Unrestricted, general-purpose user I/O
12
DUAL: Configuration pin, then possible
user I/O
11
14
DCI: User I/O or reference resistor input for
bank
8
GCLK: User I/O, input, or global buffer
input
12
7
CONFIG: Dedicated configuration pins
4
JTAG: Dedicated JTAG port pins
4
0
130
N.C.: No unconnected pins in this package
12
GND: Ground
www.xilinx.com
4
VREF: User I/O or input voltage reference for
bank
VCCO: Output voltage supply for bank
VCCINT: Internal core voltage supply (+1.2V)
VCCAUX: Auxiliary voltage supply (+2.5V)
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
TQ144: 144-lead Thin Quad Flat
Package
Table 90: TQ144 Package Pinout (Continued)
The XC3S50, the XC3S200, and the XC3S400 are available in the 144-lead thin quad flat package, TQ144. All
devices share a common footprint for this package as
shown in in Table 90 and Figure 44.
The TQ144 package only has four separate VCCO inputs,
unlike the other packages, which have eight separate
VCCO inputs. The TQ144 package has a separate VCCO
input for the top, bottom, left, and right. However, there are
still eight separate I/O banks, as shown in Table 90 and
Figure 44. Banks 0 and 1 share the VCCO_TOP input,
Banks 2 and 3 share the VCCO_RIGHT input, Banks 4 and
5 share the VCCO_BOTTOM input, and Banks 6 and 7
share the VCCO_LEFT input.
All the package pins appear in Table 90 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
Pinout Table
Table 90: TQ144 Package Pinout
XC3S50
XC3S200
XC3S400
Pin Name
Bank
0
IO_L01N_0/VRP_0
TQ144 Pin
Number
Type
P141
DCI
0
IO_L01P_0/VRN_0
P140
DCI
0
IO_L27N_0
P137
I/O
0
IO_L27P_0
P135
I/O
0
IO_L30N_0
P132
I/O
0
IO_L30P_0
P131
I/O
0
IO_L31N_0
P130
I/O
0
IO_L31P_0/VREF_0
P129
VREF
0
IO_L32N_0/GCLK7
P128
GCLK
0
IO_L32P_0/GCLK6
P127
GCLK
1
IO
P116
I/O
1
IO_L01N_1/VRP_1
P113
DCI
1
IO_L01P_1/VRN_1
P112
DCI
1
IO_L28N_1
P119
I/O
1
IO_L28P_1
P118
I/O
1
IO_L31N_1/VREF_1
P123
VREF
1
IO_L31P_1
P122
I/O
1
IO_L32N_1/GCLK5
DS099-4 (v2.4) June 25, 2008
Product Specification
P125
GCLK
XC3S50
XC3S200
XC3S400
Pin Name
Bank
TQ144 Pin
Number
Type
1
IO_L32P_1/GCLK4
P124
GCLK
2
IO_L01N_2/VRP_2
P108
DCI
2
IO_L01P_2/VRN_2
P107
DCI
2
IO_L20N_2
P105
I/O
2
IO_L20P_2
P104
I/O
2
IO_L21N_2
P103
I/O
2
IO_L21P_2
P102
I/O
2
IO_L22N_2
P100
I/O
2
IO_L22P_2
P99
I/O
2
IO_L23N_2/VREF_2
P98
VREF
2
IO_L23P_2
P97
I/O
2
IO_L24N_2
P96
I/O
2
IO_L24P_2
P95
I/O
2
IO_L40N_2
P93
I/O
2
IO_L40P_2/VREF_2
P92
VREF
3
IO
P76
I/O
3
IO_L01N_3/VRP_3
P74
DCI
3
IO_L01P_3/VRN_3
P73
DCI
3
IO_L20N_3
P78
I/O
3
IO_L20P_3
P77
I/O
3
IO_L21N_3
P80
I/O
3
IO_L21P_3
P79
I/O
3
IO_L22N_3
P83
I/O
3
IO_L22P_3
P82
I/O
3
IO_L23N_3
P85
I/O
3
IO_L23P_3/VREF_3
P84
VREF
3
IO_L24N_3
P87
I/O
3
IO_L24P_3
P86
I/O
3
IO_L40N_3/VREF_3
P90
VREF
3
IO_L40P_3
P89
I/O
4
IO/VREF_4
P70
VREF
4
IO_L01N_4/VRP_4
P69
DCI
4
IO_L01P_4/VRN_4
P68
DCI
4
IO_L27N_4/DIN/D0
P65
DUAL
4
IO_L27P_4/D1
P63
DUAL
4
IO_L30N_4/D2
P60
DUAL
4
IO_L30P_4/D3
P59
DUAL
4
IO_L31N_4/INIT_B
P58
DUAL
4
IO_L31P_4/DOUT/BUSY
P57
DUAL
4
IO_L32N_4/GCLK1
P56
GCLK
4
IO_L32P_4/GCLK0
P55
GCLK
5
IO/VREF_5
P44
VREF
www.xilinx.com
131
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 90: TQ144 Package Pinout (Continued)
Table 90: TQ144 Package Pinout (Continued)
XC3S50
XC3S200
XC3S400
Pin Name
XC3S50
XC3S200
XC3S400
Pin Name
Bank
132
TQ144 Pin
Number
Type
Bank
TQ144 Pin
Number
Type
5
IO_L01N_5/RDWR_B
P41
DUAL
2,3
VCCO_RIGHT
P91
VCCO
5
IO_L01P_5/CS_B
P40
DUAL
4,5
VCCO_BOTTOM
P54
VCCO
5
IO_L28N_5/D6
P47
DUAL
4,5
VCCO_BOTTOM
P43
VCCO
5
IO_L28P_5/D7
P46
DUAL
4,5
VCCO_BOTTOM
P66
VCCO
5
IO_L31N_5/D4
P51
DUAL
6,7
VCCO_LEFT
P19
VCCO
5
IO_L31P_5/D5
P50
DUAL
6,7
VCCO_LEFT
P34
VCCO
5
IO_L32N_5/GCLK3
P53
GCLK
6,7
VCCO_LEFT
P3
VCCO
5
IO_L32P_5/GCLK2
P52
GCLK
N/A
GND
P136
GND
6
IO_L01N_6/VRP_6
P36
DCI
N/A
GND
P139
GND
6
IO_L01P_6/VRN_6
P35
DCI
N/A
GND
P114
GND
6
IO_L20N_6
P33
I/O
N/A
GND
P117
GND
6
IO_L20P_6
P32
I/O
N/A
GND
P94
GND
6
IO_L21N_6
P31
I/O
N/A
GND
P101
GND
6
IO_L21P_6
P30
I/O
N/A
GND
P81
GND
6
IO_L22N_6
P28
I/O
N/A
GND
P88
GND
6
IO_L22P_6
P27
I/O
N/A
GND
P64
GND
6
IO_L23N_6
P26
I/O
N/A
GND
P67
GND
6
IO_L23P_6
P25
I/O
N/A
GND
P42
GND
6
IO_L24N_6/VREF_6
P24
VREF
N/A
GND
P45
GND
6
IO_L24P_6
P23
I/O
N/A
GND
P22
GND
6
IO_L40N_6
P21
I/O
N/A
GND
P29
GND
6
IO_L40P_6/VREF_6
P20
VREF
N/A
GND
P9
GND
7
IO/VREF_7
P4
VREF
N/A
GND
P16
GND
7
IO_L01N_7/VRP_7
P2
DCI
N/A
VCCAUX
P134
VCCAUX
7
IO_L01P_7/VRN_7
P1
DCI
N/A
VCCAUX
P120
VCCAUX
7
IO_L20N_7
P6
I/O
N/A
VCCAUX
P62
VCCAUX
7
IO_L20P_7
P5
I/O
N/A
VCCAUX
P48
VCCAUX
7
IO_L21N_7
P8
I/O
N/A
VCCINT
P133
VCCINT
7
IO_L21P_7
P7
I/O
N/A
VCCINT
P121
VCCINT
7
IO_L22N_7
P11
I/O
N/A
VCCINT
P61
VCCINT
7
IO_L22P_7
P10
I/O
N/A
VCCINT
P49
VCCINT
7
IO_L23N_7
P13
I/O
VCCAUX
CCLK
P72
CONFIG
7
IO_L23P_7
P12
I/O
VCCAUX
DONE
P71
CONFIG
7
IO_L24N_7
P15
I/O
VCCAUX
HSWAP_EN
P142
CONFIG
7
IO_L24P_7
P14
I/O
VCCAUX
M0
P38
CONFIG
7
IO_L40N_7/VREF_7
P18
VREF
VCCAUX
M1
P37
CONFIG
7
IO_L40P_7
P17
I/O
VCCAUX
M2
P39
CONFIG
0,1
VCCO_TOP
P126
VCCO
VCCAUX
PROG_B
P143
CONFIG
0,1
VCCO_TOP
P138
VCCO
VCCAUX
TCK
P110
JTAG
0,1
VCCO_TOP
P115
VCCO
VCCAUX
TDI
P144
JTAG
2,3
VCCO_RIGHT
P106
VCCO
VCCAUX
TDO
P109
JTAG
2,3
VCCO_RIGHT
P75
VCCO
VCCAUX
TMS
P111
JTAG
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
User I/Os by Bank
Table 91 indicates how the available user-I/O pins are distributed between the eight I/O banks on the TQ144 package.
Table 91: User I/Os Per Bank in TQ144 Package
Package Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
10
5
0
2
1
2
1
9
4
0
2
1
2
2
14
10
0
2
2
0
3
15
11
0
2
2
0
4
11
0
6
2
1
2
5
9
0
6
0
1
2
6
14
10
0
2
2
0
7
15
11
0
2
2
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
133
R
Spartan-3 FPGA Family: Pinout Descriptions
X
113
112
111
110
109
122
121
120
119
118
117
116
115
114
125
124
123
133
132
131
130
129
128
127
126
134
GND
VCCO_TOP
IO_L27N_0
GND
IO_L27P_0
VCCAUX
VCCINT
IO_L30N_0
IO_L30P_0
IO_L31N_0
IO_L31P_0/VREF_0
IO_L32N_0/GCLK7
IO_L32P_0/GCLK6
VCCO_TOP
IO_L32N_1/GCLK5
IO_L32P_1/GCLK4
IO_L31N_1/VREF_1
IO_L31P_1
VCCINT
VCCAUX
IO_L28N_1
IO_L28P_1
GND
IO
VCCO_TOP
GND
IO_L01N_1/VRP_1
IO_L01P_1/VRN_1
TMS
TCK
TDO
Bank 0
Bank 1
Bank 3
VCCO for Left Edge
VCCO for Right Edge
Bank 7
Bank 2
VCCO for Top Edge
Bank 6
VCCO for Bottom Edge
Bank 5
59
60
61
62
63
64
65
66
67
IO_L01N_2/VRP_2
IO_L01P_2/VRN_2
VCCO_RIGHT
IO_L20N_2
IO_L20P_2
IO_L21N_2
IO_L21P_2
GND
IO_L22N_2
IO_L22P_2
IO_L23N_2/VREF_2
IO_L23P_2
IO_L24N_2
IO_L24P_2
GND
IO_L40N_2
IO_L40P_2/VREF_2
VCCO_RIGHT
IO_L40N_3/VREF_3
IO_L40P_3
GND
IO_L24N_3
IO_L24P_3
IO_L23N_3
IO_L23P_3/VREF_3
IO_L22N_3
IO_L22P_3
GND
IO_L21N_3
IO_L21P_3
IO_L20N_3
IO_L20P_3
IO
VCCO_RIGHT
IO_L01N_3/VRP_3
IO_L01P_3/VRN_3
IO_L31N_4/INIT_B
IO_L30P_4/D3
IO_L30N_4/D2
VCCINT
VCCAUX
IO_L27P_4/D1
GND
IO_L27N_4/DIN/D0
VCCO_BOTTOM
GND
IO_L01P_4/VRN_4
IO_L01N_4/VRP_4
IO/VREF_4
DONE
CCLK
56
57
58
IO_L31P_4/DOUT/BUSY
48
49
50
51
52
53
54
55
47
42
43
44
45
46
M1
M0
M2
IO_L01P_5/CS_B
IO_L01N_5/RDWR_B
GND
VCCO_BOTTOM
IO/VREF_5
GND
IO_L28P_5/D7
IO_L28N_5/D6
VCCAUX
VCCINT
IO_L31P_5/D5
IO_L31N_5/D4
IO_L32P_5/GCLK2
IO_L32N_5/GCLK3
VCCO_BOTTOM
IO_L32P_4/GCLK0
IO_L32N_4/GCLK1
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
68
69
70
71
72
Bank 4
(no DCI)
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
IO_L01P_7/VRN_7
IO_L01N_7/VRP_7
VCCO_LEFT
IO/VREF_7
IO_L20P_7
IO_L20N_7
IO_L21P_7
IO_L21N_7
GND
IO_L22P_7
IO_L22N_7
IO_L23P_7
IO_L23N_7
IO_L24P_7
IO_L24N_7
GND
IO_L40P_7
IO_L40N_7/VREF_7
VCCO_LEFT
IO_L40P_6/VREF_6
IO_L40N_6
GND
IO_L24P_6
IO_L24N_6/VREF_6
IO_L23P_6
IO_L23N_6
IO_L22P_6
IO_L22N_6
GND
IO_L21P_6
IO_L21N_6
IO_L20P_6
IO_L20N_6
VCCO_LEFT
IO_L01P_6/VRN_6
IO_L01N_6/VRP_6
139
138
137
136
135
144 TDI
143 PROG_B
142 HSWAP_EN
141 IO_L01N_0/VRP_0
140 IO_L01P_0/VRN_0
TQ144 Footprint
DS099-4_08_121103
Figure 44: TQ144 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
51
I/O: Unrestricted, general-purpose user I/O
12
DUAL: Configuration pin, then possible
user I/O
12
14
DCI: User I/O or reference resistor input for
bank
8
GCLK: User I/O or global clock buffer
input
12
7
CONFIG: Dedicated configuration pins
4
JTAG: Dedicated JTAG port pins
4
0
134
N.C.: No unconnected pins in this package
16
GND: Ground
www.xilinx.com
4
VREF: User I/O or input voltage reference for
bank
VCCO: Output voltage supply for bank
VCCINT: Internal core voltage supply (+1.2V)
VCCAUX: Auxiliary voltage supply (+2.5V)
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
PQ208: 208-lead Plastic Quad Flat Pack
The 208-lead plastic quad flat package, PQ208, supports
three different Spartan-3 devices, including the XC3S50,
the XC3S200, and the XC3S400. The footprints for the
XC3S200 and XC3S400 are identical, as shown in Table 92
and Figure 45. The XC3S50, however, has fewer I/O pins
resulting in 17 unconnected pins on the PQ208 package,
labeled as “N.C.” In Table 92 and Figure 45, these unconnected pins are indicated with a black diamond symbol (‹).
Table 92: PQ208 Package Pinout (Continued)
Bank
XC3S50
Pin Name
XC3S200
XC3S400
Pin Name
PQ208
Pin
Number
Type
I/O
0
IO_L30P_0
IO_L30P_0
P190
0
IO_L31N_0
IO_L31N_0
P187
I/O
0
IO_L31P_0/
VREF_0
IO_L31P_0/
VREF_0
P185
VREF
0
IO_L32N_0/
GCLK7
IO_L32N_0/
GCLK7
P184
GCLK
0
IO_L32P_0/
GCLK6
IO_L32P_0/
GCLK6
P183
GCLK
0
VCCO_0
VCCO_0
P188
VCCO
0
VCCO_0
VCCO_0
P201
VCCO
1
IO
IO
P167
I/O
1
IO
IO
P175
I/O
1
IO
IO
P182
I/O
1
IO_L01N_1/
VRP_1
IO_L01N_1/
VRP_1
P162
DCI
1
IO_L01P_1/
VRN_1
IO_L01P_1/
VRN_1
P161
DCI
1
IO_L10N_1/
VREF_1
IO_L10N_1/
VREF_1
P166
VREF
1
IO_L10P_1
IO_L10P_1
P165
I/O
1
IO_L27N_1
IO_L27N_1
P169
I/O
1
IO_L27P_1
IO_L27P_1
P168
I/O
1
IO_L28N_1
IO_L28N_1
P172
I/O
1
IO_L28P_1
IO_L28P_1
P171
I/O
1
IO_L31N_1/
VREF_1
IO_L31N_1/
VREF_1
P178
VREF
Pinout Table
1
IO_L31P_1
IO_L31P_1
P176
I/O
Table 92: PQ208 Package Pinout
1
IO_L32N_1/
GCLK5
IO_L32N_1/
GCLK5
P181
GCLK
1
IO_L32P_1/
GCLK4
IO_L32P_1/
GCLK4
P180
GCLK
All the package pins appear in Table 92 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
If there is a difference between the XC3S50 pinout and the
pinout for the XC3S200 and XC3S400, then that difference
is highlighted in Table 92. If the table entry is shaded grey,
then there is an unconnected pin on the XC3S50 that maps
to a user-I/O pin on the XC3S200 and XC3S400. If the table
entry is shaded tan, then the unconnected pin on the
XC3S50 maps to a VREF-type pin on the XC3S200 and
XC3S400. If the other VREF pins in the bank all connect to
a voltage reference to support a special I/O standard, then
also connect the N.C. pin on the XC3S50 to the same VREF
voltage. This provides maximum flexibility as you could
potentially migrate a design from the XC3S50 device to an
XC3S200 or XC3S400 FPGA without changing the printed
circuit board.
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
Bank
XC3S50
Pin Name
XC3S200
XC3S400
Pin Name
PQ208
Pin
Number
Type
0
IO
IO
P189
I/O
1
VCCO_1
VCCO_1
P164
VCCO
0
IO
IO
P197
I/O
1
VCCO_1
VCCO_1
P177
VCCO
0
N.C. (‹)
IO/VREF_0
P200
VREF
2
N.C. (‹)
IO/VREF_2
P154
VREF
2
IO_L01N_2/
VRP_2
IO_L01N_2/
VRP_2
P156
DCI
2
IO_L01P_2/
VRN_2
IO_L01P_2/
VRN_2
P155
DCI
2
IO_L19N_2
IO_L19N_2
P152
I/O
0
IO/VREF_0
IO/VREF_0
P205
VREF
0
IO_L01N_0/
VRP_0
IO_L01N_0/
VRP_0
P204
DCI
0
IO_L01P_0/
VRN_0
IO_L01P_0/
VRN_0
P203
DCI
0
IO_L25N_0
IO_L25N_0
P199
I/O
2
IO_L19P_2
IO_L19P_2
P150
I/O
0
IO_L25P_0
IO_L25P_0
P198
I/O
2
IO_L20N_2
IO_L20N_2
P149
I/O
IO_L20P_2
IO_L20P_2
P148
I/O
0
IO_L27N_0
IO_L27N_0
P196
I/O
2
0
IO_L27P_0
IO_L27P_0
P194
I/O
2
IO_L21N_2
IO_L21N_2
P147
I/O
0
IO_L30N_0
IO_L30N_0
P191
I/O
2
IO_L21P_2
IO_L21P_2
P146
I/O
2
IO_L22N_2
IO_L22N_2
P144
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
135
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 92: PQ208 Package Pinout (Continued)
Bank
136
XC3S50
Pin Name
XC3S200
XC3S400
Pin Name
Table 92: PQ208 Package Pinout (Continued)
PQ208
Pin
Number
Type
Bank
XC3S50
Pin Name
XC3S200
XC3S400
Pin Name
PQ208
Pin
Number
Type
2
IO_L22P_2
IO_L22P_2
P143
I/O
4
N.C. (‹)
IO/VREF_4
P96
VREF
2
IO_L23N_2/
VREF_2
IO_L23N_2/
VREF_2
P141
VREF
4
IO/VREF_4
IO/VREF_4
P102
VREF
4
DCI
IO_L23P_2
IO_L23P_2
P140
I/O
IO_L01N_4/
VRP_4
P101
2
IO_L01N_4/
VRP_4
2
IO_L24N_2
IO_L24N_2
P139
I/O
4
DCI
IO_L24P_2
IO_L24P_2
P138
I/O
IO_L01P_4/
VRN_4
P100
2
IO_L01P_4/
VRN_4
2
N.C. (‹)
IO_L39N_2
P137
I/O
4
IO_L25N_4
IO_L25N_4
P95
I/O
2
N.C. (‹)
IO_L39P_2
P135
I/O
4
IO_L25P_4
IO_L25P_4
P94
I/O
2
IO_L40N_2
IO_L40N_2
P133
I/O
4
DUAL
IO_L40P_2/
VREF_2
IO_L40P_2/
VREF_2
P132
VREF
IO_L27N_4/
DIN/D0
P92
2
IO_L27N_4/
DIN/D0
4
DUAL
VCCO_2
VCCO_2
P136
VCCO
IO_L27P_4/
D1
P90
2
IO_L27P_4/
D1
2
VCCO_2
VCCO_2
P153
VCCO
4
IO_L30N_4/
D2
IO_L30N_4/
D2
P87
DUAL
3
IO_L01N_3/
VRP_3
IO_L01N_3/
VRP_3
P107
DCI
4
IO_L30P_4/
D3
IO_L30P_4/
D3
P86
DUAL
3
IO_L01P_3/
VRN_3
IO_L01P_3/
VRN_3
P106
DCI
4
IO_L31N_4/
INIT_B
IO_L31N_4/
INIT_B
P83
DUAL
3
N.C. (‹)
IO_L17N_3
P109
I/O
4
IO_L17P_3/
VREF_3
P108
VREF
IO_L31P_4/
DOUT/BUSY
DUAL
N.C. (‹)
IO_L31P_4/
DOUT/BUSY
P81
3
4
IO_L19N_3
P113
I/O
IO_L32N_4/
GCLK1
GCLK
IO_L19N_3
IO_L32N_4/
GCLK1
P80
3
3
IO_L19P_3
IO_L19P_3
P111
I/O
4
GCLK
IO_L20N_3
IO_L20N_3
P115
I/O
IO_L32P_4/
GCLK0
P79
3
IO_L32P_4/
GCLK0
3
IO_L20P_3
IO_L20P_3
P114
I/O
4
VCCO_4
VCCO_4
P84
VCCO
3
IO_L21N_3
IO_L21N_3
P117
I/O
4
VCCO_4
VCCO_4
P98
VCCO
5
IO
IO
P63
I/O
5
IO
IO
P71
I/O
5
IO/VREF_5
IO/VREF_5
P78
VREF
5
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
P58
DUAL
5
IO_L01P_5/
CS_B
IO_L01P_5/
CS_B
P57
DUAL
5
IO_L10N_5/
VRP_5
IO_L10N_5/
VRP_5
P62
DCI
5
IO_L10P_5/
VRN_5
IO_L10P_5/
VRN_5
P61
DCI
3
IO_L21P_3
IO_L21P_3
P116
I/O
3
IO_L22N_3
IO_L22N_3
P120
I/O
3
IO_L22P_3
IO_L22P_3
P119
I/O
3
IO_L23N_3
IO_L23N_3
P123
I/O
3
IO_L23P_3/
VREF_3
IO_L23P_3/
VREF_3
P122
VREF
3
IO_L24N_3
IO_L24N_3
P125
I/O
3
IO_L24P_3
IO_L24P_3
P124
I/O
3
N.C. (‹)
IO_L39N_3
P128
I/O
3
N.C. (‹)
IO_L39P_3
P126
I/O
3
IO_L40N_3/
VREF_3
IO_L40N_3/
VREF_3
P131
VREF
5
IO_L27N_5/
VREF_5
IO_L27N_5/
VREF_5
P65
VREF
3
IO_L40P_3
IO_L40P_3
P130
I/O
5
IO_L27P_5
IO_L27P_5
P64
I/O
3
VCCO_3
VCCO_3
P110
VCCO
5
DUAL
VCCO_3
VCCO_3
P127
VCCO
IO_L28N_5/
D6
P68
3
IO_L28N_5/
D6
4
IO
IO
P93
I/O
5
IO_L28P_5/
D7
IO_L28P_5/
D7
P67
DUAL
4
N.C. (‹)
IO
P97
I/O
5
IO/VREF_4
P85
VREF
IO_L31N_5/
D4
DUAL
IO/VREF_4
IO_L31N_5/
D4
P74
4
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 92: PQ208 Package Pinout (Continued)
XC3S50
Pin Name
XC3S200
XC3S400
Pin Name
5
IO_L31P_5/
D5
5
Table 92: PQ208 Package Pinout (Continued)
PQ208
Pin
Number
Type
Bank
IO_L31P_5/
D5
P72
DUAL
IO_L32N_5/
GCLK3
IO_L32N_5/
GCLK3
P77
GCLK
5
IO_L32P_5/
GCLK2
IO_L32P_5/
GCLK2
P76
GCLK
5
VCCO_5
VCCO_5
P60
Bank
XC3S50
Pin Name
XC3S200
XC3S400
Pin Name
PQ208
Pin
Number
Type
7
IO_L21N_7
IO_L21N_7
P13
I/O
7
7
IO_L21P_7
IO_L21P_7
P12
I/O
IO_L22N_7
IO_L22N_7
P16
I/O
7
IO_L22P_7
IO_L22P_7
P15
I/O
7
IO_L23N_7
IO_L23N_7
P19
I/O
VCCO
7
IO_L23P_7
IO_L23P_7
P18
I/O
IO_L24N_7
IO_L24N_7
P21
I/O
5
VCCO_5
VCCO_5
P73
VCCO
7
6
N.C. (‹)
IO/VREF_6
P50
VREF
7
IO_L24P_7
IO_L24P_7
P20
I/O
6
IO_L01N_6/
VRP_6
IO_L01N_6/
VRP_6
P52
DCI
7
N.C. (‹)
IO_L39N_7
P24
I/O
7
N.C. (‹)
IO_L39P_7
P22
I/O
6
IO_L01P_6/
VRN_6
IO_L01P_6/
VRN_6
P51
DCI
7
IO_L40N_7/
VREF_7
IO_L40N_7/
VREF_7
P27
VREF
6
IO_L19N_6
IO_L19N_6
P48
I/O
7
IO_L40P_7
IO_L40P_7
P26
I/O
6
IO_L19P_6
IO_L19P_6
P46
I/O
7
VCCO_7
VCCO_7
P6
VCCO
6
IO_L20N_6
IO_L20N_6
P45
I/O
7
VCCO_7
VCCO_7
P23
VCCO
6
IO_L20P_6
IO_L20P_6
P44
I/O
N/A
GND
GND
P1
GND
6
IO_L21N_6
IO_L21N_6
P43
I/O
N/A
GND
GND
P186
GND
6
IO_L21P_6
IO_L21P_6
P42
I/O
N/A
GND
GND
P195
GND
6
IO_L22N_6
IO_L22N_6
P40
I/O
N/A
GND
GND
P202
GND
6
IO_L22P_6
IO_L22P_6
P39
I/O
N/A
GND
GND
P163
GND
6
IO_L23N_6
IO_L23N_6
P37
I/O
N/A
GND
GND
P170
GND
6
IO_L23P_6
IO_L23P_6
P36
I/O
N/A
GND
GND
P179
GND
6
IO_L24N_6/
VREF_6
IO_L24N_6/
VREF_6
P35
VREF
N/A
GND
GND
P134
GND
N/A
GND
GND
P145
GND
6
IO_L24P_6
IO_L24P_6
P34
I/O
N/A
GND
GND
P151
GND
6
N.C. (‹)
IO_L39N_6
P33
I/O
N/A
GND
GND
P157
GND
6
N.C. (‹)
IO_L39P_6
P31
I/O
N/A
GND
GND
P112
GND
6
IO_L40N_6
IO_L40N_6
P29
I/O
N/A
GND
GND
P118
GND
6
IO_L40P_6/
VREF_6
IO_L40P_6/
VREF_6
P28
VREF
N/A
GND
GND
P129
GND
6
VCCO_6
VCCO_6
P32
VCCO
N/A
GND
GND
P82
GND
N/A
GND
GND
P91
GND
N/A
GND
GND
P99
GND
N/A
GND
GND
P105
GND
N/A
GND
GND
P53
GND
N/A
GND
GND
P59
GND
6
VCCO_6
VCCO_6
P49
VCCO
7
IO_L01N_7/
VRP_7
IO_L01N_7/
VRP_7
P3
DCI
IO_L01P_7/
VRN_7
IO_L01P_7/
VRN_7
P2
7
N.C. (‹)
IO_L16N_7
P5
I/O
N/A
GND
GND
P66
GND
7
N.C. (‹)
IO_L16P_7/
VREF_7
P4
VREF
N/A
GND
GND
P75
GND
N/A
GND
GND
P30
GND
7
IO_L19N_7/
VREF_7
IO_L19N_7/
VREF_7
P9
VREF
N/A
GND
GND
P41
GND
7
IO_L19P_7
IO_L19P_7
P7
I/O
N/A
GND
GND
P47
GND
7
IO_L20N_7
IO_L20N_7
P11
I/O
N/A
GND
GND
P8
GND
7
IO_L20P_7
IO_L20P_7
P10
I/O
N/A
GND
GND
P14
GND
7
DS099-4 (v2.4) June 25, 2008
Product Specification
DCI
www.xilinx.com
137
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 92: PQ208 Package Pinout (Continued)
XC3S50
Pin Name
Bank
XC3S200
XC3S400
Pin Name
Table 92: PQ208 Package Pinout (Continued)
PQ208
Pin
Number
Type
XC3S50
Pin Name
XC3S200
XC3S400
Pin Name
VCCAUX HSWAP_EN
Bank
PQ208
Pin
Number
Type
HSWAP_EN
P206
CONFIG
N/A
GND
GND
P25
GND
N/A
VCCAUX
VCCAUX
P193
VCCAUX
VCCAUX M0
M0
P55
CONFIG
N/A
VCCAUX
VCCAUX
P173
VCCAUX
VCCAUX M1
M1
P54
CONFIG
N/A
VCCAUX
VCCAUX
P142
VCCAUX
VCCAUX M2
M2
P56
CONFIG
N/A
VCCAUX
VCCAUX
P121
VCCAUX
VCCAUX PROG_B
PROG_B
P207
CONFIG
N/A
VCCAUX
VCCAUX
P89
VCCAUX
VCCAUX TCK
TCK
P159
JTAG
N/A
VCCAUX
VCCAUX
P69
VCCAUX
VCCAUX TDI
TDI
P208
JTAG
N/A
VCCAUX
VCCAUX
P38
VCCAUX
VCCAUX TDO
TDO
P158
JTAG
N/A
VCCAUX
VCCAUX
P17
VCCAUX
VCCAUX TMS
TMS
P160
JTAG
N/A
VCCINT
VCCINT
P192
VCCINT
N/A
VCCINT
VCCINT
P174
VCCINT
N/A
VCCINT
VCCINT
P88
VCCINT
N/A
VCCINT
VCCINT
P70
VCCINT
VCCAUX CCLK
CCLK
P104
CONFIG
VCCAUX DONE
DONE
P103
CONFIG
User I/Os by Bank
Table 93 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S50 in the
PQ208 package. Similarly, Table 94 shows how the available user-I/O pins are distributed between the eight I/O
banks for the XC3S200 and XC3S400 in the PQ208 package.
Table 93: User I/Os Per Bank for XC3S50 in PQ208 Package
Package Edge
Top
Right
Bottom
Left
138
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
15
9
0
2
2
2
1
15
9
0
2
2
2
2
16
13
0
2
2
0
3
16
12
0
2
2
0
4
15
3
6
2
2
2
5
15
3
6
2
2
2
6
16
12
0
2
2
0
7
16
12
0
2
2
0
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 94: User I/Os Per Bank for XC3S200 and XC3S400 in PQ208 Package
Package Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
16
9
0
2
3
2
1
15
9
0
2
2
2
2
19
14
0
2
3
0
3
20
15
0
2
3
0
4
17
4
6
2
3
2
5
15
3
6
2
2
2
6
19
14
0
2
3
0
7
20
15
0
2
3
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
139
R
189 IO
188 VCCO_0
187 IO_L31N_0
186 GND
185 IO_L31P_0/VREF_0
184 IO_L32N_0/GCLK7
183 IO_L32P_0/GCLK6
74
75
76
77
78
192 VCCINT
193 VCCAUX
194 IO_L27P_0
195 GND
196 IO_L27N_0
197 IO
198 IO_L25P_0
199 IO_L25N_0
200 IO/VREF_0 (‹)
201 VCCO_0
202 GND
203 IO_L01P_0/VRN_0
205 IO/VREF_0
206 HSWAP_EN
73
GND: Ground
Bank 5
GND
M1
M0
M2
IO_L01P_5/CS_B
IO_L01N_5/RDWR_B
GND
VCCO_5
IO_L10P_5/VRN_5
IO_L10N_5/VRP_5
IO
IO_L27P_5
IO_L27N_5/VREF_5
GND
IO_L28P_5/D7
IO_L28N_5/D6
VCCAUX
VCCINT
IO
IO_L31P_5/D5
VCCO_5
IO_L31N_5/D4
GND
IO_L32P_5/GCLK2
IO_L32N_5/GCLK3
IO/VREF_5
53
28
VCCAUX: Auxiliary voltage
supply (+2.5V)
190 IO_L30P_0
8
72
VCCO: Output voltage
supply for bank
191 IO_L30N_0
12
71
VCCINT: Internal core
voltage supply (+1.2V)
70
4
69
JTAG: Dedicated JTAG
port pins
68
4
67
CONFIG: Dedicated
configuration pins
66
7
65
DCI: User I/O or reference
resistor input for bank
64
16
63
GCLK: User I/O or global
clock buffer input
62
8
61
All devices
DUAL: Configuration pin,
12
then possible user I/O
60
N.C.: No unconnected pins
in this package
59
0
58
VREF: User I/O or input
voltage reference for bank
57
22
56
XC3S200, XC3S400
(141 max user I/O)
I/O: Unrestricted,
83
general-purpose user I/O
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
55
N.C.: Unconnected pins for
XC3S50 (‹)
Bank 0
2
3
Bank 7
17
1
Bank 6
VREF: User I/O or input
16
voltage reference for bank
GND
IO_L01P_7/VRN_7
IO_L01N_7/VRP_7
(‹) IO_L16P_7/VREF_7
(‹) IO_L16N_7
VCCO_7
IO_L19P_7
GND
IO_L19N_7/VREF_7
IO_L20P_7
IO_L20N_7
IO_L21P_7
IO_L21N_7
GND
IO_L22P_7
IO_L22N_7
VCCA U X
IO_L23P_7
IO_L23N_7
IO_L24P_7
IO_L24N_7
(‹) IO_L39P_7
VCCO_7
(‹) IO_L39N_7
GND
IO_L40P_7
IO_L40N_7/VREF_7
IO_L40P_6/VREF_6
IO_L40N_6
GND
(‹) IO_L39P_6
VCCO_6
(‹) IO_L39N_6
IO_L24P_6
IO_L24N_6/VREF_6
IO_L23P_6
IO_L23N_6
VCCAUX
IO_L22P_6
IO_L22N_6
GND
IO_L21P_6
IO_L21N_6
IO_L20P_6
IO_L20N_6
IO_L19P_6
GND
IO_L19N_6
VCCO_6
(‹) IO/VREF_6
IO_L01P_6/VRN_6
IO_L01N_6/VRP_6
54
XC3S50
(124 max. user I/O)
I/O: Unrestricted,
72
general-purpose user I/O
208 TDI
Left Half of Package
(top view)
207 PROG_B
PQ208 Footprint
204 IO_L01N_0/VRP_0
Spartan-3 FPGA Family: Pinout Descriptions
DS099-4_09a_121103
Figure 45: PQ208 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
140
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
157 GND
158 TDO
159 TCK
Right Half of Package
(top view)
160 TMS
161 IO_L01P_1/VRN_1
162 IO_L01N_1/VRP_1
163 GND
164 VCCO_1
165 IO_L10P_1
166 IO_L10N_1/VREF_1
167 IO
168 IO_L27P_1
169 IO_L27N_1
170 GND
171 IO_L28P_1
172 IO_L28N_1
173 VCCAUX
174 VCCINT
175 IO
Spartan-3 FPGA Family: Pinout Descriptions
176 IO_L31P_1
177 VCCO_1
178 IO_L31N_1/VREF_1
179 GND
180 IO_L32P_1/GCLK4
181 IO_L32N_1/GCLK5
182 IO
R
Bank 3
Bank 2
Bank 1
DS099-4 (v2.4) June 25, 2008
Product Specification
IO_L01N_2/VRP_2
IO_L01P_2/VRN_2
IO/VREF_2 (‹)
VCCO_2
IO_L19N_2
GND
IO_L19P_2
IO_L20N_2
IO_L20P_2
IO_L21N_2
IO_L21P_2
GND
IO_L22N_2
IO_L22P_2
VCCAUX
IO_L23N_2/VREF_2
IO_L23P_2
IO_L24N_2
IO_L24P_2
IO_L39N_2 (‹)
VCCO_2
IO_L39P_2 (‹)
GND
IO_L40N_2
IO_L40P_2/VREF_2
IO_L40N_3/VREF_3
IO_L40P_3
GND
IO_L39N_3 (‹)
VCCO_3
IO_L39P_3 (‹)
IO_L24N_3
IO_L24P_3
IO_L23N_3
IO_L23P_3/VREF_3
VCCAUX
IO_L22N_3
IO_L22P_3
GND
IO_L21N_3
IO_L21P_3
IO_L20N_3
IO_L20P_3
IO_L19N_3
GND
IO_L19P_3
VCCO_3
IO_L17N_3 (‹)
IO_L17P_3/VREF_3 (‹)
IO_L01N_3/VRP_3
IO_L01P_3/VRN_3
GND
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
IO_L32P_4/GCLK0
IO_L32N_4/GCLK1
IO_L31P_4/DOUT/BUSY
GND
IO_L31N_4/INIT_B
VCCO_4
IO/VREF_4
IO_L30P_4/D3
IO_L30N_4/D2
VCCINT
VCCAUX
IO_L27P_4/D1
GND
D
IO_L27N_4/DIN/D0
IO
IO_L25P_4
IO_L25N_4
(‹) IO/VREF_4
(‹) IO
VCCO_4
GND
IO_L01P_4/VRN_4
IO_L01N_4/VRP_4
IO/VREF_4
DONE
CCLK
79
Bank 4
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
DS099-4_9b_121103
www.xilinx.com
141
R
Spartan-3 FPGA Family: Pinout Descriptions
FT256: 256-lead Fine-pitch Thin Ball
Grid Array
The 256-lead fine-pitch thin ball grid array package, FT256,
supports three different Spartan-3 devices, including the
XC3S200, the XC3S400, and the XC3S1000. The footprints
for all three devices are identical, as shown in Table 95 and
Figure 46.
Table 95: FT256 Package Pinout (Continued)
XC3S200
XC3S400
XC3S1000
Pin Name
Bank
FT256
Pin
Number
Type
1
IO
C10
I/O
1
IO/VREF_1
D12
VREF
All the package pins appear in Table 95 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
1
IO_L01N_1/VRP_1
A14
DCI
1
IO_L01P_1/VRN_1
B14
DCI
1
IO_L10N_1/VREF_1
A13
VREF
1
IO_L10P_1
B13
I/O
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
1
IO_L27N_1
B12
I/O
1
IO_L27P_1
C12
I/O
1
IO_L28N_1
D11
I/O
1
IO_L28P_1
E11
I/O
Pinout Table
1
IO_L29N_1
B11
I/O
1
IO_L29P_1
C11
I/O
1
IO_L30N_1
D10
I/O
1
IO_L30P_1
E10
I/O
1
IO_L31N_1/VREF_1
A10
VREF
Table 95: FT256 Package Pinout
XC3S200
XC3S400
XC3S1000
Pin Name
Bank
142
FT256
Pin
Number
Type
1
IO_L31P_1
B10
I/O
0
IO
A5
I/O
1
IO_L32N_1/GCLK5
C9
GCLK
0
IO
A7
I/O
1
IO_L32P_1/GCLK4
D9
GCLK
0
IO/VREF_0
A3
VREF
1
VCCO_1
E9
VCCO
0
IO/VREF_0
D5
VREF
1
VCCO_1
F9
VCCO
0
IO_L01N_0/VRP_0
B4
DCI
1
VCCO_1
F10
VCCO
0
IO_L01P_0/VRN_0
A4
DCI
2
IO
G16
I/O
0
IO_L25N_0
C5
I/O
2
IO_L01N_2/VRP_2
B16
DCI
0
IO_L25P_0
B5
I/O
2
IO_L01P_2/VRN_2
C16
DCI
0
IO_L27N_0
E6
I/O
2
IO_L16N_2
C15
I/O
0
IO_L27P_0
D6
I/O
2
IO_L16P_2
D14
I/O
0
IO_L28N_0
C6
I/O
2
IO_L17N_2
D15
I/O
0
IO_L28P_0
B6
I/O
2
IO_L17P_2/VREF_2
D16
VREF
0
IO_L29N_0
E7
I/O
2
IO_L19N_2
E13
I/O
0
IO_L29P_0
D7
I/O
2
IO_L19P_2
E14
I/O
0
IO_L30N_0
C7
I/O
2
IO_L20N_2
E15
I/O
0
IO_L30P_0
B7
I/O
2
IO_L20P_2
E16
I/O
0
IO_L31N_0
D8
I/O
2
IO_L21N_2
F12
I/O
0
IO_L31P_0/VREF_0
C8
VREF
2
IO_L21P_2
F13
I/O
0
IO_L32N_0/GCLK7
B8
GCLK
2
IO_L22N_2
F14
I/O
0
IO_L32P_0/GCLK6
A8
GCLK
2
IO_L22P_2
F15
I/O
0
VCCO_0
E8
VCCO
2
IO_L23N_2/VREF_2
G12
VREF
0
VCCO_0
F7
VCCO
2
IO_L23P_2
G13
I/O
0
VCCO_0
F8
VCCO
2
IO_L24N_2
G14
I/O
1
IO
A9
I/O
2
IO_L24P_2
G15
I/O
1
IO
A12
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 95: FT256 Package Pinout (Continued)
XC3S200
XC3S400
XC3S1000
Pin Name
Bank
Table 95: FT256 Package Pinout (Continued)
FT256
Pin
Number
Type
Bank
XC3S200
XC3S400
XC3S1000
Pin Name
FT256
Pin
Number
Type
2
IO_L39N_2
H13
I/O
4
IO_L25N_4
P12
I/O
2
IO_L39P_2
H14
I/O
4
IO_L25P_4
R12
I/O
2
IO_L40N_2
H15
I/O
4
IO_L27N_4/DIN/D0
M11
DUAL
2
IO_L40P_2/VREF_2
H16
VREF
4
IO_L27P_4/D1
N11
DUAL
2
VCCO_2
G11
VCCO
4
IO_L28N_4
P11
I/O
2
VCCO_2
H11
VCCO
4
IO_L28P_4
R11
I/O
2
VCCO_2
H12
VCCO
4
IO_L29N_4
M10
I/O
3
IO
K15
I/O
4
IO_L29P_4
N10
I/O
3
IO_L01N_3/VRP_3
P16
DCI
4
IO_L30N_4/D2
P10
DUAL
3
IO_L01P_3/VRN_3
R16
DCI
4
IO_L30P_4/D3
R10
DUAL
3
IO_L16N_3
P15
I/O
4
IO_L31N_4/INIT_B
N9
DUAL
3
IO_L16P_3
P14
I/O
4
IO_L31P_4/DOUT/BUSY
P9
DUAL
3
IO_L17N_3
N16
I/O
4
IO_L32N_4/GCLK1
R9
GCLK
3
IO_L17P_3/VREF_3
N15
VREF
4
IO_L32P_4/GCLK0
T9
GCLK
3
IO_L19N_3
M14
I/O
4
VCCO_4
L9
VCCO
3
IO_L19P_3
N14
I/O
4
VCCO_4
L10
VCCO
3
IO_L20N_3
M16
I/O
4
VCCO_4
M9
VCCO
3
IO_L20P_3
M15
I/O
5
IO
N5
I/O
3
IO_L21N_3
L13
I/O
5
IO
P7
I/O
3
IO_L21P_3
M13
I/O
5
IO
T5
I/O
3
IO_L22N_3
L15
I/O
5
IO/VREF_5
T8
VREF
3
IO_L22P_3
L14
I/O
5
IO_L01N_5/RDWR_B
T3
DUAL
3
IO_L23N_3
K12
I/O
5
IO_L01P_5/CS_B
R3
DUAL
3
IO_L23P_3/VREF_3
L12
VREF
5
IO_L10N_5/VRP_5
T4
DCI
3
IO_L24N_3
K14
I/O
5
IO_L10P_5/VRN_5
R4
DCI
3
IO_L24P_3
K13
I/O
5
IO_L27N_5/VREF_5
R5
VREF
3
IO_L39N_3
J14
I/O
5
IO_L27P_5
P5
I/O
3
IO_L39P_3
J13
I/O
5
IO_L28N_5/D6
N6
DUAL
3
IO_L40N_3/VREF_3
J16
VREF
5
IO_L28P_5/D7
M6
DUAL
3
IO_L40P_3
K16
I/O
5
IO_L29N_5
R6
I/O
3
VCCO_3
J11
VCCO
5
IO_L29P_5/VREF_5
P6
VREF
3
VCCO_3
J12
VCCO
5
IO_L30N_5
N7
I/O
3
VCCO_3
K11
VCCO
5
IO_L30P_5
M7
I/O
4
IO
T12
I/O
5
IO_L31N_5/D4
T7
DUAL
4
IO
T14
I/O
5
IO_L31P_5/D5
R7
DUAL
4
IO/VREF_4
N12
VREF
5
IO_L32N_5/GCLK3
P8
GCLK
4
IO/VREF_4
P13
VREF
5
IO_L32P_5/GCLK2
N8
GCLK
4
IO/VREF_4
T10
VREF
5
VCCO_5
L7
VCCO
4
IO_L01N_4/VRP_4
R13
DCI
5
VCCO_5
L8
VCCO
4
IO_L01P_4/VRN_4
T13
DCI
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
143
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 95: FT256 Package Pinout (Continued)
XC3S200
XC3S400
XC3S1000
Pin Name
Bank
144
Table 95: FT256 Package Pinout (Continued)
FT256
Pin
Number
Type
Bank
XC3S200
XC3S400
XC3S1000
Pin Name
FT256
Pin
Number
Type
5
VCCO_5
M8
VCCO
7
IO_L22N_7
F2
I/O
6
IO
K1
I/O
7
IO_L22P_7
F3
I/O
6
IO_L01N_6/VRP_6
R1
DCI
7
IO_L23N_7
G5
I/O
6
IO_L01P_6/VRN_6
P1
DCI
7
IO_L23P_7
F5
I/O
6
IO_L16N_6
P2
I/O
7
IO_L24N_7
G3
I/O
6
IO_L16P_6
N3
I/O
7
IO_L24P_7
G4
I/O
6
IO_L17N_6
N2
I/O
7
IO_L39N_7
H3
I/O
6
IO_L17P_6/VREF_6
N1
VREF
7
IO_L39P_7
H4
I/O
6
IO_L19N_6
M4
I/O
7
IO_L40N_7/VREF_7
H1
VREF
6
IO_L19P_6
M3
I/O
7
IO_L40P_7
G1
I/O
6
IO_L20N_6
M2
I/O
7
VCCO_7
G6
VCCO
6
IO_L20P_6
M1
I/O
7
VCCO_7
H5
VCCO
6
IO_L21N_6
L5
I/O
7
VCCO_7
H6
VCCO
6
IO_L21P_6
L4
I/O
N/A
GND
A1
GND
6
IO_L22N_6
L3
I/O
N/A
GND
A16
GND
6
IO_L22P_6
L2
I/O
N/A
GND
B2
GND
6
IO_L23N_6
K5
I/O
N/A
GND
B9
GND
6
IO_L23P_6
K4
I/O
N/A
GND
B15
GND
6
IO_L24N_6/VREF_6
K3
VREF
N/A
GND
F6
GND
6
IO_L24P_6
K2
I/O
N/A
GND
F11
GND
6
IO_L39N_6
J4
I/O
N/A
GND
G7
GND
6
IO_L39P_6
J3
I/O
N/A
GND
G8
GND
6
IO_L40N_6
J2
I/O
N/A
GND
G9
GND
6
IO_L40P_6/VREF_6
J1
VREF
N/A
GND
G10
GND
6
VCCO_6
J5
VCCO
N/A
GND
H2
GND
6
VCCO_6
J6
VCCO
N/A
GND
H7
GND
6
VCCO_6
K6
VCCO
N/A
GND
H8
GND
7
IO
G2
I/O
N/A
GND
H9
GND
7
IO_L01N_7/VRP_7
C1
DCI
N/A
GND
H10
GND
7
IO_L01P_7/VRN_7
B1
DCI
N/A
GND
J7
GND
7
IO_L16N_7
C2
I/O
N/A
GND
J8
GND
7
IO_L16P_7/VREF_7
C3
VREF
N/A
GND
J9
GND
7
IO_L17N_7
D1
I/O
N/A
GND
J10
GND
7
IO_L17P_7
D2
I/O
N/A
GND
J15
GND
7
IO_L19N_7/VREF_7
E3
VREF
N/A
GND
K7
GND
7
IO_L19P_7
D3
I/O
N/A
GND
K8
GND
7
IO_L20N_7
E1
I/O
N/A
GND
K9
GND
7
IO_L20P_7
E2
I/O
N/A
GND
K10
GND
7
IO_L21N_7
F4
I/O
N/A
GND
L6
GND
7
IO_L21P_7
E4
I/O
N/A
GND
L11
GND
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 95: FT256 Package Pinout (Continued)
XC3S200
XC3S400
XC3S1000
Pin Name
Bank
Table 95: FT256 Package Pinout (Continued)
FT256
Pin
Number
Type
Bank
XC3S200
XC3S400
XC3S1000
Pin Name
FT256
Pin
Number
Type
N/A
GND
R2
GND
N/A
VCCINT
M12
VCCINT
N/A
GND
R8
GND
N/A
VCCINT
N4
VCCINT
N/A
GND
R15
GND
N/A
VCCINT
N13
VCCINT
N/A
GND
T1
GND
VCCAUX
CCLK
T15
CONFIG
N/A
GND
T16
GND
VCCAUX
DONE
R14
CONFIG
N/A
VCCAUX
A6
VCCAUX
VCCAUX
HSWAP_EN
C4
CONFIG
N/A
VCCAUX
A11
VCCAUX
VCCAUX
M0
P3
CONFIG
N/A
VCCAUX
F1
VCCAUX
VCCAUX
M1
T2
CONFIG
N/A
VCCAUX
F16
VCCAUX
VCCAUX
M2
P4
CONFIG
N/A
VCCAUX
L1
VCCAUX
VCCAUX
PROG_B
B3
CONFIG
N/A
VCCAUX
L16
VCCAUX
VCCAUX
TCK
C14
JTAG
N/A
VCCAUX
T6
VCCAUX
VCCAUX
TDI
A2
JTAG
N/A
VCCAUX
T11
VCCAUX
VCCAUX
TDO
A15
JTAG
N/A
VCCINT
D4
VCCINT
VCCAUX
TMS
C13
JTAG
N/A
VCCINT
D13
VCCINT
N/A
VCCINT
E5
VCCINT
User I/Os by Bank
N/A
VCCINT
E12
VCCINT
N/A
VCCINT
M5
VCCINT
Table 96 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FT256 package.
Table 96: User I/Os Per Bank in FT256 Package
Package Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
20
13
0
2
3
2
1
20
13
0
2
3
2
2
23
18
0
2
3
0
3
23
18
0
2
3
0
4
21
8
6
2
3
2
5
20
7
6
2
3
2
6
23
18
0
2
3
0
7
23
18
0
2
3
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
145
R
Spartan-3 FPGA Family: Pinout Descriptions
FT256 Footprint
3
Bank 0
5
6
4
I/O
IO
VREF_0 L01P_0
VRN_0
7
8
I/O
I/O
L32P_0
GCLK6
9
Bank 1
11
12
10
15
16
I/O
I/O
L10N_1 L01N_1
VREF_1 VRP_1
13
14
TDO
GND
GND
I/O
L01N_2
VRP_2
2
I/O
I/O
L31N_1 VCCAUX
VREF_1
GND
I/O
I/O
I/O
I/O
L31P_1 L29N_1 L27N_1 L10P_1
I/O
L01P_1
VRN_1
I/O
I/O
L29P_1 L27P_1
TCK
A
GND
B
I/O
L01P_7
VRN_7
C
I/O
L01N_7
VRP_7
D
IO
I/O
I/O
I/O
VCCINT VREF_0
L17N_7 L17P_7 L19P_7
E
I/O
L20N_7
F
VCCAUX
G
I/O
L40P_7
I/O
I/O
I/O
I/O
VCCO_7
L24N_7 L24P_7 L23N_7
GND
GND
GND
GND
I/O
I/O
I/O
I/O
VCCO_2 L23N_2
L23P_2 L24N_2 L24P_2
VREF_2
H
I/O
L40N_7
VREF_7
GND
I/O
I/O
VCCO_7 VCCO_7
L39N_7 L39P_7
GND
GND
GND
GND
VCCO_2 VCCO_2
I/O
I/O
I/O
I/O
L40P_2
L39N_2 L39P_2 L40N_2
VREF_2
J
I/O
L40P_6
VREF_6
I/O
I/O
I/O
VCCO_6 VCCO_6
L40N_6 L39P_6 L39N_6
GND
GND
GND
GND
VCCO_3 VCCO_3
I/O
I/O
L39P_3 L39N_3
K
I/O
I/O
I/O
I/O
VCCO_6
L24N_6
L23P_6 L23N_6
VREF_6
GND
GND
GND
GND
VCCO_3
L
VCCAUX
M
N
TDI
I/O
GND PROG_B L01N_0
VRP_0
I/O
VCCAUX
I/O
I/O
I/O
I/O
L32N_0
L25P_0 L28P_0 L30P_0
GCLK7
I/O
I/O
I/O
I/O
I/O
I/O
HSWAP_
L31P_0
L16P_7
L25N_0 L28N_0 L30N_0
L16N_7
EN
VREF_0
VREF_7
I/O
L32N_1
GCLK5
I/O
I/O
TMS
I/O
I/O
L01P_2
L16N_2
VRN_2
2
I/O
I/O
IO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCINT
L32P_1
L17P_2
L27P_0 L29P_0 L31N_0
L30N_1 L28N_1 VREF_1
L16P_2 L17N_2
GCLK4
VREF_2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_0 VCCO_1
VCCINT
VCCINT
L19N_7
L20P_7
L21P_7
L27N_0 L29N_0
L30P_1 L28P_1
L19N_2 L19P_2 L20N_2 L20P_2
VREF_7
I/O
I/O
I/O
I/O
L22N_7 L22P_7 L21N_7 L23P_7
I/O
L24P_6
I/O
I/O
I/O
I/O
L22P_6 L22N_6 L21P_6 L21N_6
GND
GND
VCCO_0 VCCO_0 VCCO_1 VCCO_1
I/O
I/O
I/O
I/O
VCCAUX
L21N_2 L21P_2 L22N_2 L22P_2
GND
VCCO_5 VCCO_5 VCCO_4 VCCO_4
I/O
I/O
I/O
L23N_3 L24P_3 L24N_3
I/O
GND
I/O
L40N_3
VREF_3
I/O
I/O
L40P_3
I/O
I/O
I/O
I/O
VCCAUX
L23P_3
L21N_3 L22P_3 L22N_3
VREF_3
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L27N_4 VCCINT
VCCO_5 VCCO_4
VCCINT L28P_5
L20P_6 L20N_6 L19P_6 L19N_6
L30P_5
L29N_4
DIN
L21P_3 L19N_3 L20P_3 L20N_3
D7
D0
I/O
I/O
I/O
I/O
I/O
I/O
IO
I/O
I/O
I/O
I/O
I/O
I/O
VCCINT
I/O
L17P_6
L28N_5
L32P_5 L31N_4
L27P_4 VREF_4 VCCINT
L17P_3
L17N_6 L16P_6
L30N_5
L29P_4
L19P_3
L17N_3
VREF_6
VREF_3
D6
GCLK2 INIT_B
D1
P
I/O
I/O
L01P_6
L16N_6
VRN_6
R
I/O
L01N_6
VRP_6
GND
T
GND
M1
M0
M2
I/O
L27P_5
I/O
L29P_5
VREF_5
I/O
I/O
I/O
I/O
I/O
I/O
L01P_5 L10P_5 L27N_5
L31P_5
L29N_5
CS_B VRN_5 VREF_5
D5
I/O
I/O
L01N_5 L10N_5
RDWR_B VRP_5
I/O
I/O
I/O
I/O
L31P_4
L30N_4
L32N_5
DOUT
D2
GCLK3
BUSY
I/O
I/O
GND
L32N_4 L30P_4
GCLK1
D3
I/O
IO
VCCAUX L31N_5
VREF_5
D4
Bank 2
2
Bank 3
Bank 6
Bank 7
1
I/O
IO
I/O
I/O
I/O
I/O
L01N_3
L28N_4 L25N_4 VREF_4 L16P_3 L16N_3
VRP_3
3
I/O
I/O
I/O
L01N_4
L28P_4 L25P_4
VRP_4
I/O
IO
L32P_4 VREF_4 VCCAUX
GCLK0
Bank 5
I/O
Bank 4
I/O
L01P_4
VRN_4
DONE
GND
I/O
L01P_3
VRN_3
3
I/O
CCLK
GND
DS099-4_10_030503
Figure 46: FT256 Package Footprint (top view)
113
16
7
0
146
I/O: Unrestricted, general-purpose user I/O
DCI: User I/O or reference resistor input for
bank
CONFIG: Dedicated configuration pins
N.C.: No unconnected pins in this package
12
8
4
32
DUAL: Configuration pin, then possible
user I/O
GCLK: User I/O or global clock buffer input
JTAG: Dedicated JTAG port pins
GND: Ground
www.xilinx.com
24
24
VREF: User I/O or input voltage reference for
bank
VCCO: Output voltage supply for bank
8
VCCINT: Internal core voltage supply
(+1.2V)
8
VCCAUX: Auxiliary voltage supply
(+2.5V)
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
FG320: 320-lead Fine-pitch Ball Grid
Array
The 320-lead fine-pitch ball grid array package, FG320,
supports three different Spartan-3 devices, including the
XC3S400, the XC3S1000, and the XC3S1500. The footprint
for all three devices is identical, as shown in Table 97 and
Figure 47.
Table 97: FG320 Package Pinout (Continued)
XC3S400
XC3S1000
XC3S1500
Pin Name
Bank
0
IO_L32N_0/GCLK7
FG320
Pin
Number
Type
E9
GCLK
0
IO_L32P_0/GCLK6
F9
GCLK
The FG320 package is an 18 x 18 array of solder balls
minus the four center balls.
0
VCCO_0
B8
VCCO
0
VCCO_0
C6
VCCO
All the package pins appear in Table 97 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
0
VCCO_0
G8
VCCO
0
VCCO_0
G9
VCCO
1
IO
A11
I/O
1
IO
B13
I/O
1
IO
D10
I/O
1
IO/VREF_1
A12
VREF
1
IO_L01N_1/VRP_1
A16
DCI
1
IO_L01P_1/VRN_1
A17
DCI
1
IO_L10N_1/VREF_1
A15
VREF
1
IO_L10P_1
B15
I/O
1
IO_L15N_1
C14
I/O
1
IO_L15P_1
C15
I/O
1
IO_L16N_1
A14
I/O
1
IO_L16P_1
B14
I/O
1
IO_L24N_1
D14
I/O
1
IO_L24P_1
D13
I/O
1
IO_L27N_1
E13
I/O
1
IO_L27P_1
E12
I/O
1
IO_L28N_1
C12
I/O
1
IO_L28P_1
D12
I/O
1
IO_L29N_1
F11
I/O
1
IO_L29P_1
E11
I/O
1
IO_L30N_1
C11
I/O
1
IO_L30P_1
D11
I/O
1
IO_L31N_1/VREF_1
A10
VREF
1
IO_L31P_1
B10
I/O
1
IO_L32N_1/GCLK5
E10
GCLK
1
IO_L32P_1/GCLK4
F10
GCLK
1
VCCO_1
B11
VCCO
1
VCCO_1
C13
VCCO
1
VCCO_1
G10
VCCO
1
VCCO_1
G11
VCCO
2
IO
J13
I/O
2
IO_L01N_2/VRP_2
C16
DCI
2
IO_L01P_2/VRN_2
C17
DCI
2
IO_L16N_2
B18
I/O
2
IO_L16P_2
C18
I/O
2
IO_L17N_2
D17
I/O
2
IO_L17P_2/VREF_2
D18
VREF
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
Pinout Table
Table 97: FG320 Package Pinout
XC3S400
XC3S1000
XC3S1500
Pin Name
Bank
FG320
Pin
Number
Type
0
IO
D9
I/O
0
IO
E7
I/O
0
IO/VREF_0
B3
VREF
0
IO/VREF_0
D6
VREF
0
IO_L01N_0/VRP_0
A2
DCI
0
IO_L01P_0/VRN_0
A3
DCI
0
IO_L09N_0
B4
I/O
0
IO_L09P_0
C4
I/O
0
IO_L10N_0
C5
I/O
0
IO_L10P_0
D5
I/O
0
IO_L15N_0
A4
I/O
0
IO_L15P_0
A5
I/O
0
IO_L25N_0
B5
I/O
0
IO_L25P_0
B6
I/O
0
IO_L27N_0
C7
I/O
0
IO_L27P_0
D7
I/O
0
IO_L28N_0
C8
I/O
0
IO_L28P_0
D8
I/O
0
IO_L29N_0
E8
I/O
0
IO_L29P_0
F8
I/O
0
IO_L30N_0
A7
I/O
0
IO_L30P_0
A8
I/O
0
IO_L31N_0
B9
I/O
0
IO_L31P_0/VREF_0
A9
VREF
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
147
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 97: FG320 Package Pinout (Continued)
XC3S400
XC3S1000
XC3S1500
Pin Name
Bank
148
Table 97: FG320 Package Pinout (Continued)
FG320
Pin
Number
Type
Bank
XC3S400
XC3S1000
XC3S1500
Pin Name
FG320
Pin
Number
Type
2
IO_L19N_2
D16
I/O
3
IO_L24P_3
N17
I/O
2
IO_L19P_2
E16
I/O
3
IO_L27N_3
L14
I/O
2
IO_L20N_2
E17
I/O
3
IO_L27P_3
L13
I/O
2
IO_L20P_2
E18
I/O
3
IO_L34N_3
L15
I/O
2
IO_L21N_2
F15
I/O
3
IO_L34P_3/VREF_3
L16
VREF
2
IO_L21P_2
E15
I/O
3
IO_L35N_3
L18
I/O
2
IO_L22N_2
F14
I/O
3
IO_L35P_3
L17
I/O
2
IO_L22P_2
G14
I/O
3
IO_L39N_3
K13
I/O
2
IO_L23N_2/VREF_2
G18
VREF
3
IO_L39P_3
K14
I/O
2
IO_L23P_2
F17
I/O
3
IO_L40N_3/VREF_3
K17
VREF
2
IO_L24N_2
G15
I/O
3
IO_L40P_3
K18
I/O
2
IO_L24P_2
G16
I/O
3
VCCO_3
K12
VCCO
2
IO_L27N_2
H13
I/O
3
VCCO_3
L12
VCCO
2
IO_L27P_2
H14
I/O
3
VCCO_3
N16
VCCO
2
IO_L34N_2/VREF_2
H16
VREF
4
IO
P12
I/O
2
IO_L34P_2
H15
I/O
4
IO
V14
I/O
2
IO_L35N_2
H17
I/O
4
IO/VREF_4
R10
VREF
2
IO_L35P_2
H18
I/O
4
IO/VREF_4
U13
VREF
2
IO_L39N_2
J18
I/O
4
IO/VREF_4
V17
VREF
2
IO_L39P_2
J17
I/O
4
IO_L01N_4/VRP_4
U16
DCI
2
IO_L40N_2
J15
I/O
4
IO_L01P_4/VRN_4
V16
DCI
2
IO_L40P_2/VREF_2
J14
VREF
4
IO_L06N_4/VREF_4
P14
VREF
2
VCCO_2
F16
VCCO
4
IO_L06P_4
R14
I/O
2
VCCO_2
H12
VCCO
4
IO_L09N_4
U15
I/O
2
VCCO_2
J12
VCCO
4
IO_L09P_4
V15
I/O
3
IO
K15
I/O
4
IO_L10N_4
T14
I/O
3
IO_L01N_3/VRP_3
T17
DCI
4
IO_L10P_4
U14
I/O
3
IO_L01P_3/VRN_3
T16
DCI
4
IO_L25N_4
R13
I/O
3
IO_L16N_3
T18
I/O
4
IO_L25P_4
P13
I/O
3
IO_L16P_3
U18
I/O
4
IO_L27N_4/DIN/D0
T12
DUAL
3
IO_L17N_3
P16
I/O
4
IO_L27P_4/D1
R12
DUAL
3
IO_L17P_3/VREF_3
R16
VREF
4
IO_L28N_4
V12
I/O
3
IO_L19N_3
R17
I/O
4
IO_L28P_4
V11
I/O
3
IO_L19P_3
R18
I/O
4
IO_L29N_4
R11
I/O
3
IO_L20N_3
P18
I/O
4
IO_L29P_4
T11
I/O
3
IO_L20P_3
P17
I/O
4
IO_L30N_4/D2
N11
DUAL
3
IO_L21N_3
P15
I/O
4
IO_L30P_4/D3
P11
DUAL
3
IO_L21P_3
N15
I/O
4
IO_L31N_4/INIT_B
U10
DUAL
3
IO_L22N_3
M14
I/O
4
V10
DUAL
3
IO_L22P_3
N14
I/O
IO_L31P_4/
DOUT/BUSY
3
IO_L23N_3
M15
I/O
4
IO_L32N_4/GCLK1
N10
GCLK
3
IO_L23P_3/VREF_3
M16
VREF
4
IO_L32P_4/GCLK0
P10
GCLK
3
IO_L24N_3
M18
I/O
4
VCCO_4
M10
VCCO
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 97: FG320 Package Pinout (Continued)
XC3S400
XC3S1000
XC3S1500
Pin Name
Bank
Table 97: FG320 Package Pinout (Continued)
FG320
Pin
Number
Type
Bank
M11
VCCO
6
XC3S400
XC3S1000
XC3S1500
Pin Name
FG320
Pin
Number
Type
IO_L20P_6
P1
I/O
4
VCCO_4
4
VCCO_4
T13
VCCO
6
IO_L21N_6
N4
I/O
4
VCCO_4
U11
VCCO
6
IO_L21P_6
P4
I/O
5
IO
N8
I/O
6
IO_L22N_6
N5
I/O
5
IO
P8
I/O
6
IO_L22P_6
M5
I/O
5
IO
U6
I/O
6
IO_L23N_6
M3
I/O
5
IO/VREF_5
R9
VREF
6
IO_L23P_6
M4
I/O
5
IO_L01N_5/RDWR_B
V3
DUAL
6
IO_L24N_6/VREF_6
N2
VREF
5
IO_L01P_5/CS_B
V2
DUAL
6
IO_L24P_6
M1
I/O
5
IO_L06N_5
T5
I/O
6
IO_L27N_6
L6
I/O
5
IO_L06P_5
T4
I/O
6
IO_L27P_6
L5
I/O
5
IO_L10N_5/VRP_5
V4
DCI
6
IO_L34N_6/VREF_6
L3
VREF
5
IO_L10P_5/VRN_5
U4
DCI
6
IO_L34P_6
L4
I/O
5
IO_L15N_5
R6
I/O
6
IO_L35N_6
L2
I/O
5
IO_L15P_5
R5
I/O
6
IO_L35P_6
L1
I/O
5
IO_L16N_5
V5
I/O
6
IO_L39N_6
K5
I/O
5
IO_L16P_5
U5
I/O
6
IO_L39P_6
K4
I/O
5
IO_L27N_5/VREF_5
P6
VREF
6
IO_L40N_6
K1
I/O
5
IO_L27P_5
P7
I/O
6
IO_L40P_6/VREF_6
K2
VREF
5
IO_L28N_5/D6
R7
DUAL
6
VCCO_6
K7
VCCO
5
IO_L28P_5/D7
T7
DUAL
6
VCCO_6
L7
VCCO
5
IO_L29N_5
V8
I/O
6
VCCO_6
N3
VCCO
5
IO_L29P_5/VREF_5
V7
VREF
7
IO
J6
I/O
5
IO_L30N_5
R8
I/O
7
IO_L01N_7/VRP_7
C3
DCI
5
IO_L30P_5
T8
I/O
7
IO_L01P_7/VRN_7
C2
DCI
5
IO_L31N_5/D4
U9
DUAL
7
IO_L16N_7
C1
I/O
5
IO_L31P_5/D5
V9
DUAL
7
IO_L16P_7/VREF_7
B1
VREF
5
IO_L32N_5/GCLK3
N9
GCLK
7
IO_L17N_7
D1
I/O
5
IO_L32P_5/GCLK2
P9
GCLK
7
IO_L17P_7
D2
I/O
5
VCCO_5
M8
VCCO
7
IO_L19N_7/VREF_7
E3
VREF
5
VCCO_5
M9
VCCO
7
IO_L19P_7
D3
I/O
5
VCCO_5
T6
VCCO
7
IO_L20N_7
E2
I/O
5
VCCO_5
U8
VCCO
7
IO_L20P_7
E1
I/O
6
IO
K6
I/O
7
IO_L21N_7
E4
I/O
6
IO_L01N_6/VRP_6
T3
DCI
7
IO_L21P_7
F4
I/O
6
IO_L01P_6/VRN_6
T2
DCI
7
IO_L22N_7
G5
I/O
6
IO_L16N_6
U1
I/O
7
IO_L22P_7
F5
I/O
6
IO_L16P_6
T1
I/O
7
IO_L23N_7
G1
I/O
6
IO_L17N_6
R2
I/O
7
IO_L23P_7
F2
I/O
6
IO_L17P_6/VREF_6
R1
VREF
7
IO_L24N_7
G4
I/O
6
IO_L19N_6
R3
I/O
7
IO_L24P_7
G3
I/O
6
IO_L19P_6
P3
I/O
7
IO_L27N_7
H5
I/O
6
IO_L20N_6
P2
I/O
7
IO_L27P_7/VREF_7
H6
VREF
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
149
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 97: FG320 Package Pinout (Continued)
XC3S400
XC3S1000
XC3S1500
Pin Name
Bank
150
Table 97: FG320 Package Pinout (Continued)
FG320
Pin
Number
Type
Bank
XC3S400
XC3S1000
XC3S1500
Pin Name
FG320
Pin
Number
Type
T10
GND
7
IO_L34N_7
H4
I/O
N/A
GND
7
IO_L34P_7
H3
I/O
N/A
GND
T9
GND
7
IO_L35N_7
H1
I/O
N/A
GND
U17
GND
7
IO_L35P_7
H2
I/O
N/A
GND
U2
GND
7
IO_L39N_7
J1
I/O
N/A
GND
V1
GND
7
IO_L39P_7
J2
I/O
N/A
GND
V13
GND
7
IO_L40N_7/VREF_7
J5
VREF
N/A
GND
V18
GND
7
IO_L40P_7
J4
I/O
N/A
GND
V6
GND
7
VCCO_7
F3
VCCO
N/A
VCCAUX
B12
VCCAUX
7
VCCO_7
H7
VCCO
N/A
VCCAUX
B7
VCCAUX
7
VCCO_7
J7
VCCO
N/A
VCCAUX
G17
VCCAUX
N/A
GND
A1
GND
N/A
VCCAUX
G2
VCCAUX
N/A
GND
A13
GND
N/A
VCCAUX
M17
VCCAUX
N/A
GND
A18
GND
N/A
VCCAUX
M2
VCCAUX
N/A
GND
A6
GND
N/A
VCCAUX
U12
VCCAUX
N/A
GND
B17
GND
N/A
VCCAUX
U7
VCCAUX
N/A
GND
B2
GND
N/A
VCCINT
F12
VCCINT
N/A
GND
C10
GND
N/A
VCCINT
F13
VCCINT
N/A
GND
C9
GND
N/A
VCCINT
F6
VCCINT
N/A
GND
F1
GND
N/A
VCCINT
F7
VCCINT
N/A
GND
F18
GND
N/A
VCCINT
G13
VCCINT
N/A
GND
G12
GND
N/A
VCCINT
G6
VCCINT
N/A
GND
G7
GND
N/A
VCCINT
M13
VCCINT
N/A
GND
H10
GND
N/A
VCCINT
M6
VCCINT
N/A
GND
H11
GND
N/A
VCCINT
N12
VCCINT
N/A
GND
H8
GND
N/A
VCCINT
N13
VCCINT
N/A
GND
H9
GND
N/A
VCCINT
N6
VCCINT
N/A
GND
J11
GND
N/A
VCCINT
N7
VCCINT
N/A
GND
J16
GND
VCCAUX CCLK
T15
CONFIG
N/A
GND
J3
GND
VCCAUX DONE
R15
CONFIG
N/A
GND
J8
GND
VCCAUX HSWAP_EN
E6
CONFIG
N/A
GND
K11
GND
VCCAUX M0
P5
CONFIG
N/A
GND
K16
GND
VCCAUX M1
U3
CONFIG
N/A
GND
K3
GND
VCCAUX M2
R4
CONFIG
N/A
GND
K8
GND
VCCAUX PROG_B
E5
CONFIG
N/A
GND
L10
GND
VCCAUX TCK
E14
JTAG
N/A
GND
L11
GND
VCCAUX TDI
D4
JTAG
N/A
GND
L8
GND
VCCAUX TDO
D15
JTAG
N/A
GND
L9
GND
VCCAUX TMS
B16
JTAG
N/A
GND
M12
GND
N/A
GND
M7
GND
N/A
GND
N1
GND
N/A
GND
N18
GND
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
User I/Os by Bank
Table 98 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FG320 package.
Table 98: User I/Os Per Bank in FG320 Package
Package Edge
Top
Right
Bottom
Left
I/O Bank
Maximum
I/O
Maximum
LVDS
Pairs
I/O
DUAL
DCI
VREF
GCLK
0
26
11
19
0
2
3
2
1
26
11
19
0
2
3
2
2
29
14
23
0
2
4
0
3
29
14
23
0
2
4
0
4
27
11
13
6
2
4
2
5
26
11
13
6
2
3
2
6
29
14
23
0
2
4
0
7
29
14
23
0
2
4
0
DS099-4 (v2.4) June 25, 2008
Product Specification
All Possible I/O Pins by Type
www.xilinx.com
151
R
Spartan-3 FPGA Family: Pinout Descriptions
FG320 Footprint
GND
B
L16P_7
VREF_7
3
I/O
I/O
L01N_0
VRP_0
L01P_0
VRN_0
I/O
I/O
C
L16N_7
Bank 7
D
E
F
M
VCCO_0
I/O
L19P_7
I/O
I/O
L23P_7
VCCAUX
I/O
L19N_7
VREF_7
VCCO_7
Bank 6
P
T
U
V
I/O
L28P_0
I/O
I/O
L29N_0
PROG_B HSWAP_
EN
I/O
I/O
L21P_7
L22P_7
I/O
I/O
I/O
L24N_7
L22N_7
I/O
I/O
L34N_7
L27N_7
I/O
L40P_6
VREF_6
I/O
I/O
L35P_6
L35N_6
I/O
L24P_6
GND
VCCAUX
GND
I/O
L34N_6
VREF_6
GND
L24N_6
VREF_6
I/O
L40P_7
I/O
I/O
L39P_6
L39N_6
I/O
I/O
I/O
L23P_6
L22P_6
I/O
I/O
L21N_6
L22N_6
I/O
L21P_6
I/O
L16P_6
I/O
L16N_6
GND
I/O
I/O
L17N_6
L19N_6
I/O
I/O
L01P_6
VRN_6
L01N_6
VRP_6
GND
M1
M2
I/O
I/O
L01N_5
RDWR_B
L10N_5
VRP_5
GND
I/O
I/O
I/O
I/O
L32N_0
GCLK7
L32N_1
GCLK5
VCCAUX
I/O
I/O
L30N_1
L28N_1
I/O
VCCO_1
I/O
I/O
L32P_1
GCLK4
L29N_1
VCCO_0 VCCO_0
VCCO_1
VCCO_1
GND
GND
GND
VCCO_2
I/O
VCCINT VCCINT
I/O
VCCO_6
GND
GND
VCCO_3
VCCO_6
GND
GND
GND
VCCO_3
VCCO_4
VCCO_4
GND
VCCINT
GND
VCCINT
VCCINT VCCINT
I/O
I/O
L16N_5
I/O
L27N_5
VREF_5
L27P_5
I/O
L28N_5
D6
I/O
VCCO_5 VCCO_5
I/O
I/O
I/O
I/O
L32N_5
GCLK3
L32N_4
GCLK1
L30N_4
D2
I/O
I/O
I/O
I/O
L32P_5
GCLK2
L32P_4
GCLK0
L30P_4
D3
I/O
I/O
I/O
I/O
L30N_5
VREF_5
VREF_4
L29N_4
GND
GND
I/O
VCCO_5
L28P_5
D7
L30P_5
I/O
VCCAUX
VCCO_5
GND
L29P_5
VREF_5
I/O
GND
I/O
L29N_5
I/O
I/O
L31N_5
D4
L31N_4
INIT_B
I/O
L31P_5
D5
I/O
I/O
L27P_4
D1
L27N_4
DIN
D0
VCCO_4
VCCAUX
I/O
L31P_4
DOUT
BUSY
I/O
I/O
L28P_4
L28N_4
Bank 5
GND
I/O
L15P_1
TDO
I/O
L17P_2
VREF_2
I/O
I/O
L20N_2
L20P_2
I/O
I/O
L22N_2
L21N_2
VCCO_2
I/O
I/O
I/O
L22P_2
L24N_2
L24P_2
I/O
I/O
L40P_2
VREF_2
I/O
I/O
L39N_3
L39P_3
I/O
L40N_2
I/O
I/O
I/O
L27N_3
L34N_3
I/O
I/O
L22N_3
L23N_3
I/O
I/O
L22P_3
L21P_3
I/O
L06N_4
VREF_4
I/O
I/O
L25N_4
L06P_4
I/O
L10N_4
I/O
L34N_2
VREF_2
GND
I/O
L23P_2
GND
I/O
VCCAUX
L23N_2
VREF_2
I/O
I/O
L35N_2
L35P_2
I/O
I/O
L39P_2
L39N_2
I/O
I/O
L27P_3
VCCO_4
I/O
L17N_2
I/O
L16P_2
I/O
L34P_2
I/O
I/O
L19N_2
I/O
L16N_2
L19P_2
I/O
L25P_4
I/O
L01P_2
VRN_2
GND
I/O
L27P_2
VCCINT
I/O
L01N_2
VRP_2
18
L21P_2
TCK
I/O
I/O
L29P_4
TMS
L27N_2
VCCINT VCCINT
I/O
L01P_1
VRN_1
I/O
I/O
L27N_1
L01N_1
VRP_1
L15N_1
L24N_1
I/O
L10N_1
VREF_1
I/O
I/O
L27P_1
17
I/O
L10P_1
L24P_1
I/O
16
I/O
I/O
I/O
L29P_1
15
I/O
L16P_1
I/O
I/O
L16P_5
I/O
L16N_1
L28P_1
I/O
GND
GND
14
I/O
L32P_0
GCLK6
I/O
L29P_0
13
L30P_1
VCCO_2
L15N_5
I/O
I/O
GND
VCCO_1
GND
I/O
L06N_5
L01P_5
CS_B
I/O
L31P_1
I/O
VREF_1
GND
L15P_5
I/O
I/O
I/O
L31N_0
I/O
VCCO_7
I/O
M0
L06P_5
L10P_5
VRN_5
L31N_1
VREF_1
I/O
I/O
I/O
L31P_0
VREF_0
GND
L27N_6
L19P_6
I/O
12
VCCO_7
I/O
I/O
I/O
11
I/O
L27P_6
L20N_6
10
L27P_7
VREF_7
I/O
I/O
GND
VCCINT
L34P_6
L20P_6
L17P_6
VREF_6
VCCINT VCCINT
9
I/O
L40N_7
VREF_7
L23N_6
VCCO_6
I/O
L28N_0
I/O
I/O
I/O
I/O
L27N_0
L27P_0
L34P_7
L39P_7
VCCO_0
I/O
I/O
I/O
VCCAUX
VREF_0
L35P_7
L39N_7
I/O
L30P_0
I/O
I/O
I/O
R
I/O
L21N_7
I/O
L10P_0
L24P_7
I/O
N
TDI
L35N_7
L40N_6
L
I/O
L10N_0
I/O
I/O
K
I/O
L09P_0
I/O
L17P_7
I/O
J
I/O
L25P_0
I/O
L23N_7
H
I/O
L25N_0
8
L30N_0
GND
I/O
L01N_7
VRP_7
L20N_7
I/O
L15P_0
7
L09N_0
I/O
I/O
I/O
L15N_0
Bank 1
6
I/O
L01P_7
VRN_7
L20P_7
5
VREF_0
L17N_7
GND
G
GND
4
GND
I/O
L34P_3
VREF_3
L40N_3
VREF_3
I/O
L40P_3
I/O
I/O
L35P_3
L35N_3
I/O
L23P_3
VREF_3
VCCO_3
VCCAUX
I/O
L24P_3
I/O
L24N_3
GND
I/O
I/O
I/O
I/O
L21N_3
L17N_3
L20P_3
L20N_3
DONE
L17P_3
VREF_3
I/O
I/O
CCLK
L01P_3
VRN_3
L01N_3
VRP_3
I/O
I/O
I/O
I/O
VREF_4
L10P_4
L09N_4
GND
I/O
I/O
L09P_4
I/O
I/O
L19N_3
L19P_3
I/O
L16N_3
I/O
L01N_4
VRP_4
I/O
L01P_4
VRN_4
Bank 2
A
2
GND
I/O
VREF_4
Bank 3
Bank 0
1
I/O
L16P_3
GND
Bank 4
ds099-3_16_121103
Figure 47: FG320 Package Footprint (top view)
156
16
7
0
152
I/O: Unrestricted, general-purpose user I/O
DCI: User I/O or reference resistor input for
bank
CONFIG: Dedicated configuration pins
N.C.: No unconnected pins in this package
12
8
4
40
DUAL: Configuration pin, then possible
user I/O
GCLK: User I/O or global clock buffer input
JTAG: Dedicated JTAG port pins
GND: Ground
www.xilinx.com
29
28
VREF: User I/O or input voltage reference for
bank
VCCO: Output voltage supply for bank
12
VCCINT: Internal core voltage supply
(+1.2V)
8
VCCAUX: Auxiliary voltage supply
(+2.5V)
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
FG456: 456-lead Fine-pitch Ball Grid
Array
The 456-lead fine-pitch ball grid array package, FG456,
supports four different Spartan-3 devices, including the
XC3S400, the XC3S1000, the XC3S1500, and the
XC3S2000. The footprints for the XC3S1000, the
XC3S1500, and the XC3S2000 are identical, as shown in
Table 99 and Figure 48. The XC3S400, however, has fewer
I/O pins which consequently results in 69 unconnected pins
on the FG456 package, labeled as “N.C.” In Table 99 and
Figure 48, these unconnected pins are indicated with a
black diamond symbol (‹).
Table 99: FG456 Package Pinout (Continued)
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
0
IO_L01P_0/
VRN_0
0
0
FG456
Pin
Number
Type
IO_L01P_0/
VRN_0
A4
DCI
IO_L06N_0
IO_L06N_0
D5
I/O
IO_L06P_0
IO_L06P_0
C5
I/O
0
0
IO_L09N_0
IO_L09P_0
IO_L09N_0
IO_L09P_0
B5
A5
I/O
I/O
Bank
0
IO_L10N_0
IO_L10N_0
E6
I/O
All the package pins appear in Table 99 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
0
IO_L10P_0
IO_L10P_0
D6
I/O
0
IO_L15N_0
IO_L15N_0
C6
I/O
0
IO_L15P_0
IO_L15P_0
B6
I/O
0
IO_L16N_0
IO_L16N_0
E7
I/O
0
IO_L16P_0
IO_L16P_0
D7
I/O
If there is a difference between the XC3S400 pinout and the
pinout for the XC3S1000, the XC3S1500, or the XC3S2000,
then that difference is highlighted in Table 99. If the table
entry is shaded grey, then there is an unconnected pin on
the XC3S400 that maps to a user-I/O pin on the XC3S1000,
XC3S1500, and XC3S2000. If the table entry is shaded tan,
then the unconnected pin on the XC3S400 maps to a
VREF-type pin on the XC3S1000, the XC3S1500, or the
XC3S2000. If the other VREF pins in the bank all connect to
a voltage reference to support a special I/O standard, then
also connect the N.C. pin on the XC3S400 to the same
VREF voltage. This provides maximum flexibility as you
could potentially migrate a design from the XC3S400 device
to an XC3S1000, an XC3S1500, or an XC3S2000 FPGA
without changing the printed circuit board.
0
N.C. (‹)
IO_L19N_0
B7
I/O
0
N.C. (‹)
IO_L19P_0
A7
I/O
0
N.C. (‹)
IO_L22N_0
E8
I/O
0
N.C. (‹)
IO_L22P_0
D8
I/O
0
0
IO_L24N_0
IO_L24P_0
IO_L24N_0
IO_L24P_0
B8
A8
I/O
I/O
0
IO_L25N_0
IO_L25N_0
F9
I/O
0
IO_L25P_0
IO_L25P_0
E9
I/O
0
IO_L27N_0
IO_L27N_0
B9
I/O
0
IO_L27P_0
IO_L27P_0
A9
I/O
0
IO_L28N_0
IO_L28N_0
F10
I/O
0
IO_L28P_0
IO_L28P_0
E10
I/O
0
IO_L29N_0
IO_L29N_0
C10
I/O
0
IO_L29P_0
IO_L29P_0
B10
I/O
0
IO_L30N_0
IO_L30N_0
F11
I/O
0
IO_L30P_0
IO_L30P_0
E11
I/O
0
IO_L31N_0
IO_L31N_0
D11
I/O
0
IO_L31P_0/
VREF_0
IO_L31P_0/
VREF_0
C11
VREF
0
IO_L32N_0/
GCLK7
IO_L32N_0/
GCLK7
B11
GCLK
0
IO_L32P_0/
GCLK6
IO_L32P_0/
GCLK6
A11
GCLK
0
VCCO_0
VCCO_0
C8
VCCO
0
VCCO_0
VCCO_0
F8
VCCO
0
VCCO_0
VCCO_0
G9
VCCO
0
VCCO_0
VCCO_0
G10
VCCO
0
VCCO_0
VCCO_0
G11
VCCO
1
IO
IO
A12
I/O
1
IO
IO
E16
I/O
1
IO
IO
F12
I/O
1
IO
IO
F13
I/O
1
IO
IO
F16
I/O
1
IO
IO
F17
I/O
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
Pinout Table
Table 99: FG456 Package Pinout
Bank
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
FG456
Pin
Number
Type
0
IO
IO
A10
I/O
0
IO
IO
D9
I/O
0
IO
IO
D10
I/O
0
IO
IO
F6
I/O
0
IO/VREF_0
IO/VREF_0
A3
VREF
0
IO/VREF_0
IO/VREF_0
C7
VREF
0
N.C. (‹)
IO/VREF_0
E5
VREF
0
IO/VREF_0
IO/VREF_0
F7
VREF
0
IO_L01N_0/
VRP_0
IO_L01N_0/
VRP_0
B4
DCI
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
153
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 99: FG456 Package Pinout (Continued)
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
1
IO/VREF_1
IO/VREF_1
E13
VREF
1
N.C. (‹)
IO/VREF_1
F14
VREF
2
IO_L01N_2/
VRP_2
1
IO_L01N_1/
VRP_1
IO_L01N_1/
VRP_1
C19
DCI
2
1
IO_L01P_1/
VRN_1
IO_L01P_1/
VRN_1
B20
DCI
IO_L06N_1/
VREF_1
IO_L06N_1/
VREF_1
A19
1
IO_L06P_1
IO_L06P_1
B19
I/O
1
IO_L09N_1
IO_L09N_1
C18
1
1
IO_L09P_1
IO_L10N_1/
VREF_1
IO_L09P_1
IO_L10N_1/
VREF_1
1
IO_L10P_1
1
FG456
Pin
Number
Type
IO_L01N_2/
VRP_2
C20
DCI
IO_L01P_2/
VRN_2
IO_L01P_2/
VRN_2
C21
DCI
2
IO_L16N_2
IO_L16N_2
D20
I/O
2
IO_L16P_2
IO_L16P_2
D19
I/O
2
IO_L17N_2
IO_L17N_2
D21
I/O
2
IO_L17P_2
/VREF_2
IO_L17P_2/
VREF_2
D22
VREF
I/O
2
IO_L19N_2
IO_L19N_2
E18
I/O
D18
A18
I/O
VREF
2
2
IO_L19P_2
IO_L20N_2
IO_L19P_2
IO_L20N_2
F18
E19
I/O
I/O
2
IO_L20P_2
IO_L20P_2
E20
I/O
IO_L10P_1
B18
I/O
2
IO_L21N_2
IO_L21N_2
E21
I/O
IO_L15N_1
IO_L15N_1
D17
I/O
2
IO_L21P_2
IO_L21P_2
E22
I/O
1
IO_L15P_1
IO_L15P_1
E17
I/O
2
IO_L22N_2
IO_L22N_2
G17
I/O
1
IO_L16N_1
IO_L16N_1
B17
I/O
2
IO_L22P_2
IO_L22P_2
G18
I/O
1
IO_L16P_1
IO_L16P_1
C17
I/O
2
IO_L19N_1
C16
I/O
IO_L23N_2/
VREF_2
VREF
N.C. (‹)
IO_L23N_2
/VREF_2
F19
1
1
1
N.C. (‹)
N.C. (‹)
IO_L19P_1
IO_L22N_1
D16
A16
I/O
I/O
2
2
IO_L23P_2
IO_L24N_2
IO_L23P_2
IO_L24N_2
G19
F20
I/O
I/O
1
N.C. (‹)
IO_L22P_1
B16
I/O
2
IO_L24P_2
IO_L24P_2
F21
I/O
1
IO_L24N_1
IO_L24N_1
D15
I/O
2
N.C. (‹)
IO_L26N_2
G20
I/O
1
IO_L24P_1
IO_L24P_1
E15
I/O
2
N.C. (‹)
IO_L26P_2
H19
I/O
1
IO_L25N_1
IO_L25N_1
B15
I/O
2
IO_L27N_2
IO_L27N_2
G21
I/O
1
IO_L25P_1
IO_L25P_1
A15
I/O
2
IO_L27P_2
IO_L27P_2
G22
I/O
1
IO_L27N_1
IO_L27N_1
D14
I/O
2
N.C. (‹)
IO_L28N_2
H18
I/O
1
IO_L27P_1
IO_L27P_1
E14
I/O
2
N.C. (‹)
IO_L28P_2
J17
I/O
1
IO_L28N_1
IO_L28N_1
A14
I/O
2
N.C. (‹)
IO_L29N_2
H21
I/O
1
IO_L28P_1
IO_L28P_1
B14
I/O
2
N.C. (‹)
IO_L29P_2
H22
I/O
1
IO_L29N_1
IO_L29N_1
C13
I/O
2
N.C. (‹)
IO_L31N_2
J18
I/O
1
IO_L29P_1
IO_L29P_1
D13
I/O
2
N.C. (‹)
IO_L31P_2
J19
I/O
1
1
IO_L30N_1
IO_L30P_1
IO_L30N_1
IO_L30P_1
A13
B13
I/O
I/O
2
2
N.C. (‹)
N.C. (‹)
IO_L32N_2
IO_L32P_2
J21
J22
I/O
I/O
1
IO_L31N_1/
VREF_1
IO_L31N_1/
VREF_1
D12
VREF
2
N.C. (‹)
IO_L33N_2
K17
I/O
2
N.C. (‹)
IO_L33P_2
K18
I/O
1
IO_L31P_1
IO_L31P_1
E12
I/O
2
VREF
IO_L32N_1/
GCLK5
IO_L32P_1/
GCLK4
IO_L32N_1/
GCLK5
IO_L32P_1/
GCLK4
B12
GCLK
IO_L34N_2/
VREF_2
K19
1
IO_L34N_2/
VREF_2
2
IO_L34P_2
IO_L34P_2
K20
I/O
C12
GCLK
2
IO_L35N_2
IO_L35N_2
K21
I/O
2
IO_L35P_2
IO_L35P_2
K22
I/O
1
VCCO_1
VCCO_1
C15
VCCO
2
IO_L38N_2
IO_L38N_2
L17
I/O
1
VCCO_1
VCCO_1
F15
VCCO
1
VCCO_1
VCCO_1
G12
VCCO
2
2
IO_L38P_2
IO_L39N_2
IO_L38P_2
IO_L39N_2
L18
L19
I/O
I/O
1
VCCO_1
VCCO_1
G13
VCCO
2
IO_L39P_2
IO_L39P_2
L20
I/O
1
VCCO_1
VCCO_1
G14
VCCO
2
IO_L40N_2
IO_L40N_2
L21
I/O
2
IO
IO
C22
I/O
Bank
1
1
154
Table 99: FG456 Package Pinout (Continued)
FG456
Pin
Number
Type
Bank
VREF
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 99: FG456 Package Pinout (Continued)
Table 99: FG456 Package Pinout (Continued)
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
2
IO_L40P_2/
VREF_2
IO_L40P_2/
VREF_2
L22
VREF
3
IO_L34P_3/
VREF_3
2
VCCO_2
VCCO_2
H17
2
VCCO_2
VCCO_2
H20
VCCO
3
VCCO
3
2
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
J16
K16
VCCO
VCCO
2
VCCO_2
3
IO
VCCO_2
L16
IO
Y21
3
IO_L01N_3/
VRP_3
IO_L01N_3/
VRP_3
3
IO_L01P_3/
VRN_3
3
FG456
Pin
Number
Type
IO_L34P_3/
VREF_3
N19
VREF
IO_L35N_3
IO_L35N_3
N22
I/O
IO_L35P_3
IO_L35P_3
N21
I/O
3
3
IO_L38N_3
IO_L38P_3
IO_L38N_3
IO_L38P_3
M18
M17
I/O
I/O
VCCO
3
IO_L39N_3
IO_L39N_3
M20
I/O
I/O
3
IO_L39P_3
IO_L39P_3
M19
I/O
Y20
DCI
3
IO_L40N_3/
VREF_3
IO_L40N_3/
VREF_3
M22
VREF
IO_L01P_3/
VRN_3
Y19
DCI
3
IO_L40P_3
IO_L40P_3
M21
I/O
3
VCCO_3
VCCO_3
M16
VCCO
IO_L16N_3
IO_L16N_3
W22
I/O
3
VCCO_3
VCCO_3
N16
VCCO
3
IO_L16P_3
IO_L16P_3
Y22
I/O
3
IO_L17N_3
IO_L17N_3
V19
I/O
3
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
P16
R17
VCCO
VCCO
3
IO_L17P_3/
VREF_3
IO_L17P_3/
VREF_3
W19
VREF
3
VCCO_3
VCCO_3
R20
VCCO
4
IO
IO
U16
I/O
3
IO_L19N_3
IO_L19N_3
W21
I/O
4
IO
IO
U17
I/O
3
IO_L19P_3
IO_L19P_3
W20
I/O
4
IO
IO
W13
I/O
3
3
IO_L20N_3
IO_L20P_3
IO_L20N_3
IO_L20P_3
U19
V20
I/O
I/O
4
IO
IO
W14
I/O
4
IO/VREF_4
IO/VREF_4
AB13
VREF
3
IO_L21N_3
IO_L21N_3
V22
I/O
4
IO/VREF_4
IO/VREF_4
V18
VREF
3
IO_L21P_3
IO_L21P_3
V21
I/O
4
IO/VREF_4
IO/VREF_4
Y16
VREF
3
IO_L22N_3
IO_L22N_3
T17
I/O
4
DCI
IO_L22P_3
IO_L22P_3
U18
I/O
IO_L01N_4/
VRP_4
AA20
3
IO_L01N_4/
VRP_4
3
IO_L23N_3
IO_L23N_3
U21
I/O
4
IO_L23P_3/
VREF_3
U20
VREF
IO_L01P_4/
VRN_4
DCI
IO_L23P_3/
VREF_3
IO_L01P_4/
VRN_4
AB20
3
4
N.C. (‹)
IO_L05N_4
AA19
I/O
3
IO_L24N_3
IO_L24N_3
R18
I/O
4
N.C. (‹)
IO_L05P_4
AB19
I/O
3
3
IO_L24P_3
N.C. (‹)
IO_L24P_3
IO_L26N_3
T18
T20
I/O
I/O
4
IO_L06N_4/
VREF_4
IO_L06N_4/
VREF_4
W18
VREF
3
N.C. (‹)
IO_L26P_3
T19
I/O
4
IO_L06P_4
IO_L06P_4
Y18
I/O
3
IO_L27N_3
IO_L27N_3
T22
I/O
4
IO_L09N_4
IO_L09N_4
AA18
I/O
3
IO_L27P_3
IO_L27P_3
T21
I/O
4
IO_L09P_4
IO_L09P_4
AB18
I/O
3
N.C. (‹)
IO_L28N_3
R22
I/O
4
IO_L10N_4
IO_L10N_4
V17
I/O
3
N.C. (‹)
IO_L28P_3
R21
I/O
4
IO_L10P_4
IO_L10P_4
W17
I/O
3
N.C. (‹)
IO_L29N_3
P19
I/O
4
IO_L15N_4
IO_L15N_4
Y17
I/O
3
N.C. (‹)
IO_L29P_3
R19
I/O
4
IO_L15P_4
IO_L15P_4
AA17
I/O
3
N.C. (‹)
IO_L31N_3
P18
I/O
4
IO_L16N_4
IO_L16N_4
V16
I/O
3
N.C. (‹)
IO_L31P_3
P17
I/O
4
IO_L16P_4
IO_L16P_4
W16
I/O
3
N.C. (‹)
IO_L32N_3
P22
I/O
4
N.C. (‹)
IO_L19N_4
AA16
I/O
3
N.C. (‹)
IO_L32P_3
P21
I/O
4
N.C. (‹)
IO_L19P_4
AB16
I/O
3
3
N.C. (‹)
N.C. (‹)
IO_L33N_3
IO_L33P_3
N18
N17
I/O
I/O
4
N.C. (‹)
IO_L22N_4/
VREF_4
V15
VREF
3
IO_L34N_3
IO_L34N_3
N20
I/O
4
N.C. (‹)
IO_L22P_4
W15
I/O
4
IO_L24N_4
IO_L24N_4
AA15
I/O
Bank
DS099-4 (v2.4) June 25, 2008
Product Specification
FG456
Pin
Number
Type
Bank
www.xilinx.com
155
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 99: FG456 Package Pinout (Continued)
Bank
FG456
Pin
Number
Type
Bank
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
FG456
Pin
Number
Type
4
IO_L24P_4
IO_L24P_4
AB15
I/O
5
IO_L15N_5
IO_L15N_5
W6
I/O
4
IO_L25N_4
IO_L25N_4
U14
I/O
5
IO_L15P_5
IO_L15P_5
V6
I/O
4
IO_L25P_4
IO_L25P_4
V14
I/O
5
IO_L16N_5
IO_L16N_5
AA6
I/O
4
IO_L27N_4/
DIN/D0
IO_L27P_4/
D1
IO_L27N_4/
DIN/D0
IO_L27P_4/
D1
AA14
DUAL
5
IO_L16P_5
IO_L16P_5
Y6
I/O
5
N.C. (‹)
IO_L19N_5
Y7
I/O
AB14
DUAL
5
N.C. (‹)
IO_L19P_5/
VREF_5
W7
VREF
4
IO_L28N_4
IO_L28N_4
U13
I/O
5
N.C. (‹)
IO_L22N_5
AB7
I/O
4
IO_L28P_4
IO_L28P_4
V13
I/O
5
N.C. (‹)
IO_L22P_5
AA7
I/O
4
IO_L29N_4
IO_L29N_4
Y13
I/O
5
IO_L24N_5
IO_L24N_5
W8
I/O
4
IO_L29P_4
IO_L29P_4
AA13
I/O
5
IO_L24P_5
IO_L24P_5
V8
I/O
4
IO_L30N_4/
D2
IO_L30N_4/
D2
U12
DUAL
5
IO_L25N_5
IO_L25N_5
AB8
I/O
5
IO_L25P_5
IO_L25P_5
AA8
I/O
4
IO_L30P_4/
D3
IO_L30P_4/
D3
V12
DUAL
5
IO_L27N_5/
VREF_5
IO_L27N_5/
VREF_5
W9
VREF
4
IO_L31N_4/
INIT_B
IO_L31P_4/
DOUT/BUSY
IO_L31N_4/
INIT_B
IO_L31P_4/
DOUT/BUSY
W12
DUAL
5
IO_L27P_5
IO_L27P_5
V9
I/O
Y12
DUAL
5
IO_L28N_5/
D6
IO_L28N_5/
D6
AB9
DUAL
4
IO_L32N_4/
GCLK1
IO_L32N_4/
GCLK1
AA12
GCLK
5
DUAL
IO_L32P_4/
GCLK0
IO_L32P_4/
GCLK0
AB12
GCLK
IO_L28P_5/
D7
IO_L29N_5
AA9
4
IO_L28P_5/
D7
IO_L29N_5
Y10
I/O
5
VREF
VCCO_4
VCCO_4
T12
VCCO
IO_L29P_5/
VREF_5
W10
4
IO_L29P_5/
VREF_5
4
VCCO_4
VCCO_4
T13
VCCO
5
IO_L30N_5
IO_L30N_5
AB10
I/O
4
VCCO_4
VCCO_4
T14
VCCO
5
IO_L30P_5
IO_L30P_5
AA10
I/O
4
VCCO_4
VCCO_4
U15
VCCO
5
DUAL
VCCO_4
VCCO_4
Y15
VCCO
V11
DUAL
5
IO
IO
U7
I/O
IO_L31N_5/
D4
IO_L31P_5/
D5
W11
4
IO_L31N_5/
D4
IO_L31P_5/
D5
5
N.C. (‹)
IO
U9
I/O
5
IO
U10
I/O
IO_L32N_5/
GCLK3
GCLK
IO
IO_L32N_5/
GCLK3
AA11
5
5
IO
IO
U11
I/O
5
IO
IO
V7
V10
I/O
I/O
IO_L32P_5/
GCLK2
GCLK
IO
IO
IO_L32P_5/
GCLK2
Y11
5
5
5
VCCO_5
VCCO_5
T9
VCCO
VCCO_5
VCCO_5
T10
VCCO
4
4
5
5
5
IO/VREF_5
IO/VREF_5
AB11
VREF
5
5
IO/VREF_5
IO/VREF_5
U6
VREF
5
VCCO_5
VCCO_5
T11
VCCO
DUAL
5
VCCO_5
VCCO_5
U8
VCCO
5
VCCO_5
VCCO_5
Y8
VCCO
6
IO
IO
Y1
I/O
6
IO_L01N_6/
VRP_6
IO_L01N_6/
VRP_6
Y3
DCI
6
IO_L01P_6/
VRN_6
IO_L01P_6/
VRN_6
Y2
DCI
5
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
Y4
IO_L01P_5/
CS_B
IO_L01P_5/
CS_B
AA3
5
IO_L06N_5
IO_L06N_5
AB4
I/O
5
IO_L06P_5
IO_L06P_5
AA4
I/O
5
IO_L09N_5
IO_L09N_5
Y5
I/O
5
IO_L09P_5
IO_L09P_5
W5
I/O
6
IO_L16N_6
IO_L16N_6
W4
I/O
5
IO_L10N_5/
VRP_5
IO_L10N_5/
VRP_5
AB5
DCI
6
IO_L16P_6
IO_L16P_6
W3
I/O
6
IO_L17N_6
IO_L17N_6
W2
I/O
IO_L10P_5/
VRN_5
IO_L10P_5/
VRN_5
AA5
6
IO_L17P_6/
VREF_6
IO_L17P_6/
VREF_6
W1
VREF
5
5
156
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
Table 99: FG456 Package Pinout (Continued)
DUAL
DCI
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 99: FG456 Package Pinout (Continued)
Table 99: FG456 Package Pinout (Continued)
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
6
IO_L19N_6
IO_L19N_6
V5
I/O
6
IO_L19P_6
IO_L19P_6
U5
I/O
6
IO_L20N_6
IO_L20N_6
V4
I/O
6
IO_L20P_6
IO_L20P_6
V3
I/O
6
IO_L21N_6
IO_L21N_6
V2
I/O
Bank
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
7
IO_L01N_7/
VRP_7
7
FG456
Pin
Number
FG456
Pin
Number
Type
Bank
Type
IO_L01N_7/
VRP_7
C3
DCI
IO_L01P_7/
VRN_7
IO_L01P_7/
VRN_7
C4
DCI
7
IO_L16N_7
IO_L16N_7
D1
I/O
7
IO_L16P_7/
VREF_7
IO_L16P_7/
VREF_7
C1
VREF
7
IO_L17N_7
IO_L17N_7
E4
I/O
7
IO_L17P_7
IO_L17P_7
D4
I/O
7
IO_L19N_7/
VREF_7
IO_L19N_7/
VREF_7
D3
VREF
7
IO_L19P_7
IO_L19P_7
D2
I/O
7
IO_L20N_7
IO_L20N_7
F4
I/O
7
IO_L20P_7
IO_L20P_7
E3
I/O
7
IO_L21N_7
IO_L21N_7
E1
I/O
7
IO_L21P_7
IO_L21P_7
E2
I/O
7
IO_L22N_7
IO_L22N_7
G6
I/O
7
IO_L22P_7
IO_L22P_7
F5
I/O
7
IO_L23N_7
IO_L23N_7
F2
I/O
7
7
IO_L23P_7
IO_L24N_7
IO_L23P_7
IO_L24N_7
F3
H5
I/O
I/O
7
IO_L24P_7
IO_L24P_7
G5
I/O
7
N.C. (‹)
IO_L26N_7
G3
I/O
7
N.C. (‹)
IO_L26P_7
G4
I/O
7
IO_L27N_7
IO_L27N_7
G1
I/O
7
IO_L27P_7/
VREF_7
IO_L27P_7/
VREF_7
G2
VREF
6
IO_L21P_6
IO_L21P_6
V1
I/O
6
IO_L22N_6
IO_L22N_6
T6
I/O
6
6
IO_L22P_6
IO_L23N_6
IO_L22P_6
IO_L23N_6
T5
U4
I/O
I/O
6
IO_L23P_6
IO_L23P_6
T4
I/O
6
IO_L24N_6/
VREF_6
IO_L24N_6/
VREF_6
U3
VREF
6
IO_L24P_6
IO_L24P_6
U2
I/O
6
N.C. (‹)
IO_L26N_6
T3
I/O
6
N.C. (‹)
IO_L26P_6
R4
I/O
6
IO_L27N_6
IO_L27N_6
T2
I/O
6
6
IO_L27P_6
N.C. (‹)
IO_L27P_6
IO_L28N_6
T1
R5
I/O
I/O
6
N.C. (‹)
IO_L28P_6
P6
I/O
6
N.C. (‹)
IO_L29N_6
R2
I/O
6
N.C. (‹)
IO_L29P_6
R1
I/O
6
N.C. (‹)
IO_L31N_6
P5
I/O
6
N.C. (‹)
IO_L31P_6
P4
I/O
6
N.C. (‹)
IO_L32N_6
P2
I/O
6
N.C. (‹)
IO_L32P_6
P1
I/O
6
N.C. (‹)
IO_L33N_6
N6
I/O
6
N.C. (‹)
IO_L33P_6
N5
I/O
7
N.C. (‹)
IO_L28N_7
H1
I/O
6
IO_L34N_6/
VREF_6
IO_L34N_6/
VREF_6
N4
VREF
7
N.C. (‹)
IO_L28P_7
H2
I/O
6
IO_L34P_6
IO_L34P_6
N3
I/O
6
IO_L35N_6
IO_L35N_6
N2
I/O
7
7
N.C. (‹)
N.C. (‹)
IO_L29N_7
IO_L29P_7
J4
H4
I/O
I/O
6
IO_L35P_6
IO_L35P_6
N1
I/O
7
N.C. (‹)
IO_L31N_7
J5
I/O
6
IO_L38N_6
IO_L38N_6
M6
I/O
7
N.C. (‹)
IO_L31P_7
J6
I/O
6
IO_L38P_6
IO_L38P_6
M5
I/O
7
N.C. (‹)
IO_L32N_7
J1
I/O
6
IO_L39N_6
IO_L39N_6
M4
I/O
7
N.C. (‹)
IO_L32P_7
J2
I/O
6
IO_L39P_6
IO_L39P_6
M3
I/O
7
N.C. (‹)
IO_L33N_7
K5
I/O
6
IO_L40N_6
IO_L40N_6
M2
I/O
7
N.C. (‹)
IO_L33P_7
K6
I/O
6
IO_L40P_6/
VREF_6
IO_L40P_6/
VREF_6
M1
VREF
7
IO_L34N_7
IO_L34N_7
K3
I/O
7
IO_L34P_7
IO_L34P_7
K4
I/O
6
VCCO_6
VCCO_6
M7
VCCO
7
IO_L35N_7
IO_L35N_7
K1
I/O
7
IO_L35P_7
IO_L35P_7
K2
I/O
7
IO_L38N_7
IO_L38N_7
L5
I/O
7
7
IO_L38P_7
IO_L39N_7
IO_L38P_7
IO_L39N_7
L6
L3
I/O
I/O
7
IO_L39P_7
IO_L39P_7
L4
I/O
6
VCCO_6
VCCO_6
N7
VCCO
6
VCCO_6
VCCO_6
P7
VCCO
6
VCCO_6
VCCO_6
R3
VCCO
6
VCCO_6
VCCO_6
R6
VCCO
7
IO
IO
C2
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
157
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 99: FG456 Package Pinout (Continued)
3S400
Pin Name
3S1000
3S1500
3S2000
Pin Name
IO_L40N_7/
VREF_7
IO_L40N_7/
VREF_7
L1
7
IO_L40P_7
IO_L40P_7
L2
I/O
N/A
7
VCCO_7
VCCO_7
H3
VCCO
N/A
7
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
H6
J7
VCCO
VCCO
7
VCCO_7
VCCO_7
K7
VCCO
7
VCCO_7
VCCO_7
L7
VCCO
N/A
GND
GND
A1
N/A
GND
GND
N/A
GND
GND
N/A
GND
GND
N/A
GND
N/A
Type
GND
N11
GND
GND
N12
GND
GND
GND
N13
GND
GND
GND
N14
GND
N/A
GND
GND
P3
GND
N/A
GND
GND
P9
GND
N/A
GND
GND
P10
GND
GND
N/A
N/A
GND
GND
GND
GND
P11
P12
GND
GND
A22
GND
N/A
GND
GND
P13
GND
AA2
GND
N/A
GND
GND
P14
GND
AA21
GND
N/A
GND
GND
P20
GND
GND
AB1
GND
N/A
GND
GND
Y9
GND
GND
GND
AB22
GND
N/A
GND
GND
Y14
GND
N/A
GND
GND
B2
GND
N/A
VCCAUX
VCCAUX
A6
VCCAUX
N/A
GND
GND
B21
GND
N/A
VCCAUX
VCCAUX
A17
VCCAUX
N/A
N/A
GND
GND
GND
GND
C9
C14
GND
GND
N/A
VCCAUX
VCCAUX
AB6
VCCAUX
N/A
VCCAUX
VCCAUX
AB17
VCCAUX
N/A
GND
GND
J3
GND
N/A
VCCAUX
VCCAUX
F1
VCCAUX
N/A
GND
GND
J9
GND
N/A
GND
GND
J10
GND
N/A
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
F22
U1
VCCAUX
VCCAUX
N/A
GND
GND
J11
GND
N/A
VCCAUX
VCCAUX
U22
VCCAUX
N/A
GND
GND
J12
GND
N/A
VCCINT
VCCINT
G7
VCCINT
N/A
GND
GND
J13
GND
N/A
VCCINT
VCCINT
G8
VCCINT
N/A
GND
GND
J14
GND
N/A
VCCINT
VCCINT
G15
VCCINT
N/A
GND
GND
J20
GND
N/A
VCCINT
VCCINT
G16
VCCINT
N/A
GND
GND
K9
GND
N/A
VCCINT
VCCINT
H7
VCCINT
N/A
GND
GND
K10
GND
N/A
VCCINT
VCCINT
H16
VCCINT
N/A
GND
GND
K11
GND
N/A
VCCINT
VCCINT
R7
VCCINT
N/A
N/A
GND
GND
GND
GND
K12
K13
GND
GND
N/A
VCCINT
VCCINT
R16
VCCINT
N/A
VCCINT
VCCINT
T7
VCCINT
N/A
GND
GND
K14
GND
N/A
VCCINT
VCCINT
T8
VCCINT
N/A
GND
GND
L9
GND
N/A
GND
GND
L10
GND
N/A
N/A
VCCINT
VCCINT
VCCINT
VCCINT
T15
T16
VCCINT
VCCINT
N/A
GND
GND
L11
GND
VCCAUX CCLK
CCLK
AA22
CONFIG
N/A
GND
GND
L12
GND
VCCAUX DONE
DONE
AB21
CONFIG
N/A
GND
GND
L13
GND
VCCAUX HSWAP_EN
HSWAP_EN
B3
CONFIG
N/A
GND
GND
L14
GND
VCCAUX M0
M0
AB2
CONFIG
N/A
GND
GND
M9
GND
VCCAUX M1
M1
AA1
CONFIG
N/A
GND
GND
M10
GND
VCCAUX M2
M2
AB3
CONFIG
N/A
GND
GND
M11
GND
VCCAUX PROG_B
PROG_B
A2
CONFIG
N/A
GND
GND
M12
GND
VCCAUX TCK
TCK
A21
JTAG
N/A
N/A
GND
GND
GND
GND
M13
M14
GND
GND
VCCAUX TDI
TDI
B1
JTAG
VCCAUX TDO
TDO
B22
JTAG
N/A
GND
GND
N9
GND
VCCAUX TMS
TMS
A20
JTAG
N/A
GND
GND
N10
GND
7
FG456
Pin
Number
Type
Bank
VREF
N/A
GND
N/A
GND
3S1000
3S1500
3S2000
Pin Name
FG456
Pin
Number
Bank
158
Table 99: FG456 Package Pinout (Continued)
www.xilinx.com
3S400
Pin Name
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
User I/Os by Bank
Table 100 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S400 in the
FG456 package. Similarly, Table 101 shows how the avail-
able user-I/O pins are distributed between the eight I/O
banks for the XC3S1000, XC3S1500, and XC3S2000 in the
FG456 package.
Table 100: User I/Os Per Bank for XC3S400 in FG456 Package
Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O
Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
35
27
0
2
4
2
1
35
27
0
2
4
2
2
31
25
0
2
4
0
3
31
25
0
2
4
0
4
35
21
6
2
4
2
5
35
21
6
2
4
2
6
31
25
0
2
4
0
7
31
25
0
2
4
0
Table 101: User I/Os Per Bank for XC3S1000, XC3S1500, and XC3S2000 in FG456 Package
Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
40
31
0
2
5
2
1
40
31
0
2
5
2
2
43
37
0
2
4
0
3
43
37
0
2
4
0
4
41
26
6
2
5
2
5
40
25
6
2
5
2
6
43
37
0
2
4
0
7
43
37
0
2
4
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
159
R
Spartan-3 FPGA Family: Pinout Descriptions
FG456 Footprint
1
Left Half of FG456
Package (top view)
XC3S400
(264 max. user I/O)
I/O: Unrestricted,
196
general-purpose user I/O
69
VREF: User I/O or input
voltage reference for bank
36
VREF: User I/O or input
voltage reference for bank
0
N.C.: No unconnected pins
in this package
F
40
8
GND
I/O
9
10
11
I/O
I/O
L32P_0
GCLK6
I/O
I/O
I/O
VRP_0
‹
GCLK7
I/O
I/O
IO
I/O
I/O
L01N_7 L01P_7
VREF_0 VCCO_0
VRP_7 VRN_7 L06P_0 L15N_0
GND
I/O
I/O
L31P_0
L29N_0 VREF_0
I/O
I/O
I/O
I/O
L31N_0
I/O
I/O
I/O
I/O
IO
I/O
I/O
I/O
VREF_0 VCCO_0 L25N_0 L28N_0 L30N_0
I/O
I/O
I/O
I/O
VCCINT VCCINT
L27P_7 L26N_7 L26P_7
G L27N_7
L24P_7 L22N_7
VREF_7
‹
‹
I/O
I/O
VCCO_7 L29P_7
GND
VCCO_0 VCCO_0 VCCO_0
I/O
VCCO_7 VCCINT
L24N_7
‹
I/O
I/O
I/O
L29N_7 L31N_7 L31P_7 VCCO_7
‹
‹
‹
GND
GND
GND
VCCO_7
GND
GND
GND
VCCO_7
GND
GND
GND
VCCO_6
GND
GND
GND
VCCO_6
GND
GND
GND
I/O
I/O
I/O
L31P_6 L31N_6 L28P_6 VCCO_6
‹
‹
‹
GND
GND
GND
I/O
I/O
‹
‹
I/O
I/O
I/O
I/O
L33N_7 L33P_7
K L35N_7
L35P_7 L34N_7 L34P_7
I/O
I/O
I/O
I/O
I/O
I/O
L L40N_7 L40P_7
L39N_7 L39P_7 L38N_7 L38P_7
VREF_7
I/O
I/O
I/O
I/O
I/O
I/O
M L40P_6 L40N_6
L39P_6 L39N_6 L38P_6 L38N_6
VREF_6
I/O
I/O
I/O
I/O
I/O
I/O
L34N_6 L33P_6 L33N_6
N L35P_6
L35N_6 L34P_6 VREF_6
‹
‹
I/O
I/O
P L32P_6 L32N_6
‹
‹
I/O
I/O
R L29P_6 L29N_6
‹
GND
I/O
I/O
VCCO_6 L26P_6 L28N_6 VCCO_6 VCCINT
‹
‹
‹
I/O
I/O
I/O
I/O
I/O
I/O
L26N_6
VCCINT VCCINT VCCO_5 VCCO_5 VCCO_5
T L27P_6
L27N_6
L23P_6 L22P_6 L22N_6
‹
I/O
IO
I/O
I/O
I/O
L24N_6
L24P_6 VREF_6 L23N_6 L19P_6 VREF_5
I/O
VCCO_5
I/O
I/O
I/O
I/O
I/O
I/O
V L21P_6
L21N_6 L20P_6 L20N_6 L19N_6 L15P_5
I/O
I/O
I/O
L24P_5 L27P_5
U
VCCAUX
I/O
I/O
52 GND: Ground
8
HSWAP_
I/O
I/O
I/O
I/O
I/O
L19N_0
L01N_0
L32N_0
EN
L09N_0 L15P_0
L24N_0 L27N_0 L29P_0
I/O
I/O
I/O
I/O
L23N_7 L23P_7 L20N_7 L22P_7
‹
‹
I/O
I/O
J L32N_7 L32P_7
‹
‹
JTAG: Dedicated JTAG
port pins
VCCAUX: Auxiliary voltage
supply (+2.5V)
VCCAUX
I/O
CONFIG: Dedicated
configuration pins
VCCO: Output voltage
supply for bank
Bank 0
7
I/O
I/O
IO
I/O
I/O
I/O
L19P_0
PROG_B
VREF_0 L01P_0 L09P_0 VCCAUX
L24P_0 L27P_0
VRN_0
‹
H L28N_7 L28P_7
GCLK: User I/O or global
clock buffer input
VCCINT: Internal core
12
voltage supply (+1.2V)
6
IO
Bank 6
4
5
I/O
I/O
I/O
I/O VREF_0
I/O
I/O
I/O
I/O
I/O
L22N_0
E L21N_7
L21P_7 L20P_7 L17N_7
L10N_0 L16N_0
L25P_0 L28P_0 L30P_0
‹
‹
DCI: User I/O or reference
16
resistor input for bank
7
TDI
4
I/O
All devices
DUAL: Configuration pin,
12
then possible user I/O
8
B
3
I/O
I/O
I/O
I/O
I/O
I/O
L22P_0
L19N_7
D L16N_7
L19P_7 VREF_7 L17P_7 L06N_0 L10P_0 L16P_0
‹
N.C.: Unconnected pins for
XC3S400 (‹)
XC3S1000, XC3S1500, XC3S2000
(333 max user I/O)
I/O: Unrestricted,
261
general-purpose user I/O
GND
I/O
C L16P_7
VREF_7
Bank 7
32
A
2
I/O
‹
I/O
I/O
I/O
I/O
I/O
L31P_5
D5
I/O
I/O
I/O
I/O
I/O
I/O
I/O L19P_5
I/O
L27N_5 L29P_5 L31N_5
W L17P_6 L17N_6
L16P_6 L16N_6 L09P_5 L15N_5 VREF_5 L24N_5 VREF_5 VREF_5
VREF_6
D4
‹
I/O
I/O
I/O
I/O
I/O
I/O
L19N_5 VCCO_5
L01P_6 L01N_6 L01N_5
L09N_5
L16P_5
VRN_6 VRP_6 RDWR_B
‹
Y
I/O
A
A
M1
GND
A
B
GND
M0
GND
I/O
I/O
L32P_5
L29N_5 GCLK2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L22P_5
L01P_5
L10P_5
L28P_5
L32N_5
L06P_5
L16N_5
L25P_5
L30P_5
CS_B
VRN_5
D7
GCLK3
‹
M2
I/O
I/O
I/O
IO
I/O
I/O
I/O
L10N_5 VCCAUX L22N_5
L28N_5
VREF_5
L06N_5 VRP_5
L25N_5
D6 L30N_5
‹
Bank 5
DS099-4_11a_030203
Figure 48: FG456 Package Footprint (top view)
160
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
12
I/O
13
Spartan-3 FPGA Family: Pinout Descriptions
14
Bank 1
15
16
17
18
19
I/O
I/O
I/O
I/O
I/O
I/O
L22N_1 VCCAUX L10N_1 L06N_1
L30N_1 L28N_1 L25P_1
VREF_1 VREF_1
‹
20
21
22
TMS
TCK
GND
A
GND
TDO
B
I/O
C
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L22P_1
L32N_1
L01P_1
L16N_1 L10P_1 L06P_1 VRN_1
GCLK5 L30P_1 L28P_1 L25N_1
‹
I/O
I/O
L32P_1
GCLK4 L29N_1
I/O
GND
VCCO_1 L19N_1
‹
I/O
I/O
I/O
I/O
I/O
L01N_1 L01N_2 L01P_2
L16P_1 L09N_1 VRP_1 VRP_2 VRN_2
Right Half of FG456
Package (top view)
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L19P_1
L31N_1
L17P_2 D
L29P_1
L27N_1
L24N_1
L15N_1 L09P_1 L16P_2 L16N_2 L17N_2 VREF_2
VREF_1
‹
I/O
IO
VREF_1 VCCO_1
‹
I/O
I/O
I/O
VCCO_1 VCCO_1 VCCO_1 VCCINT VCCINT
I/O
I/O
I/O
I/O
I/O
I/O
E
L15P_1 L19N_2 L20N_2 L20P_2 L21N_2 L21P_2
I/O
I/O
I/O
I/O
I/O
VCCAUX F
L23N_2
L19P_2 VREF_2 L24N_2 L24P_2
I/O
I/O
I/O
I/O
I/O
I/O
L26N_2
G
L22N_2 L22P_2 L23P_2
L27N_2 L27P_2
‹
Bank 2
IO
I/O
I/O
I/O
L31P_1 VREF_1 L27P_1 L24P_1
I/O
I/O
I/O
I/O
VCCINT VCCO_2 L28N_2 L26P_2 VCCO_2 L29N_2 L29P_2 H
‹
‹
‹
‹
GND
GND
VCCO_2 L28P_2
‹
I/O
I/O
L31N_2 L31P_2
‹
‹
GND
I/O
I/O
L32N_2 L32P_2 J
‹
‹
GND
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_2 L33N_2 L33P_2 L34N_2
K
L34P_2 L35N_2 L35P_2
VREF_2
‹
‹
GND
GND
GND
VCCO_2
I/O
I/O
I/O
I/O
I/O
I/O
L40P_2 L
L38N_2 L38P_2 L39N_2 L39P_2 L40N_2 VREF_2
GND
GND
GND
VCCO_3
I/O
I/O
I/O
I/O
I/O
I/O
L40N_3 M
L38P_3 L38N_3 L39P_3 L39N_3 L40P_3 VREF_3
GND
GND
GND
VCCO_3 L33P_3 L33N_3 L34P_3
GND
GND
GND
VCCO_3 L31P_3 L31N_3 L29N_3
I/O
‹
‹
I/O
I/O
‹
VCCINT VCCO_3
VCCO_4 VCCO_4 VCCO_4 VCCINT VCCINT
I/O
I/O
I/O
VCCO_4
I/O
L30N_4
L28N_4 L25N_4
D2
I/O
I/O
L22N_4
I/O
I/O
I/O
L30P_4
L28P_4 L25P_4 VREF_4 L16N_4
D3
‹
I/O
I/O
I/O
L22P_4
I/O
I/O
L31N_4
L16P_4
INIT_B
‹
I/O
IO
I/O
L31P_4
GND VCCO_4 VREF_4
DOUT L29N_4
BUSY
I/O
I/O
I/O
I/O
I/O
L27N_4
L19N_4
L32N_4
L29P_4
DI
N
L24N_4
GCLK1
‹
D0
I/O
‹
I/O
I/O
I/O
I/O
N
VREF_3 L34N_3 L35P_3 L35N_3
I/O
‹
GND
I/O
I/O
L32P_3 L32N_3 P
‹
‹
I/O
I/O
I/O
I/O
L29P_3 VCCO_3 L28P_3 L28N_3 R
L24N_3
‹
‹
‹
I/O
I/O
I/O
I/O
I/O
I/O
L26P_3 L26N_3
T
L27P_3 L27N_3
L22N_3 L24P_3
‹
‹
I/O
I/O
I/O
I/O
I/O
VCCAUX U
L23P_3
L22P_3 L20N_3 VREF_3 L23N_3
IO
I/O
I/O
I/O
I/O
I/O
V
L10N_4 VREF_4 L17N_3 L20P_3 L21P_3 L21N_3
I/O
I/O
I/O
I/O
I/O
I/O
L06N_4 L17P_3
L10P_4 VREF_4 VREF_3 L19P_3 L19N_3 L16N_3 W
I/O
I/O
I/O
I/O
L01P_3 L01N_3
L15N_4 L06P_4 VRN_3 VRP_3
I/O
I/O
I/O
I/O
I/O
L05N_4 L01N_4
L15P_4 L09N_4
VRP_4
‹
GND
I/O
I/O
I/O
I/O
I/O
IO
I/O
I/O
L05P_4 L01P_4 DONE
L19P_4 VCCAUX
L32P_4 VREF_4 L27P_4
L09P_4
L24P_4
GCLK0
VRN_4
D1
‹
‹
Bank 4
DS099-4 (v2.4) June 25, 2008
Product Specification
Bank 3
I/O
GND
I/O
Y
L16P_3
CCLK
A
A
GND
A
B
DS099-4_11b_030503
www.xilinx.com
161
R
Spartan-3 FPGA Family: Pinout Descriptions
FG676: 676-lead Fine-pitch Ball Grid
Array
The 676-lead fine-pitch ball grid array package, FG676,
supports five different Spartan-3 devices, including the
XC3S1000, XC3S1500, XC3S2000, XC3S4000, and
XC3S5000. All five have nearly identical footprints but are
slightly different, primarily due to unconnected pins on the
XC3S1000 and XC3S1500. For example, because the
XC3S1000 has fewer I/O pins, this device has 98 unconnected pins on the FG676 package, labeled as “N.C.” In
Table 102 and Figure 49, these unconnected pins are indicated with a black diamond symbol (‹). The XC3S1500,
however, has only two unconnected pins, also labeled
“N.C.” in the pinout table but indicated with a black square
symbol („).
All the package pins appear in Table 102 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
If there is a difference between the XC3S1000, XC3S1500,
XC3S2000, XC3S4000, and XC3S5000 pinouts, then that
difference is highlighted in Table 102. If the table entry is
shaded grey, then there is an unconnected pin on either the
XC3S1000 or XC3S1500 that maps to a user-I/O pin on the
XC3S2000, XC3S4000, and XC3S5000. If the table entry is
shaded tan, then the unconnected pin on either the
XC3S1000 or XC3S1500 maps to a VREF-type pin on the
XC3S2000, XC3S4000, and XC3S5000. If the other VREF
pins in the bank all connect to a voltage reference to support
a special I/O standard, then also connect the N.C. pin on the
XC3S1000 or XC3S1500 to the same VREF voltage. This
provides maximum flexibility as you could potentially
migrate a design from the XC3S1000 through to the
XC3S5000 FPGA without changing the printed circuit
board.
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
Pinout Table
Table 102: FG676 Package Pinout
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
0
IO
IO
IO
IO
IO_L04N_03
A3
I/O
0
IO
IO
IO
IO
IO
A5
I/O
0
IO
IO
IO
IO
IO
A6
I/O
0
IO
IO
IO
IO
IO_L04P_03
C4
I/O
0
N.C. (‹)
IO
IO
IO
IO_L13N_03
C8
I/O
0
IO
IO
IO
IO
IO
C12
I/O
0
IO
IO
IO
IO
IO
E13
I/O
0
IO
IO
IO
IO
IO
H11
I/O
0
IO
IO
IO
IO
IO
H12
I/O
0
IO/VREF_0
IO/VREF_0
IO/VREF_0
IO/VREF_0
IO/VREF_0
B3
VREF
0
IO/VREF_0
IO/VREF_0
IO/VREF_0
IO/VREF_0
IO/VREF_0
F7
VREF
0
IO/VREF_0
IO/VREF_0
IO/VREF_0
IO/VREF_0
IO/VREF_0
G10
VREF
0
IO_L01N_0/VRP_0
IO_L01N_0/VRP_0
IO_L01N_0/VRP_0
IO_L01N_0/VRP_0
IO_L01N_0/VRP_0
E5
DCI
0
IO_L01P_0/VRN_0
IO_L01P_0/VRN_0
IO_L01P_0/VRN_0
IO_L01P_0/VRN_0
IO_L01P_0/VRN_0
D5
DCI
0
IO_L05N_0
IO_L05N_0
IO_L05N_0
IO_L05N_0
IO_L05N_0
B4
I/O
0
IO_L05P_0/VREF_0
IO_L05P_0/VREF_0
IO_L05P_0/VREF_0
IO_L05P_0/VREF_0
IO_L05P_0/VREF_0
A4
VREF
0
IO_L06N_0
IO_L06N_0
IO_L06N_0
IO_L06N_0
IO_L06N_0
C5
I/O
0
IO_L06P_0
IO_L06P_0
IO_L06P_0
IO_L06P_0
IO_L06P_0
B5
I/O
0
IO_L07N_0
IO_L07N_0
IO_L07N_0
IO_L07N_0
IO_L07N_0
E6
I/O
0
IO_L07P_0
IO_L07P_0
IO_L07P_0
IO_L07P_0
IO_L07P_0
D6
I/O
0
IO_L08N_0
IO_L08N_0
IO_L08N_0
IO_L08N_0
IO_L08N_0
C6
I/O
0
IO_L08P_0
IO_L08P_0
IO_L08P_0
IO_L08P_0
IO_L08P_0
B6
I/O
0
IO_L09N_0
IO_L09N_0
IO_L09N_0
IO_L09N_0
IO_L09N_0
E7
I/O
0
IO_L09P_0
IO_L09P_0
IO_L09P_0
IO_L09P_0
IO_L09P_0
D7
I/O
0
IO_L10N_0
IO_L10N_0
IO_L10N_0
IO_L10N_0
IO_L10N_0
B7
I/O
0
IO_L10P_0
IO_L10P_0
IO_L10P_0
IO_L10P_0
IO_L10P_0
A7
I/O
162
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
0
N.C. (‹)
IO_L11N_0
IO_L11N_0
IO_L11N_0
IO_L11N_0
G8
I/O
0
N.C. (‹)
IO_L11P_0
IO_L11P_0
IO_L11P_0
IO_L11P_0
F8
I/O
0
N.C. (‹)
IO_L12N_0
IO_L12N_0
IO_L12N_0
IO3
E8
I/O
0
N.C. (‹)
IO_L12P_0
IO_L12P_0
IO_L12P_0
IO3
D8
I/O
0
IO_L15N_0
IO_L15N_0
IO_L15N_0
IO_L15N_0
IO_L13P_03
B8
I/O
0
IO_L15P_0
IO_L15P_0
IO_L15P_0
IO_L15P_0
IO3
A8
I/O
0
IO_L16N_0
IO_L16N_0
IO_L16N_0
IO_L16N_0
IO_L16N_0
G9
I/O
0
IO_L16P_0
IO_L16P_0
IO_L16P_0
IO_L16P_0
IO_L16P_0
F9
I/O
0
N.C. (‹)
IO_L17N_0
IO_L17N_0
IO_L17N_0
IO_L17N_0
E9
I/O
0
N.C. (‹)
IO_L17P_0
IO_L17P_0
IO_L17P_0
IO_L17P_0
D9
I/O
0
N.C. (‹)
IO_L18N_0
IO_L18N_0
IO_L18N_0
IO_L18N_0
C9
I/O
0
N.C. (‹)
IO_L18P_0
IO_L18P_0
IO_L18P_0
IO_L18P_0
B9
I/O
0
IO_L19N_0
IO_L19N_0
IO_L19N_0
IO_L19N_0
IO_L19N_0
F10
I/O
0
IO_L19P_0
IO_L19P_0
IO_L19P_0
IO_L19P_0
IO_L19P_0
E10
I/O
0
IO_L22N_0
IO_L22N_0
IO_L22N_0
IO_L22N_0
IO_L22N_0
D10
I/O
0
IO_L22P_0
IO_L22P_0
IO_L22P_0
IO_L22P_0
IO_L22P_0
C10
I/O
0
N.C. (‹)
IO_L23N_0
IO_L23N_0
IO_L23N_0
IO_L23N_0
B10
I/O
0
N.C. (‹)
IO_L23P_0
IO_L23P_0
IO_L23P_0
IO_L23P_0
A10
I/O
0
IO_L24N_0
IO_L24N_0
IO_L24N_0
IO_L24N_0
IO_L24N_0
G11
I/O
0
IO_L24P_0
IO_L24P_0
IO_L24P_0
IO_L24P_0
IO_L24P_0
F11
I/O
0
IO_L25N_0
IO_L25N_0
IO_L25N_0
IO_L25N_0
IO_L25N_0
E11
I/O
0
IO_L25P_0
IO_L25P_0
IO_L25P_0
IO_L25P_0
IO_L25P_0
D11
I/O
0
N.C. (‹)
IO_L26N_0
IO_L26N_0
IO_L26N_0
IO_L26N_0
B11
I/O
0
N.C. (‹)
IO_L26P_0/
VREF_0
IO_L26P_0/
VREF_0
IO_L26P_0/
VREF_0
IO_L26P_0/
VREF_0
A11
VREF
0
IO_L27N_0
IO_L27N_0
IO_L27N_0
IO_L27N_0
IO_L27N_0
G12
I/O
0
IO_L27P_0
IO_L27P_0
IO_L27P_0
IO_L27P_0
IO_L27P_0
H13
I/O
0
IO_L28N_0
IO_L28N_0
IO_L28N_0
IO_L28N_0
IO_L28N_0
F12
I/O
0
IO_L28P_0
IO_L28P_0
IO_L28P_0
IO_L28P_0
IO_L28P_0
E12
I/O
0
IO_L29N_0
IO_L29N_0
IO_L29N_0
IO_L29N_0
IO_L29N_0
B12
I/O
0
IO_L29P_0
IO_L29P_0
IO_L29P_0
IO_L29P_0
IO_L29P_0
A12
I/O
0
IO_L30N_0
IO_L30N_0
IO_L30N_0
IO_L30N_0
IO_L30N_0
G13
I/O
0
IO_L30P_0
IO_L30P_0
IO_L30P_0
IO_L30P_0
IO_L30P_0
F13
I/O
0
IO_L31N_0
IO_L31N_0
IO_L31N_0
IO_L31N_0
IO_L31N_0
D13
I/O
0
IO_L31P_0/VREF_0
IO_L31P_0/VREF_0
IO_L31P_0/VREF_0
IO_L31P_0/VREF_0
IO_L31P_0/VREF_0
C13
VREF
0
IO_L32N_0/GCLK7
IO_L32N_0/GCLK7
IO_L32N_0/GCLK7
IO_L32N_0/GCLK7
IO_L32N_0/GCLK7
B13
GCLK
0
IO_L32P_0/GCLK6
IO_L32P_0/GCLK6
IO_L32P_0/GCLK6
IO_L32P_0/GCLK6
IO_L32P_0/GCLK6
A13
GCLK
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
C7
VCCO
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
C11
VCCO
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
H9
VCCO
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
H10
VCCO
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
J11
VCCO
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
J12
VCCO
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
J13
VCCO
0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
K13
VCCO
1
IO
IO
IO
IO
IO
A14
I/O
1
IO
IO
IO
IO
IO
A22
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
163
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
1
IO
IO
IO
IO
IO
A23
I/O
1
IO
IO
IO
IO
IO
D16
I/O
E18
I/O
F14
I/O
1
IO
IO
IO
IO
IO_L17P_13
1
IO
IO
IO
IO
IO
1
IO
IO
IO
IO
IO
F20
I/O
1
IO
IO
IO
IO
IO
G19
I/O
1
IO/VREF_1
IO/VREF_1
IO/VREF_1
IO/VREF_1
IO/VREF_1
C15
VREF
1
IO/VREF_1
IO/VREF_1
IO/VREF_1
IO/VREF_1
IO/VREF_1
C17
VREF
1
N.C. (‹)
IO/VREF_1
IO/VREF_1
IO/VREF_1
IO_L17N_1/VREF_13
D18
VREF
1
IO_L01N_1/VRP_1
IO_L01N_1/VRP_1
IO_L01N_1/VRP_1
IO_L01N_1/VRP_1
IO_L01N_1/VRP_1
D22
DCI
1
IO_L01P_1/VRN_1
IO_L01P_1/VRN_1
IO_L01P_1/VRN_1
IO_L01P_1/VRN_1
IO_L01P_1/VRN_1
E22
DCI
1
IO_L04N_1
IO_L04N_1
IO_L04N_1
IO_L04N_1
IO_L04N_1
B23
I/O
1
IO_L04P_1
IO_L04P_1
IO_L04P_1
IO_L04P_1
IO_L04P_1
C23
I/O
1
IO_L05N_1
IO_L05N_1
IO_L05N_1
IO_L05N_1
IO_L05N_1
E21
I/O
1
IO_L05P_1
IO_L05P_1
IO_L05P_1
IO_L05P_1
IO_L05P_1
F21
I/O
1
IO_L06N_1/VREF_1
IO_L06N_1/VREF_1
IO_L06N_1/VREF_1
IO_L06N_1/VREF_1
IO_L06N_1/VREF_1
B22
VREF
1
IO_L06P_1
IO_L06P_1
IO_L06P_1
IO_L06P_1
IO_L06P_1
C22
I/O
1
IO_L07N_1
IO_L07N_1
IO_L07N_1
IO_L07N_1
IO_L07N_1
C21
I/O
1
IO_L07P_1
IO_L07P_1
IO_L07P_1
IO_L07P_1
IO_L07P_1
D21
I/O
1
IO_L08N_1
IO_L08N_1
IO_L08N_1
IO_L08N_1
IO_L08N_1
A21
I/O
1
IO_L08P_1
IO_L08P_1
IO_L08P_1
IO_L08P_1
IO_L08P_1
B21
I/O
1
IO_L09N_1
IO_L09N_1
IO_L09N_1
IO_L09N_1
IO_L09N_1
D20
I/O
1
IO_L09P_1
IO_L09P_1
IO_L09P_1
IO_L09P_1
IO_L09P_1
E20
I/O
1
IO_L10N_1/VREF_1
IO_L10N_1/VREF_1
IO_L10N_1/VREF_1
IO_L10N_1/VREF_1
IO_L10N_1/VREF_1
A20
VREF
1
IO_L10P_1
IO_L10P_1
IO_L10P_1
IO_L10P_1
IO_L10P_1
B20
I/O
1
N.C. (‹)
IO_L11N_1
IO_L11N_1
IO_L11N_1
IO_L11N_1
E19
I/O
1
N.C. (‹)
IO_L11P_1
IO_L11P_1
IO_L11P_1
IO_L11P_1
F19
I/O
1
N.C. (‹)
IO_L12N_1
IO_L12N_1
IO_L12N_1
IO_L12N_1
C19
I/O
1
N.C. (‹)
IO_L12P_1
IO_L12P_1
IO_L12P_1
IO_L12P_1
D19
I/O
1
IO_L15N_1
IO_L15N_1
IO_L15N_1
IO_L15N_1
IO_L15N_1
A19
I/O
1
IO_L15P_1
IO_L15P_1
IO_L15P_1
IO_L15P_1
IO_L15P_1
B19
I/O
1
IO_L16N_1
IO_L16N_1
IO_L16N_1
IO_L16N_1
IO_L16N_1
F18
I/O
1
IO_L16P_1
IO_L16P_1
IO_L16P_1
IO_L16P_1
IO_L16P_1
G18
I/O
1
N.C. (‹)
IO_L18N_1
IO_L18N_1
IO_L18N_1
IO3
B18
I/O
1
N.C. (‹)
IO_L18P_1
IO_L18P_1
IO_L18P_1
IO3
C18
I/O
1
IO_L19N_1
IO_L19N_1
IO_L19N_1
IO_L19N_1
IO_L19N_1
F17
I/O
1
IO_L19P_1
IO_L19P_1
IO_L19P_1
IO_L19P_1
IO_L19P_1
G17
I/O
1
IO_L22N_1
IO_L22N_1
IO_L22N_1
IO_L22N_1
IO_L22N_1
D17
I/O
1
IO_L22P_1
IO_L22P_1
IO_L22P_1
IO_L22P_1
IO_L22P_1
E17
I/O
1
N.C. (‹)
IO_L23N_1
IO_L23N_1
IO_L23N_1
IO_L23N_1
A17
I/O
1
N.C. (‹)
IO_L23P_1
IO_L23P_1
IO_L23P_1
IO_L23P_1
B17
I/O
1
IO_L24N_1
IO_L24N_1
IO_L24N_1
IO_L24N_1
IO_L24N_1
G16
I/O
1
IO_L24P_1
IO_L24P_1
IO_L24P_1
IO_L24P_1
IO_L24P_1
H16
I/O
1
IO_L25N_1
IO_L25N_1
IO_L25N_1
IO_L25N_1
IO_L25N_1
E16
I/O
1
IO_L25P_1
IO_L25P_1
IO_L25P_1
IO_L25P_1
IO_L25P_1
F16
I/O
1
N.C. (‹)
IO_L26N_1
IO_L26N_1
IO_L26N_1
IO_L26N_1
A16
I/O
164
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
Bank
XC3S1000
Pin Name
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
1
N.C. (‹)
IO_L26P_1
IO_L26P_1
IO_L26P_1
IO_L26P_1
B16
I/O
1
IO_L27N_1
IO_L27N_1
IO_L27N_1
IO_L27N_1
IO_L27N_1
G15
I/O
1
IO_L27P_1
IO_L27P_1
IO_L27P_1
IO_L27P_1
IO_L27P_1
H15
I/O
1
IO_L28N_1
IO_L28N_1
IO_L28N_1
IO_L28N_1
IO_L28N_1
E15
I/O
1
IO_L28P_1
IO_L28P_1
IO_L28P_1
IO_L28P_1
IO_L28P_1
F15
I/O
1
IO_L29N_1
IO_L29N_1
IO_L29N_1
IO_L29N_1
IO_L29N_1
A15
I/O
1
IO_L29P_1
IO_L29P_1
IO_L29P_1
IO_L29P_1
IO_L29P_1
B15
I/O
1
IO_L30N_1
IO_L30N_1
IO_L30N_1
IO_L30N_1
IO_L30N_1
G14
I/O
1
IO_L30P_1
IO_L30P_1
IO_L30P_1
IO_L30P_1
IO_L30P_1
H14
I/O
1
IO_L31N_1/VREF_1
IO_L31N_1/VREF_1
IO_L31N_1/VREF_1
IO_L31N_1/VREF_1
IO_L31N_1/VREF_1
D14
VREF
1
IO_L31P_1
IO_L31P_1
IO_L31P_1
IO_L31P_1
IO_L31P_1
E14
I/O
1
IO_L32N_1/GCLK5
IO_L32N_1/GCLK5
IO_L32N_1/GCLK5
IO_L32N_1/GCLK5
IO_L32N_1/GCLK5
B14
GCLK
1
IO_L32P_1/GCLK4
IO_L32P_1/GCLK4
IO_L32P_1/GCLK4
IO_L32P_1/GCLK4
IO_L32P_1/GCLK4
C14
GCLK
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
C16
VCCO
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
C20
VCCO
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
H17
VCCO
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
H18
VCCO
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
J14
VCCO
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
J15
VCCO
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
J16
VCCO
1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
K14
VCCO
2
N.C. (‹)
N.C. („)
IO
IO
IO
F22
I/O
2
IO_L01N_2/VRP_2
IO_L01N_2/VRP_2
IO_L01N_2/VRP_2
IO_L01N_2/VRP_2
IO_L01N_2/VRP_2
C25
DCI
2
IO_L01P_2/VRN_2
IO_L01P_2/VRN_2
IO_L01P_2/VRN_2
IO_L01P_2/VRN_2
IO_L01P_2/VRN_2
C26
DCI
2
IO_L02N_2
IO_L02N_2
IO_L02N_2
IO_L02N_2
IO_L02N_2
E23
I/O
2
IO_L02P_2
IO_L02P_2
IO_L02P_2
IO_L02P_2
IO_L02P_2
E24
I/O
2
IO_L03N_2/VREF_2
IO_L03N_2/VREF_21 IO_L03N_2/VREF_2
IO_L03N_2/VREF_2
IO_L03N_2/VREF_2
D25
VREF1
2
IO_L03P_2
IO_L03P_2
IO_L03P_2
IO_L03P_2
IO_L03P_2
D26
I/O
2
N.C. (‹)
IO_L05N_2
IO_L05N_2
IO_L05N_2
IO_L05N_2
E25
I/O
2
N.C. (‹)
IO_L05P_2
IO_L05P_2
IO_L05P_2
IO_L05P_2
E26
I/O
2
N.C. (‹)
IO_L06N_2
IO_L06N_2
IO_L06N_2
IO_L06N_2
G20
I/O
2
N.C. (‹)
IO_L06P_2
IO_L06P_2
IO_L06P_2
IO_L06P_2
G21
I/O
2
N.C. (‹)
IO_L07N_2
IO_L07N_2
IO_L07N_2
IO_L07N_2
F23
I/O
2
N.C. (‹)
IO_L07P_2
IO_L07P_2
IO_L07P_2
IO_L07P_2
F24
I/O
2
N.C. (‹)
IO_L08N_2
IO_L08N_2
IO_L08N_2
IO_L08N_2
G22
I/O
2
N.C. (‹)
IO_L08P_2
IO_L08P_2
IO_L08P_2
IO_L08P_2
G23
I/O
2
N.C. (‹)
IO_L09N_2/VREF_21
IO_L09N_2/VREF_2
IO_L09N_2/VREF_2
IO_L09N_2/VREF_2
F25
VREF1
2
N.C. (‹)
IO_L09P_2
IO_L09P_2
IO_L09P_2
IO_L09P_2
F26
I/O
2
N.C. (‹)
IO_L10N_2
IO_L10N_2
IO_L10N_2
IO_L10N_2
G25
I/O
2
N.C. (‹)
IO_L10P_2
IO_L10P_2
IO_L10P_2
IO_L10P_2
G26
I/O
2
IO_L14N_2
IO_L14N_2
IO_L14N_22
IO_L11N_22
IO_L11N_2
H20
I/O
IO_L11P_22
2
IO_L14P_2
IO_L14P_2
IO_L14P_22
IO_L11P_2
H21
I/O
2
IO_L16N_2
IO_L16N_2
IO_L16N_22
IO_L12N_22
IO_L12N_2
H22
I/O
IO_L12P_22
IO_L12P_2
J21
I/O
IO_L13N_22
IO3
H23
I/O
IO/VREF_23
H24
VREF
2
IO_L16P_2
IO_L16P_2
IO_L16P_22
2
IO_L17N_2
IO_L17N_2
IO_L17N_22
2
IO_L17P_2/VREF_2
IO_L17P_2/VREF_2
IO_L17P_22/VREF_2 IO_L13P_22/VREF_2
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
165
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
Bank
XC3S1000
Pin Name
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
2
IO_L19N_2
IO_L19N_2
IO_L19N_2
IO_L19N_2
IO_L19N_2
H25
I/O
2
IO_L19P_2
IO_L19P_2
IO_L19P_2
IO_L19P_2
IO_L19P_2
H26
I/O
2
IO_L20N_2
IO_L20N_2
IO_L20N_2
IO_L20N_2
IO_L20N_2
J20
I/O
2
IO_L20P_2
IO_L20P_2
IO_L20P_2
IO_L20P_2
IO_L20P_2
K20
I/O
2
IO_L21N_2
IO_L21N_2
IO_L21N_2
IO_L21N_2
IO_L21N_2
J22
I/O
2
IO_L21P_2
IO_L21P_2
IO_L21P_2
IO_L21P_2
IO_L21P_2
J23
I/O
2
IO_L22N_2
IO_L22N_2
IO_L22N_2
IO_L22N_2
IO_L22N_2
J24
I/O
2
IO_L22P_2
IO_L22P_2
IO_L22P_2
IO_L22P_2
IO_L22P_2
J25
I/O
2
IO_L23N_2/VREF_2
IO_L23N_2/VREF_2
IO_L23N_2/VREF_2
IO_L23N_2/VREF_2
IO_L23N_2/VREF_2
K21
VREF
2
IO_L23P_2
IO_L23P_2
IO_L23P_2
IO_L23P_2
IO_L23P_2
K22
I/O
2
IO_L24N_2
IO_L24N_2
IO_L24N_2
IO_L24N_2
IO_L24N_2
K23
I/O
2
IO_L24P_2
IO_L24P_2
IO_L24P_2
IO_L24P_2
IO_L24P_2
K24
I/O
2
IO_L26N_2
IO_L26N_2
IO_L26N_2
IO_L26N_2
IO_L26N_2
K25
I/O
2
IO_L26P_2
IO_L26P_2
IO_L26P_2
IO_L26P_2
IO_L26P_2
K26
I/O
2
IO_L27N_2
IO_L27N_2
IO_L27N_2
IO_L27N_2
IO_L27N_2
L19
I/O
2
IO_L27P_2
IO_L27P_2
IO_L27P_2
IO_L27P_2
IO_L27P_2
L20
I/O
2
IO_L28N_2
IO_L28N_2
IO_L28N_2
IO_L28N_2
IO_L28N_2
L21
I/O
2
IO_L28P_2
IO_L28P_2
IO_L28P_2
IO_L28P_2
IO_L28P_2
L22
I/O
2
IO_L29N_2
IO_L29N_2
IO_L29N_2
IO_L29N_2
IO_L29N_2
L25
I/O
2
IO_L29P_2
IO_L29P_2
IO_L29P_2
IO_L29P_2
IO_L29P_2
L26
I/O
2
IO_L31N_2
IO_L31N_2
IO_L31N_2
IO_L31N_2
IO_L31N_2
M19
I/O
2
IO_L31P_2
IO_L31P_2
IO_L31P_2
IO_L31P_2
IO_L31P_2
M20
I/O
2
IO_L32N_2
IO_L32N_2
IO_L32N_2
IO_L32N_2
IO_L32N_2
M21
I/O
2
IO_L32P_2
IO_L32P_2
IO_L32P_2
IO_L32P_2
IO_L32P_2
M22
I/O
2
IO_L33N_2
IO_L33N_2
IO_L33N_2
IO_L33N_2
IO_L33N_2
L23
I/O
2
IO_L33P_2
IO_L33P_2
IO_L33P_2
IO_L33P_2
IO_L33P_2
M24
I/O
2
IO_L34N_2/VREF_2
IO_L34N_2/VREF_2
IO_L34N_2/VREF_2
IO_L34N_2/VREF_2
IO_L34N_2/VREF_2
M25
VREF
2
IO_L34P_2
IO_L34P_2
IO_L34P_2
IO_L34P_2
IO_L34P_2
M26
I/O
2
IO_L35N_2
IO_L35N_2
IO_L35N_2
IO_L35N_2
IO_L35N_2
N19
I/O
2
IO_L35P_2
IO_L35P_2
IO_L35P_2
IO_L35P_2
IO_L35P_2
N20
I/O
2
IO_L38N_2
IO_L38N_2
IO_L38N_2
IO_L38N_2
IO_L38N_2
N21
I/O
2
IO_L38P_2
IO_L38P_2
IO_L38P_2
IO_L38P_2
IO_L38P_2
N22
I/O
2
IO_L39N_2
IO_L39N_2
IO_L39N_2
IO_L39N_2
IO_L39N_2
N23
I/O
2
IO_L39P_2
IO_L39P_2
IO_L39P_2
IO_L39P_2
IO_L39P_2
N24
I/O
2
IO_L40N_2
IO_L40N_2
IO_L40N_2
IO_L40N_2
IO_L40N_2
N25
I/O
2
IO_L40P_2/VREF_2
IO_L40P_2/VREF_2
IO_L40P_2/VREF_2
IO_L40P_2/VREF_2
IO_L40P_2/VREF_2
N26
VREF
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
G24
VCCO
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
J19
VCCO
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
K19
VCCO
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
L18
VCCO
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
L24
VCCO
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
M18
VCCO
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
N17
VCCO
2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
N18
VCCO
3
IO_L01N_3/VRP_3
IO_L01N_3/VRP_3
IO_L01N_3/VRP_3
IO_L01N_3/VRP_3
IO_L01N_3/VRP_3
AA22
DCI
3
IO_L01P_3/VRN_3
IO_L01P_3/VRN_3
IO_L01P_3/VRN_3
IO_L01P_3/VRN_3
IO_L01P_3/VRN_3
AA21
DCI
166
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
Bank
XC3S1000
Pin Name
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
3
IO_L02N_3/VREF_3
IO_L02N_3/VREF_3
IO_L02N_3/VREF_3
IO_L02N_3/VREF_3
IO_L02N_3/VREF_3
AB24
VREF
3
IO_L02P_3
IO_L02P_3
IO_L02P_3
IO_L02P_3
IO_L02P_3
AB23
I/O
3
IO_L03N_3
IO_L03N_3
IO_L03N_3
IO_L03N_3
IO_L03N_3
AC26
I/O
3
IO_L03P_3
IO_L03P_3
IO_L03P_3
IO_L03P_3
IO_L03P_3
AC25
I/O
3
N.C. (‹)
IO_L05N_3
IO_L05N_3
IO_L05N_3
IO_L05N_3
Y21
I/O
3
N.C. (‹)
IO_L05P_3
IO_L05P_3
IO_L05P_3
IO_L05P_3
Y20
I/O
3
N.C. (‹)
IO_L06N_3
IO_L06N_3
IO_L06N_3
IO_L06N_3
AB26
I/O
3
N.C. (‹)
IO_L06P_3
IO_L06P_3
IO_L06P_3
IO_L06P_3
AB25
I/O
3
N.C. (‹)
IO_L07N_3
IO_L07N_3
IO_L07N_3
IO_L07N_3
AA24
I/O
3
N.C. (‹)
IO_L07P_3
IO_L07P_3
IO_L07P_3
IO_L07P_3
AA23
I/O
3
N.C. (‹)
IO_L08N_3
IO_L08N_3
IO_L08N_3
IO_L08N_3
Y23
I/O
3
N.C. (‹)
IO_L08P_3
IO_L08P_3
IO_L08P_3
IO_L08P_3
Y22
I/O
3
N.C. (‹)
IO_L09N_3
IO_L09N_3
IO_L09N_3
IO_L09N_3
AA26
I/O
3
N.C. (‹)
IO_L09P_3/VREF_3
IO_L09P_3/VREF_3
IO_L09P_3/VREF_3
IO_L09P_3/VREF_3
AA25
VREF
3
N.C. (‹)
IO_L10N_3
IO_L10N_3
IO_L10N_3
IO_L10N_3
W21
I/O
3
N.C. (‹)
IO_L10P_3
IO_L10P_3
IO_L10P_3
IO_L10P_3
W20
I/O
3
IO_L14N_3
IO_L14N_3
IO_L14N_3
IO_L14N_3
IO_L14N_3
Y26
I/O
3
IO_L14P_3
IO_L14P_3
IO_L14P_3
IO_L14P_3
IO_L14P_3
Y25
I/O
3
IO_L16N_3
IO_L16N_3
IO_L16N_3
IO_L16N_3
IO_L16N_3
V21
I/O
3
IO_L16P_3
IO_L16P_3
IO_L16P_3
IO_L16P_3
IO_L16P_3
W22
I/O
3
IO_L17N_3
IO_L17N_3
IO_L17N_3
IO_L17N_3
IO_L17N_3
W24
I/O
3
IO_L17P_3/VREF_3
IO_L17P_3/VREF_3
IO_L17P_3/VREF_3
IO_L17P_3/VREF_3
IO_L17P_3/VREF_3
W23
VREF
3
IO_L19N_3
IO_L19N_3
IO_L19N_3
IO_L19N_3
IO_L19N_3
W26
I/O
3
IO_L19P_3
IO_L19P_3
IO_L19P_3
IO_L19P_3
IO_L19P_3
W25
I/O
3
IO_L20N_3
IO_L20N_3
IO_L20N_3
IO_L20N_3
IO_L20N_3
U20
I/O
3
IO_L20P_3
IO_L20P_3
IO_L20P_3
IO_L20P_3
IO_L20P_3
V20
I/O
3
IO_L21N_3
IO_L21N_3
IO_L21N_3
IO_L21N_3
IO_L21N_3
V23
I/O
3
IO_L21P_3
IO_L21P_3
IO_L21P_3
IO_L21P_3
IO_L21P_3
V22
I/O
3
IO_L22N_3
IO_L22N_3
IO_L22N_3
IO_L22N_3
IO_L22N_3
V25
I/O
3
IO_L22P_3
IO_L22P_3
IO_L22P_3
IO_L22P_3
IO_L22P_3
V24
I/O
3
IO_L23N_3
IO_L23N_3
IO_L23N_3
IO_L23N_3
IO_L23N_3
U22
I/O
3
IO_L23P_3/VREF_3
IO_L23P_3/VREF_3
IO_L23P_3/VREF_3
IO_L23P_3/VREF_3
IO_L23P_3/VREF_3
U21
VREF
3
IO_L24N_3
IO_L24N_3
IO_L24N_3
IO_L24N_3
IO_L24N_3
U24
I/O
3
IO_L24P_3
IO_L24P_3
IO_L24P_3
IO_L24P_3
IO_L24P_3
U23
I/O
3
IO_L26N_3
IO_L26N_3
IO_L26N_3
IO_L26N_3
IO_L26N_3
U26
I/O
3
IO_L26P_3
IO_L26P_3
IO_L26P_3
IO_L26P_3
IO_L26P_3
U25
I/O
3
IO_L27N_3
IO_L27N_3
IO_L27N_3
IO_L27N_3
IO_L27N_3
T20
I/O
3
IO_L27P_3
IO_L27P_3
IO_L27P_3
IO_L27P_3
IO_L27P_3
T19
I/O
3
IO_L28N_3
IO_L28N_3
IO_L28N_3
IO_L28N_3
IO_L28N_3
T22
I/O
3
IO_L28P_3
IO_L28P_3
IO_L28P_3
IO_L28P_3
IO_L28P_3
T21
I/O
3
IO_L29N_3
IO_L29N_3
IO_L29N_3
IO_L29N_3
IO_L29N_3
T26
I/O
3
IO_L29P_3
IO_L29P_3
IO_L29P_3
IO_L29P_3
IO_L29P_3
T25
I/O
3
IO_L31N_3
IO_L31N_3
IO_L31N_3
IO_L31N_3
IO_L31N_3
R20
I/O
3
IO_L31P_3
IO_L31P_3
IO_L31P_3
IO_L31P_3
IO_L31P_3
R19
I/O
3
IO_L32N_3
IO_L32N_3
IO_L32N_3
IO_L32N_3
IO_L32N_3
R22
I/O
3
IO_L32P_3
IO_L32P_3
IO_L32P_3
IO_L32P_3
IO_L32P_3
R21
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
167
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
3
IO_L33N_3
IO_L33N_3
IO_L33N_3
IO_L33N_3
IO_L33N_3
R24
I/O
3
IO_L33P_3
IO_L33P_3
IO_L33P_3
IO_L33P_3
IO_L33P_3
T23
I/O
3
IO_L34N_3
IO_L34N_3
IO_L34N_3
IO_L34N_3
IO_L34N_3
R26
I/O
3
IO_L34P_3/VREF_3
IO_L34P_3/VREF_3
IO_L34P_3/VREF_3
IO_L34P_3/VREF_3
IO_L34P_3/VREF_3
R25
VREF
3
IO_L35N_3
IO_L35N_3
IO_L35N_3
IO_L35N_3
IO_L35N_3
P20
I/O
3
IO_L35P_3
IO_L35P_3
IO_L35P_3
IO_L35P_3
IO_L35P_3
P19
I/O
3
IO_L38N_3
IO_L38N_3
IO_L38N_3
IO_L38N_3
IO_L38N_3
P22
I/O
3
IO_L38P_3
IO_L38P_3
IO_L38P_3
IO_L38P_3
IO_L38P_3
P21
I/O
3
IO_L39N_3
IO_L39N_3
IO_L39N_3
IO_L39N_3
IO_L39N_3
P24
I/O
3
IO_L39P_3
IO_L39P_3
IO_L39P_3
IO_L39P_3
IO_L39P_3
P23
I/O
3
IO_L40N_3/VREF_3
IO_L40N_3/VREF_3
IO_L40N_3/VREF_3
IO_L40N_3/VREF_3
IO_L40N_3/VREF_3
P26
VREF
3
IO_L40P_3
IO_L40P_3
IO_L40P_3
IO_L40P_3
IO_L40P_3
P25
I/O
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
P17
VCCO
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
P18
VCCO
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
R18
VCCO
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
T18
VCCO
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
T24
VCCO
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
U19
VCCO
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
V19
VCCO
3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
Y24
VCCO
4
IO
IO
IO
IO
IO
AA20
I/O
4
IO
IO
IO
IO
IO
AD15
I/O
4
N.C. (‹)
IO
IO
IO
IO
AD19
I/O
4
IO
IO
IO
IO
IO
AD23
I/O
4
IO
IO
IO
IO
IO
AF21
I/O
4
IO
IO
IO
IO
IO
AF22
I/O
4
IO
IO
IO
IO
IO
W15
I/O
4
IO
IO
IO
IO
IO
W16
I/O
4
IO/VREF_4
IO/VREF_4
IO/VREF_4
IO/VREF_4
IO/VREF_4
AB14
VREF
4
IO/VREF_4
IO/VREF_4
IO/VREF_4
IO/VREF_4
IO/VREF_4
AD25
VREF
4
IO/VREF_4
IO/VREF_4
IO/VREF_4
IO/VREF_4
IO/VREF_4
Y17
VREF
4
IO_L01N_4/VRP_4
IO_L01N_4/VRP_4
IO_L01N_4/VRP_4
IO_L01N_4/VRP_4
IO_L01N_4/VRP_4
AB22
DCI
4
IO_L01P_4/VRN_4
IO_L01P_4/VRN_4
IO_L01P_4/VRN_4
IO_L01P_4/VRN_4
IO_L01P_4/VRN_4
AC22
DCI
4
IO_L04N_4
IO_L04N_4
IO_L04N_4
IO_L04N_4
IO_L04N_4
AE24
I/O
4
IO_L04P_4
IO_L04P_4
IO_L04P_4
IO_L04P_4
IO_L04P_4
AF24
I/O
4
IO_L05N_4
IO_L05N_4
IO_L05N_4
IO_L05N_4
IO_L05N_4
AE23
I/O
4
IO_L05P_4
IO_L05P_4
IO_L05P_4
IO_L05P_4
IO_L05P_4
AF23
I/O
4
IO_L06N_4/VREF_4
IO_L06N_4/VREF_4
IO_L06N_4/VREF_4
IO_L06N_4/VREF_4
IO_L06N_4/VREF_4
AD22
VREF
4
IO_L06P_4
IO_L06P_4
IO_L06P_4
IO_L06P_4
IO_L06P_4
AE22
I/O
4
IO_L07N_4
IO_L07N_4
IO_L07N_4
IO_L07N_4
IO_L07N_4
AB21
I/O
4
IO_L07P_4
IO_L07P_4
IO_L07P_4
IO_L07P_4
IO_L07P_4
AC21
I/O
4
IO_L08N_4
IO_L08N_4
IO_L08N_4
IO_L08N_4
IO_L08N_4
AD21
I/O
4
IO_L08P_4
IO_L08P_4
IO_L08P_4
IO_L08P_4
IO_L08P_4
AE21
I/O
4
IO_L09N_4
IO_L09N_4
IO_L09N_4
IO_L09N_4
IO_L09N_4
AB20
I/O
4
IO_L09P_4
IO_L09P_4
IO_L09P_4
IO_L09P_4
IO_L09P_4
AC20
I/O
4
IO_L10N_4
IO_L10N_4
IO_L10N_4
IO_L10N_4
IO_L10N_4
AE20
I/O
168
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
4
IO_L10P_4
IO_L10P_4
IO_L10P_4
IO_L10P_4
IO_L10P_4
AF20
I/O
4
N.C. (‹)
IO_L11N_4
IO_L11N_4
IO_L11N_4
IO_L11N_4
Y19
I/O
4
N.C. (‹)
IO_L11P_4
IO_L11P_4
IO_L11P_4
IO_L11P_4
AA19
I/O
4
N.C. (‹)
IO_L12N_4
IO_L12N_4
IO_L12N_4
IO_L12N_4
AB19
I/O
4
N.C. (‹)
IO_L12P_4
IO_L12P_4
IO_L12P_4
IO_L12P_4
AC19
I/O
4
IO_L15N_4
IO_L15N_4
IO_L15N_4
IO_L15N_4
IO_L15N_4
AE19
I/O
4
IO_L15P_4
IO_L15P_4
IO_L15P_4
IO_L15P_4
IO_L15P_4
AF19
I/O
4
IO_L16N_4
IO_L16N_4
IO_L16N_4
IO_L16N_4
IO_L16N_4
Y18
I/O
4
IO_L16P_4
IO_L16P_4
IO_L16P_4
IO_L16P_4
IO_L16P_4
AA18
I/O
4
N.C. (‹)
IO_L17N_4
IO_L17N_4
IO_L17N_4
IO_L17N_4
AB18
I/O
4
N.C. (‹)
IO_L17P_4
IO_L17P_4
IO_L17P_4
IO_L17P_4
AC18
I/O
4
N.C. (‹)
IO_L18N_4
IO_L18N_4
IO_L18N_4
IO_L18N_4
AD18
I/O
4
N.C. (‹)
IO_L18P_4
IO_L18P_4
IO_L18P_4
IO_L18P_4
AE18
I/O
4
IO_L19N_4
IO_L19N_4
IO_L19N_4
IO_L19N_4
IO_L19N_4
AC17
I/O
4
IO_L19P_4
IO_L19P_4
IO_L19P_4
IO_L19P_4
IO_L19P_4
AA17
I/O
4
IO_L22N_4/VREF_4
IO_L22N_4/VREF_4
IO_L22N_4/VREF_4
IO_L22N_4/VREF_4
IO_L22N_4/VREF_4
AD17
VREF
4
IO_L22P_4
IO_L22P_4
IO_L22P_4
IO_L22P_4
IO_L22P_4
AB17
I/O
4
N.C. (‹)
IO_L23N_4
IO_L23N_4
IO_L23N_4
IO_L23N_4
AE17
I/O
4
N.C. (‹)
IO_L23P_4
IO_L23P_4
IO_L23P_4
IO_L23P_4
AF17
I/O
4
IO_L24N_4
IO_L24N_4
IO_L24N_4
IO_L24N_4
IO_L24N_4
Y16
I/O
4
IO_L24P_4
IO_L24P_4
IO_L24P_4
IO_L24P_4
IO_L24P_4
AA16
I/O
4
IO_L25N_4
IO_L25N_4
IO_L25N_4
IO_L25N_4
IO_L25N_4
AB16
I/O
4
IO_L25P_4
IO_L25P_4
IO_L25P_4
IO_L25P_4
IO_L25P_4
AC16
I/O
4
N.C. (‹)
IO_L26N_4
IO_L26N_4
IO_L26N_4
IO_L26N_4
AE16
I/O
4
N.C. (‹)
IO_L26P_4/VREF_4
IO_L26P_4/VREF_4
IO_L26P_4/VREF_4
IO_L26P_4/VREF_4
AF16
VREF
4
IO_L27N_4/DIN/D0
IO_L27N_4/DIN/D0
IO_L27N_4/DIN/D0
IO_L27N_4/DIN/D0
IO_L27N_4/DIN/D0
Y15
DUAL
4
IO_L27P_4/D1
IO_L27P_4/D1
IO_L27P_4/D1
IO_L27P_4/D1
IO_L27P_4/D1
W14
DUAL
4
IO_L28N_4
IO_L28N_4
IO_L28N_4
IO_L28N_4
IO_L28N_4
AA15
I/O
4
IO_L28P_4
IO_L28P_4
IO_L28P_4
IO_L28P_4
IO_L28P_4
AB15
I/O
4
IO_L29N_4
IO_L29N_4
IO_L29N_4
IO_L29N_4
IO_L29N_4
AE15
I/O
4
IO_L29P_4
IO_L29P_4
IO_L29P_4
IO_L29P_4
IO_L29P_4
AF15
I/O
4
IO_L30N_4/D2
IO_L30N_4/D2
IO_L30N_4/D2
IO_L30N_4/D2
IO_L30N_4/D2
Y14
DUAL
4
IO_L30P_4/D3
IO_L30P_4/D3
IO_L30P_4/D3
IO_L30P_4/D3
IO_L30P_4/D3
AA14
DUAL
4
IO_L31N_4/INIT_B
IO_L31N_4/INIT_B
IO_L31N_4/INIT_B
IO_L31N_4/INIT_B
IO_L31N_4/INIT_B
AC14
DUAL
4
IO_L31P_4/
DOUT/BUSY
IO_L31P_4/
DOUT/BUSY
IO_L31P_4/
DOUT/BUSY
IO_L31P_4/
DOUT/BUSY
IO_L31P_4/
DOUT/BUSY
AD14
DUAL
4
IO_L32N_4/GCLK1
IO_L32N_4/GCLK1
IO_L32N_4/GCLK1
IO_L32N_4/GCLK1
IO_L32N_4/GCLK1
AE14
GCLK
4
IO_L32P_4/GCLK0
IO_L32P_4/GCLK0
IO_L32P_4/GCLK0
IO_L32P_4/GCLK0
IO_L32P_4/GCLK0
AF14
GCLK
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
AD16
VCCO
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
AD20
VCCO
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
U14
VCCO
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
V14
VCCO
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
V15
VCCO
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
V16
VCCO
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
W17
VCCO
4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
VCCO_4
W18
VCCO
5
IO
IO
IO
IO
IO
AA7
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
169
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
5
IO
IO
IO
IO
IO
AA13
I/O
5
IO
IO
IO
IO
IO_L17P_53
AB9
I/O
5
N.C. (‹)
IO
IO
IO
IO_L17N_53
AC9
I/O
5
IO
IO
IO
IO
IO
AC11
I/O
5
IO
IO
IO
IO
IO
AD10
I/O
5
IO
IO
IO
IO
IO
AD12
I/O
5
IO
IO
IO
IO
IO
AF4
I/O
5
IO
IO
IO
IO
IO
Y8
I/O
5
IO/VREF_5
IO/VREF_5
IO/VREF_5
IO/VREF_5
IO/VREF_5
AF5
VREF
5
IO/VREF_5
IO/VREF_5
IO/VREF_5
IO/VREF_5
IO/VREF_5
AF13
VREF
5
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
AC5
DUAL
5
IO_L01P_5/CS_B
IO_L01P_5/CS_B
IO_L01P_5/CS_B
IO_L01P_5/CS_B
IO_L01P_5/CS_B
AB5
DUAL
5
IO_L04N_5
IO_L04N_5
IO_L04N_5
IO_L04N_5
IO_L04N_5
AE4
I/O
5
IO_L04P_5
IO_L04P_5
IO_L04P_5
IO_L04P_5
IO_L04P_5
AD4
I/O
5
IO_L05N_5
IO_L05N_5
IO_L05N_5
IO_L05N_5
IO_L05N_5
AB6
I/O
5
IO_L05P_5
IO_L05P_5
IO_L05P_5
IO_L05P_5
IO_L05P_5
AA6
I/O
5
IO_L06N_5
IO_L06N_5
IO_L06N_5
IO_L06N_5
IO_L06N_5
AE5
I/O
5
IO_L06P_5
IO_L06P_5
IO_L06P_5
IO_L06P_5
IO_L06P_5
AD5
I/O
5
IO_L07N_5
IO_L07N_5
IO_L07N_5
IO_L07N_5
IO_L07N_5
AD6
I/O
5
IO_L07P_5
IO_L07P_5
IO_L07P_5
IO_L07P_5
IO_L07P_5
AC6
I/O
5
IO_L08N_5
IO_L08N_5
IO_L08N_5
IO_L08N_5
IO_L08N_5
AF6
I/O
5
IO_L08P_5
IO_L08P_5
IO_L08P_5
IO_L08P_5
IO_L08P_5
AE6
I/O
5
IO_L09N_5
IO_L09N_5
IO_L09N_5
IO_L09N_5
IO_L09N_5
AC7
I/O
5
IO_L09P_5
IO_L09P_5
IO_L09P_5
IO_L09P_5
IO_L09P_5
AB7
I/O
5
IO_L10N_5/VRP_5
IO_L10N_5/VRP_5
IO_L10N_5/VRP_5
IO_L10N_5/VRP_5
IO_L10N_5/VRP_5
AF7
DCI
5
IO_L10P_5/VRN_5
IO_L10P_5/VRN_5
IO_L10P_5/VRN_5
IO_L10P_5/VRN_5
IO_L10P_5/VRN_5
AE7
DCI
5
N.C. (‹)
IO_L11N_5/VREF_5
IO_L11N_5/VREF_5
IO_L11N_5/VREF_5
IO_L11N_5/VREF_5
AB8
VREF
5
N.C. (‹)
IO_L11P_5
IO_L11P_5
IO_L11P_5
IO_L11P_5
AA8
I/O
5
N.C. (‹)
IO_L12N_5
IO_L12N_5
IO_L12N_5
IO_L12N_5
AD8
I/O
5
N.C. (‹)
IO_L12P_5
IO_L12P_5
IO_L12P_5
IO_L12P_5
AC8
I/O
5
IO_L15N_5
IO_L15N_5
IO_L15N_5
IO_L15N_5
IO_L15N_5
AF8
I/O
5
IO_L15P_5
IO_L15P_5
IO_L15P_5
IO_L15P_5
IO_L15P_5
AE8
I/O
5
IO_L16N_5
IO_L16N_5
IO_L16N_5
IO_L16N_5
IO_L16N_5
AA9
I/O
5
IO_L16P_5
IO_L16P_5
IO_L16P_5
IO_L16P_5
IO_L16P_5
Y9
I/O
5
N.C. (‹)
IO_L18N_5
IO_L18N_5
IO_L18N_5
IO_L18N_5
AE9
I/O
5
N.C. (‹)
IO_L18P_5
IO_L18P_5
IO_L18P_5
IO_L18P_5
AD9
I/O
5
IO_L19N_5
IO_L19N_5
IO_L19N_5
IO_L19N_5
IO_L19N_5
AA10
I/O
5
IO_L19P_5/VREF_5
IO_L19P_5/VREF_5
IO_L19P_5/VREF_5
IO_L19P_5/VREF_5
IO_L19P_5/VREF_5
Y10
VREF
5
IO_L22N_5
IO_L22N_5
IO_L22N_5
IO_L22N_5
IO_L22N_5
AC10
I/O
5
IO_L22P_5
IO_L22P_5
IO_L22P_5
IO_L22P_5
IO_L22P_5
AB10
I/O
5
N.C. (‹)
IO_L23N_5
IO_L23N_5
IO_L23N_5
IO_L23N_5
AF10
I/O
5
N.C. (‹)
IO_L23P_5
IO_L23P_5
IO_L23P_5
IO_L23P_5
AE10
I/O
5
IO_L24N_5
IO_L24N_5
IO_L24N_5
IO_L24N_5
IO_L24N_5
Y11
I/O
5
IO_L24P_5
IO_L24P_5
IO_L24P_5
IO_L24P_5
IO_L24P_5
W11
I/O
5
IO_L25N_5
IO_L25N_5
IO_L25N_5
IO_L25N_5
IO_L25N_5
AB11
I/O
5
IO_L25P_5
IO_L25P_5
IO_L25P_5
IO_L25P_5
IO_L25P_5
AA11
I/O
170
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
Bank
XC3S1000
Pin Name
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
5
N.C. (‹)
IO_L26N_5
IO_L26N_5
IO_L26N_5
IO_L26N_5
AF11
I/O
5
N.C. (‹)
IO_L26P_5
IO_L26P_5
IO_L26P_5
IO_L26P_5
AE11
I/O
5
IO_L27N_5/VREF_5
IO_L27N_5/VREF_5
IO_L27N_5/VREF_5
IO_L27N_5/VREF_5
IO_L27N_5/VREF_5
Y12
VREF
5
IO_L27P_5
IO_L27P_5
IO_L27P_5
IO_L27P_5
IO_L27P_5
W12
I/O
5
IO_L28N_5/D6
IO_L28N_5/D6
IO_L28N_5/D6
IO_L28N_5/D6
IO_L28N_5/D6
AB12
DUAL
5
IO_L28P_5/D7
IO_L28P_5/D7
IO_L28P_5/D7
IO_L28P_5/D7
IO_L28P_5/D7
AA12
DUAL
5
IO_L29N_5
IO_L29N_5
IO_L29N_5
IO_L29N_5
IO_L29N_5
AF12
I/O
5
IO_L29P_5/VREF_5
IO_L29P_5/VREF_5
IO_L29P_5/VREF_5
IO_L29P_5/VREF_5
IO_L29P_5/VREF_5
AE12
VREF
5
IO_L30N_5
IO_L30N_5
IO_L30N_5
IO_L30N_5
IO_L30N_5
Y13
I/O
5
IO_L30P_5
IO_L30P_5
IO_L30P_5
IO_L30P_5
IO_L30P_5
W13
I/O
5
IO_L31N_5/D4
IO_L31N_5/D4
IO_L31N_5/D4
IO_L31N_5/D4
IO_L31N_5/D4
AC13
DUAL
5
IO_L31P_5/D5
IO_L31P_5/D5
IO_L31P_5/D5
IO_L31P_5/D5
IO_L31P_5/D5
AB13
DUAL
5
IO_L32N_5/GCLK3
IO_L32N_5/GCLK3
IO_L32N_5/GCLK3
IO_L32N_5/GCLK3
IO_L32N_5/GCLK3
AE13
GCLK
5
IO_L32P_5/GCLK2
IO_L32P_5/GCLK2
IO_L32P_5/GCLK2
IO_L32P_5/GCLK2
IO_L32P_5/GCLK2
AD13
GCLK
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
AD7
VCCO
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
AD11
VCCO
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
U13
VCCO
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
V11
VCCO
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
V12
VCCO
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
V13
VCCO
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
W9
VCCO
5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
VCCO_5
W10
VCCO
6
N.C. (‹)
N.C. („)
IO
IO
IO
AA5
I/O
6
IO_L01N_6/VRP_6
IO_L01N_6/VRP_6
IO_L01N_6/VRP_6
IO_L01N_6/VRP_6
IO_L01N_6/VRP_6
AD2
DCI
6
IO_L01P_6/VRN_6
IO_L01P_6/VRN_6
IO_L01P_6/VRN_6
IO_L01P_6/VRN_6
IO_L01P_6/VRN_6
AD1
DCI
6
IO_L02N_6
IO_L02N_6
IO_L02N_6
IO_L02N_6
IO_L02N_6
AB4
I/O
6
IO_L02P_6
IO_L02P_6
IO_L02P_6
IO_L02P_6
IO_L02P_6
AB3
I/O
6
IO_L03N_6/VREF_6
IO_L03N_6/VREF_6
IO_L03N_6/VREF_6
IO_L03N_6/VREF_6
IO_L03N_6/VREF_6
AC2
VREF
6
IO_L03P_6
IO_L03P_6
IO_L03P_6
IO_L03P_6
IO_L03P_6
AC1
I/O
6
N.C. (‹)
IO_L05N_6
IO_L05N_6
IO_L05N_6
IO_L05N_6
AB2
I/O
6
N.C. (‹)
IO_L05P_6
IO_L05P_6
IO_L05P_6
IO_L05P_6
AB1
I/O
6
N.C. (‹)
IO_L06N_6
IO_L06N_6
IO_L06N_6
IO_L06N_6
Y7
I/O
6
N.C. (‹)
IO_L06P_6
IO_L06P_6
IO_L06P_6
IO_L06P_6
Y6
I/O
6
N.C. (‹)
IO_L07N_6
IO_L07N_6
IO_L07N_6
IO_L07N_6
AA4
I/O
6
N.C. (‹)
IO_L07P_6
IO_L07P_6
IO_L07P_6
IO_L07P_6
AA3
I/O
6
N.C. (‹)
IO_L08N_6
IO_L08N_6
IO_L08N_6
IO_L08N_6
Y5
I/O
6
N.C. (‹)
IO_L08P_6
IO_L08P_6
IO_L08P_6
IO_L08P_6
Y4
I/O
6
N.C. (‹)
IO_L09N_6/VREF_6
IO_L09N_6/VREF_6
IO_L09N_6/VREF_6
IO_L09N_6/VREF_6
AA2
VREF
6
N.C. (‹)
IO_L09P_6
IO_L09P_6
IO_L09P_6
IO_L09P_6
AA1
I/O
6
N.C. (‹)
IO_L10N_6
IO_L10N_6
IO_L10N_6
IO_L10N_6
Y2
I/O
6
N.C. (‹)
IO_L10P_6
IO_L10P_6
IO_L10P_6
IO_L10P_6
Y1
I/O
6
IO_L14N_6
IO_L14N_6
IO_L14N_6
IO_L14N_6
IO_L14N_6
W7
I/O
6
IO_L14P_6
IO_L14P_6
IO_L14P_6
IO_L14P_6
IO_L14P_6
W6
I/O
6
IO_L16N_6
IO_L16N_6
IO_L16N_6
IO_L16N_6
IO_L16N_6
V6
I/O
6
IO_L16P_6
IO_L16P_6
IO_L16P_6
IO_L16P_6
IO_L16P_6
W5
I/O
6
IO_L17N_6
IO_L17N_6
IO_L17N_6
IO_L17N_6
IO_L17N_6
W4
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
171
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
Bank
XC3S1000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
6
IO_L17P_6/VREF_6
IO_L17P_6/VREF_6
IO_L17P_6/VREF_6
6
IO_L19N_6
IO_L19N_6
IO_L19N_6
IO_L17P_6/VREF_6
IO_L17P_6/VREF_6
W3
VREF
IO_L19N_6
IO_L19N_6
W2
I/O
6
IO_L19P_6
IO_L19P_6
6
IO_L20N_6
IO_L20N_6
IO_L19P_6
IO_L19P_6
IO_L19P_6
W1
I/O
IO_L20N_6
IO_L20N_6
IO_L20N_6
V7
I/O
6
IO_L20P_6
6
IO_L21N_6
IO_L20P_6
IO_L20P_6
IO_L20P_6
IO_L20P_6
U7
I/O
IO_L21N_6
IO_L21N_6
IO_L21N_6
IO_L21N_6
V5
6
I/O
IO_L21P_6
IO_L21P_6
IO_L21P_6
IO_L21P_6
IO_L21P_6
V4
I/O
6
IO_L22N_6
IO_L22N_6
IO_L22N_6
IO_L22N_6
IO_L22N_6
V3
I/O
6
IO_L22P_6
IO_L22P_6
IO_L22P_6
IO_L22P_6
IO_L22P_6
V2
I/O
6
IO_L23N_6
IO_L23N_6
IO_L23N_6
IO_L23N_6
IO_L23N_6
U6
I/O
6
IO_L23P_6
IO_L23P_6
IO_L23P_6
IO_L23P_6
IO_L23P_6
U5
I/O
6
IO_L24N_6/VREF_6
IO_L24N_6/VREF_6
IO_L24N_6/VREF_6
IO_L24N_6/VREF_6
IO_L24N_6/VREF_6
U4
VREF
6
IO_L24P_6
IO_L24P_6
IO_L24P_6
IO_L24P_6
IO_L24P_6
U3
I/O
6
IO_L26N_6
IO_L26N_6
IO_L26N_6
IO_L26N_6
IO_L26N_6
U2
I/O
6
IO_L26P_6
IO_L26P_6
IO_L26P_6
IO_L26P_6
IO_L26P_6
U1
I/O
6
IO_L27N_6
IO_L27N_6
IO_L27N_6
IO_L27N_6
IO_L27N_6
T8
I/O
6
IO_L27P_6
IO_L27P_6
IO_L27P_6
IO_L27P_6
IO_L27P_6
T7
I/O
6
IO_L28N_6
IO_L28N_6
IO_L28N_6
IO_L28N_6
IO_L28N_6
T6
I/O
6
IO_L28P_6
IO_L28P_6
IO_L28P_6
IO_L28P_6
IO_L28P_6
T5
I/O
6
IO_L29N_6
IO_L29N_6
IO_L29N_6
IO_L29N_6
IO_L29N_6
T2
I/O
6
IO_L29P_6
IO_L29P_6
IO_L29P_6
IO_L29P_6
IO_L29P_6
T1
I/O
6
IO_L31N_6
IO_L31N_6
IO_L31N_6
IO_L31N_6
IO_L31N_6
R8
I/O
6
IO_L31P_6
IO_L31P_6
IO_L31P_6
IO_L31P_6
IO_L31P_6
R7
I/O
6
IO_L32N_6
IO_L32N_6
IO_L32N_6
IO_L32N_6
IO_L32N_6
R6
I/O
6
IO_L32P_6
IO_L32P_6
IO_L32P_6
IO_L32P_6
IO_L32P_6
R5
I/O
6
IO_L33N_6
IO_L33N_6
IO_L33N_6
IO_L33N_6
IO_L33N_6
T4
I/O
6
IO_L33P_6
IO_L33P_6
IO_L33P_6
IO_L33P_6
IO_L33P_6
R3
I/O
6
IO_L34N_6/VREF_6
IO_L34N_6/VREF_6
IO_L34N_6/VREF_6
IO_L34N_6/VREF_6
IO_L34N_6/VREF_6
R2
VREF
6
IO_L34P_6
IO_L34P_6
IO_L34P_6
IO_L34P_6
IO_L34P_6
R1
I/O
6
IO_L35N_6
IO_L35N_6
IO_L35N_6
IO_L35N_6
IO_L35N_6
P8
I/O
6
IO_L35P_6
IO_L35P_6
IO_L35P_6
IO_L35P_6
IO_L35P_6
P7
I/O
6
IO_L38N_6
IO_L38N_6
IO_L38N_6
IO_L38N_6
IO_L38N_6
P6
I/O
6
IO_L38P_6
IO_L38P_6
IO_L38P_6
IO_L38P_6
IO_L38P_6
P5
I/O
6
IO_L39N_6
IO_L39N_6
IO_L39N_6
IO_L39N_6
IO_L39N_6
P4
I/O
6
IO_L39P_6
IO_L39P_6
IO_L39P_6
IO_L39P_6
IO_L39P_6
P3
I/O
6
IO_L40N_6
IO_L40N_6
IO_L40N_6
IO_L40N_6
IO_L40N_6
P2
I/O
6
IO_L40P_6/VREF_6
IO_L40P_6/VREF_6
IO_L40P_6/VREF_6
IO_L40P_6/VREF_6
IO_L40P_6/VREF_6
P1
VREF
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
P9
VCCO
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
P10
VCCO
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
R9
VCCO
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
T3
VCCO
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
T9
VCCO
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
U8
VCCO
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
V8
VCCO
6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
VCCO_6
Y3
VCCO
7
IO_L01N_7/VRP_7
IO_L01N_7/VRP_7
IO_L01N_7/VRP_7
IO_L01N_7/VRP_7
IO_L01N_7/VRP_7
F5
DCI
172
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
Bank
XC3S1000
Pin Name
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
7
IO_L01P_7/VRN_7
IO_L01P_7/VRN_7
IO_L01P_7/VRN_7
IO_L01P_7/VRN_7
IO_L01P_7/VRN_7
F6
DCI
7
IO_L02N_7
IO_L02N_7
IO_L02N_7
IO_L02N_7
IO_L02N_7
E3
I/O
7
IO_L02P_7
IO_L02P_7
IO_L02P_7
IO_L02P_7
IO_L02P_7
E4
I/O
7
IO_L03N_7/VREF_7
IO_L03N_7/VREF_7
IO_L03N_7/VREF_7
IO_L03N_7/VREF_7
IO_L03N_7/VREF_7
D1
VREF
7
IO_L03P_7
IO_L03P_7
IO_L03P_7
IO_L03P_7
IO_L03P_7
D2
I/O
7
N.C. (‹)
IO_L05N_7
IO_L05N_7
IO_L05N_7
IO_L05N_7
G6
I/O
7
N.C. (‹)
IO_L05P_7
IO_L05P_7
IO_L05P_7
IO_L05P_7
G7
I/O
7
N.C. (‹)
IO_L06N_7
IO_L06N_7
IO_L06N_7
IO_L06N_7
E1
I/O
7
N.C. (‹)
IO_L06P_7
IO_L06P_7
IO_L06P_7
IO_L06P_7
E2
I/O
7
N.C. (‹)
IO_L07N_7
IO_L07N_7
IO_L07N_7
IO_L07N_7
F3
I/O
7
N.C. (‹)
IO_L07P_7
IO_L07P_7
IO_L07P_7
IO_L07P_7
F4
I/O
7
N.C. (‹)
IO_L08N_7
IO_L08N_7
IO_L08N_7
IO_L08N_7
G4
I/O
7
N.C. (‹)
IO_L08P_7
IO_L08P_7
IO_L08P_7
IO_L08P_7
G5
I/O
7
N.C. (‹)
IO_L09N_7
IO_L09N_7
IO_L09N_7
IO_L09N_7
F1
I/O
7
N.C. (‹)
IO_L09P_7
IO_L09P_7
IO_L09P_7
IO_L09P_7
F2
I/O
7
N.C. (‹)
IO_L10N_7
IO_L10N_7
IO_L10N_7
IO_L10N_7
H6
I/O
7
N.C. (‹)
IO_L10P_7/VREF_7
IO_L10P_7/VREF_7
IO_L10P_7/VREF_7
IO_L10P_7/VREF_7
H7
VREF
7
IO_L14N_7
IO_L14N_7
IO_L14N_7
IO_L14N_7
IO_L14N_7
G1
I/O
7
IO_L14P_7
IO_L14P_7
IO_L14P_7
IO_L14P_7
IO_L14P_7
G2
I/O
7
IO_L16N_7
IO_L16N_7
IO_L16N_7
IO_L16N_7
IO_L16N_7
J6
I/O
7
IO_L16P_7/VREF_7
IO_L16P_7/VREF_7
IO_L16P_7/VREF_7
IO_L16P_7/VREF_7
IO_L16P_7/VREF_7
H5
VREF
7
IO_L17N_7
IO_L17N_7
IO_L17N_7
IO_L17N_7
IO_L17N_7
H3
I/O
7
IO_L17P_7
IO_L17P_7
IO_L17P_7
IO_L17P_7
IO_L17P_7
H4
I/O
7
IO_L19N_7/VREF_7
IO_L19N_7/VREF_7
IO_L19N_7/VREF_7
IO_L19N_7/VREF_7
IO_L19N_7/VREF_7
H1
VREF
7
IO_L19P_7
IO_L19P_7
IO_L19P_7
IO_L19P_7
IO_L19P_7
H2
I/O
7
IO_L20N_7
IO_L20N_7
IO_L20N_7
IO_L20N_7
IO_L20N_7
K7
I/O
7
IO_L20P_7
IO_L20P_7
IO_L20P_7
IO_L20P_7
IO_L20P_7
J7
I/O
7
IO_L21N_7
IO_L21N_7
IO_L21N_7
IO_L21N_7
IO_L21N_7
J4
I/O
7
IO_L21P_7
IO_L21P_7
IO_L21P_7
IO_L21P_7
IO_L21P_7
J5
I/O
7
IO_L22N_7
IO_L22N_7
IO_L22N_7
IO_L22N_7
IO_L22N_7
J2
I/O
7
IO_L22P_7
IO_L22P_7
IO_L22P_7
IO_L22P_7
IO_L22P_7
J3
I/O
7
IO_L23N_7
IO_L23N_7
IO_L23N_7
IO_L23N_7
IO_L23N_7
K5
I/O
7
IO_L23P_7
IO_L23P_7
IO_L23P_7
IO_L23P_7
IO_L23P_7
K6
I/O
7
IO_L24N_7
IO_L24N_7
IO_L24N_7
IO_L24N_7
IO_L24N_7
K3
I/O
7
IO_L24P_7
IO_L24P_7
IO_L24P_7
IO_L24P_7
IO_L24P_7
K4
I/O
7
IO_L26N_7
IO_L26N_7
IO_L26N_7
IO_L26N_7
IO_L26N_7
K1
I/O
7
IO_L26P_7
IO_L26P_7
IO_L26P_7
IO_L26P_7
IO_L26P_7
K2
I/O
7
IO_L27N_7
IO_L27N_7
IO_L27N_7
IO_L27N_7
IO_L27N_7
L7
I/O
7
IO_L27P_7/VREF_7
IO_L27P_7/VREF_7
IO_L27P_7/VREF_7
IO_L27P_7/VREF_7
IO_L27P_7/VREF_7
L8
VREF
7
IO_L28N_7
IO_L28N_7
IO_L28N_7
IO_L28N_7
IO_L28N_7
L5
I/O
7
IO_L28P_7
IO_L28P_7
IO_L28P_7
IO_L28P_7
IO_L28P_7
L6
I/O
7
IO_L29N_7
IO_L29N_7
IO_L29N_7
IO_L29N_7
IO_L29N_7
L1
I/O
7
IO_L29P_7
IO_L29P_7
IO_L29P_7
IO_L29P_7
IO_L29P_7
L2
I/O
7
IO_L31N_7
IO_L31N_7
IO_L31N_7
IO_L31N_7
IO_L31N_7
M7
I/O
7
IO_L31P_7
IO_L31P_7
IO_L31P_7
IO_L31P_7
IO_L31P_7
M8
I/O
7
IO_L32N_7
IO_L32N_7
IO_L32N_7
IO_L32N_7
IO_L32N_7
M6
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
173
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
7
IO_L32P_7
IO_L32P_7
IO_L32P_7
IO_L32P_7
IO_L32P_7
M5
I/O
7
IO_L33N_7
IO_L33N_7
IO_L33N_7
IO_L33N_7
IO_L33N_7
M3
I/O
7
IO_L33P_7
IO_L33P_7
IO_L33P_7
IO_L33P_7
IO_L33P_7
L4
I/O
7
IO_L34N_7
IO_L34N_7
IO_L34N_7
IO_L34N_7
IO_L34N_7
M1
I/O
7
IO_L34P_7
IO_L34P_7
IO_L34P_7
IO_L34P_7
IO_L34P_7
M2
I/O
7
IO_L35N_7
IO_L35N_7
IO_L35N_7
IO_L35N_7
IO_L35N_7
N7
I/O
7
IO_L35P_7
IO_L35P_7
IO_L35P_7
IO_L35P_7
IO_L35P_7
N8
I/O
7
IO_L38N_7
IO_L38N_7
IO_L38N_7
IO_L38N_7
IO_L38N_7
N5
I/O
7
IO_L38P_7
IO_L38P_7
IO_L38P_7
IO_L38P_7
IO_L38P_7
N6
I/O
7
IO_L39N_7
IO_L39N_7
IO_L39N_7
IO_L39N_7
IO_L39N_7
N3
I/O
7
IO_L39P_7
IO_L39P_7
IO_L39P_7
IO_L39P_7
IO_L39P_7
N4
I/O
7
IO_L40N_7/VREF_7
IO_L40N_7/VREF_7
IO_L40N_7/VREF_7
IO_L40N_7/VREF_7
IO_L40N_7/VREF_7
N1
VREF
7
IO_L40P_7
IO_L40P_7
IO_L40P_7
IO_L40P_7
IO_L40P_7
N2
I/O
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
G3
VCCO
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
J8
VCCO
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
K8
VCCO
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
L3
VCCO
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
L9
VCCO
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
M9
VCCO
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
N9
VCCO
7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
VCCO_7
N10
VCCO
N/A
GND
GND
GND
GND
GND
A1
GND
N/A
GND
GND
GND
GND
GND
A26
GND
N/A
GND
GND
GND
GND
GND
AC4
GND
N/A
GND
GND
GND
GND
GND
AC12
GND
N/A
GND
GND
GND
GND
GND
AC15
GND
N/A
GND
GND
GND
GND
GND
AC23
GND
N/A
GND
GND
GND
GND
GND
AD3
GND
N/A
GND
GND
GND
GND
GND
AD24
GND
N/A
GND
GND
GND
GND
GND
AE2
GND
N/A
GND
GND
GND
GND
GND
AE25
GND
N/A
GND
GND
GND
GND
GND
AF1
GND
N/A
GND
GND
GND
GND
GND
AF26
GND
N/A
GND
GND
GND
GND
GND
B2
GND
N/A
GND
GND
GND
GND
GND
B25
GND
N/A
GND
GND
GND
GND
GND
C3
GND
N/A
GND
GND
GND
GND
GND
C24
GND
N/A
GND
GND
GND
GND
GND
D4
GND
N/A
GND
GND
GND
GND
GND
D12
GND
N/A
GND
GND
GND
GND
GND
D15
GND
N/A
GND
GND
GND
GND
GND
D23
GND
N/A
GND
GND
GND
GND
GND
K11
GND
N/A
GND
GND
GND
GND
GND
K12
GND
N/A
GND
GND
GND
GND
GND
K15
GND
N/A
GND
GND
GND
GND
GND
K16
GND
N/A
GND
GND
GND
GND
GND
L10
GND
174
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
N/A
GND
GND
GND
GND
GND
L11
GND
N/A
GND
GND
GND
GND
GND
L12
GND
N/A
GND
GND
GND
GND
GND
L13
GND
N/A
GND
GND
GND
GND
GND
L14
GND
N/A
GND
GND
GND
GND
GND
L15
GND
N/A
GND
GND
GND
GND
GND
L16
GND
N/A
GND
GND
GND
GND
GND
L17
GND
N/A
GND
GND
GND
GND
GND
M4
GND
N/A
GND
GND
GND
GND
GND
M10
GND
N/A
GND
GND
GND
GND
GND
M11
GND
N/A
GND
GND
GND
GND
GND
M12
GND
N/A
GND
GND
GND
GND
GND
M13
GND
N/A
GND
GND
GND
GND
GND
M14
GND
N/A
GND
GND
GND
GND
GND
M15
GND
N/A
GND
GND
GND
GND
GND
M16
GND
N/A
GND
GND
GND
GND
GND
M17
GND
N/A
GND
GND
GND
GND
GND
M23
GND
N/A
GND
GND
GND
GND
GND
N11
GND
N/A
GND
GND
GND
GND
GND
N12
GND
N/A
GND
GND
GND
GND
GND
N13
GND
N/A
GND
GND
GND
GND
GND
N14
GND
N/A
GND
GND
GND
GND
GND
N15
GND
N/A
GND
GND
GND
GND
GND
N16
GND
N/A
GND
GND
GND
GND
GND
P11
GND
N/A
GND
GND
GND
GND
GND
P12
GND
N/A
GND
GND
GND
GND
GND
P13
GND
N/A
GND
GND
GND
GND
GND
P14
GND
N/A
GND
GND
GND
GND
GND
P15
GND
N/A
GND
GND
GND
GND
GND
P16
GND
N/A
GND
GND
GND
GND
GND
R4
GND
N/A
GND
GND
GND
GND
GND
R10
GND
N/A
GND
GND
GND
GND
GND
R11
GND
N/A
GND
GND
GND
GND
GND
R12
GND
N/A
GND
GND
GND
GND
GND
R13
GND
N/A
GND
GND
GND
GND
GND
R14
GND
N/A
GND
GND
GND
GND
GND
R15
GND
N/A
GND
GND
GND
GND
GND
R16
GND
N/A
GND
GND
GND
GND
GND
R17
GND
N/A
GND
GND
GND
GND
GND
R23
GND
N/A
GND
GND
GND
GND
GND
T10
GND
N/A
GND
GND
GND
GND
GND
T11
GND
N/A
GND
GND
GND
GND
GND
T12
GND
N/A
GND
GND
GND
GND
GND
T13
GND
N/A
GND
GND
GND
GND
GND
T14
GND
N/A
GND
GND
GND
GND
GND
T15
GND
N/A
GND
GND
GND
GND
GND
T16
GND
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
175
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
N/A
GND
GND
GND
GND
GND
T17
GND
N/A
GND
GND
GND
GND
GND
U11
GND
N/A
GND
GND
GND
GND
GND
U12
GND
N/A
GND
GND
GND
GND
GND
U15
GND
N/A
GND
GND
GND
GND
GND
U16
GND
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
A2
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
A9
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
A18
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
A25
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
AE1
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
AE26
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
AF2
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
AF9
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
AF18
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
AF25
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
B1
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
B26
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
J1
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
J26
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
V1
VCCAUX
N/A
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
V26
VCCAUX
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
H8
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
H19
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
J9
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
J10
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
J17
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
J18
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
K9
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
K10
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
K17
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
K18
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
U9
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
U10
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
U17
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
U18
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
V9
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
V10
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
V17
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
V18
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
W8
VCCINT
N/A
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
W19
VCCINT
VCC CCLK
AUX
CCLK
CCLK
CCLK
CCLK
AD26
CONFIG
VCC DONE
AUX
DONE
DONE
DONE
DONE
AC24
CONFIG
VCC HSWAP_EN
AUX
HSWAP_EN
HSWAP_EN
HSWAP_EN
HSWAP_EN
C2
CONFIG
176
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 102: FG676 Package Pinout (Continued)
XC3S1000
Pin Name
Bank
XC3S1500
Pin Name
XC3S2000
Pin Name
XC3S4000
Pin Name
XC3S5000
Pin Name
FG676
Pin Number
Type
VCC M0
AUX
M0
M0
M0
M0
AE3
CONFIG
VCC M1
AUX
M1
M1
M1
M1
AC3
CONFIG
VCC M2
AUX
M2
M2
M2
M2
AF3
CONFIG
VCC PROG_B
AUX
PROG_B
PROG_B
PROG_B
PROG_B
D3
CONFIG
VCC TCK
AUX
TCK
TCK
TCK
TCK
B24
JTAG
VCC TDI
AUX
TDI
TDI
TDI
TDI
C1
JTAG
VCC TDO
AUX
TDO
TDO
TDO
TDO
D24
JTAG
VCC TMS
AUX
TMS
TMS
TMS
TMS
A24
JTAG
Notes:
1. XC3S1500 balls D25 and F25 are not VREF pins although they are designated as such. If a design uses an IOSTANDARD requiring VREF in bank
2 then apply the workaround in Answer Record 20519.
2. XC3S4000 is pin compatible with XC3S2000 but uses alternate differential pair labeling on six package balls (H20, H21, H22, H23, H24, J21).
3. XC3S5000 is pin compatible with XC3S4000 but uses alternate differential pair functionality on fifteen package balls (A3, A8, B8, B18, C4, C8, C18,
D8, D18, E8, E18, H23, H24, AB9, and AC9).
User I/Os by Bank
Table 103 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S1000 in
the FG676 package. Similarly, Table 104 shows how the
available user-I/O pins are distributed between the eight I/O
banks for the XC3S1500 in the FG676 package. Finally,
Table 105 shows the same information for the XC3S2000,
XC3S4000, and XC3S5000 in the FG676 package.
Table 103: User I/Os Per Bank for XC3S1000 in FG676 Package
Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O
Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
49
40
0
2
5
2
1
50
41
0
2
5
2
2
48
41
0
2
5
0
3
48
41
0
2
5
0
4
50
35
6
2
5
2
5
50
35
6
2
5
2
6
48
41
0
2
5
0
7
48
41
0
2
5
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
177
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 104: User I/Os Per Bank for XC3S1500 in FG676 Package
Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O
Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
62
52
0
2
6
2
1
61
51
0
2
6
2
2
60
52
0
2
6
0
3
60
52
0
2
6
0
4
63
47
6
2
6
2
5
61
45
6
2
6
2
6
60
52
0
2
6
0
7
60
52
0
2
6
0
Table 105: User I/Os Per Bank for XC3S2000, XC3S4000, and XC3S5000 in FG676 Package
Edge
Top
Right
Bottom
Left
178
All Possible I/O Pins by Type
I/O Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
62
52
0
2
6
2
1
61
51
0
2
6
2
2
61
53
0
2
6
0
3
60
52
0
2
6
0
4
63
47
6
2
6
2
5
61
45
6
2
6
2
6
61
53
0
2
6
0
7
60
52
0
2
6
0
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
DS099-4 (v2.4) June 25, 2008
Product Specification
Spartan-3 FPGA Family: Pinout Descriptions
www.xilinx.com
179
R
Spartan-3 FPGA Family: Pinout Descriptions
FG676 Footprint
1
Left Half of Package
(top view)
XC3S1000
(391 max. user I/O)
I/O: Unrestricted,
315 general-purpose user I/O
VREF: User I/O or input
40 voltage reference for bank
2
N.C.: Unconnected pins for
XC3S1500 („)
XC3S2000, XC3S4000,
XC3S5000
(489 max user I/O)
I/O: Unrestricted,
405 general-purpose user I/O
VREF: User I/O or input
48 voltage reference for bank
0
DCI: User I/O or reference
16 resistor input for bank
7
CONFIG: Dedicated
configuration pins
4
JTAG: Dedicated JTAG
port pins
VCCINT: Internal core
20 voltage supply (+1.2V)
Bank 6
8
GCLK: User I/O or global
clock buffer input
I/O
L15N_0
GND
I/O
VREF_0
I/O
L05N_0
I/O
L06P_0
I/O
L08P_0
I/O
L10N_0
C
TD I
HSWAP_
EN
GND
I/O
I/O
L06N_0
I/O
L08N_0
VCCO_0
D
I/O
L03N_7
VREF_7
I/O
L03P_7
PROG_B
GND
I/O
L01P_0
VRN_0
I/O
L07P_0
I/O
L09P_0
I/O
L06N_7
I/O
L06P_7
‹
‹
I/O
L01N_0
VRP_0
I/O
L07N_0
I/O
L09N_0
I/O
L09N_7
I/O
L01P_7
VRN_7
I/O
VREF_0
I/O
L05P_7
9
10
I/O
VCCAUX L23P_0
‹
11
12
13
I/O
L26P_0
VREF_0
‹
I/O
L29P_0
I/O
L32P_0
GCLK6
I/O
L29N_0
I/O
L32N_0
GCLK7
I/O
L18P_0
I/O
L23N_0
I/O
L26N_0
‹
‹
‹
‹
I/O
L18N_0
‹
I/O
L22P_0
VCCO_0
I/O
I/O
L31P_0
VREF_0
I/O
L12P_0
I/O
L17P_0
I/O
L22N_0
I/O
L25P_0
GND
I/O
L31N_0
I/O
L19P_0
I/O
L25N_0
I/O
L28P_0
I/O
I/O
L16P_0
I/O
L19N_0
I/O
L24P_0
I/O
L28N_0
I/O
L30P_0
I/O
L16N_0
I/O
VREF_0
I/O
L24N_0
I/O
L27N_0
I/O
L30N_0
I/O
I/O
I/O
L27P_0
I/O
‹
I/O
L12N_0
‹
I/O
L17N_0
I/O
L02N_7
I/O
L02P_7
I/O
L09P_7
I/O
L07N_7
I/O
L07P_7
‹
‹
‹
‹
I/O
L01N_7
VRP_7
I/O
L14N_7
I/O
L14P_7
VCCO_7
I/O
L08N_7
I/O
L08P_7
I/O
L05N_7
‹
‹
‹
I/O
L19N_7
VREF_7
I/O
L19P_7
I/O
L17N_7
I/O
L17P_7
I/O
L16P_7
VREF_7
I/O
L10N_7
J
VCCAUX
I/O
L22N_7
I/O
L22P_7
I/O
L21N_7
I/O
L21P_7
I/O
L16N_7
I/O
L20P_7
VCCO_7 VCCINT
VCCINT
K
I/O
L26N_7
I/O
L26P_7
I/O
L24N_7
I/O
L24P_7
I/O
L23N_7
I/O
L23P_7
I/O
L20N_7
VCCO_7 VCCINT
VCCINT
GND
GND
VCCO_0
L
I/O
L29N_7
I/O
L29P_7
VCCO_7
I/O
L33P_7
I/O
L28N_7
I/O
L28P_7
I/O
L27N_7
I/O
L27P_7
VREF_7
VCCO_7
GND
GND
GND
GND
M
I/O
L34N_7
I/O
L34P_7
I/O
L33N_7
GND
I/O
L32P_7
I/O
L32N_7
I/O
L31N_7
I/O
L31P_7
VCCO_7
GND
GND
GND
GND
N
I/O
L40N_7
VREF_7
I/O
L40P_7
I/O
L39N_7
I/O
L39P_7
I/O
L38N_7
I/O
L38P_7
I/O
L35N_7
I/O
L35P_7
VCCO_7 VCCO_7
GND
GND
GND
P
I/O
L40P_6
VREF_6
I/O
L40N_6
I/O
L39P_6
I/O
L39N_6
I/O
L38P_6
I/O
L38N_6
I/O
L35P_6
I/O
L35N_6
VCCO_6 VCCO_6
GND
GND
GND
R
I/O
L34P_6
I/O
L34N_6
VREF_6
I/O
L33P_6
GND
I/O
L32P_6
I/O
L32N_6
I/O
L31P_6
I/O
L31N_6
VCCO_6
GND
GND
GND
GND
T
I/O
L29P_6
I/O
L29N_6
VCCO_6
I/O
L33N_6
I/O
L28P_6
I/O
L28N_6
I/O
L27P_6
I/O
L27N_6
VCCO_6
GND
GND
GND
GND
U
I/O
L26P_6
I/O
L26N_6
I/O
L24P_6
I/O
L24N_6
VREF_6
I/O
L23P_6
I/O
L23N_6
I/O
L20P_6
VCCO_6 VCCINT
VCCINT
GND
GND
VCCO_5
V
VCCAUX
I/O
L22P_6
I/O
L22N_6
I/O
L21P_6
I/O
L21N_6
I/O
L16N_6
I/O
L20N_6
VCCO_6 VCCINT
VCCINT
W
I/O
L19P_6
I/O
L19N_6
I/O
L17P_6
VREF_6
I/O
L17N_6
I/O
L16P_6
I/O
L14P_6
I/O
VCCINT
L14N_6
Y
I/O
L10P_6
I/O
L10N_6
I/O
L08P_6
I/O
L08N_6
I/O
L06P_6
I/O
L06N_6
‹
‹
I/O
L09N_6
VREF_6
‹
I/O
L05N_6
‹
‹
‹
‹
I/O
L05P_5
H
A
A
A
B
I/O
L09P_6
‹
VCCO_6
I/O
L07P_6
I/O
L07N_6
I/O
‹
‹
‹„
‹
‹
I/O
L11P_0
‹
I/O
L11N_0
‹
‹
I/O
L10P_7
VREF_7 VCCINT
‹
‹
VCCO_0 VCCO_0
I/O
L27P_5
I/O
L30P_5
I/O
I/O
L16P_5
I/O
L19P_5
VREF_5
I/O
L24N_5
I/O
L27N_5
VREF_5
I/O
L30N_5
I/O
I/O
L11P_5
‹
I/O
L16N_5
I/O
L19N_5
I/O
L25P_5
I/O
L28P_5
D7
I/O
I/O
I/O
L22P_5
I/O
L25N_5
I/O
L28N_5
D6
I/O
L31P_5
D5
‹
I/O
L22N_5
I/O
GND
I/O
L31N_5
D4
I/O
L12N_5
I/O
L18P_5
I/O
VCCO_5
I/O
‹
‹
I/O
L32P_5
GCLK2
I/O
L23P_5
I/O
L26P_5
I/O
L29P_5
VREF_5
I/O
L32N_5
GCLK3
I/O
L29N_5
I/O
VREF_5
I/O
L02N_6
I/O
L01P_5
CS_B
I/O
L05N_5
I/O
L09P_5
I/O
L03N_6
VREF_6
M1
GND
I/O
L01N_5
RDWR_B
I/O
L07P_5
I/O
L09N_5
I/O
L12P_5
‹
I/O
L01P_6
VRN_6
I/O
L01N_6
VRP_6
GND
I/O
L04P_5
I/O
L06P_5
I/O
L07N_5
VCCO_5
VCCAUX
GND
M0
I/O
L04N_5
I/O
L06N_5
I/O
L08P_5
I/O
L10P_5
VRN_5
I/O
L15P_5
I/O
I/O
VREF_5
I/O
L08N_5
I/O
L10N_5
VRP_5
I/O
VCCAUX
L15N_5
A
D
16 supply (+2.5V)
A
E
GND: Ground
A
F
GND
VCCAUX
M2
VCCO_5 VCCO_5 VCCO_5
I/O
L24P_5
I/O
L02P_6
I/O
L05P_6
VCCO_0 VCCO_0 VCCO_0
VCCO_5 VCCO_5
I/O
L11N_5
VREF_5
‹
I/O
L03P_6
76
I/O
I/O
L15P_0
VCCAUX
A
C
VCCAUX: Auxiliary voltage
I/O
I/O
L10P_0
B
‹
VCCO: Output voltage
Bank 0
8
I/O
‹
64 supply for bank
7
VCCAUX
N.C.: No unconnected pins
All devices
DUAL: Configuration pin,
12 then possible user I/O
6
5
GND
G
Bank 7
VREF: User I/O or input
48 voltage reference for bank
4
A
F
XC3S1500
(487 max user I/O)
I/O: Unrestricted,
403 general-purpose user I/O
3
I/O
L05P_0
VREF_0
E
N.C.: Unconnected pins for
98 XC3S1000 (‹)
2
I/O
I/O
L18N_5
‹
Bank 5
‹
‹
I/O
L23N_5
I/O
L26N_5
‹
‹
DS099-4_12a_030203
Figure 49: FG676 Package Footprint (top view)
180
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
I/O
L29N_1
16
I/O
L26N_1
‹
17
Bank 1
18
19
20
21
22
23
I/O
L15N_1
I/O
L10N_1
VREF_1
I/O
L08N_1
I/O
I/O
I/O
L15P_1
I/O
L10P_1
I/O
L08P_1
I/O
L06N_1
VREF_1
I/O
L18P_1
I/O
L12N_1
VCCO_1
‹
‹
I/O
L07N_1
I/O
VREF_1
I/O
L12P_1
‹
‹
I/O
L09N_1
I/O
I/O
L11N_1
‹
I/O
L09P_1
I/O
L23N_1 VCCAUX
‹
I/O
L26P_1
I/O
L23P_1
I/O
L18N_1
‹
‹
‹
I/O
VREF_1
VCCO_1
I/O
VREF_1
I/O
L31N_1
VREF_1
GND
I/O
I/O
L31P_1
I/O
L28N_1
I/O
L32N_1
GCLK5
I/O
L29P_1
I/O
L32P_1
GCLK4
I/O
I/O
L30N_1
I/O
L30P_1
I/O
L25N_1
I/O
L22N_1
I/O
L22P_1
I/O
L28P_1
I/O
L25P_1
I/O
L19N_1
I/O
L16N_1
I/O
L11P_1
‹
I/O
I/O
L27N_1
I/O
L24N_1
I/O
L19P_1
I/O
L16P_1
I/O
I/O
L06N_2
‹
I/O
L27P_1
I/O
L24P_1
VCCO_1 VCCO_1 VCCINT
24
25
26
TMS
VCCAUX
GND
A
I/O
L04N_1
TCK
GND
VCCAUX
B
I/O
L06P_1
I/O
L04P_1
GND
I/O
L01N_2
VRP_2
I/O
L01P_2
VRN_2
C
I/O
L07P_1
I/O
L01N_1
VRP_1
GND
TDO
I/O
L03N_2
VREF_2
I/O
L03P_2
D
I/O
L05N_1
I/O
L01P_1
VRN_1
I/O
L02N_2
I/O
L02P_2
I/O
L05N_2
I/O
L05P_2
E
‹
‹
I/O
L09N_2
VREF_2
‹
I/O
L09P_2
I/O
I/O
L07N_2
I/O
L07P_2
‹„
‹
‹
I/O
L08N_2
‹
I/O
L08P_2
‹
VCCO_2
I/O
L10N_2
‹
I/O
L10P_2
‹
G
I/O
I/O
I/O
I/O
I/O
L17P_2
L14N_2 L14P_2 L16N_2 L17N_2 (L13P_2)
(L11N_2) (L11P_2) (L12N_2) (L13N_2) VREF_2
I/O
L19N_2
I/O
L19P_2
H
I/O
L05P_1
I/O
L06P_2
‹
‹
F
VCCO_1 VCCO_1 VCCO_1 VCCINT
VCCINT
VCCO_2
I/O
L20N_2
I/O
L16P_2
(L12P_2)
VCCO_1
GND
GND
VCCINT
VCCINT
VCCO_2
I/O
L20P_2
I/O
L23N_2
VREF_2
I/O
L23P_2
I/O
L24N_2
I/O
L24P_2
I/O
L26N_2
I/O
L26P_2
K
GND
GND
GND
GND
VCCO_2
I/O
L27N_2
I/O
L27P_2
I/O
L28N_2
I/O
L28P_2
I/O
L33N_2
VCCO_2
I/O
L29N_2
I/O
L29P_2
L
GND
GND
GND
GND
VCCO_2
I/O
L31N_2
I/O
L31P_2
I/O
L32N_2
I/O
L32P_2
GND
I/O
L33P_2
I/O
L34N_2
VREF_2
I/O
L34P_2
M
GND
GND
GND
VCCO_2 VCCO_2
I/O
L35N_2
I/O
L35P_2
I/O
L38N_2
I/O
L38P_2
I/O
L39N_2
I/O
L39P_2
I/O
L40N_2
I/O
L40P_2
VREF_2
N
GND
GND
GND
VCCO_3 VCCO_3
I/O
L35P_3
I/O
L35N_3
I/O
L38P_3
I/O
L38N_3
I/O
L39P_3
I/O
L39N_3
I/O
L40P_3
I/O
L40N_3
VREF_3
P
GND
GND
GND
GND
VCCO_3
I/O
L31P_3
I/O
L31N_3
I/O
L32P_3
I/O
L32N_3
GND
I/O
L33N_3
I/O
L34P_3
VREF_3
I/O
L34N_3
R
GND
GND
GND
GND
VCCO_3
I/O
L27P_3
I/O
L27N_3
I/O
L28P_3
I/O
L28N_3
I/O
L33P_3
VCCO_3
I/O
L29P_3
I/O
L29N_3
T
VCCO_4
GND
GND
VCCINT
VCCINT
VCCO_3
I/O
L20N_3
I/O
L23P_3
VREF_3
I/O
L23N_3
I/O
L24P_3
I/O
L24N_3
I/O
L26P_3
I/O
L26N_3
U
VCCO_4 VCCO_4 VCCO_4 VCCINT
VCCINT
VCCO_3
I/O
L20P_3
I/O
L16N_3
I/O
L21P_3
I/O
L21N_3
I/O
L22P_3
I/O
L22N_3
VCCAUX
V
I/O
L10P_3
I/O
L10N_3
‹
I/O
L16P_3
I/O
L17P_3
VREF_3
I/O
L17N_3
I/O
L19P_3
I/O
L19N_3
W
‹
I/O
L11N_4
I/O
L05P_3
I/O
L05N_3
I/O
L08P_3
I/O
L08N_3
VCCO_3
‹
‹
‹
‹
I/O
L14P_3
I/O
L14N_3
Y
‹
I/O
L11P_4
I/O
I/O
L01P_3
VRN_3
I/O
L01N_3
VRP_3
I/O
L07P_3
I/O
L07N_3
I/O
L09N_3
‹
‹
I/O
L09P_3
VREF_3
‹
A
A
I/O
L09N_4
I/O
L07N_4
I/O
L01N_4
VRP_4
I/O
L02P_3
I/O
L02N_3
VREF_3
I/O
L06P_3
I/O
L06N_3
‹
‹
A
B
I/O
L09P_4
I/O
L07P_4
I/O
L01P_4
VRN_4
GND
DONE
I/O
L03P_3
I/O
L03N_3
A
C
VCCO_4
I/O
L08N_4
I/O
L06N_4
VREF_4
I/O
GND
I/O
VREF_4
CCLK
A
D
I/O
L15N_4
I/O
L10N_4
I/O
L08P_4
I/O
L06P_4
I/O
L05N_4
I/O
L04N_4
GND
VCCAUX
A
E
I/O
L15P_4
I/O
L10P_4
I/O
I/O
I/O
L05P_4
I/O
L04P_4
VCCAUX
GND
A
F
I/O
L27P_4
D1
I/O
I/O
L30N_4
D2
I/O
L27N_4
DIN
D0
I/O
L24N_4
I/O
VREF_4
I/O
L16N_4
I/O
L30P_4
D3
I/O
L28N_4
I/O
L24P_4
I/O
L19P_4
I/O
L16P_4
IO
VREF_4
I/O
L28P_4
I/O
L25N_4
I/O
L22P_4
I/O
L31N_4
INIT_B
GND
I/O
L25P_4
I/O
L19N_4
I/O
L31P_4
DOUT
BUSY
I/O
VCCO_4
I/O
L32N_4
GCLK1
I/O
L29N_4
I/O
L32P_4
GCLK0
I/O
L29P_4
I/O
VCCO_4 VCCO_4 VCCINT
‹
I/O
L17N_4
I/O
L12N_4
‹
‹
I/O
L17P_4
I/O
L12P_4
‹
‹
I/O
L22N_4
VREF_4
I/O
L18N_4
I/O
‹
‹
I/O
L26N_4
I/O
L23N_4
I/O
L18P_4
‹
I/O
L26P_4
VREF_4
‹
‹
I/O
L23P_4
‹
VCCAUX
‹
Bank 4
DS099-4 (v2.4) June 25, 2008
Product Specification
I/O
L21N_2
I/O
L21P_2
I/O
L22N_2
I/O
L22P_2
VCCAUX
J
‹
Right Half of Package
(top view)
Bank 2
I/O
15
Notes:
1. Differential pair assignments
shown in parentheses on
balls H20, H21, H22, H23,
H24, and J21 are for
XC3S4000 only.
2. Differential pair assignments
for the XC3S5000 are
different on 15 balls (see
Table 102 for details.)
Bank 3
14
Spartan-3 FPGA Family: Pinout Descriptions
DS099-4_12b_011205
www.xilinx.com
181
R
Spartan-3 FPGA Family: Pinout Descriptions
FG900: 900-lead Fine-pitch Ball Grid
Array
The 900-lead fine-pitch ball grid array package, FG900,
supports three different Spartan-3 devices, including the
XC3S2000, the XC3S4000, and the XC3S5000. The footprints for the XC3S4000 and XC3S5000 are identical, as
shown in Table 106 and Figure 50. The XC3S2000, however, has fewer I/O pins which consequently results in 68
unconnected pins on the FG900 package, labeled as “N.C.”
In Table 106 and Figure 50, these unconnected pins are
indicated with a black diamond symbol (‹).
All the package pins appear in Table 106 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
If there is a difference between the XC3S2000 pinout and
the pinout for the XC3S4000 and XC3S5000, then that difference is highlighted in Table 106. If the table entry is
shaded, then there is an unconnected pin on the XC3S2000
that maps to a user-I/O pin on the XC3S4000 and
XC3S5000.
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
0
IO_L05P_0/
VREF_0
IO_L05P_0/
VREF_0
F7
VREF
0
IO_L06N_0
IO_L06N_0
D7
I/O
0
IO_L06P_0
IO_L06P_0
C7
I/O
0
IO_L07N_0
IO_L07N_0
F8
I/O
0
IO_L07P_0
IO_L07P_0
E8
I/O
0
IO_L08N_0
IO_L08N_0
D8
I/O
0
IO_L08P_0
IO_L08P_0
C8
I/O
0
IO_L09N_0
IO_L09N_0
B8
I/O
0
IO_L09P_0
IO_L09P_0
A8
I/O
0
IO_L10N_0
IO_L10N_0
J9
I/O
0
IO_L10P_0
IO_L10P_0
H9
I/O
0
IO_L11N_0
IO_L11N_0
G10
I/O
0
IO_L11P_0
IO_L11P_0
F10
I/O
0
IO_L12N_0
IO_L12N_0
C10
I/O
0
IO_L12P_0
IO_L12P_0
B10
I/O
0
IO_L13N_0
IO_L13N_0
J10
I/O
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_
sheets/s3_pin.zip.
0
IO_L13P_0
IO_L13P_0
K11
I/O
0
IO_L14N_0
IO_L14N_0
H11
I/O
0
IO_L14P_0
IO_L14P_0
G11
I/O
0
IO_L15N_0
IO_L15N_0
F11
I/O
Pinout Table
0
IO_L15P_0
IO_L15P_0
E11
I/O
0
IO_L16N_0
IO_L16N_0
D11
I/O
0
IO_L16P_0
IO_L16P_0
C11
I/O
0
IO_L17N_0
IO_L17N_0
B11
I/O
Table 106: FG900 Package Pinout
Bank
0
182
XC3S2000
Pin Name
IO
XC3S4000
XC3S5000
Pin Name
IO
FG900
Pin
Number
Type
0
IO_L17P_0
IO_L17P_0
A11
I/O
E15
I/O
0
IO_L18N_0
IO_L18N_0
K12
I/O
IO_L18P_0
IO_L18P_0
J12
I/O
0
IO
IO
K15
I/O
0
0
IO
IO
D13
I/O
0
IO_L19N_0
IO_L19N_0
H12
I/O
0
IO
IO
K13
I/O
0
IO_L19P_0
IO_L19P_0
G12
I/O
IO_L20N_0
IO_L20N_0
F12
I/O
0
IO
IO
G8
I/O
0
0
IO/VREF_0
IO/VREF_0
F9
VREF
0
IO_L20P_0
IO_L20P_0
E12
I/O
0
IO/VREF_0
IO/VREF_0
C4
VREF
0
IO_L21N_0
IO_L21N_0
D12
I/O
0
IO_L21P_0
IO_L21P_0
C12
I/O
0
IO_L22N_0
IO_L22N_0
B12
I/O
0
IO_L22P_0
IO_L22P_0
A12
I/O
0
IO_L23N_0
IO_L23N_0
J13
I/O
H13
I/O
0
IO_L01N_0/
VRP_0
IO_L01N_0/
VRP_0
B4
DCI
0
IO_L01P_0/
VRN_0
IO_L01P_0/
VRN_0
A4
DCI
0
IO_L02N_0
IO_L02N_0
B5
I/O
0
IO_L23P_0
IO_L23P_0
0
IO_L02P_0
IO_L02P_0
A5
I/O
0
IO_L24N_0
IO_L24N_0
F13
I/O
0
IO_L03N_0
IO_L03N_0
D5
I/O
0
IO_L24P_0
IO_L24P_0
E13
I/O
0
IO_L03P_0
IO_L03P_0
E6
I/O
0
IO_L25N_0
IO_L25N_0
B13
I/O
0
IO_L04N_0
IO_L04N_0
C6
I/O
0
IO_L25P_0
IO_L25P_0
A13
I/O
0
IO_L04P_0
IO_L04P_0
B6
I/O
0
IO_L26N_0
IO_L26N_0
K14
I/O
0
IO_L05N_0
IO_L05N_0
F6
I/O
0
IO_L26P_0/
VREF_0
IO_L26P_0/
VREF_0
J14
VREF
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Table 106: FG900 Package Pinout (Continued)
FG900
Pin
Number
Type
Bank
G14
I/O
1
IO_L03N_1
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
IO_L03N_1
A26
I/O
0
IO_L27N_0
IO_L27N_0
0
IO_L27P_0
IO_L27P_0
F14
I/O
1
IO_L03P_1
IO_L03P_1
B26
I/O
0
IO_L28N_0
IO_L28N_0
C14
I/O
1
IO_L04N_1
IO_L04N_1
B25
I/O
0
IO_L28P_0
IO_L28P_0
B14
I/O
1
IO_L04P_1
IO_L04P_1
C25
I/O
0
IO_L29N_0
IO_L29N_0
J15
I/O
1
IO_L05N_1
IO_L05N_1
F24
I/O
0
IO_L29P_0
IO_L29P_0
H15
I/O
1
IO_L05P_1
IO_L05P_1
F25
I/O
0
IO_L30N_0
IO_L30N_0
G15
I/O
1
VREF
IO_L30P_0
IO_L30P_0
F15
I/O
IO_L06N_1/
VREF_1
C24
0
IO_L06N_1/
VREF_1
0
IO_L31N_0
IO_L31N_0
D15
I/O
1
IO_L06P_1
IO_L06P_1
D24
I/O
1
IO_L07N_1
IO_L07N_1
A24
I/O
1
IO_L07P_1
IO_L07P_1
B24
I/O
1
IO_L08N_1
IO_L08N_1
H23
I/O
1
IO_L08P_1
IO_L08P_1
G24
I/O
1
IO_L09N_1
IO_L09N_1
F23
I/O
1
IO_L09P_1
IO_L09P_1
G23
I/O
1
IO_L10N_1/
VREF_1
IO_L10N_1/
VREF_1
C23
VREF
0
IO_L31P_0/
VREF_0
IO_L31P_0/
VREF_0
C15
VREF
0
IO_L32N_0/
GCLK7
IO_L32N_0/
GCLK7
B15
GCLK
0
IO_L32P_0/
GCLK6
IO_L32P_0/
GCLK6
A15
GCLK
0
N.C. (‹)
IO_L35N_0
B7
I/O
0
N.C. (‹)
IO_L35P_0
A7
I/O
0
N.C. (‹)
IO_L36N_0
G7
I/O
1
IO_L10P_1
IO_L10P_1
D23
I/O
0
N.C. (‹)
IO_L36P_0
H8
I/O
1
IO_L11N_1
IO_L11N_1
A23
I/O
0
N.C. (‹)
IO_L37N_0
E9
I/O
1
IO_L11P_1
IO_L11P_1
B23
I/O
0
N.C. (‹)
IO_L37P_0
D9
I/O
1
IO_L12N_1
IO_L12N_1
H22
I/O
0
N.C. (‹)
IO_L38N_0
B9
I/O
1
IO_L12P_1
IO_L12P_1
J22
I/O
0
N.C. (‹)
IO_L38P_0
A9
I/O
1
IO_L13N_1
IO_L13N_1
F22
I/O
0
VCCO_0
VCCO_0
C5
VCCO
1
IO_L13P_1
IO_L13P_1
E23
I/O
0
VCCO_0
VCCO_0
E7
VCCO
1
IO_L14N_1
IO_L14N_1
D22
I/O
0
VCCO_0
VCCO_0
C9
VCCO
1
IO_L14P_1
IO_L14P_1
E22
I/O
0
VCCO_0
VCCO_0
G9
VCCO
1
IO_L15N_1
IO_L15N_1
A22
I/O
0
VCCO_0
VCCO_0
J11
VCCO
1
IO_L15P_1
IO_L15P_1
B22
I/O
0
VCCO_0
VCCO_0
L12
VCCO
1
IO_L16N_1
IO_L16N_1
F21
I/O
0
VCCO_0
VCCO_0
C13
VCCO
1
IO_L16P_1
IO_L16P_1
G21
I/O
0
VCCO_0
VCCO_0
G13
VCCO
1
VCCO_0
L13
VCCO
IO_L17N_1/
VREF_1
VREF
VCCO_0
IO_L17N_1/
VREF_1
B21
0
0
VCCO_0
VCCO_0
L14
VCCO
1
IO_L17P_1
IO_L17P_1
C21
I/O
1
IO
IO
E25
I/O
1
IO_L18N_1
IO_L18N_1
G20
I/O
1
IO
IO
J21
I/O
1
IO_L18P_1
IO_L18P_1
H20
I/O
1
IO
IO
K20
I/O
1
IO_L19N_1
IO_L19N_1
E20
I/O
1
IO
IO
F18
I/O
1
IO_L19P_1
IO_L19P_1
F20
I/O
1
IO
IO
F16
I/O
1
IO_L20N_1
IO_L20N_1
C20
I/O
1
IO
IO
A16
I/O
1
IO_L20P_1
IO_L20P_1
D20
I/O
1
IO/VREF_1
IO/VREF_1
J17
VREF
1
IO_L21N_1
IO_L21N_1
A20
I/O
1
IO_L01N_1/
VRP_1
IO_L01N_1/
VRP_1
A27
DCI
1
IO_L21P_1
IO_L21P_1
B20
I/O
1
IO_L22N_1
IO_L22N_1
J19
I/O
1
IO_L01P_1/
VRN_1
IO_L01P_1/
VRN_1
B27
DCI
1
IO_L22P_1
IO_L22P_1
K19
I/O
1
IO_L02N_1
IO_L02N_1
D26
I/O
1
IO_L23N_1
IO_L23N_1
G19
I/O
1
IO_L02P_1
IO_L02P_1
C27
I/O
1
IO_L23P_1
IO_L23P_1
H19
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
183
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Type
Bank
E19
I/O
FG900
Pin
Number
Type
2
IO_L03N_2/
VREF_2
IO_L03N_2/
VREF_2
D29
VREF
1
IO_L24N_1
IO_L24N_1
1
IO_L24P_1
IO_L24P_1
F19
I/O
1
IO_L25N_1
IO_L25N_1
C19
I/O
2
IO_L03P_2
IO_L03P_2
D30
I/O
IO_L04N_2
IO_L04N_2
E29
I/O
1
IO_L25P_1
IO_L25P_1
D19
I/O
2
1
IO_L26N_1
IO_L26N_1
A19
I/O
2
IO_L04P_2
IO_L04P_2
E30
I/O
I/O
2
IO_L05N_2
IO_L05N_2
F28
I/O
IO_L05P_2
IO_L05P_2
F29
I/O
1
IO_L26P_1
IO_L26P_1
B19
1
IO_L27N_1
IO_L27N_1
F17
I/O
2
1
IO_L27P_1
IO_L27P_1
G17
I/O
2
IO_L06N_2
IO_L06N_2
G27
I/O
1
IO_L28N_1
IO_L28N_1
B17
I/O
2
IO_L06P_2
IO_L06P_2
G28
I/O
IO_L07N_2
IO_L07N_2
G29
I/O
1
IO_L28P_1
IO_L28P_1
C17
I/O
2
1
IO_L29N_1
IO_L29N_1
J16
I/O
2
IO_L07P_2
IO_L07P_2
G30
I/O
I/O
2
IO_L08N_2
IO_L08N_2
G25
I/O
IO_L08P_2
IO_L08P_2
H24
I/O
1
184
XC3S2000
Pin Name
Table 106: FG900 Package Pinout (Continued)
IO_L29P_1
IO_L29P_1
K16
1
IO_L30N_1
IO_L30N_1
G16
I/O
2
1
IO_L30P_1
IO_L30P_1
H16
I/O
2
VREF
IO_L31N_1/
VREF_1
IO_L31N_1/
VREF_1
D16
VREF
IO_L09N_2/
VREF_2
H25
1
IO_L09N_2/
VREF_2
2
IO_L09P_2
IO_L09P_2
H26
I/O
1
IO_L31P_1
IO_L31P_1
E16
I/O
2
IO_L10N_2
IO_L10N_2
H27
I/O
2
IO_L10P_2
IO_L10P_2
H28
I/O
2
IO_L12N_2
IO_L12N_2
H29
I/O
2
IO_L12P_2
IO_L12P_2
H30
I/O
2
IO_L13N_2
IO_L13N_2
J26
I/O
2
IO_L13P_2/
VREF_2
IO_L13P_2/
VREF_2
J27
VREF
1
IO_L32N_1/
GCLK5
IO_L32N_1/
GCLK5
B16
GCLK
1
IO_L32P_1/
GCLK4
IO_L32P_1/
GCLK4
C16
GCLK
1
N.C. (‹)
IO_L37N_1
H18
I/O
1
N.C. (‹)
IO_L37P_1
J18
I/O
1
N.C. (‹)
IO_L38N_1
D18
I/O
2
IO_L14N_2
IO_L14N_2
J29
I/O
1
N.C. (‹)
IO_L38P_1
E18
I/O
2
IO_L14P_2
IO_L14P_2
J30
I/O
1
N.C. (‹)
IO_L39N_1
A18
I/O
2
IO_L15N_2
IO_L15N_2
J23
I/O
1
N.C. (‹)
IO_L39P_1
B18
I/O
2
IO_L15P_2
IO_L15P_2
K22
I/O
1
N.C. (‹)
IO_L40N_1
K17
I/O
2
IO_L16N_2
IO_L16N_2
K24
I/O
1
N.C. (‹)
IO_L40P_1
K18
I/O
2
IO_L16P_2
IO_L16P_2
K25
I/O
1
VCCO_1
VCCO_1
L17
VCCO
2
IO_L19N_2
IO_L19N_2
L25
I/O
1
VCCO_1
VCCO_1
C18
VCCO
2
IO_L19P_2
IO_L19P_2
L26
I/O
1
VCCO_1
VCCO_1
G18
VCCO
2
IO_L20N_2
IO_L20N_2
L27
I/O
1
VCCO_1
VCCO_1
L18
VCCO
2
IO_L20P_2
IO_L20P_2
L28
I/O
1
VCCO_1
VCCO_1
L19
VCCO
2
IO_L21N_2
IO_L21N_2
L29
I/O
1
VCCO_1
VCCO_1
J20
VCCO
2
IO_L21P_2
IO_L21P_2
L30
I/O
1
VCCO_1
VCCO_1
C22
VCCO
2
IO_L22N_2
IO_L22N_2
M22
I/O
1
VCCO_1
VCCO_1
G22
VCCO
2
IO_L22P_2
IO_L22P_2
M23
I/O
1
VCCO_1
VCCO_1
E24
VCCO
2
VCCO_1
C26
VCCO
IO_L23N_2/
VREF_2
VREF
VCCO_1
IO_L23N_2/
VREF_2
M24
1
2
IO
IO
J25
I/O
2
IO_L23P_2
IO_L23P_2
M25
I/O
2
IO_L24N_2
IO_L24N_2
M27
I/O
2
IO_L24P_2
IO_L24P_2
M28
I/O
2
IO_L26N_2
IO_L26N_2
M21
I/O
2
IO_L01N_2/
VRP_2
IO_L01N_2/
VRP_2
C29
DCI
2
IO_L01P_2/
VRN_2
IO_L01P_2/
VRN_2
C30
DCI
2
IO_L26P_2
IO_L26P_2
N21
I/O
2
IO_L02N_2
IO_L02N_2
D27
I/O
2
IO_L27N_2
IO_L27N_2
N22
I/O
2
IO_L02P_2
IO_L02P_2
D28
I/O
2
IO_L27P_2
IO_L27P_2
N23
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Table 106: FG900 Package Pinout (Continued)
FG900
Pin
Number
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
Bank
Type
3
IO_L01N_3/
VRP_3
IO_L01N_3/
VRP_3
AH30
DCI
3
IO_L01P_3/
VRN_3
IO_L01P_3/
VRN_3
AH29
DCI
3
IO_L02N_3/
VREF_3
IO_L02N_3/
VREF_3
AG28
VREF
3
IO_L02P_3
IO_L02P_3
AG27
I/O
3
IO_L03N_3
IO_L03N_3
AG30
I/O
3
IO_L03P_3
IO_L03P_3
AG29
I/O
3
IO_L04N_3
IO_L04N_3
AF30
I/O
3
IO_L04P_3
IO_L04P_3
AF29
I/O
3
IO_L05N_3
IO_L05N_3
AE26
I/O
3
IO_L05P_3
IO_L05P_3
AF27
I/O
3
IO_L06N_3
IO_L06N_3
AE29
I/O
3
IO_L06P_3
IO_L06P_3
AE28
I/O
3
IO_L07N_3
IO_L07N_3
AD28
I/O
3
IO_L07P_3
IO_L07P_3
AD27
I/O
3
IO_L08N_3
IO_L08N_3
AD30
I/O
3
IO_L08P_3
IO_L08P_3
AD29
I/O
3
IO_L09N_3
IO_L09N_3
AC24
I/O
3
IO_L09P_3/
VREF_3
IO_L09P_3/
VREF_3
AD25
VREF
3
IO_L10N_3
IO_L10N_3
AC26
I/O
3
IO_L10P_3
IO_L10P_3
AC25
I/O
3
IO_L11N_3
IO_L11N_3
AC28
I/O
3
IO_L11P_3
IO_L11P_3
AC27
I/O
3
IO_L13N_3/
VREF_3
IO_L13N_3/
VREF_3
AC30
VREF
3
IO_L13P_3
IO_L13P_3
AC29
I/O
3
IO_L14N_3
IO_L14N_3
AB27
I/O
3
IO_L14P_3
IO_L14P_3
AB26
I/O
3
IO_L15N_3
IO_L15N_3
AB30
I/O
3
IO_L15P_3
IO_L15P_3
AB29
I/O
3
IO_L16N_3
IO_L16N_3
AA22
I/O
3
IO_L16P_3
IO_L16P_3
AB23
I/O
3
IO_L17N_3
IO_L17N_3
AA25
I/O
3
IO_L17P_3/
VREF_3
IO_L17P_3/
VREF_3
AA24
VREF
2
IO_L28N_2
IO_L28N_2
M26
I/O
2
IO_L28P_2
IO_L28P_2
N25
I/O
2
IO_L29N_2
IO_L29N_2
N26
I/O
2
IO_L29P_2
IO_L29P_2
N27
I/O
2
IO_L31N_2
IO_L31N_2
N29
I/O
2
IO_L31P_2
IO_L31P_2
N30
I/O
2
IO_L32N_2
IO_L32N_2
P21
I/O
2
IO_L32P_2
IO_L32P_2
P22
I/O
2
IO_L33N_2
IO_L33N_2
P24
I/O
2
IO_L33P_2
IO_L33P_2
P25
I/O
2
IO_L34N_2/
VREF_2
IO_L34N_2/
VREF_2
P28
VREF
2
IO_L34P_2
IO_L34P_2
P29
I/O
2
IO_L35N_2
IO_L35N_2
R21
I/O
2
IO_L35P_2
IO_L35P_2
R22
I/O
2
IO_L37N_2
IO_L37N_2
R23
I/O
2
IO_L37P_2
IO_L37P_2
R24
I/O
2
IO_L38N_2
IO_L38N_2
R25
I/O
2
IO_L38P_2
IO_L38P_2
R26
I/O
2
IO_L39N_2
IO_L39N_2
R27
I/O
2
IO_L39P_2
IO_L39P_2
R28
I/O
2
IO_L40N_2
IO_L40N_2
R29
I/O
2
IO_L40P_2/
VREF_2
IO_L40P_2/
VREF_2
R30
VREF
2
N.C. (‹)
IO_L41N_2
E27
I/O
2
N.C. (‹)
IO_L41P_2
F26
I/O
2
N.C. (‹)
IO_L45N_2
K28
I/O
2
N.C. (‹)
IO_L45P_2
K29
I/O
2
N.C. (‹)
IO_L46N_2
K21
I/O
2
N.C. (‹)
IO_L46P_2
L21
I/O
2
N.C. (‹)
IO_L47N_2
L23
I/O
2
N.C. (‹)
IO_L47P_2
L24
I/O
2
N.C. (‹)
IO_L50N_2
M29
I/O
2
N.C. (‹)
IO_L50P_2
M30
I/O
2
VCCO_2
VCCO_2
M20
VCCO
2
VCCO_2
VCCO_2
N20
VCCO
2
VCCO_2
VCCO_2
P20
VCCO
2
VCCO_2
VCCO_2
L22
VCCO
3
IO_L19N_3
IO_L19N_3
AA29
I/O
2
VCCO_2
VCCO_2
J24
VCCO
3
IO_L19P_3
IO_L19P_3
AA28
I/O
2
VCCO_2
VCCO_2
N24
VCCO
3
IO_L20N_3
IO_L20N_3
Y21
I/O
2
VCCO_2
VCCO_2
G26
VCCO
3
IO_L20P_3
IO_L20P_3
AA21
I/O
2
VCCO_2
VCCO_2
E28
VCCO
3
IO_L21N_3
IO_L21N_3
Y24
I/O
2
VCCO_2
VCCO_2
J28
VCCO
3
IO_L21P_3
IO_L21P_3
Y23
I/O
2
VCCO_2
VCCO_2
N28
VCCO
3
IO_L22N_3
IO_L22N_3
Y26
I/O
3
IO
IO
AB25
I/O
3
IO_L22P_3
IO_L22P_3
Y25
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
185
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
186
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Table 106: FG900 Package Pinout (Continued)
FG900
Pin
Number
Type
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
V24
VCCO
3
IO_L23N_3
IO_L23N_3
Y28
I/O
3
VCCO_3
VCCO_3
3
IO_L23P_3/
VREF_3
IO_L23P_3/
VREF_3
Y27
VREF
3
VCCO_3
VCCO_3
AB24
VCCO
3
VCCO_3
VCCO_3
AD26
VCCO
3
IO_L24N_3
IO_L24N_3
Y30
I/O
3
VCCO_3
VCCO_3
V28
VCCO
3
IO_L24P_3
IO_L24P_3
Y29
I/O
3
VCCO_3
VCCO_3
AB28
VCCO
3
IO_L26N_3
IO_L26N_3
W30
I/O
3
VCCO_3
VCCO_3
AF28
VCCO
3
IO_L26P_3
IO_L26P_3
W29
I/O
4
IO
IO
AA16
I/O
3
IO_L27N_3
IO_L27N_3
V21
I/O
4
IO
IO
AG18
I/O
3
IO_L27P_3
IO_L27P_3
W21
I/O
4
IO
IO
AA18
I/O
3
IO_L28N_3
IO_L28N_3
V23
I/O
4
IO
IO
AE22
I/O
3
IO_L28P_3
IO_L28P_3
V22
I/O
4
IO
IO
AD23
I/O
3
IO_L29N_3
IO_L29N_3
V25
I/O
4
IO
IO
AH27
I/O
3
IO_L29P_3
IO_L29P_3
W26
I/O
4
IO/VREF_4
IO/VREF_4
AF16
VREF
3
IO_L31N_3
IO_L31N_3
V30
I/O
4
IO/VREF_4
IO/VREF_4
AK28
VREF
3
IO_L31P_3
IO_L31P_3
V29
I/O
4
DCI
IO_L32N_3
IO_L32N_3
U22
I/O
IO_L01N_4/
VRP_4
AJ27
3
IO_L01N_4/
VRP_4
3
IO_L32P_3
IO_L32P_3
U21
I/O
4
IO_L33N_3
U25
I/O
IO_L01P_4/
VRN_4
DCI
IO_L33N_3
IO_L01P_4/
VRN_4
AK27
3
3
IO_L33P_3
IO_L33P_3
U24
I/O
4
IO_L02N_4
IO_L02N_4
AJ26
I/O
IO_L02P_4
IO_L02P_4
AK26
I/O
3
IO_L34N_3
IO_L34N_3
U29
I/O
4
3
IO_L34P_3/
VREF_3
IO_L34P_3/
VREF_3
U28
VREF
4
IO_L03N_4
IO_L03N_4
AG26
I/O
4
IO_L03P_4
IO_L03P_4
AF25
I/O
3
IO_L35N_3
IO_L35N_3
T22
I/O
4
IO_L04N_4
IO_L04N_4
AD24
I/O
3
IO_L35P_3
IO_L35P_3
T21
I/O
4
IO_L04P_4
IO_L04P_4
AC23
I/O
3
IO_L37N_3
IO_L37N_3
T24
I/O
4
IO_L05N_4
IO_L05N_4
AE23
I/O
3
IO_L37P_3
IO_L37P_3
T23
I/O
4
IO_L05P_4
IO_L05P_4
AF23
I/O
3
IO_L38N_3
IO_L38N_3
T26
I/O
4
IO_L38P_3
T25
I/O
IO_L06N_4/
VREF_4
VREF
IO_L38P_3
IO_L06N_4/
VREF_4
AG23
3
3
IO_L39N_3
IO_L39N_3
T28
I/O
4
IO_L06P_4
IO_L06P_4
AH23
I/O
3
IO_L39P_3
IO_L39P_3
T27
I/O
4
IO_L07N_4
IO_L07N_4
AJ23
I/O
4
IO_L07P_4
IO_L07P_4
AK23
I/O
3
IO_L40N_3/
VREF_3
IO_L40N_3/
VREF_3
T30
VREF
4
IO_L08N_4
IO_L08N_4
AB22
I/O
3
IO_L40P_3
IO_L40P_3
T29
I/O
4
IO_L08P_4
IO_L08P_4
AC22
I/O
3
N.C. (‹)
IO_L46N_3
W23
I/O
4
IO_L09N_4
IO_L09N_4
AF22
I/O
3
N.C. (‹)
IO_L46P_3
W22
I/O
4
IO_L09P_4
IO_L09P_4
AG22
I/O
3
N.C. (‹)
IO_L47N_3
W25
I/O
4
IO_L10N_4
IO_L10N_4
AJ22
I/O
3
N.C. (‹)
IO_L47P_3
W24
I/O
4
IO_L10P_4
IO_L10P_4
AK22
I/O
3
N.C. (‹)
IO_L48N_3
W28
I/O
4
IO_L11N_4
IO_L11N_4
AD21
I/O
3
N.C. (‹)
IO_L48P_3
W27
I/O
4
IO_L11P_4
IO_L11P_4
AE21
I/O
3
N.C. (‹)
IO_L50N_3
V27
I/O
4
IO_L12N_4
IO_L12N_4
AH21
I/O
3
N.C. (‹)
IO_L50P_3
V26
I/O
4
IO_L12P_4
IO_L12P_4
AJ21
I/O
3
VCCO_3
VCCO_3
U20
VCCO
4
IO_L13N_4
IO_L13N_4
AB21
I/O
3
VCCO_3
VCCO_3
V20
VCCO
4
IO_L13P_4
IO_L13P_4
AA20
I/O
3
VCCO_3
VCCO_3
W20
VCCO
4
IO_L14N_4
IO_L14N_4
AC20
I/O
3
VCCO_3
VCCO_3
Y22
VCCO
4
IO_L14P_4
IO_L14P_4
AD20
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Table 106: FG900 Package Pinout (Continued)
FG900
Pin
Number
Type
Bank
AE20
I/O
4
N.C. (‹)
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
IO_L33P_4
AJ25
I/O
4
IO_L15N_4
IO_L15N_4
4
IO_L15P_4
IO_L15P_4
AF20
I/O
4
N.C. (‹)
IO_L34N_4
AE25
I/O
4
IO_L16N_4
IO_L16N_4
AG20
I/O
4
N.C. (‹)
IO_L34P_4
AE24
I/O
4
IO_L16P_4
IO_L16P_4
AH20
I/O
4
N.C. (‹)
IO_L35N_4
AG24
I/O
4
IO_L17N_4
IO_L17N_4
AJ20
I/O
4
N.C. (‹)
IO_L35P_4
AH24
I/O
4
IO_L17P_4
IO_L17P_4
AK20
I/O
4
N.C. (‹)
IO_L38N_4
AJ24
I/O
4
IO_L18N_4
IO_L18N_4
AA19
I/O
4
N.C. (‹)
IO_L38P_4
AK24
I/O
4
IO_L18P_4
IO_L18P_4
AB19
I/O
4
VCCO_4
VCCO_4
Y17
VCCO
4
IO_L19N_4
IO_L19N_4
AC19
I/O
4
VCCO_4
VCCO_4
Y18
VCCO
4
IO_L19P_4
IO_L19P_4
AD19
I/O
4
VCCO_4
VCCO_4
AD18
VCCO
4
IO_L20N_4
IO_L20N_4
AE19
I/O
4
VCCO_4
VCCO_4
AH18
VCCO
4
IO_L20P_4
IO_L20P_4
AF19
I/O
4
VCCO_4
VCCO_4
Y19
VCCO
4
IO_L21N_4
IO_L21N_4
AG19
I/O
4
VCCO_4
VCCO_4
AB20
VCCO
4
IO_L21P_4
IO_L21P_4
AH19
I/O
4
VCCO_4
VCCO_4
AD22
VCCO
4
IO_L22N_4/
VREF_4
IO_L22N_4/
VREF_4
AJ19
VREF
4
VCCO_4
VCCO_4
AH22
VCCO
4
VCCO_4
VCCO_4
AF24
VCCO
4
IO_L22P_4
IO_L22P_4
AK19
I/O
4
VCCO_4
VCCO_4
AH26
VCCO
4
IO_L23N_4
IO_L23N_4
AB18
I/O
5
IO
IO
AE6
I/O
4
IO_L23P_4
IO_L23P_4
AC18
I/O
5
IO
IO
AB10
I/O
4
IO_L24N_4
IO_L24N_4
AE18
I/O
5
IO
IO
AA11
I/O
4
IO_L24P_4
IO_L24P_4
AF18
I/O
5
IO
IO
AA15
I/O
4
IO_L25N_4
IO_L25N_4
AJ18
I/O
5
IO
IO
AE15
I/O
4
IO_L25P_4
IO_L25P_4
AK18
I/O
5
IO/VREF_5
IO/VREF_5
AH4
VREF
4
IO_L26N_4
IO_L26N_4
AA17
I/O
5
IO/VREF_5
IO/VREF_5
AK15
VREF
4
IO_L26P_4/
VREF_4
IO_L26P_4/
VREF_4
AB17
VREF
5
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
AK4
DUAL
4
IO_L27N_4/
DIN/D0
IO_L27N_4/
DIN/D0
AD17
DUAL
5
IO_L01P_5/
CS_B
IO_L01P_5/
CS_B
AJ4
DUAL
4
IO_L27P_4/
D1
IO_L27P_4/
D1
AE17
DUAL
5
IO_L02N_5
IO_L02N_5
AK5
I/O
4
IO_L28N_4
IO_L28N_4
AH17
I/O
5
IO_L02P_5
IO_L02P_5
AJ5
I/O
4
IO_L28P_4
IO_L28P_4
AJ17
I/O
5
IO_L03N_5
IO_L03N_5
AF6
I/O
4
IO_L29N_4
IO_L29N_4
AB16
I/O
5
IO_L03P_5
IO_L03P_5
AG5
I/O
4
IO_L29P_4
IO_L29P_4
AC16
I/O
5
IO_L04N_5
IO_L04N_5
AJ6
I/O
4
IO_L30N_4/
D2
IO_L30N_4/
D2
AD16
DUAL
5
IO_L04P_5
IO_L04P_5
AH6
I/O
5
IO_L05N_5
IO_L05N_5
AE7
I/O
5
IO_L05P_5
IO_L05P_5
AD7
I/O
5
IO_L06N_5
IO_L06N_5
AH7
I/O
5
IO_L06P_5
IO_L06P_5
AG7
I/O
5
IO_L07N_5
IO_L07N_5
AK8
I/O
5
IO_L07P_5
IO_L07P_5
AJ8
I/O
5
IO_L08N_5
IO_L08N_5
AC9
I/O
5
IO_L08P_5
IO_L08P_5
AB9
I/O
5
IO_L09N_5
IO_L09N_5
AG9
I/O
5
IO_L09P_5
IO_L09P_5
AF9
I/O
4
IO_L30P_4/
D3
IO_L30P_4/
D3
AE16
DUAL
4
IO_L31N_4/
INIT_B
IO_L31N_4/
INIT_B
AG16
DUAL
4
IO_L31P_4/
DOUT/BUSY
IO_L31P_4/
DOUT/BUSY
AH16
DUAL
4
IO_L32N_4/
GCLK1
IO_L32N_4/
GCLK1
AJ16
GCLK
4
IO_L32P_4/
GCLK0
IO_L32P_4/
GCLK0
AK16
GCLK
4
N.C. (‹)
IO_L33N_4
AH25
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
187
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
5
IO_L10N_5/
VRP_5
5
FG900
Pin
Number
Type
Bank
IO_L10N_5/
VRP_5
AK9
DCI
5
IO_L29P_5/
VREF_5
IO_L10P_5/
VRN_5
IO_L10P_5/
VRN_5
AJ9
DCI
5
5
5
IO_L11N_5/
VREF_5
IO_L11N_5/
VREF_5
AE10
VREF
5
IO_L11P_5
IO_L11P_5
AE9
I/O
5
IO_L12N_5
IO_L12N_5
AJ10
I/O
5
IO_L12P_5
IO_L12P_5
AH10
I/O
5
IO_L13N_5
IO_L13N_5
AD11
I/O
5
IO_L13P_5
IO_L13P_5
AD10
I/O
5
IO_L14N_5
IO_L14N_5
AF11
I/O
5
IO_L14P_5
IO_L14P_5
AE11
I/O
5
IO_L15N_5
IO_L15N_5
AH11
I/O
5
IO_L15P_5
IO_L15P_5
AG11
I/O
5
IO_L16N_5
IO_L16N_5
AK11
I/O
5
IO_L16P_5
IO_L16P_5
AJ11
I/O
5
IO_L17N_5
IO_L17N_5
AB12
I/O
5
IO_L17P_5
IO_L17P_5
AC11
I/O
5
IO_L18N_5
IO_L18N_5
AD12
I/O
5
IO_L18P_5
IO_L18P_5
AC12
I/O
5
IO_L19N_5
IO_L19N_5
AF12
I/O
5
IO_L19P_5/
VREF_5
IO_L19P_5/
VREF_5
AE12
VREF
Bank
FG900
Pin
Number
Type
IO_L29P_5/
VREF_5
AB15
VREF
IO_L30N_5
IO_L30N_5
AD15
I/O
IO_L30P_5
IO_L30P_5
AD14
I/O
5
IO_L31N_5/
D4
IO_L31N_5/
D4
AG15
DUAL
5
IO_L31P_5/
D5
IO_L31P_5/
D5
AF15
DUAL
5
IO_L32N_5/
GCLK3
IO_L32N_5/
GCLK3
AJ15
GCLK
5
IO_L32P_5/
GCLK2
IO_L32P_5/
GCLK2
AH15
GCLK
5
N.C. (‹)
IO_L35N_5
AK7
I/O
5
N.C. (‹)
IO_L35P_5
AJ7
I/O
5
N.C. (‹)
IO_L36N_5
AD8
I/O
5
N.C. (‹)
IO_L36P_5
AC8
I/O
5
N.C. (‹)
IO_L37N_5
AF8
I/O
5
N.C. (‹)
IO_L37P_5
AE8
I/O
5
N.C. (‹)
IO_L38N_5
AH8
I/O
5
N.C. (‹)
IO_L38P_5
AG8
I/O
5
VCCO_5
VCCO_5
AH5
VCCO
5
VCCO_5
VCCO_5
AF7
VCCO
5
VCCO_5
VCCO_5
AD9
VCCO
5
VCCO_5
VCCO_5
AH9
VCCO
VCCO_5
VCCO_5
AB11
VCCO
Y12
VCCO
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
5
IO_L20N_5
IO_L20N_5
AH12
I/O
5
5
IO_L20P_5
IO_L20P_5
AG12
I/O
5
VCCO_5
VCCO_5
5
IO_L21N_5
IO_L21N_5
AK12
I/O
5
VCCO_5
VCCO_5
Y13
VCCO
VCCO_5
VCCO_5
AD13
VCCO
5
IO_L21P_5
IO_L21P_5
AJ12
I/O
5
5
IO_L22N_5
IO_L22N_5
AA13
I/O
5
VCCO_5
VCCO_5
AH13
VCCO
I/O
5
VCCO_5
VCCO_5
Y14
VCCO
IO
IO
AB6
I/O
5
188
Table 106: FG900 Package Pinout (Continued)
IO_L22P_5
IO_L22P_5
AA12
5
IO_L23N_5
IO_L23N_5
AC13
I/O
6
5
IO_L23P_5
IO_L23P_5
AB13
I/O
6
DCI
IO_L24N_5
IO_L24N_5
AG13
I/O
IO_L01N_6/
VRP_6
AH2
5
IO_L01N_6/
VRP_6
5
IO_L24P_5
IO_L24P_5
AF13
I/O
6
IO_L01P_6/
VRN_6
IO_L01P_6/
VRN_6
AH1
DCI
5
IO_L25N_5
IO_L25N_5
AK13
I/O
6
IO_L02N_6
IO_L02N_6
AG4
I/O
5
IO_L25P_5
IO_L25P_5
AJ13
I/O
6
IO_L02P_6
IO_L02P_6
AG3
I/O
5
IO_L26N_5
IO_L26N_5
AB14
I/O
6
IO_L26P_5
AA14
I/O
IO_L03N_6/
VREF_6
VREF
IO_L26P_5
IO_L03N_6/
VREF_6
AG2
5
5
IO_L27N_5/
VREF_5
IO_L27N_5/
VREF_5
AE14
VREF
6
IO_L03P_6
IO_L03P_6
AG1
I/O
6
IO_L04N_6
IO_L04N_6
AF2
I/O
5
IO_L27P_5
IO_L27P_5
AE13
I/O
6
IO_L04P_6
IO_L04P_6
AF1
I/O
5
IO_L28N_5/
D6
IO_L28N_5/
D6
AJ14
DUAL
6
IO_L05N_6
IO_L05N_6
AF4
I/O
5
IO_L28P_5/
D7
IO_L28P_5/
D7
AH14
DUAL
6
IO_L05P_6
IO_L05P_6
AE5
I/O
6
IO_L06N_6
IO_L06N_6
AE3
I/O
5
IO_L29N_5
IO_L29N_5
AC15
I/O
6
IO_L06P_6
IO_L06P_6
AE2
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Table 106: FG900 Package Pinout (Continued)
FG900
Pin
Number
Type
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
6
IO_L07N_6
IO_L07N_6
AD4
I/O
6
IO_L31N_6
IO_L31N_6
W5
I/O
6
IO_L07P_6
IO_L07P_6
AD3
I/O
6
IO_L31P_6
IO_L31P_6
V6
I/O
6
IO_L08N_6
IO_L08N_6
AD2
I/O
6
IO_L32N_6
IO_L32N_6
V5
I/O
6
IO_L08P_6
IO_L08P_6
AD1
I/O
6
IO_L32P_6
IO_L32P_6
V4
I/O
6
IO_L09N_6/
VREF_6
IO_L09N_6/
VREF_6
AD6
VREF
6
IO_L33N_6
IO_L33N_6
V2
I/O
6
IO_L33P_6
IO_L33P_6
V1
I/O
6
IO_L09P_6
IO_L09P_6
AC7
I/O
6
VREF
IO_L10N_6
IO_L10N_6
AC6
I/O
IO_L34N_6/
VREF_6
U10
6
IO_L34N_6/
VREF_6
6
IO_L10P_6
IO_L10P_6
AC5
I/O
6
IO_L34P_6
IO_L34P_6
U9
I/O
6
IO_L11N_6
IO_L11N_6
AC4
I/O
6
IO_L35N_6
IO_L35N_6
U7
I/O
6
IO_L11P_6
IO_L11P_6
AC3
I/O
6
IO_L35P_6
IO_L35P_6
U6
I/O
6
IO_L13N_6
IO_L13N_6
AC2
I/O
6
N.C. (‹)
IO_L36N_6
U3
I/O
6
IO_L13P_6/
VREF_6
IO_L13P_6/
VREF_6
AC1
VREF
6
N.C. (‹)
IO_L36P_6
U2
I/O
6
IO_L37N_6
IO_L37N_6
T10
I/O
6
IO_L14N_6
IO_L14N_6
AB5
I/O
6
IO_L37P_6
IO_L37P_6
T9
I/O
6
IO_L14P_6
IO_L14P_6
AB4
I/O
6
IO_L38N_6
IO_L38N_6
T6
I/O
6
IO_L15N_6
IO_L15N_6
AB2
I/O
6
IO_L38P_6
IO_L38P_6
T5
I/O
6
IO_L15P_6
IO_L15P_6
AB1
I/O
6
IO_L39N_6
IO_L39N_6
T4
I/O
6
IO_L16N_6
IO_L16N_6
AB8
I/O
6
IO_L39P_6
IO_L39P_6
T3
I/O
6
IO_L16P_6
IO_L16P_6
AA9
I/O
6
IO_L40N_6
IO_L40N_6
T2
I/O
6
IO_L17N_6
IO_L17N_6
AA7
I/O
6
IO_L17P_6/
VREF_6
AA6
VREF
IO_L40P_6/
VREF_6
VREF
IO_L17P_6/
VREF_6
IO_L40P_6/
VREF_6
T1
6
6
N.C. (‹)
IO_L45N_6
Y4
I/O
6
IO_L19N_6
IO_L19N_6
AA3
I/O
6
N.C. (‹)
IO_L45P_6
Y3
I/O
6
IO_L19P_6
IO_L19P_6
AA2
I/O
6
N.C. (‹)
IO_L52N_6
T8
I/O
6
IO_L20N_6
IO_L20N_6
AA10
I/O
6
N.C. (‹)
IO_L52P_6
T7
I/O
6
IO_L20P_6
IO_L20P_6
Y10
I/O
6
VCCO_6
VCCO_6
V3
VCCO
6
IO_L21N_6
IO_L21N_6
Y8
I/O
6
VCCO_6
VCCO_6
AB3
VCCO
6
IO_L21P_6
IO_L21P_6
Y7
I/O
6
VCCO_6
VCCO_6
AF3
VCCO
6
IO_L22N_6
IO_L22N_6
Y6
I/O
6
VCCO_6
VCCO_6
AD5
VCCO
6
IO_L22P_6
IO_L22P_6
Y5
I/O
6
VCCO_6
VCCO_6
V7
VCCO
6
IO_L24N_6/
VREF_6
IO_L24N_6/
VREF_6
Y2
VREF
6
VCCO_6
VCCO_6
AB7
VCCO
6
IO_L24P_6
IO_L24P_6
Y1
I/O
6
VCCO_6
VCCO_6
Y9
VCCO
6
N.C. (‹)
IO_L25N_6
W9
I/O
6
VCCO_6
VCCO_6
U11
VCCO
6
N.C. (‹)
IO_L25P_6
W8
I/O
6
VCCO_6
VCCO_6
V11
VCCO
6
IO_L26N_6
IO_L26N_6
W7
I/O
6
VCCO_6
VCCO_6
W11
VCCO
6
IO_L26P_6
IO_L26P_6
W6
I/O
7
IO
IO
J6
I/O
6
IO_L27N_6
IO_L27N_6
W4
I/O
7
IO_L01N_7/
VRP_7
IO_L01N_7/
VRP_7
C1
DCI
6
IO_L27P_6
IO_L27P_6
W3
I/O
7
IO_L28N_6
W2
I/O
IO_L01P_7/
VRN_7
DCI
IO_L28N_6
IO_L01P_7/
VRN_7
C2
6
6
IO_L28P_6
IO_L28P_6
W1
I/O
7
IO_L02N_7
IO_L02N_7
D3
I/O
6
IO_L29N_6
IO_L29N_6
W10
I/O
7
IO_L02P_7
IO_L02P_7
D4
I/O
6
IO_L29P_6
IO_L29P_6
V10
I/O
7
IO_L30N_6
V9
I/O
IO_L03N_7/
VREF_7
VREF
N.C. (‹)
IO_L03N_7/
VREF_7
D1
6
6
N.C. (‹)
IO_L30P_6
V8
I/O
7
IO_L03P_7
IO_L03P_7
D2
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
189
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
7
IO_L04N_7
IO_L04N_7
E1
I/O
7
IO_L27N_7
IO_L27N_7
M1
I/O
7
IO_L04P_7
IO_L04P_7
E2
I/O
7
IO_L05N_7
F5
I/O
IO_L27P_7/
VREF_7
VREF
IO_L05N_7
IO_L27P_7/
VREF_7
M2
7
7
IO_L05P_7
IO_L05P_7
E4
I/O
7
IO_L28N_7
IO_L28N_7
N10
I/O
7
IO_L06N_7
IO_L06N_7
F2
I/O
7
IO_L28P_7
IO_L28P_7
M10
I/O
I/O
7
IO_L29N_7
IO_L29N_7
N8
I/O
IO_L29P_7
IO_L29P_7
N9
I/O
7
IO_L06P_7
IO_L06P_7
F3
7
IO_L07N_7
IO_L07N_7
G3
I/O
7
7
IO_L07P_7
IO_L07P_7
G4
I/O
7
IO_L31N_7
IO_L31N_7
N1
I/O
7
IO_L08N_7
IO_L08N_7
G1
I/O
7
IO_L31P_7
IO_L31P_7
N2
I/O
IO_L32N_7
IO_L32N_7
P9
I/O
7
IO_L08P_7
IO_L08P_7
G2
I/O
7
7
IO_L09N_7
IO_L09N_7
H7
I/O
7
IO_L32P_7
IO_L32P_7
P10
I/O
I/O
7
IO_L33N_7
IO_L33N_7
P6
I/O
IO_L33P_7
IO_L33P_7
P7
I/O
P2
I/O
7
190
XC3S2000
Pin Name
Table 106: FG900 Package Pinout (Continued)
IO_L09P_7
IO_L09P_7
G6
7
IO_L10N_7
IO_L10N_7
H5
I/O
7
7
IO_L10P_7/
VREF_7
IO_L10P_7/
VREF_7
H6
VREF
7
IO_L34N_7
IO_L34N_7
7
IO_L34P_7
IO_L34P_7
P3
I/O
7
IO_L11N_7
IO_L11N_7
H3
I/O
7
IO_L35N_7
IO_L35N_7
R9
I/O
7
IO_L11P_7
IO_L11P_7
H4
I/O
7
IO_L35P_7
IO_L35P_7
R10
I/O
7
IO_L13N_7
IO_L13N_7
H1
I/O
7
IO_L37N_7
IO_L37N_7
R7
I/O
7
IO_L13P_7
IO_L13P_7
H2
I/O
7
VREF
IO_L14N_7
IO_L14N_7
J4
I/O
IO_L37P_7/
VREF_7
R8
7
IO_L37P_7/
VREF_7
7
IO_L14P_7
IO_L14P_7
J5
I/O
7
IO_L38N_7
IO_L38N_7
R5
I/O
IO_L38P_7
IO_L38P_7
R6
I/O
7
IO_L15N_7
IO_L15N_7
J1
I/O
7
7
IO_L15P_7
IO_L15P_7
J2
I/O
7
IO_L39N_7
IO_L39N_7
R3
I/O
IO_L39P_7
IO_L39P_7
R4
I/O
R1
VREF
7
IO_L16N_7
IO_L16N_7
K9
I/O
7
7
IO_L16P_7/
VREF_7
IO_L16P_7/
VREF_7
J8
VREF
7
IO_L40N_7/
VREF_7
IO_L40N_7/
VREF_7
7
IO_L17N_7
IO_L17N_7
K6
I/O
7
IO_L40P_7
IO_L40P_7
R2
I/O
N.C. (‹)
IO_L46N_7
M8
I/O
M9
I/O
7
IO_L17P_7
IO_L17P_7
K7
I/O
7
7
IO_L19N_7/
VREF_7
IO_L19N_7/
VREF_7
K2
VREF
7
N.C. (‹)
IO_L46P_7
7
N.C. (‹)
IO_L49N_7
N6
I/O
7
IO_L19P_7
IO_L19P_7
K3
I/O
7
N.C. (‹)
IO_L49P_7
M5
I/O
7
IO_L20N_7
IO_L20N_7
L10
I/O
7
N.C. (‹)
IO_L50N_7
N4
I/O
7
IO_L20P_7
IO_L20P_7
K10
I/O
7
N.C. (‹)
IO_L50P_7
N5
I/O
7
IO_L21N_7
IO_L21N_7
L7
I/O
7
VCCO_7
VCCO_7
E3
VCCO
7
IO_L21P_7
IO_L21P_7
L8
I/O
7
VCCO_7
VCCO_7
J3
VCCO
7
IO_L22N_7
IO_L22N_7
L5
I/O
7
VCCO_7
VCCO_7
N3
VCCO
7
IO_L22P_7
IO_L22P_7
L6
I/O
7
VCCO_7
VCCO_7
G5
VCCO
7
IO_L23N_7
IO_L23N_7
L3
I/O
7
VCCO_7
VCCO_7
J7
VCCO
7
IO_L23P_7
IO_L23P_7
L4
I/O
7
VCCO_7
VCCO_7
N7
VCCO
7
IO_L24N_7
IO_L24N_7
L1
I/O
7
VCCO_7
VCCO_7
L9
VCCO
7
IO_L24P_7
IO_L24P_7
L2
I/O
7
VCCO_7
VCCO_7
M11
VCCO
7
N.C. (‹)
IO_L25N_7
M6
I/O
7
VCCO_7
VCCO_7
N11
VCCO
7
N.C. (‹)
IO_L25P_7
M7
I/O
7
VCCO_7
VCCO_7
P11
VCCO
7
IO_L26N_7
IO_L26N_7
M3
I/O
N/A
GND
GND
A1
GND
7
IO_L26P_7
IO_L26P_7
M4
I/O
N/A
GND
GND
B1
GND
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Table 106: FG900 Package Pinout (Continued)
FG900
Pin
Number
Type
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
N/A
GND
GND
F1
GND
N/A
GND
GND
V14
GND
N/A
GND
GND
K1
GND
N/A
GND
GND
AC14
GND
N/A
GND
GND
P1
GND
N/A
GND
GND
AF14
GND
N/A
GND
GND
U1
GND
N/A
GND
GND
AK14
GND
N/A
GND
GND
AA1
GND
N/A
GND
GND
M15
GND
N/A
GND
GND
AE1
GND
N/A
GND
GND
N15
GND
N/A
GND
GND
AJ1
GND
N/A
GND
GND
P15
GND
N/A
GND
GND
AK1
GND
N/A
GND
GND
R15
GND
N/A
GND
GND
A2
GND
N/A
GND
GND
T15
GND
N/A
GND
GND
B2
GND
N/A
GND
GND
U15
GND
N/A
GND
GND
AJ2
GND
N/A
GND
GND
V15
GND
N/A
GND
GND
E5
GND
N/A
GND
GND
W15
GND
N/A
GND
GND
K5
GND
N/A
GND
GND
M16
GND
N/A
GND
GND
P5
GND
N/A
GND
GND
N16
GND
N/A
GND
GND
U5
GND
N/A
GND
GND
P16
GND
N/A
GND
GND
AA5
GND
N/A
GND
GND
R16
GND
N/A
GND
GND
AF5
GND
N/A
GND
GND
T16
GND
N/A
GND
GND
A6
GND
N/A
GND
GND
U16
GND
N/A
GND
GND
AK6
GND
N/A
GND
GND
V16
GND
N/A
GND
GND
K8
GND
N/A
GND
GND
W16
GND
N/A
GND
GND
P8
GND
N/A
GND
GND
A17
GND
N/A
GND
GND
U8
GND
N/A
GND
GND
E17
GND
N/A
GND
GND
AA8
GND
N/A
GND
GND
H17
GND
N/A
GND
GND
A10
GND
N/A
GND
GND
N17
GND
N/A
GND
GND
E10
GND
N/A
GND
GND
P17
GND
N/A
GND
GND
H10
GND
N/A
GND
GND
R17
GND
N/A
GND
GND
AC10
GND
N/A
GND
GND
T17
GND
N/A
GND
GND
AF10
GND
N/A
GND
GND
U17
GND
N/A
GND
GND
AK10
GND
N/A
GND
GND
V17
GND
N/A
GND
GND
R12
GND
N/A
GND
GND
AC17
GND
N/A
GND
GND
T12
GND
N/A
GND
GND
AF17
GND
N/A
GND
GND
N13
GND
N/A
GND
GND
AK17
GND
N/A
GND
GND
P13
GND
N/A
GND
GND
N18
GND
N/A
GND
GND
R13
GND
N/A
GND
GND
P18
GND
N/A
GND
GND
T13
GND
N/A
GND
GND
R18
GND
N/A
GND
GND
U13
GND
N/A
GND
GND
T18
GND
N/A
GND
GND
V13
GND
N/A
GND
GND
U18
GND
N/A
GND
GND
A14
GND
N/A
GND
GND
V18
GND
N/A
GND
GND
E14
GND
N/A
GND
GND
R19
GND
N/A
GND
GND
H14
GND
N/A
GND
GND
T19
GND
N/A
GND
GND
N14
GND
N/A
GND
GND
A21
GND
N/A
GND
GND
P14
GND
N/A
GND
GND
E21
GND
N/A
GND
GND
R14
GND
N/A
GND
GND
H21
GND
N/A
GND
GND
T14
GND
N/A
GND
GND
AC21
GND
N/A
GND
GND
U14
GND
N/A
GND
GND
AF21
GND
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
191
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 106: FG900 Package Pinout (Continued)
Bank
192
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
Table 106: FG900 Package Pinout (Continued)
FG900
Pin
Number
Type
Bank
XC3S2000
Pin Name
XC3S4000
XC3S5000
Pin Name
FG900
Pin
Number
Type
AG25
VCCAUX
N/A
GND
GND
AK21
GND
N/A
VCCAUX
VCCAUX
N/A
GND
GND
K23
GND
N/A
VCCAUX
VCCAUX
F27
VCCAUX
N/A
GND
GND
P23
GND
N/A
VCCAUX
VCCAUX
K27
VCCAUX
N/A
GND
GND
U23
GND
N/A
VCCAUX
VCCAUX
P27
VCCAUX
N/A
GND
GND
AA23
GND
N/A
VCCAUX
VCCAUX
U27
VCCAUX
N/A
GND
GND
A25
GND
N/A
VCCAUX
VCCAUX
AA27
VCCAUX
N/A
GND
GND
AK25
GND
N/A
VCCAUX
VCCAUX
AE27
VCCAUX
N/A
GND
GND
E26
GND
N/A
VCCINT
VCCINT
L11
VCCINT
N/A
GND
GND
K26
GND
N/A
VCCINT
VCCINT
R11
VCCINT
N/A
GND
GND
P26
GND
N/A
VCCINT
VCCINT
T11
VCCINT
N/A
GND
GND
U26
GND
N/A
VCCINT
VCCINT
Y11
VCCINT
N/A
GND
GND
AA26
GND
N/A
VCCINT
VCCINT
M12
VCCINT
N/A
GND
GND
AF26
GND
N/A
VCCINT
VCCINT
N12
VCCINT
N/A
GND
GND
A29
GND
N/A
VCCINT
VCCINT
P12
VCCINT
N/A
GND
GND
B29
GND
N/A
VCCINT
VCCINT
U12
VCCINT
N/A
GND
GND
AJ29
GND
N/A
VCCINT
VCCINT
V12
VCCINT
N/A
GND
GND
AK29
GND
N/A
VCCINT
VCCINT
W12
VCCINT
N/A
GND
GND
A30
GND
N/A
VCCINT
VCCINT
M13
VCCINT
N/A
GND
GND
B30
GND
N/A
VCCINT
VCCINT
W13
VCCINT
N/A
GND
GND
F30
GND
N/A
VCCINT
VCCINT
M14
VCCINT
N/A
GND
GND
K30
GND
N/A
VCCINT
VCCINT
W14
VCCINT
N/A
GND
GND
P30
GND
N/A
VCCINT
VCCINT
L15
VCCINT
N/A
GND
GND
U30
GND
N/A
VCCINT
VCCINT
Y15
VCCINT
N/A
GND
GND
AA30
GND
N/A
VCCINT
VCCINT
L16
VCCINT
N/A
GND
GND
AE30
GND
N/A
VCCINT
VCCINT
Y16
VCCINT
N/A
GND
GND
AJ30
GND
N/A
VCCINT
VCCINT
M17
VCCINT
N/A
GND
GND
AK30
GND
N/A
VCCINT
VCCINT
W17
VCCINT
N/A
GND
GND
AK2
GND
N/A
VCCINT
VCCINT
M18
VCCINT
N/A
VCCAUX
VCCAUX
F4
VCCAUX
N/A
VCCINT
VCCINT
W18
VCCINT
N/A
VCCAUX
VCCAUX
K4
VCCAUX
N/A
VCCINT
VCCINT
M19
VCCINT
N/A
VCCAUX
VCCAUX
P4
VCCAUX
N/A
VCCINT
VCCINT
N19
VCCINT
N/A
VCCAUX
VCCAUX
U4
VCCAUX
N/A
VCCINT
VCCINT
P19
VCCINT
N/A
VCCAUX
VCCAUX
AA4
VCCAUX
N/A
VCCINT
VCCINT
U19
VCCINT
N/A
VCCAUX
VCCAUX
AE4
VCCAUX
N/A
VCCINT
VCCINT
V19
VCCINT
N/A
VCCAUX
VCCAUX
D6
VCCAUX
N/A
VCCINT
VCCINT
W19
VCCINT
N/A
VCCAUX
VCCAUX
AG6
VCCAUX
N/A
VCCINT
VCCINT
L20
VCCINT
N/A
VCCAUX
VCCAUX
D10
VCCAUX
N/A
VCCINT
VCCINT
R20
VCCINT
N/A
VCCAUX
VCCAUX
AG10
VCCAUX
N/A
VCCINT
VCCINT
T20
VCCINT
N/A
VCCAUX
VCCAUX
D14
VCCAUX
N/A
VCCINT
VCCINT
Y20
VCCINT
N/A
VCCAUX
VCCAUX
AG14
VCCAUX
VCCAUX CCLK
CCLK
AH28
CONFIG
N/A
VCCAUX
VCCAUX
D17
VCCAUX
VCCAUX DONE
DONE
AJ28
CONFIG
N/A
VCCAUX
VCCAUX
AG17
VCCAUX
VCCAUX HSWAP_EN
HSWAP_EN
A3
CONFIG
N/A
VCCAUX
VCCAUX
D21
VCCAUX
VCCAUX M0
M0
AJ3
CONFIG
N/A
VCCAUX
VCCAUX
AG21
VCCAUX
VCCAUX M1
M1
AH3
CONFIG
N/A
VCCAUX
VCCAUX
D25
VCCAUX
VCCAUX M2
M2
AK3
CONFIG
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
User I/Os by Bank
Table 106: FG900 Package Pinout (Continued)
Bank
XC3S4000
XC3S5000
Pin Name
XC3S2000
Pin Name
FG900
Pin
Number
Type
VCCAUX PROG_B
PROG_B
B3
CONFIG
VCCAUX TCK
TCK
B28
JTAG
VCCAUX TDI
TDI
C3
JTAG
VCCAUX TDO
TDO
C28
JTAG
VCCAUX TMS
TMS
A28
JTAG
Table 107 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S2000 in
the FG900 package. Similarly, Table 108 shows how the
available user-I/O pins are distributed between the eight I/O
banks for the XC3S4000 and XC3S5000 in the FG900
package.
Table 107: User I/Os Per Bank for XC3S2000 in FG900 Package
Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O
Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
71
62
0
2
5
2
1
71
62
0
2
5
2
2
69
61
0
2
6
0
3
71
62
0
2
7
0
4
72
57
6
2
5
2
5
71
55
6
2
6
2
6
69
60
0
2
7
0
7
71
62
0
2
7
0
Table 108: User I/Os Per Bank for XC3S4000 and XC3S5000 in FG900 Package
Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O
Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
79
70
0
2
5
2
1
79
70
0
2
5
2
2
79
71
0
2
6
0
3
79
70
0
2
7
0
4
80
65
6
2
5
2
5
79
63
6
2
6
2
6
79
70
0
2
7
0
7
79
70
0
2
7
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
193
R
Spartan-3 FPGA Family: Pinout Descriptions
FG900 Footprint
1
Left Half of FG900
Package (top view)
XC3S2000
(565 max. user I/O)
I/O: Unrestricted,
481 general-purpose user I/O
Bank 7
XC3S4000, XC3S5000
(633 max user I/O)
I/O: Unrestricted,
549 general-purpose user I/O
0
N.C.: No unconnected pins
in this package
All devices
DUAL: Configuration pin,
12 then possible user I/O
8
7
4
JTAG: Dedicated JTAG port
pins
VCCO: Output voltage
80 supply for bank
VCCAUX: Auxiliary voltage
Bank 6
VCCINT: Internal core
32 voltage supply (+1.2V)
I/O
I/O
L01N_7 L01P_7
VRP_7 VRN_7
TDI
GND
GND
11
12
13
I/O
I/O
I/O
L17P_0 L22P_0 L25P_0
14
15
GND
I/O
L32P_0
GCLK6
I/O
IO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_0
VCCO_0
VCCO_0
L31P_0
VREF_0
L04N_0 L06P_0 L08P_0
L12N_0 L16P_0 L21P_0
L28N_0 VREF_0
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L37P_0 VCCAUX
VCCAUX
L03N_7
L06N_0 L08N_0
L16N_0 L21N_0
‹
VREF_7 L03P_7 L02N_7 L02P_7 L03N_0
I/O
I/O
I/O
VCCO_7
L04N_7 L04P_7
L05P_7
GND
I/O
I/O
I/O
L37N_0
VCCO_0
L03P_0
L07P_0
‹
GND
I/O
I/O
I/O
I/O
L15P_0 L20P_0 L24P_0
VCCAUX
I/O
L31N_0
GND
I/O
I/O
IO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L05P_0
VCCAUX
L06N_7 L06P_7
L05N_7 L05N_0 VREF_0 L07N_0 VREF_0 L11P_0 L15N_0 L20N_0 L24N_0 L27P_0 L30P_0
GND
G
I/O
I/O
I/O
I/O
I/O
I/O
L36N_0
VCCO_7
L08N_7 L08P_7 L07N_7 L07P_7
L09P_7
‹
H
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L36P_0
L10P_7
L10P_0
L13N_7 L13P_7 L11N_7 L11P_7 L10N_7 VREF_7 L09N_7
‹
J
I/O
I/O
I/O
I/O
VCCO_7
L15N_7 L15P_7
L14N_7 L14P_7
I/O
I/O
VCCAUX
L19N_7
VREF_7 L19P_7
GND
GND
I/O
I/O
VCCO_0
I/O
I/O
I/O
I/O
I/O
VCCO_0
L11N_0 L14P_0 L19P_0
L27N_0 L30N_0
GND
I/O
I/O
I/O
L14N_0 L19N_0 L23P_0
GND
I/O
L29P_0
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_0
VCCO_7 L16P_7
L26P_0
L18P_0 L23N_0 VREF_0 L29N_0
VREF_7 L10N_0 L13N_0
I/O
I/O
L17N_7 L17P_7
GND
I/O
I/O
I/O
I/O
L16N_7 L20P_7 L13P_0 L18N_0
I/O
L26N_0
I/O
I/O
L
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_7
VCCINT VCCO_0 VCCO_0 VCCO_0 VCCINT
L24N_7 L24P_7 L23N_7 L23P_7 L22N_7 L22P_7 L21N_7 L21P_7
L20N_7
M
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L49P_7 L25N_7 L25P_7 L46N_7 L46P_7
VCCO_7 VCCINT VCCINT VCCINT
L27P_7
L28P_7
L27N_7 VREF_7 L26N_7 L26P_7
‹
‹
‹
‹
‹
GND
N
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_7 L50N_7 L50P_7 L49N_7 VCCO_7
VCCO_7 VCCINT
L31N_7 L31P_7
L29N_7 L29P_7 L28N_7
‹
‹
‹
I/O
I/O
VCCAUX
L34N_7 L34P_7
GND
GND
I/O
I/O
L33N_7 L33P_7
GND
I/O
I/O
VCCO_7 VCCINT
L32N_7 L32P_7
GND
GND
GND
GND
GND
GND
R
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCINT
L37P_7
L40N_7
VREF_7 L40P_7 L39N_7 L39P_7 L38N_7 L38P_7 L37N_7 VREF_7 L35N_7 L35P_7
GND
GND
GND
GND
T
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L52P_6 L52N_6
VCCINT
L40P_6
L37P_6 L37N_6
VREF_6 L40N_6 L39P_6 L39N_6 L38P_6 L38N_6
‹
‹
GND
GND
GND
GND
I/O
I/O
L34N_6 VCCO_6 VCCINT
L34P_6 VREF_6
GND
GND
GND
V
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_6
VCCO_6 L30P_6 L30N_6
VCCO_6 VCCINT
L33P_6 L33N_6
L32P_6 L32N_6 L31P_6
L29P_6
‹
‹
GND
GND
GND
W
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L25P_6 L25N_6
VCCO_6 VCCINT VCCINT VCCINT
L28P_6 L28N_6 L27P_6 L27N_6 L31N_6 L26P_6 L26N_6
L29N_6
‹
‹
Y
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_6
VCCINT VCCO_5 VCCO_5 VCCO_5 VCCINT
L24N_6 L45P_6 L45N_6
L24P_6 VREF_6
L22P_6 L22N_6 L21P_6 L21N_6
L20P_6
‹
‹
A
A
A
B
I/O
I/O
L36P_6 L36N_6 VCCAUX
‹
‹
GND
I/O
I/O
VCCAUX
L19P_6 L19N_6
GND
A
D
GND: Ground
A
E
GND
GND
I/O
I/O
I/O
I/O
VCCO_6
L14P_6 L14N_6
L15P_6 L15N_6
I/O
A L13P_6
C VREF_6
24 supply (+2.5V)
120
I/O
I/O
I/O
L35P_0
L38P_0
L09P_0
‹
‹
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L35N_0
L38N_0
PROG_B L01N_0
L32N_0
L09N_0
L12P_0 L17N_0 L22N_0 L25N_0 L28P_0
VRP_0 L02N_0 L04P_0
‹
‹
GCLK7
U
CONFIG: Dedicated
configuration pins
Bank 0
9
10
GND
DCI: User I/O or reference
16 resistor input for bank
8
GND
P
GCLK: User I/O or global
clock buffer input
7
B
K
VREF: User I/O or input
48 voltage reference for bank
6
I/O
HSWAP_
I/O
L01P_0
EN
VRN_0 L02P_0
F
N.C.: Unconnected pins for
5
GND
E
68 XC3S2000 (‹)
4
GND
D
VREF: User I/O or input
3
A
C
48 voltage reference for bank
2
I/O
I/O
L35P_6 L35N_6
I/O
I/O
L17P_6
VREF_6 L17N_6
I/O
VCCO_6
GND
GND
I/O
I/O
L16P_6 L20N_6
I/O
I/O
L16N_6 L08P_5
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L36P_5
L13N_6 L11P_6 L11N_6 L10P_6 L10N_6 L09P_6
L08N_5
‹
I/O
GND
I/O
VCCO_5
I/O
I/O
I/O
L22P_5 L22N_5 L26P_5
GND
I/O
I/O
I/O
I/O
I/O
L29P_5
L17N_5 L23P_5 L26N_5 VREF_5
I/O
I/O
I/O
L17P_5 L18P_5 L23N_5
GND
I/O
L29N_5
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L36N_5 VCCO_5
VCCO_5
VCCO_6 L09N_6
L13P_5 L13N_5 L18N_5
L30P_5 L30N_5
L08P_6 L08N_6 L07P_6 L07N_6
VREF_6 L05P_5
‹
GND
I/O
I/O
VCCAUX I/O
L06P_6 L06N_6
L05P_6
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L37P_5
L11N_5
L19P_5
L27N_5
L05N_5
L11P_5 VREF_5 L14P_5 VREF_5 L27P_5 VREF_5
‹
I/O
I/O
I/O
VCCO_5 L37N_5
L03N_5
L09P_5
‹
I/O
A
F
I/O
I/O
I/O
VCCO_6
L05N_6
L04P_6 L04N_6
A
G
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L38P_5
VCCAUX L31N_5
L03N_6
L03P_6 VREF_6 L02P_6 L02N_6 L03P_5 VCCAUX L06P_5
L09N_5 VCCAUX L15P_5 L20P_5 L24N_5
D4
‹
A
H
I/O
I/O
L01P_6 L01N_6
VRN_6 VRP_6
GND
GND
I/O
I/O
I/O
L14N_5 L19N_5 L24P_5
GND
I/O
L31P_5
D5
M1
I/O
I/O
I/O
IO
I/O
I/O
I/O
I/O
I/O
L38N_5 VCCO_5
VCCO_5
VCCO_5 L28P_5 L32P_5
VREF_5
L04P_5 L06N_5
L12P_5 L15N_5 L20N_5
‹
D7
GCLK2
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L35P_5
L01P_5
L10P_5
L28N_5 L32N_5
L07P_5 VRN_5 L12N_5 L16P_5 L21P_5 L25P_5
CS_B L02P_5 L04N_5
D6
‹
GCLK3
A
J
GND
GND
M0
A
K
GND
GND
M2
I/O
I/O
L01N_5
RDWR_B L02N_5
GND
I/O
I/O
I/O
L35N_5
L10N_5
L07N_5 VRP_5
‹
GND
Bank 5
I/O
I/O
I/O
L16N_5 L21N_5 L25N_5
GND
IO
VREF_5
DS099-4_13a_121103
Figure 50: FG900 Package Footprint (top view)
194
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
28
29
30
TMS
GND
GND
A
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L39P_1
L01P_1
L17N_1
L32N_1
L28N_1
L26P_1 L21P_1 VREF_1 L15P_1 L11P_1 L07P_1 L04N_1 L03P_1 VRN_1
‹
GCLK5
TCK
GND
GND
B
19
20
I/O
I/O
I/O
L39N_1
L26N_1 L21N_1
‹
GND
23
24
I/O
I/O
I/O
L15N_1 L11N_1 L07N_1
25
GND
26
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_1
VCCO_1 L10N_1 L06N_1
L32P_1
VCCO_1
L25N_1 L20N_1 L17P_1
VREF_1 VREF_1 L04P_1
GCLK4 L28P_1
27
I/O
I/O
L01N_2 L01P_2
VRP_2 VRN_2
C
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L03N_2
L31N_1 VCCAUX L38N_1
L25P_1 L20P_1 VCCAUX L14N_1 L10P_1 L06P_1 VCCAUX L02N_1 L02N_2 L02P_2 VREF_2 L03P_2
VREF_1
‹
D
I/O
I/O
I/O
L41N_2 VCCO_2
L04N_2 L04P_2
‹
E
I/O
L31P_1
I/O
GND
I/O
L27N_1
I/O
I/O
I/O
L38P_1
L24N_1 L19N_1
‹
I/O
GND
I/O
I/O
VCCO_1
L14P_1 L13P_1
I/O
GND
I/O
L02P_1
TDO
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L41P_2 VCCAUX
L24P_1 L19P_1 L16N_1 L13N_1 L09N_1 L05N_1 L05P_1
L05N_2 L05P_2
‹
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO_1
VCCO_2
VCCO_1
L30N_1 L27P_1
L23N_1 L18N_1 L16P_1
L09P_1 L08P_1 L08N_2
L06N_2 L06P_2 L07N_2 L07P_2
I/O
L30P_1
GND
I/O
I/O
I/O
L37N_1
L23P_1 L18P_1
‹
I/O
IO
I/O
I/O
L37P_1
VCCO_1
L22N_1
L29N_1 VREF_1
‹
I/O
I/O
I/O
I/O
L40N_1 L40P_1
L29P_1
L22P_1
‹
‹
I/O
GND
I/O
F
G
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L09N_2
L12N_1 L08N_1 L08P_2 VREF_2 L09P_2 L10N_2 L10P_2 L12N_2 L12P_2
H
I/O
I/O
I/O
I/O
L13P_2
L13N_2 VREF_2 VCCO_2 L14N_2 L14P_2
J
I/O
I/O
VCCAUX L45N_2 L45P_2
‹
‹
K
I/O
I/O
L12P_1 L15N_2 VCCO_2
I/O
I/O
L46N_2
L15P_2
‹
GND
I/O
I/O
I/O
L16N_2 L16P_2
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCINT VCCO_1 VCCO_1 VCCO_1 VCCINT L46P_2 VCCO_2 L47N_2 L47P_2
L19N_2 L19P_2 L20N_2 L20P_2 L21N_2 L21P_2
‹
‹
‹
L
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L50N_2 L50P_2
VCCINT VCCINT VCCINT VCCO_2
L23N_2
L26N_2 L22N_2 L22P_2 VREF_2 L23P_2 L28N_2 L24N_2 L24P_2
‹
‹
M
N
GND
GND
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCINT VCCO_2
L26P_2 L27N_2 L27P_2 VCCO_2 L28P_2 L29N_2 L29P_2 VCCO_2 L31N_2 L31P_2
GND
GND
GND
VCCINT VCCO_2
GND
GND
GND
GND
VCCINT
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L40P_2
L35N_2 L35P_2 L37N_2 L37P_2 L38N_2 L38P_2 L39N_2 L39P_2 L40N_2 VREF_2
R
GND
GND
GND
GND
VCCINT
I/O
I/O
I/O
I/O
I/O
I/O
L35P_3 L35N_3 L37P_3 L37N_3 L38P_3 L38N_3
I/O
I/O
I/O
I/O
L40N_3
L39P_3 L39N_3 L40P_3 VREF_3
T
GND
GND
GND
GND
GND
I/O
I/O
VCCINT VCCO_3
L32P_3 L32N_3
GND
GND
I/O
I/O
L33N_2 L33P_2
I/O
I/O
L33P_3 L33N_3
GND
GND
I/O
I/O
VCCAUX L34N_2 L34P_2
VREF_2
I/O
I/O
VCCAUX L34P_3
VREF_3 L34N_3
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L50P_3 L50N_3 VCCO_3
VCCO_3
GND
GND VCCINT VCCO_3
L27N_3 L28P_3 L28N_3
L29N_3
L31P_3 L31N_3
‹
‹
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L46P_3 L46N_3 L47P_3 L47N_3
L48P_3 L48N_3
VCCINT VCCINT VCCINT VCCO_3
L27P_3
L29P_3
L26P_3 L26N_3
‹
‹
‹
‹
‹
‹
VCCINT VCCO_4 VCCO_4 VCCO_4 VCCINT
I/O
I/O
I/O
L32N_2 L32P_2
I/O
L26N_4
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L23P_3
L20N_3 VCCO_3 L21P_3 L21N_3 L22P_3 L22N_3 VREF_3 L23N_3 L24P_3 L24N_3
I/O
I/O
I/O
I/O
L18N_4 L13P_4 L20P_3 L16N_3
GND
I/O
I/O
L17P_3
VREF_3 L17N_3
GND
VCCAUX
I/O
I/O
L19P_3 L19N_3
GND
P
U
V
W
Y
A
A
I/O
I/O
I/O
I/O
I/O
VCCO_4
L26P_4
L13N_4
L29N_4 VREF_4 L23N_4 L18P_4
I/O
I/O
L08N_4 L16P_3 VCCO_3
I/O
I/O
I/O
L14N_3 VCCO_3 L15P_3 L15N_3
A
B
I/O
L29P_4
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L13N_3
L08P_4 L04P_4 L09N_3 L10P_3 L10N_3 L11P_3 L11N_3 L13P_3 VREF_3
A
C
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L09P_3
L30N_4 L27N_4 VCCO_4
DIN
L19P_4 L14P_4 L11N_4 VCCO_4
L04N_4 VREF_3 VCCO_3 L07P_3 L07N_3 L08P_3 L08N_3
D2
D0
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L34P_4 L34N_4
I/O
GND
VCCAUX
L30P_4 L27P_4
L24N_4 L20N_4 L15N_4 L11P_4
L05N_4
L05N_3
L06P_3 L06N_3
D3
D1
‹
‹
A
D
I/O
VREF_4
GND
GND
I/O
L31N_4 VCCAUX
INIT_B
I/O
I/O
I/O
L23P_4 L19N_4 L14N_4
I/O
I/O
I/O
L24P_4 L20P_4 L15P_4
I/O
GND
GND
I/O
I/O
I/O
I/O
L09N_4 L05P_4 VCCO_4 L03P_4
I/O
L14P_3
GND
I/O
I/O
I/O
I/O
I/O
I/O
VCCAUX
L06N_4 L35N_4 VCCAUX
L21N_4 L16N_4
L09P_4 VREF_4
L03N_4
‹
I/O
L32P_4
GCLK0
GND
I/O
I/O
I/O
L25P_4 L22P_4 L17P_4
GND
I/O
I/O
I/O
L38P_4
L10P_4 L07P_4
‹
Bank 4
DS099-4 (v2.4) June 25, 2008
Product Specification
GND
A
E
I/O
I/O
I/O
VCCO_3
L04P_3 L04N_3
L05P_3
A
F
I/O
I/O
I/O
I/O
L02N_3
L02P_3 VREF_3 L03P_3 L03N_3
A
G
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L31P_4
L35P_4 L33N_4 VCCO_4
I/O
DOUT L28N_4 VCCO_4 L21P_4 L16P_4 L12N_4 VCCO_4 L06P_4
‹
‹
BUSY
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
L38N_4 L33P_4
L32N_4
L22N_4
L01N_4
L28P_4 L25N_4 VREF_4 L17N_4 L12P_4 L10N_4 L07N_4
L02N_4 VRP_4
‹
‹
GCLK1
CCLK
DONE
I/O
IO
I/O
L01P_4
L02P_4 VRN_4 VREF_4
I/O
I/O
L01P_3 L01N_3
VRN_3 VRP_3
Right Half of FG900
Package (top view)
Bank 2
GND
18
Bank 1
21
22
I/O
I/O
L01N_1
L03N_1 VRP_1
I/O
17
Bank 3
16
Spartan-3 FPGA Family: Pinout Descriptions
A
H
GND
GND
A
J
GND
GND
A
K
DS099-4_13b_121103
www.xilinx.com
195
R
Spartan-3 FPGA Family: Pinout Descriptions
FG1156: 1156-lead Fine-pitch Ball Grid
Array
Note: The FG(G)1156 package is being discontinued and is
not recommended for new designs. See
http://www.xilinx.com/support/documentation/
spartan-3_customer_notices.htm for the latest updates.
The 1,156-lead fine-pitch ball grid array package, FG1156,
supports two different Spartan-3 devices, namely the
XC3S4000 and the XC3S5000. The XC3S4000, however,
has fewer I/O pins, which consequently results in 73 unconnected pins on the FG1156 package, labeled as “N.C.” In
Table 109 and Figure 51, these unconnected pins are indicated with a black diamond symbol (‹).
The XC3S5000 has a single unconnected package pin, ball
AK31, which is also unconnected for the XC3S4000.
All the package pins appear in Table 109 and are sorted by
bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also
shows the pin number for each pin and the pin type, as
defined earlier.
If there is a difference between the XC3S4000 and
XC3S5000 pinouts, then that difference is highlighted in
Table 109. If the table entry is shaded grey, then there is an
unconnected pin on the XC3S4000 that maps to a user-I/O
pin on the XC3S5000. If the table entry is shaded tan, which
only occurs on ball L29 in I/O Bank 2, then the unconnected
pin on the XC3S4000 maps to a VREF-type pin on the
XC3S5000. If the other VREF_2 pins all connect to a voltage reference to support a special I/O standard, then also
connect the N.C. pin on the XC3S4000 to the same
VREF_2 voltage.
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
0
IO
IO
L13
I/O
0
IO
IO
L16
I/O
0
IO
IO
L17
I/O
0
IO/VREF_0
IO/VREF_0
D5
VREF
0
IO/VREF_0
IO/VREF_0
E10
VREF
0
IO/VREF_0
IO/VREF_0
J14
VREF
0
IO/VREF_0
IO/VREF_0
L15
VREF
0
IO_L01N_0/
VRP_0
IO_L01N_0/
VRP_0
B3
DCI
0
IO_L01P_0/
VRN_0
IO_L01P_0/
VRN_0
A3
DCI
0
IO_L02N_0
IO_L02N_0
B4
I/O
0
IO_L02P_0
IO_L02P_0
A4
I/O
0
IO_L03N_0
IO_L03N_0
C5
I/O
0
IO_L03P_0
IO_L03P_0
B5
I/O
0
IO_L04N_0
IO_L04N_0
D6
I/O
0
IO_L04P_0
IO_L04P_0
C6
I/O
0
IO_L05N_0
IO_L05N_0
B6
I/O
0
IO_L05P_0/
VREF_0
IO_L05P_0/
VREF_0
A6
VREF
0
IO_L06N_0
IO_L06N_0
F7
I/O
0
IO_L06P_0
IO_L06P_0
E7
I/O
0
IO_L07N_0
IO_L07N_0
G9
I/O
0
IO_L07P_0
IO_L07P_0
F9
I/O
Pinout Table
0
IO_L08N_0
IO_L08N_0
D9
I/O
Table 109: FG1156 Package Pinout
0
IO_L08P_0
IO_L08P_0
C9
I/O
0
IO_L09N_0
IO_L09N_0
J10
I/O
0
IO_L09P_0
IO_L09P_0
H10
I/O
0
IO_L10N_0
IO_L10N_0
G10
I/O
0
IO_L10P_0
IO_L10P_0
F10
I/O
0
IO_L11N_0
IO_L11N_0
L12
I/O
0
IO_L11P_0
IO_L11P_0
K12
I/O
0
IO_L12N_0
IO_L12N_0
J12
I/O
0
IO_L12P_0
IO_L12P_0
H12
I/O
0
IO_L13N_0
IO_L13N_0
F12
I/O
0
IO_L13P_0
IO_L13P_0
E12
I/O
0
IO_L14N_0
IO_L14N_0
D12
I/O
0
IO_L14P_0
IO_L14P_0
C12
I/O
0
IO_L15N_0
IO_L15N_0
B12
I/O
0
IO_L15P_0
IO_L15P_0
A12
I/O
0
IO_L16N_0
IO_L16N_0
H13
I/O
0
IO_L16P_0
IO_L16P_0
G13
I/O
Bank
196
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
0
IO
IO
B9
I/O
0
IO
IO
E17
I/O
0
IO
IO
F6
I/O
0
IO
IO
F8
I/O
0
IO
IO
G12
I/O
0
IO
IO
H8
I/O
0
IO
IO
H9
I/O
0
IO
IO
J11
I/O
0
N.C. (‹)
IO
J9
I/O
0
N.C. (‹)
IO
K11
I/O
0
IO
IO
K13
I/O
0
IO
IO
K16
I/O
0
IO
IO
K17
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
B8
I/O
0
IO_L17N_0
IO_L17N_0
D13
I/O
0
IO_L36N_0
IO_L36N_0
0
IO_L17P_0
IO_L17P_0
C13
I/O
0
IO_L36P_0
IO_L36P_0
A8
I/O
0
IO_L18N_0
IO_L18N_0
L14
I/O
0
IO_L37N_0
IO_L37N_0
D10
I/O
0
IO_L18P_0
IO_L18P_0
K14
I/O
0
IO_L37P_0
IO_L37P_0
C10
I/O
0
IO_L19N_0
IO_L19N_0
H14
I/O
0
IO_L38N_0
IO_L38N_0
B10
I/O
0
IO_L19P_0
IO_L19P_0
G14
I/O
0
IO_L38P_0
IO_L38P_0
A10
I/O
0
IO_L20N_0
IO_L20N_0
F14
I/O
0
N.C. (‹)
IO_L39N_0
G11
I/O
0
IO_L20P_0
IO_L20P_0
E14
I/O
0
N.C. (‹)
IO_L39P_0
F11
I/O
0
IO_L21N_0
IO_L21N_0
D14
I/O
0
N.C. (‹)
IO_L40N_0
B11
I/O
0
IO_L21P_0
IO_L21P_0
C14
I/O
0
N.C. (‹)
IO_L40P_0
A11
I/O
0
IO_L22N_0
IO_L22N_0
B14
I/O
0
VCCO_0
VCCO_0
B13
VCCO
0
IO_L22P_0
IO_L22P_0
A14
I/O
0
VCCO_0
VCCO_0
C4
VCCO
0
IO_L23N_0
IO_L23N_0
K15
I/O
0
VCCO_0
VCCO_0
C8
VCCO
0
IO_L23P_0
IO_L23P_0
J15
I/O
0
VCCO_0
VCCO_0
D11
VCCO
0
IO_L24N_0
IO_L24N_0
G15
I/O
0
VCCO_0
VCCO_0
D16
VCCO
0
IO_L24P_0
IO_L24P_0
F15
I/O
0
VCCO_0
VCCO_0
F13
VCCO
0
IO_L25N_0
IO_L25N_0
D15
I/O
0
VCCO_0
VCCO_0
G8
VCCO
0
IO_L25P_0
IO_L25P_0
C15
I/O
0
VCCO_0
VCCO_0
H11
VCCO
0
IO_L26N_0
IO_L26N_0
B15
I/O
0
VCCO_0
VCCO_0
H15
VCCO
0
IO_L26P_0/
VREF_0
IO_L26P_0/
VREF_0
A15
VREF
0
VCCO_0
VCCO_0
M13
VCCO
0
VCCO_0
VCCO_0
M14
VCCO
0
IO_L27N_0
IO_L27N_0
G16
I/O
0
VCCO_0
VCCO_0
M15
VCCO
0
IO_L27P_0
IO_L27P_0
F16
I/O
0
VCCO_0
VCCO_0
M16
VCCO
0
IO_L28N_0
IO_L28N_0
C16
I/O
1
IO
IO
B26
I/O
0
IO_L28P_0
IO_L28P_0
B16
I/O
1
IO
IO
A18
I/O
0
IO_L29N_0
IO_L29N_0
J17
I/O
1
IO
IO
C23
I/O
0
IO_L29P_0
IO_L29P_0
H17
I/O
1
IO
IO
E21
I/O
0
IO_L30N_0
IO_L30N_0
G17
I/O
1
IO
IO
E25
I/O
0
IO_L30P_0
IO_L30P_0
F17
I/O
1
IO
IO
F18
I/O
0
IO_L31N_0
IO_L31N_0
D17
I/O
1
IO
IO
F27
I/O
0
IO_L31P_0/
VREF_0
IO_L31P_0/
VREF_0
C17
VREF
1
IO
IO
F29
I/O
0
IO_L32N_0/
GCLK7
IO_L32N_0/
GCLK7
B17
GCLK
1
IO
IO
H23
I/O
1
IO
IO
H26
I/O
0
IO_L32P_0/
GCLK6
IO_L32P_0/
GCLK6
A17
GCLK
1
N.C. (‹)
IO
J26
I/O
1
IO
IO
K19
I/O
0
N.C. (‹)
IO_L33N_0
D7
I/O
1
IO
IO
L19
I/O
0
N.C. (‹)
IO_L33P_0
C7
I/O
1
IO
IO
L20
I/O
0
N.C. (‹)
IO_L34N_0
B7
I/O
1
IO
IO
L21
I/O
0
N.C. (‹)
IO_L34P_0
A7
I/O
1
N.C. (‹)
IO
L23
I/O
0
IO_L35N_0
IO_L35N_0
E8
I/O
1
IO
IO
L24
I/O
0
IO_L35P_0
IO_L35P_0
D8
I/O
1
IO/VREF_1
IO/VREF_1
D30
VREF
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
197
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S5000
Pin Name
FG1156
Pin
Number
Type
Bank
K21
VREF
1
IO_L18P_1
XC3S4000
Pin Name
FG1156
Pin
Number
Type
IO_L18P_1
E23
I/O
XC3S5000
Pin Name
1
IO/VREF_1
IO/VREF_1
1
IO/VREF_1
IO/VREF_1
L18
VREF
1
IO_L19N_1
IO_L19N_1
A23
I/O
1
IO_L01N_1/
VRP_1
IO_L01N_1/
VRP_1
A32
DCI
1
IO_L19P_1
IO_L19P_1
B23
I/O
1
IO_L20N_1
IO_L20N_1
K22
I/O
1
IO_L01P_1/
VRN_1
IO_L01P_1/
VRN_1
B32
DCI
1
IO_L20P_1
IO_L20P_1
L22
I/O
1
IO_L02N_1
IO_L02N_1
A31
I/O
1
IO_L21N_1
IO_L21N_1
G22
I/O
1
IO_L02P_1
IO_L02P_1
B31
I/O
1
IO_L21P_1
IO_L21P_1
H22
I/O
1
IO_L22N_1
IO_L22N_1
C22
I/O
1
IO_L22P_1
IO_L22P_1
D22
I/O
1
IO_L23N_1
IO_L23N_1
H21
I/O
1
IO_L23P_1
IO_L23P_1
J21
I/O
1
IO_L24N_1
IO_L24N_1
F21
I/O
1
IO_L24P_1
IO_L24P_1
G21
I/O
1
IO_L25N_1
IO_L25N_1
C21
I/O
1
IO_L25P_1
IO_L25P_1
D21
I/O
1
IO_L03N_1
IO_L03N_1
B30
I/O
1
IO_L03P_1
IO_L03P_1
C30
I/O
1
IO_L04N_1
IO_L04N_1
C29
I/O
1
IO_L04P_1
IO_L04P_1
D29
I/O
1
IO_L05N_1
IO_L05N_1
A29
I/O
1
IO_L05P_1
IO_L05P_1
B29
I/O
1
IO_L06N_1/
VREF_1
IO_L06N_1/
VREF_1
E28
VREF
1
IO_L06P_1
IO_L06P_1
F28
I/O
1
IO_L26N_1
IO_L26N_1
A21
I/O
1
IO_L07N_1
IO_L07N_1
D27
I/O
1
IO_L26P_1
IO_L26P_1
B21
I/O
IO_L27N_1
IO_L27N_1
F19
I/O
1
IO_L07P_1
IO_L07P_1
E27
I/O
1
1
IO_L08N_1
IO_L08N_1
A27
I/O
1
IO_L27P_1
IO_L27P_1
G19
I/O
1
IO_L08P_1
IO_L08P_1
B27
I/O
1
IO_L28N_1
IO_L28N_1
B19
I/O
1
IO_L09N_1
IO_L09N_1
F26
I/O
1
IO_L28P_1
IO_L28P_1
C19
I/O
1
IO_L09P_1
IO_L09P_1
G26
I/O
1
IO_L29N_1
IO_L29N_1
J18
I/O
VREF
1
IO_L29P_1
IO_L29P_1
K18
I/O
1
IO_L30N_1
IO_L30N_1
G18
I/O
1
198
XC3S4000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
IO_L10N_1/
VREF_1
IO_L10N_1/
VREF_1
C26
1
IO_L10P_1
IO_L10P_1
D26
I/O
1
IO_L30P_1
IO_L30P_1
H18
I/O
1
IO_L11N_1
IO_L11N_1
H25
I/O
1
IO_L11P_1
J25
I/O
IO_L31N_1/
VREF_1
VREF
IO_L11P_1
IO_L31N_1/
VREF_1
D18
1
1
IO_L12N_1
IO_L12N_1
F25
I/O
1
IO_L31P_1
IO_L31P_1
E18
I/O
1
IO_L12P_1
IO_L12P_1
G25
I/O
1
GCLK
IO_L13N_1
IO_L13N_1
C25
I/O
IO_L32N_1/
GCLK5
B18
1
IO_L32N_1/
GCLK5
1
IO_L13P_1
IO_L13P_1
D25
I/O
1
IO_L32P_1/
GCLK4
IO_L32P_1/
GCLK4
C18
GCLK
1
IO_L14N_1
IO_L14N_1
A25
I/O
1
N.C. (‹)
IO_L33N_1
C28
I/O
1
IO_L14P_1
IO_L14P_1
B25
I/O
1
N.C. (‹)
IO_L33P_1
D28
I/O
1
IO_L15N_1
IO_L15N_1
A24
I/O
1
N.C. (‹)
IO_L34N_1
A28
I/O
1
IO_L15P_1
IO_L15P_1
B24
I/O
1
N.C. (‹)
IO_L34P_1
B28
I/O
1
IO_L16N_1
IO_L16N_1
J23
I/O
1
N.C. (‹)
IO_L35N_1
J24
I/O
1
IO_L16P_1
IO_L16P_1
K23
I/O
1
N.C. (‹)
IO_L35P_1
K24
I/O
1
IO_L17N_1/
VREF_1
IO_L17N_1/
VREF_1
F23
VREF
1
N.C. (‹)
IO_L36N_1
F24
I/O
1
IO_L17P_1
IO_L17P_1
G23
I/O
1
N.C. (‹)
IO_L36P_1
G24
I/O
1
IO_L18N_1
IO_L18N_1
D23
I/O
1
IO_L37N_1
IO_L37N_1
J20
I/O
1
IO_L37P_1
IO_L37P_1
K20
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
2
IO_L09N_2/
VREF_2
XC3S4000
Pin Name
FG1156
Pin
Number
Type
IO_L09N_2/
VREF_2
H31
VREF
XC3S5000
Pin Name
1
IO_L38N_1
IO_L38N_1
F20
I/O
1
IO_L38P_1
IO_L38P_1
G20
I/O
1
IO_L39N_1
IO_L39N_1
C20
I/O
2
IO_L09P_2
IO_L09P_2
J31
I/O
1
IO_L39P_1
IO_L39P_1
D20
I/O
2
IO_L10N_2
IO_L10N_2
J32
I/O
1
IO_L40N_1
IO_L40N_1
A20
I/O
2
IO_L10P_2
IO_L10P_2
J33
I/O
1
IO_L40P_1
IO_L40P_1
B20
I/O
2
IO_L11N_2
IO_L11N_2
J27
I/O
1
VCCO_1
VCCO_1
B22
VCCO
2
IO_L11P_2
IO_L11P_2
K26
I/O
IO_L12N_2
IO_L12N_2
K27
I/O
1
VCCO_1
VCCO_1
C27
VCCO
2
1
VCCO_1
VCCO_1
C31
VCCO
2
IO_L12P_2
IO_L12P_2
K28
I/O
1
VCCO_1
VCCO_1
D19
VCCO
2
IO_L13N_2
IO_L13N_2
K29
I/O
1
VCCO_1
VCCO_1
D24
VCCO
2
IO_L13P_2/
VREF_2
IO_L13P_2/
VREF_2
K30
VREF
1
VCCO_1
VCCO_1
F22
VCCO
2
IO_L14N_2
IO_L14N_2
K31
I/O
1
VCCO_1
VCCO_1
G27
VCCO
2
IO_L14P_2
IO_L14P_2
K32
I/O
1
VCCO_1
VCCO_1
H20
VCCO
2
IO_L15N_2
IO_L15N_2
K33
I/O
1
VCCO_1
VCCO_1
H24
VCCO
2
IO_L15P_2
IO_L15P_2
K34
I/O
1
VCCO_1
VCCO_1
M19
VCCO
2
IO_L16N_2
IO_L16N_2
L25
I/O
1
VCCO_1
VCCO_1
M20
VCCO
2
IO_L16P_2
IO_L16P_2
L26
I/O
1
VCCO_1
VCCO_1
M21
VCCO
2
N.C. (‹)
IO_L17N_2
L28
I/O
1
VCCO_1
VCCO_1
M22
VCCO
2
N.C. (‹)
VREF
IO
IO
G33
I/O
IO_L17P_2/
VREF_2
L29
2
2
IO
IO
G34
I/O
2
IO_L19N_2
IO_L19N_2
M29
I/O
2
IO
IO
U25
I/O
2
IO_L19P_2
IO_L19P_2
M30
I/O
2
IO
IO
U26
I/O
2
IO_L20N_2
IO_L20N_2
M31
I/O
2
IO_L01N_2/
VRP_2
IO_L01N_2/
VRP_2
C33
DCI
2
IO_L20P_2
IO_L20P_2
M32
I/O
2
IO_L21N_2
IO_L21N_2
M26
I/O
2
IO_L01P_2/
VRN_2
IO_L01P_2/
VRN_2
C34
DCI
2
IO_L21P_2
IO_L21P_2
N25
I/O
2
IO_L02N_2
IO_L02N_2
D33
I/O
2
IO_L22N_2
IO_L22N_2
N27
I/O
2
IO_L02P_2
IO_L02P_2
D34
I/O
2
IO_L22P_2
IO_L22P_2
N28
I/O
2
IO_L03N_2/
VREF_2
IO_L03N_2/
VREF_2
E32
VREF
2
IO_L23N_2/
VREF_2
IO_L23N_2/
VREF_2
N31
VREF
2
IO_L03P_2
IO_L03P_2
E33
I/O
2
IO_L23P_2
IO_L23P_2
N32
I/O
2
IO_L04N_2
IO_L04N_2
F31
I/O
2
IO_L24N_2
IO_L24N_2
N24
I/O
2
IO_L04P_2
IO_L04P_2
F32
I/O
2
IO_L24P_2
IO_L24P_2
P24
I/O
2
IO_L05N_2
IO_L05N_2
G29
I/O
2
IO_L26N_2
IO_L26N_2
P29
I/O
2
IO_L05P_2
IO_L05P_2
G30
I/O
2
IO_L26P_2
IO_L26P_2
P30
I/O
IO_L27N_2
IO_L27N_2
P31
I/O
2
IO_L06N_2
IO_L06N_2
H29
I/O
2
2
IO_L06P_2
IO_L06P_2
H30
I/O
2
IO_L27P_2
IO_L27P_2
P32
I/O
2
IO_L07N_2
IO_L07N_2
H33
I/O
2
IO_L28N_2
IO_L28N_2
P33
I/O
2
IO_L07P_2
IO_L07P_2
H34
I/O
2
IO_L28P_2
IO_L28P_2
P34
I/O
2
IO_L08N_2
IO_L08N_2
J28
I/O
2
IO_L29N_2
IO_L29N_2
R24
I/O
I/O
2
IO_L29P_2
IO_L29P_2
R25
I/O
2
IO_L08P_2
IO_L08P_2
DS099-4 (v2.4) June 25, 2008
Product Specification
J29
www.xilinx.com
199
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
200
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
2
IO_L30N_2
IO_L30N_2
R28
I/O
2
VCCO_2
VCCO_2
H32
VCCO
2
IO_L30P_2
IO_L30P_2
R29
I/O
2
VCCO_2
VCCO_2
L27
VCCO
2
IO_L31N_2
IO_L31N_2
R31
I/O
2
VCCO_2
VCCO_2
L31
VCCO
2
IO_L31P_2
IO_L31P_2
R32
I/O
2
VCCO_2
VCCO_2
N23
VCCO
2
IO_L32N_2
IO_L32N_2
R33
I/O
2
VCCO_2
VCCO_2
N29
VCCO
2
IO_L32P_2
IO_L32P_2
R34
I/O
2
VCCO_2
VCCO_2
N33
VCCO
2
IO_L33N_2
IO_L33N_2
R26
I/O
2
VCCO_2
VCCO_2
P23
VCCO
2
IO_L33P_2
IO_L33P_2
T25
I/O
2
VCCO_2
VCCO_2
R23
VCCO
2
IO_L34N_2/
VREF_2
IO_L34N_2/
VREF_2
T28
VREF
2
VCCO_2
VCCO_2
R27
VCCO
2
VCCO_2
VCCO_2
T23
VCCO
2
IO_L34P_2
IO_L34P_2
T29
I/O
2
VCCO_2
VCCO_2
T31
VCCO
2
IO_L35N_2
IO_L35N_2
T32
I/O
3
IO
IO
AH33
I/O
2
IO_L35P_2
IO_L35P_2
T33
I/O
3
IO
IO
AH34
I/O
2
IO_L37N_2
IO_L37N_2
U27
I/O
3
IO
IO
V25
I/O
2
IO_L37P_2
IO_L37P_2
U28
I/O
3
IO
IO
V26
I/O
2
IO_L38N_2
IO_L38N_2
U29
I/O
3
IO_L38P_2
U30
I/O
IO_L01N_3/
VRP_3
DCI
IO_L38P_2
IO_L01N_3/
VRP_3
AM34
2
2
IO_L39N_2
IO_L39N_2
U31
I/O
3
DCI
IO_L39P_2
IO_L39P_2
U32
I/O
IO_L01P_3/
VRN_3
AM33
2
IO_L01P_3/
VRN_3
2
IO_L40N_2
IO_L40N_2
U33
I/O
3
IO_L02N_3/
VREF_3
IO_L02N_3/
VREF_3
AL34
VREF
2
IO_L40P_2/
VREF_2
IO_L40P_2/
VREF_2
U34
VREF
3
IO_L02P_3
IO_L02P_3
AL33
I/O
2
IO_L41N_2
IO_L41N_2
F33
I/O
3
IO_L03N_3
IO_L03N_3
AK33
I/O
2
IO_L41P_2
IO_L41P_2
F34
I/O
3
IO_L03P_3
IO_L03P_3
AK32
I/O
2
N.C. (‹)
IO_L42N_2
G31
I/O
3
IO_L04N_3
IO_L04N_3
AJ32
I/O
2
N.C. (‹)
IO_L42P_2
G32
I/O
3
IO_L04P_3
IO_L04P_3
AJ31
I/O
IO_L05N_3
IO_L05N_3
AJ34
I/O
2
IO_L45N_2
IO_L45N_2
L33
I/O
3
2
IO_L45P_2
IO_L45P_2
L34
I/O
3
IO_L05P_3
IO_L05P_3
AJ33
I/O
2
IO_L46N_2
IO_L46N_2
M24
I/O
3
IO_L06N_3
IO_L06N_3
AH30
I/O
2
IO_L46P_2
IO_L46P_2
M25
I/O
3
IO_L06P_3
IO_L06P_3
AH29
I/O
2
IO_L47N_2
IO_L47N_2
M27
I/O
3
IO_L07N_3
IO_L07N_3
AG30
I/O
IO_L07P_3
IO_L07P_3
AG29
I/O
2
IO_L47P_2
IO_L47P_2
M28
I/O
3
2
IO_L48N_2
IO_L48N_2
M33
I/O
3
IO_L08N_3
IO_L08N_3
AG34
I/O
2
IO_L48P_2
IO_L48P_2
M34
I/O
3
IO_L08P_3
IO_L08P_3
AG33
I/O
2
N.C. (‹)
IO_L49N_2
P25
I/O
3
IO_L09N_3
IO_L09N_3
AF29
I/O
2
N.C. (‹)
IO_L49P_2
P26
I/O
3
IO_L09P_3/
VREF_3
IO_L09P_3/
VREF_3
AF28
VREF
2
IO_L50N_2
IO_L50N_2
P27
I/O
3
IO_L10N_3
IO_L10N_3
AF31
I/O
2
IO_L50P_2
IO_L50P_2
P28
I/O
3
IO_L10P_3
IO_L10P_3
AG31
I/O
2
N.C. (‹)
IO_L51N_2
T24
I/O
3
IO_L11N_3
IO_L11N_3
AF33
I/O
2
N.C. (‹)
IO_L51P_2
U24
I/O
3
IO_L11P_3
IO_L11P_3
AF32
I/O
2
VCCO_2
VCCO_2
D32
VCCO
3
IO_L12N_3
IO_L12N_3
AE26
I/O
2
VCCO_2
VCCO_2
H28
VCCO
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
3
IO_L12P_3
IO_L12P_3
AF27
I/O
3
IO_L34N_3
IO_L34N_3
W29
I/O
3
IO_L13N_3/
VREF_3
IO_L13N_3/
VREF_3
AE28
VREF
3
IO_L34P_3/
VREF_3
IO_L34P_3/
VREF_3
W28
VREF
3
IO_L13P_3
IO_L13P_3
AE27
I/O
3
IO_L35N_3
IO_L35N_3
W33
I/O
3
IO_L14N_3
IO_L14N_3
AE30
I/O
3
IO_L35P_3
IO_L35P_3
W32
I/O
3
IO_L14P_3
IO_L14P_3
AE29
I/O
3
IO_L37N_3
IO_L37N_3
V28
I/O
3
IO_L15N_3
IO_L15N_3
AE32
I/O
3
IO_L37P_3
IO_L37P_3
V27
I/O
3
IO_L15P_3
IO_L15P_3
AE31
I/O
3
IO_L38N_3
IO_L38N_3
V30
I/O
3
IO_L16N_3
IO_L16N_3
AE34
I/O
3
IO_L38P_3
IO_L38P_3
V29
I/O
3
IO_L16P_3
IO_L16P_3
AE33
I/O
3
IO_L39N_3
IO_L39N_3
V32
I/O
3
IO_L17N_3
IO_L17N_3
AD26
I/O
3
IO_L39P_3
IO_L39P_3
V31
I/O
3
IO_L17P_3/
VREF_3
IO_L17P_3/
VREF_3
AD25
VREF
3
IO_L40N_3/
VREF_3
IO_L40N_3/
VREF_3
V34
VREF
3
IO_L19N_3
IO_L19N_3
AD34
I/O
3
IO_L40P_3
IO_L40P_3
V33
I/O
3
IO_L19P_3
IO_L19P_3
AD33
I/O
3
N.C. (‹)
IO_L41N_3
AH32
I/O
3
IO_L20N_3
IO_L20N_3
AC25
I/O
3
N.C. (‹)
IO_L41P_3
AH31
I/O
3
IO_L20P_3
IO_L20P_3
AC24
I/O
3
N.C. (‹)
IO_L44N_3
AD29
I/O
3
IO_L21N_3
IO_L21N_3
AC28
I/O
3
N.C. (‹)
IO_L44P_3
AD28
I/O
3
IO_L21P_3
IO_L21P_3
AC27
I/O
3
IO_L45N_3
IO_L45N_3
AC34
I/O
3
IO_L22N_3
IO_L22N_3
AC30
I/O
3
IO_L45P_3
IO_L45P_3
AC33
I/O
3
IO_L22P_3
IO_L22P_3
AC29
I/O
3
IO_L46N_3
IO_L46N_3
AB28
I/O
3
IO_L23N_3
IO_L23N_3
AC32
I/O
3
IO_L46P_3
IO_L46P_3
AB27
I/O
3
IO_L23P_3/
VREF_3
IO_L23P_3/
VREF_3
AC31
VREF
3
IO_L47N_3
IO_L47N_3
AB32
I/O
3
IO_L47P_3
IO_L47P_3
AB31
I/O
3
IO_L24N_3
IO_L24N_3
AB25
I/O
3
IO_L48N_3
IO_L48N_3
AA24
I/O
3
IO_L24P_3
IO_L24P_3
AC26
I/O
3
IO_L48P_3
IO_L48P_3
AB24
I/O
3
IO_L26N_3
IO_L26N_3
AA28
I/O
3
N.C. (‹)
IO_L49N_3
AA26
I/O
3
IO_L26P_3
IO_L26P_3
AA27
I/O
3
N.C. (‹)
IO_L49P_3
AA25
I/O
3
IO_L27N_3
IO_L27N_3
AA30
I/O
3
IO_L50N_3
IO_L50N_3
Y25
I/O
3
IO_L27P_3
IO_L27P_3
AA29
I/O
3
IO_L50P_3
IO_L50P_3
Y24
I/O
3
IO_L28N_3
IO_L28N_3
AA32
I/O
3
N.C. (‹)
IO_L51N_3
V24
I/O
3
IO_L28P_3
IO_L28P_3
AA31
I/O
3
N.C. (‹)
IO_L51P_3
W24
I/O
3
IO_L29N_3
IO_L29N_3
AA34
I/O
3
VCCO_3
VCCO_3
AA23
VCCO
3
IO_L29P_3
IO_L29P_3
AA33
I/O
3
VCCO_3
VCCO_3
AB23
VCCO
3
IO_L30N_3
IO_L30N_3
Y29
I/O
3
VCCO_3
VCCO_3
AB29
VCCO
3
IO_L30P_3
IO_L30P_3
Y28
I/O
3
VCCO_3
VCCO_3
AB33
VCCO
3
IO_L31N_3
IO_L31N_3
Y32
I/O
3
VCCO_3
VCCO_3
AD27
VCCO
3
IO_L31P_3
IO_L31P_3
Y31
I/O
3
VCCO_3
VCCO_3
AD31
VCCO
3
IO_L32N_3
IO_L32N_3
Y34
I/O
3
VCCO_3
VCCO_3
AG28
VCCO
3
IO_L32P_3
IO_L32P_3
Y33
I/O
3
VCCO_3
VCCO_3
AG32
VCCO
3
IO_L33N_3
IO_L33N_3
W25
I/O
3
VCCO_3
VCCO_3
AL32
VCCO
3
IO_L33P_3
IO_L33P_3
Y26
I/O
3
VCCO_3
VCCO_3
W23
VCCO
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
201
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
202
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
3
VCCO_3
VCCO_3
W31
VCCO
4
IO_L09N_4
IO_L09N_4
AL25
I/O
3
VCCO_3
VCCO_3
Y23
VCCO
4
IO_L09P_4
IO_L09P_4
AM25
I/O
3
VCCO_3
VCCO_3
Y27
VCCO
4
IO_L10N_4
IO_L10N_4
AN25
I/O
4
IO
IO
AD18
I/O
4
IO_L10P_4
IO_L10P_4
AP25
I/O
4
IO
IO
AD19
I/O
4
IO_L11N_4
IO_L11N_4
AD23
I/O
4
IO
IO
AD20
I/O
4
IO_L11P_4
IO_L11P_4
AE23
I/O
4
IO
IO
AD22
I/O
4
IO_L12N_4
IO_L12N_4
AF23
I/O
4
IO
IO
AE18
I/O
4
IO_L12P_4
IO_L12P_4
AG23
I/O
4
IO
IO
AE19
I/O
4
IO_L13N_4
IO_L13N_4
AJ23
I/O
4
IO
IO
AE22
I/O
4
IO_L13P_4
IO_L13P_4
AK23
I/O
4
N.C. (‹)
IO
AE24
I/O
4
IO_L14N_4
IO_L14N_4
AL23
I/O
4
IO
IO
AF24
I/O
4
IO_L14P_4
IO_L14P_4
AM23
I/O
4
N.C. (‹)
IO
AF26
I/O
4
IO_L15N_4
IO_L15N_4
AN23
I/O
4
IO
IO
AG26
I/O
4
IO_L15P_4
IO_L15P_4
AP23
I/O
4
IO
IO
AG27
I/O
4
IO_L16N_4
IO_L16N_4
AG22
I/O
4
IO
IO
AJ27
I/O
4
IO_L16P_4
IO_L16P_4
AH22
I/O
4
IO
IO
AJ29
I/O
4
IO_L17N_4
IO_L17N_4
AL22
I/O
4
IO
IO
AK25
I/O
4
IO_L17P_4
IO_L17P_4
AM22
I/O
4
IO
IO
AN26
I/O
4
IO_L18N_4
IO_L18N_4
AD21
I/O
4
IO/VREF_4
IO/VREF_4
AF21
VREF
4
IO_L18P_4
IO_L18P_4
AE21
I/O
4
IO/VREF_4
IO/VREF_4
AH23
VREF
4
IO_L19N_4
IO_L19N_4
AG21
I/O
4
IO/VREF_4
IO/VREF_4
AK18
VREF
4
IO_L19P_4
IO_L19P_4
AH21
I/O
4
IO/VREF_4
IO/VREF_4
AL30
VREF
4
IO_L20N_4
IO_L20N_4
AJ21
I/O
4
IO_L01N_4/
VRP_4
IO_L01N_4/
VRP_4
AN32
DCI
4
IO_L20P_4
IO_L20P_4
AK21
I/O
4
IO_L21N_4
IO_L21N_4
AL21
I/O
4
IO_L01P_4/
VRN_4
IO_L01P_4/
VRN_4
AP32
DCI
4
IO_L21P_4
IO_L21P_4
AM21
I/O
4
IO_L02N_4
IO_L02N_4
AN31
I/O
4
IO_L22N_4/
VREF_4
IO_L22N_4/
VREF_4
AN21
VREF
4
IO_L02P_4
IO_L02P_4
AP31
I/O
4
IO_L22P_4
IO_L22P_4
AP21
I/O
4
IO_L03N_4
IO_L03N_4
AM30
I/O
4
IO_L23N_4
IO_L23N_4
AE20
I/O
4
IO_L03P_4
IO_L03P_4
AN30
I/O
4
IO_L23P_4
IO_L23P_4
AF20
I/O
4
IO_L04N_4
IO_L04N_4
AN27
I/O
4
IO_L24N_4
IO_L24N_4
AH20
I/O
4
IO_L04P_4
IO_L04P_4
AP27
I/O
4
IO_L24P_4
IO_L24P_4
AJ20
I/O
4
IO_L05N_4
IO_L05N_4
AH26
I/O
4
IO_L25N_4
IO_L25N_4
AL20
I/O
4
IO_L05P_4
IO_L05P_4
AJ26
I/O
4
IO_L25P_4
IO_L25P_4
AM20
I/O
4
IO_L06N_4/
VREF_4
IO_L06N_4/
VREF_4
AL26
VREF
4
IO_L26N_4
IO_L26N_4
AN20
I/O
4
IO_L06P_4
IO_L06P_4
AM26
I/O
4
IO_L26P_4/
VREF_4
IO_L26P_4/
VREF_4
AP20
VREF
4
IO_L07N_4
IO_L07N_4
AF25
I/O
4
IO_L07P_4
AG25
I/O
IO_L27N_4/
DIN/D0
DUAL
IO_L07P_4
IO_L27N_4/
DIN/D0
AH19
4
4
IO_L08N_4
IO_L08N_4
AH25
I/O
4
IO_L08P_4
AJ25
I/O
IO_L27P_4/
D1
DUAL
IO_L08P_4
IO_L27P_4/
D1
AJ19
4
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
Type
VCCO_4
AM31
VCCO
4
IO_L28N_4
IO_L28N_4
AM19
I/O
4
4
IO_L28P_4
IO_L28P_4
AN19
I/O
4
VCCO_4
VCCO_4
AN22
VCCO
4
IO_L29N_4
IO_L29N_4
AF18
I/O
5
IO
IO
AD11
I/O
4
IO_L29P_4
IO_L29P_4
AG18
I/O
5
N.C. (‹)
IO
AD12
I/O
4
IO_L30N_4/
D2
IO_L30N_4/
D2
AH18
DUAL
5
IO
IO
AD14
I/O
5
IO
IO
AD15
I/O
4
IO_L30P_4/
D3
IO_L30P_4/
D3
AJ18
DUAL
5
IO
IO
AD16
I/O
5
IO
IO
AD17
I/O
5
IO
IO
AE14
I/O
5
IO
IO
AE16
I/O
5
N.C. (‹)
IO
AF9
I/O
5
IO
IO
AG9
I/O
5
IO
IO
AG12
I/O
5
IO
IO
AJ6
I/O
5
IO
IO
AJ17
I/O
5
IO
IO
AK10
I/O
5
IO
IO
AK14
I/O
5
IO
IO
AM12
I/O
5
IO
IO
AN9
I/O
5
IO/VREF_5
IO/VREF_5
AJ8
VREF
5
IO/VREF_5
IO/VREF_5
AL5
VREF
5
IO/VREF_5
IO/VREF_5
AP17
VREF
5
IO_L01N_5/
RDWR_B
IO_L01N_5/
RDWR_B
AP3
DUAL
5
IO_L01P_5/
CS_B
IO_L01P_5/
CS_B
AN3
DUAL
4
IO_L31N_4/
INIT_B
IO_L31N_4/
INIT_B
AL18
DUAL
4
IO_L31P_4/
DOUT/BUSY
IO_L31P_4/
DOUT/BUSY
AM18
DUAL
4
IO_L32N_4/
GCLK1
IO_L32N_4/
GCLK1
AN18
GCLK
4
IO_L32P_4/
GCLK0
IO_L32P_4/
GCLK0
AP18
GCLK
4
IO_L33N_4
IO_L33N_4
AL29
I/O
4
IO_L33P_4
IO_L33P_4
AM29
I/O
4
IO_L34N_4
IO_L34N_4
AN29
I/O
4
IO_L34P_4
IO_L34P_4
AP29
I/O
4
IO_L35N_4
IO_L35N_4
AJ28
I/O
4
IO_L35P_4
IO_L35P_4
AK28
I/O
4
N.C. (‹)
IO_L36N_4
AL28
I/O
4
N.C. (‹)
IO_L36P_4
AM28
I/O
VCCO_4
FG1156
Pin
Number
XC3S5000
Pin Name
4
N.C. (‹)
IO_L37N_4
AN28
I/O
4
N.C. (‹)
IO_L37P_4
AP28
I/O
4
IO_L38N_4
IO_L38N_4
AK27
I/O
4
IO_L38P_4
IO_L38P_4
AL27
I/O
5
IO_L02N_5
IO_L02N_5
AP4
I/O
4
N.C. (‹)
IO_L39N_4
AH24
I/O
5
IO_L02P_5
IO_L02P_5
AN4
I/O
4
N.C. (‹)
IO_L39P_4
AJ24
I/O
5
IO_L03N_5
IO_L03N_5
AN5
I/O
4
N.C. (‹)
IO_L40N_4
AN24
I/O
5
IO_L03P_5
IO_L03P_5
AM5
I/O
4
N.C. (‹)
IO_L40P_4
AP24
I/O
5
IO_L04N_5
IO_L04N_5
AM6
I/O
4
VCCO_4
VCCO_4
AC19
VCCO
5
IO_L04P_5
IO_L04P_5
AL6
I/O
4
VCCO_4
VCCO_4
AC20
VCCO
5
IO_L05N_5
IO_L05N_5
AP6
I/O
4
VCCO_4
VCCO_4
AC21
VCCO
5
IO_L05P_5
IO_L05P_5
AN6
I/O
4
VCCO_4
VCCO_4
AC22
VCCO
5
IO_L06N_5
IO_L06N_5
AK7
I/O
4
VCCO_4
VCCO_4
AG20
VCCO
5
IO_L06P_5
IO_L06P_5
AJ7
I/O
4
VCCO_4
VCCO_4
AG24
VCCO
5
IO_L07N_5
IO_L07N_5
AG10
I/O
4
VCCO_4
VCCO_4
AH27
VCCO
5
IO_L07P_5
IO_L07P_5
AF10
I/O
4
VCCO_4
VCCO_4
AJ22
VCCO
5
IO_L08N_5
IO_L08N_5
AJ10
I/O
4
VCCO_4
VCCO_4
AL19
VCCO
5
IO_L08P_5
IO_L08P_5
AH10
I/O
4
VCCO_4
VCCO_4
AL24
VCCO
5
IO_L09N_5
IO_L09N_5
AM10
I/O
4
VCCO_4
VCCO_4
AM27
VCCO
5
IO_L09P_5
IO_L09P_5
AL10
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
203
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
204
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
5
IO_L10N_5/
VRP_5
IO_L10N_5/
VRP_5
AP10
DCI
5
IO_L28P_5/
D7
IO_L28P_5/
D7
AM16
DUAL
5
IO_L10P_5/
VRN_5
IO_L10P_5/
VRN_5
AN10
DCI
5
IO_L29N_5
IO_L29N_5
AF17
I/O
5
IO_L11N_5/
VREF_5
AP11
VREF
IO_L29P_5/
VREF_5
VREF
IO_L11N_5/
VREF_5
IO_L29P_5/
VREF_5
AE17
5
5
IO_L30N_5
IO_L30N_5
AH17
I/O
5
IO_L11P_5
IO_L11P_5
AN11
I/O
5
IO_L30P_5
IO_L30P_5
AG17
I/O
5
IO_L12N_5
IO_L12N_5
AF12
I/O
5
IO_L12P_5
AE12
I/O
IO_L31N_5/
D4
DUAL
IO_L12P_5
IO_L31N_5/
D4
AL17
5
5
IO_L13N_5
IO_L13N_5
AJ12
I/O
5
DUAL
IO_L13P_5
IO_L13P_5
AH12
I/O
IO_L31P_5/
D5
AK17
5
IO_L31P_5/
D5
5
IO_L14N_5
IO_L14N_5
AL12
I/O
5
IO_L32N_5/
GCLK3
IO_L32N_5/
GCLK3
AN17
GCLK
5
IO_L14P_5
IO_L14P_5
AK12
I/O
5
IO_L15N_5
AP12
I/O
IO_L32P_5/
GCLK2
GCLK
IO_L15N_5
IO_L32P_5/
GCLK2
AM17
5
5
IO_L15P_5
IO_L15P_5
AN12
I/O
5
N.C. (‹)
IO_L33N_5
AM7
I/O
5
IO_L16N_5
IO_L16N_5
AE13
I/O
5
N.C. (‹)
IO_L33P_5
AL7
I/O
5
IO_L16P_5
IO_L16P_5
AD13
I/O
5
N.C. (‹)
IO_L34N_5
AP7
I/O
5
IO_L17N_5
IO_L17N_5
AH13
I/O
5
N.C. (‹)
IO_L34P_5
AN7
I/O
5
IO_L17P_5
IO_L17P_5
AG13
I/O
5
IO_L35N_5
IO_L35N_5
AL8
I/O
5
IO_L18N_5
IO_L18N_5
AM13
I/O
5
IO_L35P_5
IO_L35P_5
AK8
I/O
5
IO_L18P_5
IO_L18P_5
AL13
I/O
5
IO_L36N_5
IO_L36N_5
AP8
I/O
5
IO_L19N_5
IO_L19N_5
AG14
I/O
5
IO_L36P_5
IO_L36P_5
AN8
I/O
5
IO_L19P_5/
VREF_5
IO_L19P_5/
VREF_5
AF14
VREF
5
IO_L37N_5
IO_L37N_5
AJ9
I/O
5
IO_L37P_5
IO_L37P_5
AH9
I/O
5
IO_L20N_5
IO_L20N_5
AJ14
I/O
5
IO_L38N_5
IO_L38N_5
AM9
I/O
5
IO_L20P_5
IO_L20P_5
AH14
I/O
5
IO_L38P_5
IO_L38P_5
AL9
I/O
5
IO_L21N_5
IO_L21N_5
AM14
I/O
5
N.C. (‹)
IO_L39N_5
AF11
I/O
5
IO_L21P_5
IO_L21P_5
AL14
I/O
5
N.C. (‹)
IO_L39P_5
AE11
I/O
5
IO_L22N_5
IO_L22N_5
AP14
I/O
5
N.C. (‹)
IO_L40N_5
AJ11
I/O
5
IO_L22P_5
IO_L22P_5
AN14
I/O
5
N.C. (‹)
IO_L40P_5
AH11
I/O
5
IO_L23N_5
IO_L23N_5
AF15
I/O
5
VCCO_5
VCCO_5
AC13
VCCO
5
IO_L23P_5
IO_L23P_5
AE15
I/O
5
VCCO_5
VCCO_5
AC14
VCCO
5
IO_L24N_5
IO_L24N_5
AJ15
I/O
5
VCCO_5
VCCO_5
AC15
VCCO
5
IO_L24P_5
IO_L24P_5
AH15
I/O
5
VCCO_5
VCCO_5
AC16
VCCO
5
IO_L25N_5
IO_L25N_5
AM15
I/O
5
VCCO_5
VCCO_5
AG11
VCCO
5
IO_L25P_5
IO_L25P_5
AL15
I/O
5
VCCO_5
VCCO_5
AG15
VCCO
5
IO_L26N_5
IO_L26N_5
AP15
I/O
5
VCCO_5
VCCO_5
AH8
VCCO
5
IO_L26P_5
IO_L26P_5
AN15
I/O
5
VCCO_5
VCCO_5
AJ13
VCCO
5
IO_L27N_5/
VREF_5
IO_L27N_5/
VREF_5
AJ16
VREF
5
VCCO_5
VCCO_5
AL11
VCCO
VCCO_5
VCCO_5
AL16
VCCO
5
IO_L27P_5
IO_L27P_5
AH16
I/O
5
5
IO_L28N_5/
D6
IO_L28N_5/
D6
AN16
DUAL
5
VCCO_5
VCCO_5
AM4
VCCO
5
VCCO_5
VCCO_5
AM8
VCCO
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
5
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
VCCO_5
VCCO_5
AN13
VCCO
6
IO_L17N_6
IO_L17N_6
AD10
I/O
6
IO_L17P_6/
VREF_6
IO_L17P_6/
VREF_6
AD9
VREF
6
IO
IO
AH1
I/O
6
IO
IO
AH2
I/O
6
IO
IO
V9
I/O
6
IO_L19N_6
IO_L19N_6
AD2
I/O
6
IO
IO
V10
I/O
6
IO_L19P_6
IO_L19P_6
AD1
I/O
6
IO_L01N_6/
VRP_6
IO_L01N_6/
VRP_6
AM2
DCI
6
IO_L20N_6
IO_L20N_6
AC11
I/O
6
IO_L20P_6
IO_L20P_6
AC10
I/O
6
IO_L01P_6/
VRN_6
IO_L01P_6/
VRN_6
AM1
DCI
6
IO_L21N_6
IO_L21N_6
AC8
I/O
6
IO_L21P_6
IO_L21P_6
AC7
I/O
6
IO_L02N_6
IO_L02N_6
AL2
I/O
6
IO_L22N_6
IO_L22N_6
AC6
I/O
6
IO_L02P_6
IO_L02P_6
AL1
I/O
6
IO_L22P_6
IO_L22P_6
AC5
I/O
6
IO_L03N_6/
VREF_6
IO_L03N_6/
VREF_6
AK3
VREF
6
IO_L23N_6
IO_L23N_6
AC2
I/O
6
IO_L23P_6
IO_L23P_6
AC1
I/O
6
IO_L24N_6/
VREF_6
IO_L24N_6/
VREF_6
AC9
VREF
6
IO_L03P_6
IO_L03P_6
AK2
I/O
6
IO_L04N_6
IO_L04N_6
AJ4
I/O
6
IO_L04P_6
IO_L04P_6
AJ3
I/O
6
IO_L24P_6
IO_L24P_6
AB10
I/O
6
IO_L05N_6
IO_L05N_6
AJ2
I/O
6
IO_L25N_6
IO_L25N_6
AB8
I/O
6
IO_L05P_6
IO_L05P_6
AJ1
I/O
6
IO_L25P_6
IO_L25P_6
AB7
I/O
6
IO_L06N_6
IO_L06N_6
AH6
I/O
6
IO_L26N_6
IO_L26N_6
AB4
I/O
6
IO_L06P_6
IO_L06P_6
AH5
I/O
6
IO_L26P_6
IO_L26P_6
AB3
I/O
6
IO_L07N_6
IO_L07N_6
AG6
I/O
6
IO_L27N_6
IO_L27N_6
AB11
I/O
6
IO_L07P_6
IO_L07P_6
AG5
I/O
6
IO_L27P_6
IO_L27P_6
AA11
I/O
6
IO_L08N_6
IO_L08N_6
AG2
I/O
6
IO_L28N_6
IO_L28N_6
AA8
I/O
6
IO_L08P_6
IO_L08P_6
AG1
I/O
6
IO_L28P_6
IO_L28P_6
AA7
I/O
6
IO_L09N_6/
VREF_6
IO_L09N_6/
VREF_6
AF7
VREF
6
IO_L29N_6
IO_L29N_6
AA6
I/O
6
IO_L09P_6
IO_L09P_6
AF6
I/O
6
IO_L29P_6
IO_L29P_6
AA5
I/O
6
IO_L30N_6
IO_L30N_6
AA4
I/O
6
IO_L30P_6
IO_L30P_6
AA3
I/O
6
IO_L31N_6
IO_L31N_6
AA2
I/O
6
IO_L31P_6
IO_L31P_6
AA1
I/O
6
IO_L32N_6
IO_L32N_6
Y11
I/O
6
IO_L32P_6
IO_L32P_6
Y10
I/O
6
IO_L33N_6
IO_L33N_6
Y4
I/O
6
IO_L33P_6
IO_L33P_6
Y3
I/O
6
IO_L34N_6/
VREF_6
IO_L34N_6/
VREF_6
Y2
VREF
6
IO_L34P_6
IO_L34P_6
Y1
I/O
6
IO_L35N_6
IO_L35N_6
Y9
I/O
6
IO_L35P_6
IO_L35P_6
W10
I/O
6
IO_L36N_6
IO_L36N_6
W7
I/O
6
IO_L36P_6
IO_L36P_6
W6
I/O
6
IO_L37N_6
IO_L37N_6
W3
I/O
6
IO_L10N_6
IO_L10N_6
AG4
I/O
6
IO_L10P_6
IO_L10P_6
AF4
I/O
6
IO_L11N_6
IO_L11N_6
AF3
I/O
6
IO_L11P_6
IO_L11P_6
AF2
I/O
6
IO_L12N_6
IO_L12N_6
AF8
I/O
6
IO_L12P_6
IO_L12P_6
AE9
I/O
6
IO_L13N_6
IO_L13N_6
AE8
I/O
6
IO_L13P_6/
VREF_6
IO_L13P_6/
VREF_6
AE7
VREF
6
IO_L14N_6
IO_L14N_6
AE6
I/O
6
IO_L14P_6
IO_L14P_6
AE5
I/O
6
IO_L15N_6
IO_L15N_6
AE4
I/O
6
IO_L15P_6
IO_L15P_6
AE3
I/O
6
IO_L16N_6
IO_L16N_6
AE2
I/O
6
IO_L16P_6
IO_L16P_6
AE1
I/O
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
205
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
206
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
7
IO_L01P_7/
VRN_7
XC3S4000
Pin Name
FG1156
Pin
Number
Type
IO_L01P_7/
VRN_7
C2
DCI
XC3S5000
Pin Name
6
IO_L37P_6
IO_L37P_6
W2
I/O
6
IO_L38N_6
IO_L38N_6
V6
I/O
6
IO_L38P_6
IO_L38P_6
V5
I/O
7
IO_L02N_7
IO_L02N_7
D1
I/O
6
IO_L39N_6
IO_L39N_6
V4
I/O
7
IO_L02P_7
IO_L02P_7
D2
I/O
6
IO_L39P_6
IO_L39P_6
V3
I/O
7
IO_L03N_7/
VREF_7
IO_L03N_7/
VREF_7
E2
VREF
6
IO_L40N_6
IO_L40N_6
V2
I/O
7
IO_L03P_7
IO_L03P_7
E3
I/O
6
IO_L40P_6/
VREF_6
IO_L40P_6/
VREF_6
V1
VREF
7
IO_L04N_7
IO_L04N_7
F3
I/O
6
N.C. (‹)
IO_L41N_6
AH4
I/O
7
IO_L04P_7
IO_L04P_7
F4
I/O
6
N.C. (‹)
IO_L41P_6
AH3
I/O
7
IO_L05N_7
IO_L05N_7
F1
I/O
6
N.C. (‹)
IO_L44N_6
AD7
I/O
7
IO_L05P_7
IO_L05P_7
F2
I/O
IO_L06N_7
IO_L06N_7
G5
I/O
6
N.C. (‹)
IO_L44P_6
AD6
I/O
7
6
IO_L45N_6
IO_L45N_6
AC4
I/O
7
IO_L06P_7
IO_L06P_7
G6
I/O
6
IO_L45P_6
IO_L45P_6
AC3
I/O
7
IO_L07N_7
IO_L07N_7
H5
I/O
6
N.C. (‹)
IO_L46N_6
AA10
I/O
7
IO_L07P_7
IO_L07P_7
H6
I/O
6
N.C. (‹)
IO_L46P_6
AA9
I/O
7
IO_L08N_7
IO_L08N_7
H1
I/O
IO_L08P_7
IO_L08P_7
H2
I/O
6
IO_L48N_6
IO_L48N_6
Y7
I/O
7
6
IO_L48P_6
IO_L48P_6
Y6
I/O
7
IO_L09N_7
IO_L09N_7
J6
I/O
6
N.C. (‹)
IO_L49N_6
W11
I/O
7
IO_L09P_7
IO_L09P_7
J7
I/O
6
N.C. (‹)
IO_L49P_6
V11
I/O
7
IO_L10N_7
IO_L10N_7
J4
I/O
6
IO_L52N_6
IO_L52N_6
V8
I/O
7
IO_L10P_7/
VREF_7
IO_L10P_7/
VREF_7
H4
VREF
6
IO_L52P_6
IO_L52P_6
V7
I/O
7
IO_L11N_7
IO_L11N_7
J2
I/O
6
VCCO_6
VCCO_6
AA12
VCCO
7
IO_L11P_7
IO_L11P_7
J3
I/O
6
VCCO_6
VCCO_6
AB12
VCCO
7
IO_L12N_7
IO_L12N_7
K9
I/O
6
VCCO_6
VCCO_6
AB2
VCCO
7
IO_L12P_7
IO_L12P_7
J8
I/O
6
VCCO_6
VCCO_6
AB6
VCCO
7
IO_L13N_7
IO_L13N_7
K7
I/O
6
VCCO_6
VCCO_6
AD4
VCCO
7
IO_L13P_7
IO_L13P_7
K8
I/O
6
VCCO_6
VCCO_6
AD8
VCCO
7
IO_L14N_7
IO_L14N_7
K5
I/O
6
VCCO_6
VCCO_6
AG3
VCCO
7
IO_L14P_7
IO_L14P_7
K6
I/O
6
VCCO_6
VCCO_6
AG7
VCCO
7
IO_L15N_7
IO_L15N_7
K3
I/O
6
VCCO_6
VCCO_6
AL3
VCCO
7
IO_L15P_7
IO_L15P_7
K4
I/O
6
VCCO_6
VCCO_6
W12
VCCO
7
IO_L16N_7
IO_L16N_7
K1
I/O
6
VCCO_6
VCCO_6
W4
VCCO
7
VCCO_6
Y12
VCCO
IO_L16P_7/
VREF_7
VREF
VCCO_6
IO_L16P_7/
VREF_7
K2
6
6
VCCO_6
VCCO_6
Y8
VCCO
7
IO_L17N_7
IO_L17N_7
L9
I/O
7
IO
IO
G1
I/O
7
IO_L17P_7
IO_L17P_7
L10
I/O
7
IO
IO
G2
I/O
7
IO
U10
I/O
IO_L19N_7/
VREF_7
VREF
IO
IO_L19N_7/
VREF_7
L1
7
7
IO
IO
U9
I/O
7
IO_L19P_7
IO_L19P_7
L2
I/O
7
IO_L01N_7/
VRP_7
IO_L01N_7/
VRP_7
C1
DCI
7
IO_L20N_7
IO_L20N_7
M10
I/O
7
IO_L20P_7
IO_L20P_7
M11
I/O
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
7
IO_L21N_7
IO_L21N_7
M7
I/O
7
N.C. (‹)
IO_L41P_7
G4
I/O
7
IO_L21P_7
IO_L21P_7
M8
I/O
7
N.C. (‹)
IO_L44N_7
L6
I/O
7
IO_L22N_7
IO_L22N_7
M5
I/O
7
N.C. (‹)
IO_L44P_7
L7
I/O
7
IO_L22P_7
IO_L22P_7
M6
I/O
7
IO_L45N_7
IO_L45N_7
M1
I/O
7
IO_L23N_7
IO_L23N_7
M3
I/O
7
IO_L45P_7
IO_L45P_7
M2
I/O
7
IO_L23P_7
IO_L23P_7
M4
I/O
7
IO_L46N_7
IO_L46N_7
N7
I/O
7
IO_L24N_7
IO_L24N_7
N10
I/O
7
IO_L46P_7
IO_L46P_7
N8
I/O
7
IO_L24P_7
IO_L24P_7
M9
I/O
7
N.C. (‹)
IO_L47N_7
P9
I/O
7
IO_L25N_7
IO_L25N_7
N3
I/O
7
N.C. (‹)
IO_L47P_7
P10
I/O
7
IO_L25P_7
IO_L25P_7
N4
I/O
7
IO_L49N_7
IO_L49N_7
P1
I/O
7
IO_L26N_7
IO_L26N_7
P11
I/O
7
IO_L49P_7
IO_L49P_7
P2
I/O
7
IO_L26P_7
IO_L26P_7
N11
I/O
7
IO_L50N_7
IO_L50N_7
R10
I/O
7
IO_L27N_7
IO_L27N_7
P7
I/O
7
IO_L50P_7
IO_L50P_7
R11
I/O
7
IO_L27P_7/
VREF_7
IO_L27P_7/
VREF_7
P8
VREF
7
N.C. (‹)
IO_L51N_7
U11
I/O
7
N.C. (‹)
IO_L51P_7
T11
I/O
7
IO_L28N_7
IO_L28N_7
P5
I/O
7
VCCO_7
VCCO_7
D3
VCCO
7
IO_L28P_7
IO_L28P_7
P6
I/O
7
VCCO_7
VCCO_7
H3
VCCO
7
IO_L29N_7
IO_L29N_7
P3
I/O
7
VCCO_7
VCCO_7
H7
VCCO
7
IO_L29P_7
IO_L29P_7
P4
I/O
7
VCCO_7
VCCO_7
L4
VCCO
7
IO_L30N_7
IO_L30N_7
R6
I/O
7
VCCO_7
VCCO_7
L8
VCCO
7
IO_L30P_7
IO_L30P_7
R7
I/O
7
VCCO_7
VCCO_7
N12
VCCO
7
IO_L31N_7
IO_L31N_7
R3
I/O
7
VCCO_7
VCCO_7
N2
VCCO
7
IO_L31P_7
IO_L31P_7
R4
I/O
7
VCCO_7
VCCO_7
N6
VCCO
7
IO_L32N_7
IO_L32N_7
R1
I/O
7
VCCO_7
VCCO_7
P12
VCCO
7
IO_L32P_7
IO_L32P_7
R2
I/O
7
VCCO_7
VCCO_7
R12
VCCO
7
IO_L33N_7
IO_L33N_7
T10
I/O
7
VCCO_7
VCCO_7
R8
VCCO
7
IO_L33P_7
IO_L33P_7
R9
I/O
7
VCCO_7
VCCO_7
T12
VCCO
7
IO_L34N_7
IO_L34N_7
T6
I/O
7
VCCO_7
VCCO_7
T4
VCCO
7
IO_L34P_7
IO_L34P_7
T7
I/O
N/A
GND
GND
A1
GND
7
IO_L35N_7
IO_L35N_7
T2
I/O
N/A
GND
GND
A13
GND
7
IO_L35P_7
IO_L35P_7
T3
I/O
N/A
GND
GND
A16
GND
7
IO_L37N_7
IO_L37N_7
U7
I/O
N/A
GND
GND
A19
GND
7
IO_L37P_7/
VREF_7
IO_L37P_7/
VREF_7
U8
VREF
N/A
GND
GND
A2
GND
7
IO_L38N_7
IO_L38N_7
U5
I/O
N/A
GND
GND
A22
GND
7
IO_L38P_7
IO_L38P_7
U6
I/O
N/A
GND
GND
A26
GND
7
IO_L39N_7
IO_L39N_7
U3
I/O
N/A
GND
GND
A30
GND
7
IO_L39P_7
IO_L39P_7
U4
I/O
N/A
GND
GND
A33
GND
N/A
GND
GND
A34
GND
N/A
GND
GND
A5
GND
7
IO_L40N_7/
VREF_7
IO_L40N_7/
VREF_7
U1
7
IO_L40P_7
IO_L40P_7
U2
I/O
N/A
GND
GND
A9
GND
7
N.C. (‹)
IO_L41N_7
G3
I/O
N/A
GND
GND
AA14
GND
DS099-4 (v2.4) June 25, 2008
Product Specification
VREF
www.xilinx.com
207
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
N/A
GND
GND
AA15
GND
N/A
GND
GND
AM3
GND
N/A
GND
GND
AA16
GND
N/A
GND
GND
AM32
GND
N/A
GND
GND
AA17
GND
N/A
GND
GND
AN1
GND
N/A
GND
GND
AA18
GND
N/A
GND
GND
AN2
GND
N/A
GND
GND
AA19
GND
N/A
GND
GND
AN33
GND
N/A
GND
GND
AA20
GND
N/A
GND
GND
AN34
GND
N/A
GND
GND
AA21
GND
N/A
GND
GND
AP1
GND
N/A
GND
GND
AB1
GND
N/A
GND
GND
AP13
GND
N/A
GND
GND
AB17
GND
N/A
GND
GND
AP16
GND
N/A
GND
GND
AB18
GND
N/A
GND
GND
AP19
GND
N/A
GND
GND
AB26
GND
N/A
GND
GND
AP2
GND
N/A
GND
GND
AB30
GND
N/A
GND
GND
AP22
GND
N/A
GND
GND
AB34
GND
N/A
GND
GND
AP26
GND
N/A
GND
GND
AB5
GND
N/A
GND
GND
AP30
GND
N/A
GND
GND
AB9
GND
N/A
GND
GND
AP33
GND
N/A
GND
GND
AD3
GND
N/A
GND
GND
AP34
GND
N/A
GND
GND
AD32
GND
N/A
GND
GND
AP5
GND
N/A
GND
GND
AE10
GND
N/A
GND
GND
AP9
GND
N/A
GND
GND
AE25
GND
N/A
GND
GND
B1
GND
N/A
GND
GND
AF1
GND
N/A
GND
GND
B2
GND
N/A
GND
GND
AF13
GND
N/A
GND
GND
B33
GND
N/A
GND
GND
AF16
GND
N/A
GND
GND
B34
GND
N/A
GND
GND
AF19
GND
N/A
GND
GND
C11
GND
N/A
GND
GND
AF22
GND
N/A
GND
GND
C24
GND
N/A
GND
GND
AF30
GND
N/A
GND
GND
C3
GND
N/A
GND
GND
AF34
GND
N/A
GND
GND
C32
GND
N/A
GND
GND
AF5
GND
N/A
GND
GND
E1
GND
N/A
GND
GND
AH28
GND
N/A
GND
GND
E13
GND
N/A
GND
GND
AH7
GND
N/A
GND
GND
E16
GND
N/A
GND
GND
AK1
GND
N/A
GND
GND
E19
GND
N/A
GND
GND
AK13
GND
N/A
GND
GND
E22
GND
N/A
GND
GND
AK16
GND
N/A
GND
GND
E26
GND
N/A
GND
GND
AK19
GND
N/A
GND
GND
E30
GND
N/A
GND
GND
AK22
GND
N/A
GND
GND
E34
GND
N/A
GND
GND
AK26
GND
N/A
GND
GND
E5
GND
N/A
GND
GND
AK30
GND
N/A
GND
GND
E9
GND
N/A
GND
GND
AK34
GND
N/A
GND
GND
G28
GND
N/A
GND
GND
AK5
GND
N/A
GND
GND
G7
GND
N/A
GND
GND
AK9
GND
N/A
GND
GND
J1
GND
N/A
GND
GND
AM11
GND
N/A
GND
GND
J13
GND
N/A
GND
GND
AM24
GND
N/A
GND
GND
J16
GND
208
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
N/A
GND
GND
J19
GND
N/A
GND
GND
T21
GND
N/A
GND
GND
J22
GND
N/A
GND
GND
T26
GND
N/A
GND
GND
J30
GND
N/A
GND
GND
T30
GND
N/A
GND
GND
J34
GND
N/A
GND
GND
T34
GND
N/A
GND
GND
J5
GND
N/A
GND
GND
T5
GND
N/A
GND
GND
K10
GND
N/A
GND
GND
T9
GND
N/A
GND
GND
K25
GND
N/A
GND
GND
U13
GND
N/A
GND
GND
L3
GND
N/A
GND
GND
U14
GND
N/A
GND
GND
L32
GND
N/A
GND
GND
U15
GND
N/A
GND
GND
N1
GND
N/A
GND
GND
U16
GND
N/A
GND
GND
N17
GND
N/A
GND
GND
U17
GND
N/A
GND
GND
N18
GND
N/A
GND
GND
U18
GND
N/A
GND
GND
N26
GND
N/A
GND
GND
U19
GND
N/A
GND
GND
N30
GND
N/A
GND
GND
U20
GND
N/A
GND
GND
N34
GND
N/A
GND
GND
U21
GND
N/A
GND
GND
N5
GND
N/A
GND
GND
U22
GND
N/A
GND
GND
N9
GND
N/A
GND
GND
V13
GND
N/A
GND
GND
P14
GND
N/A
GND
GND
V14
GND
N/A
GND
GND
P15
GND
N/A
GND
GND
V15
GND
N/A
GND
GND
P16
GND
N/A
GND
GND
V16
GND
N/A
GND
GND
P17
GND
N/A
GND
GND
V17
GND
N/A
GND
GND
P18
GND
N/A
GND
GND
V18
GND
N/A
GND
GND
P19
GND
N/A
GND
GND
V19
GND
N/A
GND
GND
P20
GND
N/A
GND
GND
V20
GND
N/A
GND
GND
P21
GND
N/A
GND
GND
V21
GND
N/A
GND
GND
R14
GND
N/A
GND
GND
V22
GND
N/A
GND
GND
R15
GND
N/A
GND
GND
W1
GND
N/A
GND
GND
R16
GND
N/A
GND
GND
W14
GND
N/A
GND
GND
R17
GND
N/A
GND
GND
W15
GND
N/A
GND
GND
R18
GND
N/A
GND
GND
W16
GND
N/A
GND
GND
R19
GND
N/A
GND
GND
W17
GND
N/A
GND
GND
R20
GND
N/A
GND
GND
W18
GND
N/A
GND
GND
R21
GND
N/A
GND
GND
W19
GND
N/A
GND
GND
T1
GND
N/A
GND
GND
W20
GND
N/A
GND
GND
T14
GND
N/A
GND
GND
W21
GND
N/A
GND
GND
T15
GND
N/A
GND
GND
W26
GND
N/A
GND
GND
T16
GND
N/A
GND
GND
W30
GND
N/A
GND
GND
T17
GND
N/A
GND
GND
W34
GND
N/A
GND
GND
T18
GND
N/A
GND
GND
W5
GND
N/A
GND
GND
T19
GND
N/A
GND
GND
W9
GND
N/A
GND
GND
T20
GND
N/A
GND
GND
Y14
GND
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
209
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 109: FG1156 Package Pinout (Continued)
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
Bank
XC3S4000
Pin Name
XC3S5000
Pin Name
FG1156
Pin
Number
Type
N/A
GND
GND
Y15
GND
N/A
VCCINT
VCCINT
AA22
VCCINT
N/A
GND
GND
Y16
GND
N/A
VCCINT
VCCINT
AB13
VCCINT
N/A
GND
GND
Y17
GND
N/A
VCCINT
VCCINT
AB14
VCCINT
N/A
GND
GND
Y18
GND
N/A
VCCINT
VCCINT
AB15
VCCINT
N/A
GND
GND
Y19
GND
N/A
VCCINT
VCCINT
AB16
VCCINT
N/A
GND
GND
Y20
GND
N/A
VCCINT
VCCINT
AB19
VCCINT
N/A
GND
GND
Y21
GND
N/A
VCCINT
VCCINT
AB20
VCCINT
N/A
N.C. (‹)
N.C. („)
AK31
N.C.
N/A
VCCINT
VCCINT
AB21
VCCINT
N/A
VCCAUX
VCCAUX
AD30
VCCAUX
N/A
VCCINT
VCCINT
AB22
VCCINT
N/A
VCCAUX
VCCAUX
AD5
VCCAUX
N/A
VCCINT
VCCINT
AC12
VCCINT
N/A
VCCAUX
VCCAUX
AG16
VCCAUX
N/A
VCCINT
VCCINT
AC17
VCCINT
N/A
VCCAUX
VCCAUX
AG19
VCCAUX
N/A
VCCINT
VCCINT
AC18
VCCINT
N/A
VCCAUX
VCCAUX
AJ30
VCCAUX
N/A
VCCINT
VCCINT
AC23
VCCINT
N/A
VCCAUX
VCCAUX
AJ5
VCCAUX
N/A
VCCINT
VCCINT
M12
VCCINT
N/A
VCCAUX
VCCAUX
AK11
VCCAUX
N/A
VCCINT
VCCINT
M17
VCCINT
N/A
VCCAUX
VCCAUX
AK15
VCCAUX
N/A
VCCINT
VCCINT
M18
VCCINT
N/A
VCCAUX
VCCAUX
AK20
VCCAUX
N/A
VCCINT
VCCINT
M23
VCCINT
N/A
VCCAUX
VCCAUX
AK24
VCCAUX
N/A
VCCINT
VCCINT
N13
VCCINT
N/A
VCCAUX
VCCAUX
AK29
VCCAUX
N/A
VCCINT
VCCINT
N14
VCCINT
N/A
VCCAUX
VCCAUX
AK6
VCCAUX
N/A
VCCINT
VCCINT
N15
VCCINT
N/A
VCCAUX
VCCAUX
E11
VCCAUX
N/A
VCCINT
VCCINT
N16
VCCINT
N/A
VCCAUX
VCCAUX
E15
VCCAUX
N/A
VCCINT
VCCINT
N19
VCCINT
N/A
VCCAUX
VCCAUX
E20
VCCAUX
N/A
VCCINT
VCCINT
N20
VCCINT
N/A
VCCAUX
VCCAUX
E24
VCCAUX
N/A
VCCINT
VCCINT
N21
VCCINT
N/A
VCCAUX
VCCAUX
E29
VCCAUX
N/A
VCCINT
VCCINT
N22
VCCINT
N/A
VCCAUX
VCCAUX
E6
VCCAUX
N/A
VCCINT
VCCINT
P13
VCCINT
N/A
VCCAUX
VCCAUX
F30
VCCAUX
N/A
VCCINT
VCCINT
P22
VCCINT
N/A
VCCAUX
VCCAUX
F5
VCCAUX
N/A
VCCINT
VCCINT
R13
VCCINT
N/A
VCCAUX
VCCAUX
H16
VCCAUX
N/A
VCCINT
VCCINT
R22
VCCINT
N/A
VCCAUX
VCCAUX
H19
VCCAUX
N/A
VCCINT
VCCINT
T13
VCCINT
N/A
VCCAUX
VCCAUX
L30
VCCAUX
N/A
VCCINT
VCCINT
T22
VCCINT
N/A
VCCAUX
VCCAUX
L5
VCCAUX
N/A
VCCINT
VCCINT
U12
VCCINT
N/A
VCCAUX
VCCAUX
R30
VCCAUX
N/A
VCCINT
VCCINT
U23
VCCINT
N/A
VCCAUX
VCCAUX
R5
VCCAUX
N/A
VCCINT
VCCINT
V12
VCCINT
N/A
VCCAUX
VCCAUX
T27
VCCAUX
N/A
VCCINT
VCCINT
V23
VCCINT
N/A
VCCAUX
VCCAUX
T8
VCCAUX
N/A
VCCINT
VCCINT
W13
VCCINT
N/A
VCCAUX
VCCAUX
W27
VCCAUX
N/A
VCCINT
VCCINT
W22
VCCINT
N/A
VCCAUX
VCCAUX
W8
VCCAUX
N/A
VCCINT
VCCINT
Y13
VCCINT
N/A
VCCAUX
VCCAUX
Y30
VCCAUX
N/A
VCCINT
VCCINT
Y22
VCCINT
N/A
VCCAUX
VCCAUX
Y5
VCCAUX
VCCAUX CCLK
CCLK
AL31
CONFIG
N/A
VCCINT
VCCINT
AA13
VCCINT
VCCAUX DONE
DONE
AD24
CONFIG
210
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
User I/Os by Bank
Table 109: FG1156 Package Pinout (Continued)
FG1156
Pin
Number
Type
HSWAP_EN
L11
CONFIG
VCCAUX M0
M0
AL4
CONFIG
VCCAUX M1
M1
AK4
CONFIG
VCCAUX M2
M2
AG8
CONFIG
VCCAUX PROG_B
PROG_B
D4
CONFIG
VCCAUX TCK
TCK
D31
JTAG
VCCAUX TDI
TDI
E4
JTAG
VCCAUX TDO
TDO
E31
JTAG
VCCAUX TMS
TMS
H27
JTAG
XC3S4000
Pin Name
XC3S5000
Pin Name
VCCAUX HSWAP_EN
Bank
Note: The FG(G)1156 package is being discontinued and is
not recommended for new designs. See
http://www.xilinx.com/support/documentation/
spartan-3_customer_notices.htm for the latest updates
Table 110 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 in
the FG1156 package. Similarly, Table 111 shows how the
available user-I/O pins are distributed between the eight I/O
banks for the XC3S5000 in the FG1156 package.
Table 110: User I/Os Per Bank for XC3S4000 in FG1156 Package
Package Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O
Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
90
79
0
2
7
2
1
90
79
0
2
7
2
2
88
80
0
2
6
0
3
88
79
0
2
7
0
4
90
73
6
2
7
2
5
90
73
6
2
7
2
6
88
79
0
2
7
0
7
88
79
0
2
7
0
Table 111: User I/Os Per Bank for XC3S5000 in FG1156 Package
Package Edge
Top
Right
Bottom
Left
All Possible I/O Pins by Type
I/O
Bank
Maximum
I/O
I/O
DUAL
DCI
VREF
GCLK
0
100
89
0
2
7
2
1
100
89
0
2
7
2
2
96
87
0
2
7
0
3
96
87
0
2
7
0
4
100
83
6
2
7
2
5
100
83
6
2
7
2
6
96
87
0
2
7
0
7
96
87
0
2
7
0
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
211
R
Spartan-3 FPGA Family: Pinout Descriptions
FG1156 Footprint
Top Left Corner of FG1156
Package (top view)
XC3S4000
(712 max. user I/O)
I/O: Unrestricted,
621
general-purpose user I/O
XC3S5000
(784 max. user I/O)
I/O: Unrestricted,
692
general-purpose user I/O
55
VREF: User I/O or input voltage
reference for bank
73
N.C.: Unconnected pins for
XC3S4000 (‹)
56
VREF: User I/O or input voltage
reference for bank
1
N.C.: Unconnected pins for
XC3S5000 („)
Figure 51: FG1156 Package Footprint (top view)
Bank 7
1
2
3
4
5
6
7
8
9
I/O
L02P_0
GND
I/O
L05P_0
VREF_0
I/O
L34P_0
‹
I/O
L36P_0
GND
Bank 0
10
11
12
I/O
L38P_0
I/O
L40P_0
‹
I/O
L15P_0
13
14
15
16
17
GND
I/O
L22P_0
I/O
L26P_0
VREF_0
GND
I/O
L32P_0
GCLK6
A
GND
GND
I/O
L01P_0
VRN_0
B
GND
GND
I/O
L01N_0
VRP_0
I/O
L02N_0
I/O
L03P_0
I/O
L05N_0
I/O
L34N_0
‹
I/O
L36N_0
I/O
I/O
L38N_0
I/O
L40N_0
‹
I/O
L15N_0
VCCO_0
I/O
L22N_0
I/O
L26N_0
I/O
L28P_0
I/O
L32N_0
GCLK7
C
I/O
L01N_7
VRP_7
I/O
L01P_7
VRN_7
GND
VCCO_0
I/O
L03N_0
I/O
L04P_0
I/O
L33P_0
‹
VCCO_0
I/O
L08P_0
I/O
L37P_0
GND
I/O
L14P_0
I/O
L17P_0
I/O
L21P_0
I/O
L25P_0
I/O
L28N_0
I/O
L31P_0
VREF_0
D
I/O
L02N_7
I/O
L02P_7
VCCO_7 PROG_B
IO
VREF_0
I/O
L04N_0
I/O
L33N_0
‹
I/O
L35P_0
I/O
L08N_0
I/O
L37N_0
VCCO_0
I/O
L14N_0
I/O
L17N_0
I/O
L21N_0
I/O
L25N_0
VCCO_0
I/O
L31N_0
E
GND
I/O
L03N_7
VREF_7
I/O
L03P_7
TDI
GND
VCCAUX
I/O
L06P_0
I/O
L35N_0
GND
IO
VCCAUX
VREF_0
I/O
L13P_0
GND
I/O
L20P_0
VCCAUX
GND
I/O
F
I/O
L05N_7
I/O
L05P_7
I/O
L04N_7
I/O
L04P_7
VCCAUX
I/O
I/O
L06N_0
I/O
I/O
L07P_0
I/O
L10P_0
I/O
L13N_0
VCCO_0
I/O
L20N_0
I/O
L24P_0
I/O
L27P_0
I/O
L30P_0
G
I/O
I/O
I/O
L41N_7
‹
I/O
L41P_7
‹
I/O
L06N_7
I/O
L06P_7
GND
VCCO_0
I/O
L07N_0
I/O
L10N_0
I/O
I/O
L16P_0
I/O
L19P_0
I/O
L24N_0
I/O
L27N_0
I/O
L30N_0
I/O
L09P_0
VCCO_0
I/O
L12P_0
I/O
L16N_0
I/O
L19N_0
VCCO_0 VCCAUX
I/O
L29P_0
I/O
L09N_0
I/O
I/O
L12N_0
GND
IO
VREF_0
I/O
L23P_0
GND
I/O
L29N_0
‹
I/O
L11P_0
I/O
I/O
L18P_0
I/O
L23N_0
I/O
I/O
I/O
L11N_0
I/O
I/O
L18N_0
IO
VREF_0
I/O
I/O
I/O
L39P_0
‹
I/O
L39N_0
‹
H
I/O
L08N_7
I/O
L08P_7
VCCO_7
I/O
L10P_7
VREF_7
I/O
L07N_7
I/O
L07P_7
VCCO_7
I/O
I/O
J
GND
I/O
L11N_7
I/O
L11P_7
I/O
L10N_7
GND
I/O
L09N_7
I/O
L09P_7
I/O
L12P_7
I/O
K
I/O
L16N_7
I/O
L16P_7
VREF_7
I/O
L15N_7
I/O
L15P_7
I/O
L14N_7
I/O
L14P_7
I/O
L13N_7
I/O
L13P_7
I/O
L12N_7
GND
L
I/O
L19N_7
VREF_7
I/O
L19P_7
GND
VCCO_7 VCCAUX
I/O
L44N_7
‹
I/O
L44P_7
‹
VCCO_7
I/O
L17N_7
I/O
L17P_7
HSWAP_
EN
M
I/O
L45N_7
I/O
L45P_7
I/O
L23N_7
I/O
L23P_7
I/O
L22N_7
I/O
L22P_7
I/O
L21N_7
I/O
L21P_7
I/O
L24P_7
I/O
L20N_7
I/O
L20P_7
VCCINT
N
GND
VCCO_7
I/O
L25N_7
I/O
L25P_7
GND
VCCO_7
I/O
L46N_7
I/O
L46P_7
GND
I/O
L24N_7
I/O
L26P_7
VCCO_7 VCCINT
VCCINT
VCCINT
P
I/O
L49N_7
I/O
L49P_7
I/O
L29N_7
I/O
L29P_7
I/O
L28N_7
I/O
L28P_7
I/O
L27N_7
I/O
L27P_7
VREF_7
I/O
L47N_7
I/O
L47P_7
GND
‹
I/O
L26N_7
VCCO_7 VCCINT
‹
R
I/O
L32N_7
I/O
L32P_7
I/O
L31N_7
I/O
L31P_7
VCCAUX
I/O
L30N_7
I/O
L30P_7
VCCO_7
I/O
L33P_7
I/O
L50N_7
I/O
L50P_7
VCCO_7 VCCINT
T
GND
I/O
L35N_7
I/O
L35P_7
VCCO_7
GND
I/O
L34N_7
I/O
L34P_7
VCCAUX
GND
I/O
L33N_7
I/O
L51P_7
‹
U
I/O
L40N_7
VREF_7
I/O
L40P_7
I/O
L39N_7
I/O
L39P_7
I/O
L38N_7
I/O
L38P_7
I/O
L37N_7
I/O
L37P_7
VREF_7
I/O
I/O
I/O
L51N_7
‹
‹
I/O
VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCINT
VCCINT
GND
GND
GND
GND
GND
GND
GND
GND
VCCO_7 VCCINT
GND
GND
GND
GND
VCCINT
GND
GND
GND
GND
GND
DS099-4_14a_072903
212
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Top Right Corner of FG1156 Package
(top view)
12
7
40
DUAL: Configuration pin, then
possible user I/O
16
CONFIG: Dedicated
configuration pins
VCCINT: Internal core voltage
supply (+1.2V)
18
I/O
19
GND
20
21
I/O
L26N_1
GND
8
GCLK: User I/O or global clock
buffer input
VCCO: Output voltage supply
for bank
4
JTAG: Dedicated JTAG port
pins
104
32
VCCAUX: Auxiliary voltage
supply (+2.5V)
184
22
I/O
L40N_1
DCI: User I/O or reference
resistor input for bank
23
24
Bank 1
25
26
I/O
L19N_1
I/O
L15N_1
I/O
L14N_1
GND
I/O
L19P_1
I/O
L15P_1
I/O
L14P_1
I/O
27
I/O
L08N_1
GND: Ground
28
I/O
L34N_1
‹
I/O
L34P_1
29
30
31
32
33
34
GND
GND
A
I/O
L05N_1
GND
I/O
L02N_1
I/O
L01N_1
VRP_1
I/O
L05P_1
I/O
L03N_1
I/O
L02P_1
I/O
L01P_1
VRN_1
GND
GND
B
I/O
L32N_1
GCLK5
I/O
L28N_1
I/O
L40P_1
I/O
L26P_1
VCCO_1
I/O
L32P_1
GCLK4
I/O
L28P_1
I/O
L39N_1
I/O
L25N_1
I/O
L22N_1
I/O
GND
I/O
L13N_1
I/O
L10N_1
VREF_1
VCCO_1
I/O
L33N_1
‹
I/O
L04N_1
I/O
L03P_1
VCCO_1
GND
I/O
L01N_2
VRP_2
I/O
L01P_2
VRN_2
C
I/O
L31N_1
VREF_1
VCCO_1
I/O
L39P_1
I/O
L25P_1
I/O
L22P_1
I/O
L18N_1
VCCO_1
I/O
L13P_1
I/O
L10P_1
I/O
L07N_1
I/O
L33P_1
‹
I/O
L04P_1
IO
VREF_1
TCK
VCCO_2
I/O
L02N_2
I/O
L02P_2
D
I/O
L31P_1
GND
VCCAUX
I/O
GND
I/O
L18P_1
VCCAUX
I/O
GND
I/O
L07P_1
I/O
L06N_1 VCCAUX
VREF_1
GND
TDO
I/O
L03N_2
VREF_2
I/O
L03P_2
GND
E
I/O
I/O
L27N_1
I/O
L38N_1
I/O
L24N_1
VCCO_1
I/O
L17N_1
VREF_1
I/O
L36N_1
‹
I/O
L12N_1
I/O
L09N_1
I/O
I/O
L06P_1
I/O
VCCAUX
I/O
L04N_2
I/O
L04P_2
I/O
L41N_2
I/O
L41P_2
F
I/O
L30N_1
I/O
L27P_1
I/O
L38P_1
I/O
L24P_1
I/O
L21N_1
I/O
L17P_1
I/O
L36P_1
‹
I/O
L12P_1
I/O
L09P_1
VCCO_1
GND
I/O
L05N_2
I/O
L05P_2
I/O
L42N_2
I/O
L42P_2
I/O
I/O
G
‹
‹
I/O
L23N_1
I/O
L21P_1
I/O
VCCO_1
I/O
L11N_1
I/O
TMS
VCCO_2
I/O
L06N_2
I/O
L06P_2
I/O
L09N_2
VREF_2
VCCO_2
I/O
L07N_2
I/O
L07P_2
H
I/O
L37N_1
I/O
L23P_1
GND
I/O
L16N_1
I/O
L35N_1
‹
I/O
L11P_1
I/O
I/O
L11N_2
I/O
L08N_2
I/O
L08P_2
GND
I/O
L09P_2
I/O
L10N_2
I/O
L10P_2
GND
J
I/O
L37P_1
IO
VREF_1
I/O
L20N_1
I/O
L16P_1
I/O
L13P_2
VREF_2
I/O
L14N_2
I/O
L14P_2
I/O
L15N_2
I/O
L15P_2
K
I/O
I/O
I/O
L20P_1
I/O
GND
I/O
L45N_2
I/O
L45P_2
L
I/O
L30P_1
VCCAUX VCCO_1
I/O
L29N_1
GND
I/O
L29P_1
I/O
IO
VREF_1
I/O
VCCINT
GND
GND
‹
VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCINT
VCCINT VCCINT
GND
GND
VCCINT
GND
I/O
L35P_1
I/O
L11P_2
I/O
L12N_2
I/O
L12P_2
I/O
L13N_2
I/O
L16N_2
I/O
L16P_2
VCCO_2
I/O
L17N_2
I/O
L17P_2
VREF_2 VCCAUX VCCO_2
‹
I/O
L46N_2
I/O
L46P_2
I/O
L21N_2
I/O
L47N_2
I/O
L47P_2
I/O
L19N_2
I/O
L19P_2
I/O
L20N_2
I/O
L20P_2
I/O
L48N_2
I/O
L48P_2
M
I/O
L21P_2
GND
I/O
L22N_2
I/O
L22P_2
VCCO_2
GND
I/O
L23N_2
VREF_2
I/O
L23P_2
VCCO_2
GND
N
I/O
L49N_2
I/O
L49P_2
‹
I/O
L50N_2
I/O
L50P_2
I/O
L26N_2
I/O
L26P_2
I/O
L27N_2
I/O
L27P_2
I/O
L28N_2
I/O
L28P_2
P
‹
I/O
L29P_2
I/O
L33N_2
VCCO_2
I/O
L30N_2
I/O
L30P_2
VCCAUX
I/O
L31N_2
I/O
L31P_2
I/O
L32N_2
I/O
L32P_2
R
I/O
L33P_2
GND
VCCAUX
I/O
L34N_2
VREF_2
I/O
L34P_2
GND
VCCO_2
I/O
L35N_2
I/O
L35P_2
GND
T
I/O
I/O
I/O
L37N_2
I/O
L37P_2
I/O
L38N_2
I/O
L38P_2
I/O
L39N_2
I/O
L39P_2
I/O
L40N_2
I/O
L40P_2
VREF_2
U
‹
I/O
VCCO_2
I/O
L24N_2
VCCINT
VCCO_2
I/O
L24P_2
GND
GND
GND
VCCINT
VCCO_2
GND
GND
GND
GND
VCCINT
VCCO_2
I/O
L29N_2
I/O
L51N_2
‹
GND
GND
GND
GND
GND
VCCINT
‹
GND
VCCINT
GND
‹
I/O
L08P_1
I/O
L51P_2
‹
‹
Bank 2
All Devices
DS099-4_14b_072903
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
213
R
Spartan-3 FPGA Family: Pinout Descriptions
Bank 6
1
2
3
4
10
11
I/O
I/O
I/O
L49P_6
‹
VCCINT
VCCAUX
GND
I/O
L35P_6
I/O
L49N_6
‹
I/O
L48N_6
VCCO_6
I/O
L35N_6
I/O
L32P_6
I/O
L29N_6
I/O
L28P_6
I/O
L28N_6
I/O
L46P_6
‹
GND
VCCO_6
I/O
L25P_6
I/O
L25N_6
I/O
L22P_6
I/O
L22N_6
I/O
L21P_6
I/O
L44P_6
I/O
L44N_6
‹
‹
I/O
L14N_6
I/O
L13P_6
VREF_6
I/O
L09P_6
I/O
L09N_6
VREF_6
I/O
L12N_6
I/O
5
6
7
13
14
15
16
17
GND
GND
GND
GND
GND
VCCO_6 VCCINT
GND
GND
GND
GND
I/O
L32N_6
VCCO_6 VCCINT
GND
GND
GND
GND
I/O
L46N_6
‹
I/O
L27P_6
VCCO_6 VCCINT
GND
GND
GND
GND
GND
I/O
L24P_6
I/O
L27N_6
VCCO_6 VCCINT
VCCINT
VCCINT
I/O
L21N_6
I/O
L24N_6
VREF_6
I/O
L20P_6
I/O
L20N_6
VCCINT
VCCO_6
I/O
L17P_6
VREF_6
I/O
L17N_6
I/O
I/O
L13N_6
I/O
L12P_6
GND
8
V
I/O
L40P_6
VREF_6
I/O
L40N_6
I/O
L39P_6
I/O
L39N_6
I/O
L38P_6
I/O
L38N_6
I/O
L52P_6
I/O
L52N_6
W
GND
I/O
L37P_6
I/O
L37N_6
VCCO_6
GND
I/O
L36P_6
I/O
L36N_6
Y
I/O
L34P_6
I/O
L34N_6
VREF_6
I/O
L33P_6
I/O
L33N_6
VCCAUX
I/O
L48P_6
A
A
I/O
L31P_6
I/O
L31N_6
I/O
L30P_6
I/O
L30N_6
I/O
L29P_6
A
B
GND
VCCO_6
I/O
L26P_6
I/O
L26N_6
A
C
I/O
L23P_6
I/O
L23N_6
I/O
L45P_6
I/O
L45N_6
A
D
I/O
L19P_6
I/O
L19N_6
GND
A
E
I/O
L16P_6
I/O
L16N_6
I/O
L15P_6
A
F
GND
A
G
VCCO_6 VCCAUX
I/O
L15N_6
I/O
L14P_6
9
I/O
L39P_5
‹
I/O
L07P_5
I/O
L39N_5
12
I/O
VCCINT
GND
VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCINT
‹
I/O
L16P_5
I/O
I/O
I/O
I/O
I/O
L12P_5
I/O
L16N_5
I/O
I/O
L23P_5
I/O
I/O
L29P_5
VREF_5
I/O
L12N_5
GND
I/O
L19P_5
VREF_5
I/O
L23N_5
GND
I/O
L29N_5
I/O
L11P_6
I/O
L11N_6
I/O
L10P_6
GND
I/O
L08P_6
I/O
L08N_6
VCCO_6
I/O
L10N_6
I/O
L07P_6
I/O
L07N_6
VCCO_6
M2
I/O
I/O
L07N_5
VCCO_5
I/O
I/O
L17P_5
I/O
L19N_5
VCCO_5 VCCAUX
I/O
L30P_5
A
H
I/O
I/O
I/O
L41P_6
I/O
L41N_6
VCCO_5
‹
I/O
L06N_6
GND
‹
I/O
L06P_6
I/O
L37P_5
I/O
L08P_5
I/O
L40P_5
‹
I/O
L13P_5
I/O
L17N_5
I/O
L20P_5
I/O
L24P_5
I/O
L27P_5
I/O
L30N_5
A
J
I/O
L05P_6
I/O
L05N_6
I/O
L04P_6
I/O
L04N_6
VCCAUX
I/O
I/O
L06P_5
IO
VREF_5
I/O
L37N_5
I/O
L08N_5
I/O
L40N_5
‹
I/O
L13N_5
VCCO_5
I/O
L20N_5
I/O
L24N_5
I/O
L27N_5
VREF_5
I/O
A
K
GND
I/O
L03P_6
I/O
L03N_6
VREF_6
M1
GND
VCCAUX
I/O
L06N_5
I/O
L35P_5
GND
I/O
VCCAUX
I/O
L14P_5
GND
I/O
VCCAUX
GND
I/O
L31P_5
D5
A
L
I/O
L02P_6
I/O
L02N_6
VCCO_6
M0
IO
VREF_5
I/O
L04P_5
I/O
L35N_5
I/O
L38P_5
I/O
L09P_5
VCCO_5
I/O
L14N_5
I/O
L18P_5
I/O
L21P_5
I/O
L25P_5
VCCO_5
I/O
L31N_5
D4
VCCO_5
I/O
L38N_5
I/O
L09N_5
GND
I/O
I/O
L18N_5
I/O
L21N_5
I/O
L25N_5
I/O
L28P_5
D7
I/O
L32P_5
GCLK2
I/O
L36P_5
I/O
I/O
L10P_5
VRN_5
I/O
L11P_5
I/O
L15P_5
VCCO_5
I/O
L22P_5
I/O
L26P_5
I/O
L28N_5
D6
I/O
L32N_5
GCLK3
I/O
L36N_5
GND
I/O
L10N_5
VRP_5
I/O
L11N_5
VREF_5
I/O
L15N_5
GND
I/O
L22N_5
I/O
L26N_5
GND
IO
VREF_5
A
M
A
N
A
P
I/O
L01P_6
VRN_6
GND
GND
I/O
L01N_6
VRP_6
GND
GND
I/O
L01P_5
CS_B
GND
I/O
L01N_5
RDWR_B
VCCO_5
I/O
L02P_5
I/O
L02N_5
I/O
L03P_5
I/O
L03N_5
GND
I/O
L04N_5
I/O
L05P_5
I/O
L05N_5
I/O
L33P_5
‹
I/O
L33N_5
‹
I/O
L34P_5
‹
I/O
L34N_5
‹
‹
Bank 5
‹
DS099-4_14c_072503
Bottom Left Corner of
FG1156 Package
(top view)
214
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification
R
GND
19
GND
20
GND
21
GND
22
GND
23
24
VCCINT
I/O
L51N_3
25
26
GND
GND
GND
VCCINT
VCCO_3
I/O
L51P_3
‹
GND
GND
GND
GND
VCCINT
VCCO_3
I/O
L50P_3
GND
GND
GND
GND
VCCINT
VCCO_3
I/O
L48N_3
GND
VCCINT
VCCINT VCCINT
VCCINT
VCCINT
VCCO_4 VCCO_4 VCCO_4 VCCO_4
28
29
30
31
32
33
34
V
I/O
I/O
I/O
L37P_3
I/O
L37N_3
I/O
L38P_3
I/O
L38N_3
I/O
L39P_3
I/O
L39N_3
I/O
L40P_3
I/O
L40N_3
VREF_3
I/O
L33N_3
GND
VCCAUX
I/O
L34P_3
VREF_3
I/O
L34N_3
GND
VCCO_3
I/O
L35P_3
I/O
L35N_3
GND
W
I/O
L50N_3
I/O
L33P_3
VCCO_3
I/O
L30P_3
I/O
L30N_3
VCCAUX
I/O
L31P_3
I/O
L31N_3
I/O
L32P_3
I/O
L32N_3
Y
I/O
L49P_3
I/O
L49N_3
‹
‹
I/O
L26P_3
I/O
L26N_3
I/O
L27P_3
I/O
L27N_3
I/O
L28P_3
I/O
L28N_3
I/O
L29P_3
I/O
L29N_3
A
A
‹
GND
27
VCCO_3
I/O
L48P_3
I/O
L24N_3
GND
I/O
L46P_3
I/O
L46N_3
VCCO_3
GND
I/O
L47P_3
I/O
L47N_3
VCCO_3
GND
A
B
VCCINT
I/O
L20P_3
I/O
L20N_3
I/O
L24P_3
I/O
L21P_3
I/O
L21N_3
I/O
L22P_3
I/O
L22N_3
I/O
L23P_3
VREF_3
I/O
L23N_3
I/O
L45P_3
I/O
L45N_3
A
C
DONE
I/O
L17P_3
VREF_3
I/O
L17N_3
VCCO_3
I/O
L44P_3
‹
I/O
L44N_3
‹
GND
I/O
L19P_3
I/O
L19N_3
A
D
GND
I/O
L12N_3
I/O
L13P_3
I/O
L13N_3
VREF_3
I/O
L14P_3
I/O
L14N_3
I/O
L15P_3
I/O
L15N_3
I/O
L16P_3
I/O
L16N_3
A
E
I/O
‹
I/O
L12P_3
I/O
L09P_3
VREF_3
I/O
L09N_3
GND
I/O
L10N_3
I/O
L11P_3
I/O
L11N_3
GND
A
F
I/O
L10P_3
VCCO_3
I/O
L08P_3
I/O
L08N_3
A
G
I/O
L41P_3
I/O
L41N_3
I/O
I/O
‹
‹
A
H
I/O
I/O
I/O
I/O
L18N_4
I/O
I/O
L11N_4
I/O
I/O
I/O
L23N_4
I/O
L18P_4
I/O
I/O
L11P_4
I/O
L29N_4
GND
I/O
L23P_4
IO
VREF_4
GND
I/O
L12N_4
I/O
I/O
L07N_4
I/O
L19N_4
I/O
L16N_4
I/O
L12P_4
VCCO_4
I/O
L07P_4
I/O
I/O
VCCO_3
I/O
L07P_3
I/O
L07N_3
I/O
L19P_4
I/O
L16P_4
IO
VREF_4
I/O
L39N_4
‹
I/O
L08N_4
I/O
L05N_4
VCCO_4
GND
I/O
L06P_3
I/O
L06N_3
I/O
L08P_4
I/O
L05P_4
I/O
I/O
L35N_4
I/O
VCCAUX
I/O
L04P_3
I/O
L04N_3
I/O
L05P_3
I/O
L05N_3
A
J
N.C.
‹
„
I/O
L03P_3
I/O
L03N_3
GND
A
K
VCCO_3
I/O
L02P_3
I/O
L02N_3
VREF_3
A
L
I/O
L29P_4
VCCAUX VCCO_4
I/O
‹
VCCAUX VCCO_3
I/O
L30N_4
D2
I/O
L27N_4
DIN
D0
I/O
L30P_4
D3
I/O
L27P_4
D1
I/O
L24P_4
I/O
L20N_4
VCCO_4
I/O
L13N_4
I/O
L39P_4
‹
IO
VREF_4
GND
VCCAUX
I/O
L20P_4
GND
I/O
L13P_4
VCCAUX
I/O
GND
I/O
L38N_4
I/O
L35P_4
VCCAUX
GND
I/O
L31N_4
INIT_B
VCCO_4
I/O
L25N_4
I/O
L21N_4
I/O
L17N_4
I/O
L14N_4
VCCO_4
I/O
L09N_4
I/O
L06N_4
VREF_4
I/O
L38P_4
I/O
L36N_4
‹
I/O
L33N_4
IO
VREF_4
I/O
L31P_4
DOUT
BUSY
I/O
L28N_4
I/O
L25P_4
I/O
L21P_4
I/O
L17P_4
I/O
L14P_4
GND
I/O
L09P_4
I/O
L06P_4
VCCO_4
I/O
L36P_4
‹
I/O
L33P_4
I/O
L03N_4
VCCO_4
GND
I/O
L01P_3
VRN_3
I/O
L01N_3
VRP_3
A
M
I/O
L32N_4
GCLK1
I/O
L28P_4
I/O
L26N_4
I/O
L22N_4
VREF_4
VCCO_4
I/O
L15N_4
I/O
L40N_4
‹
I/O
L10N_4
I/O
I/O
L04N_4
I/O
L37N_4
‹
I/O
L34N_4
I/O
L03P_4
I/O
L02N_4
I/O
L01N_4
VRP_4
GND
GND
A
N
I/O
L32P_4
GCLK0
GND
I/O
L26P_4
VREF_4
I/O
L22P_4
GND
I/O
L15P_4
I/O
L10P_4
GND
I/O
L04P_4
I/O
L34P_4
GND
I/O
L02P_4
I/O
L01P_4
VRN_4
GND
GND
A
P
I/O
L24N_4
I/O
L40P_4
‹
Bank 4
I/O
L37P_4
‹
CCLK
Bank 3
18
Spartan-3 FPGA Family: Pinout Descriptions
DS099-4_14d_072903
Bottom Right Corner
of FG1156 Package
(top view)
DS099-4 (v2.4) June 25, 2008
Product Specification
www.xilinx.com
215
R
Spartan-3 FPGA Family: Pinout Descriptions
Revision History
Date
Version No.
Description
04/03/03
1.0
Initial Xilinx release.
04/21/03
1.1
Added information on the VQ100 package footprint, including a complete pinout table (Table 86) and footprint diagram (Figure 42).
Updated Table 84 with final I/O counts for the VQ100 package. Also added final differential I/O pair counts for the TQ144 package.
Added clarifying comments to HSWAP_EN pin description on page 111. Updated the footprint diagram for the FG900 package shown
in Figure 50a and Figure 50b. Some thick lines separating I/O banks were incorrect. Made cosmetic changes to Figure 38, Figure 40,
and Figure 41. Updated Xilinx hypertext links. Added XC3S200 and XC3S400 to Pin Name column in Table 90.
05/12/03
1.1.1
AM32 pin was missing GND label in FG1156 package diagram (Figure 51).
07/11/03
1.1.2
Corrected misspellings of GCLK in Table 68 and Table 69. Changed CMOS25 to LVCMOS25 in Dual-Purpose Pin I/O Standard
During Configuration section. Clarified references to Module 2. For XC3S5000 in FG1156 package, corrected N.C. symbol to a black
square in Table 109, key, and package drawing.
07/29/03
1.2
Corrected pin names on FG1156 package. Some package balls incorrectly included LVDS pair names. The affected balls on the
FG1156 package include G1, G2, G33, G34, U9, U10, U25, U26, V9, V10, V25, V26, AH1, AH2, AH33, AH34. The number of LVDS
pairs is unaffected. Modified affected balls and re-sorted rows in Table 109. Updated affected balls in Figure 51. Also updated ASCII
and Excel electronic versions of FG1156 pinout.
08/19/03
1.2.1
Removed 100 MHz ConfigRate option in CCLK: Configuration Clock section and in Table 79. Added note that TDO is a totem-pole
output in Table 76.
10/09/03
1.2.2
Some pins had incorrect bank designations and were improperly sorted in Table 92. No pin names or functions changed. Renamed
DCI_IN to DCI and added black diamond to N.C. pins in Table 92. In Figure 45, removed some extraneous text from pin 106 and
corrected spelling of pins 45, 48, and 81.
12/17/03
1.3
Added FG320 pin tables and pinout diagram (FG320: 320-lead Fine-pitch Ball Grid Array). Made cosmetic changes to the TQ144
footprint (Figure 44), the PQ208 footprint (Figure 45), the FG676 footprint (Figure 49), and the FG900 footprint (Figure 50). Clarified
wording in Precautions When Using the JTAG Port in 3.3V Environments section.
02/27/04
1.4
Clarified wording in Using JTAG Port After Configuration section. In Table 80, reduced package height for FG320 and increased
maximum I/O values for the FG676, FG900, and FG1156 packages.
07/13/04
1.5
Added information on lead-free (Pb-free) package options to the Package Overview section plus Table 80 and Table 82. Clarified the
VRN_# reference resistor requirements for I/O standards that use single termination as described in the DCI Termination Types
section and in Figure 40b. Graduated from Advance Product Specification to Product Specification.
08/24/04
1.5.1
01/17/05
1.6
Added XC3S50 in CP132 package option. Added XC3S2000 in FG456 package option. Added XC3S4000 in FG676 package option.
Added Selecting the Right Package Option section. Modified or added Table 80, Table 82, Table 83, Table 84, Table 88, Table 89,
Table 99, Table 101, Table 102, Table 105, Figure 43, and Figure 49.
08/19/05
1.7
Removed term “weak” from the description of pull-up and pull-down resistors. Added IDCODE Register values. Added signal integrity
precautions to CCLK: Configuration Clock and indicated that CCLK should be treated as an I/O during Master mode in Table 78.
04/03/06
2.0
Added Package Thermal Characteristics. Updated Figure 39 to make it a more obvious example. Added detail about which pins have
dedicated pull-up resistors during configuration, regardless of the HSWAP_EN value to Table 69 and to Pin Behavior During
Configuration. Updated Precautions When Using the JTAG Port in 3.3V Environments.
04/26/06
2.1
Corrected swapped data row in Table 85. The Theta-JA with zero airflow column was swapped
with the Theta-JC column. Made additional notations on CONFIG and JTAG pins that have
pull-up resistors during configuration, regardless of the HSWAP_EN input.
05/25/07
2.2
Added link on page 120 to Material Declaration Data Sheets. Corrected units typo in Table 73.
Added Note 1 to Table 102 about VREF for XC3S1500 in FG676.
11/30/07
2.3
Added XC3S5000 FG(G)676 package. Noted that the FG(G)1156 package is being
discontinued. Updated Table 85 with latest thermal characteristics data.
06/25/08
2.4
Updated formatting and links.
216
Removed XC3S2000 references from FG1156: 1156-lead Fine-pitch Ball Grid Array.
www.xilinx.com
DS099-4 (v2.4) June 25, 2008
Product Specification