◆CMOS ◆Highly Accurate:±1% (VDF=2.6V~5.0V) ±2% (VDF=0.8V~6.0V) ◆Low Power Consumption: 0.7μA (VIN=1.5V) Highly Accurate The XC61C series are highly precise, low power voltage detectors, manufactured using CMOS and laser trimming technologies. Detect voltage is extremely accurate with minimal temperature drift. Both CMOS and N-channel open drain ●Microprocessor reset circuitry ●Memory battery back-up circuits ●Power-on reset circuits ●Power failure detection ●System battery life and charge voltage monitors ■FEATURES ■GENERAL DESCRIPTION consumption ■APPLICATIONS output configurations are available. ■TYPICAL APPLICATION CIRCUITS : ± 2% (Low Voltage VD: 0.8V~1.5V) (Standard Voltage VD: 1.6V~6.0V) ± 1% (Standard Voltage VD: 2.6V~5.0V) Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V] Detect Voltage Range :0.8V ~ 6.0V in 100mV increments Operating Voltage Range :0.7V ~ 6.0V (Low Voltage) 0.7V~10.0V (Standard Voltage) Detect Voltage Temperature Characteristics : ±100ppm/℃ (TYP.) @Ta=25 OC Output Configuration : N-channel open drain or CMOS Ultra Small Packages : SSOT-24 (150mW) SOT-23 (250mW) SOT-25 (250mW) SOT-89 (500mW) TO-92 (300mW) USP-6B (100mW) USP-6C (100mW) USP-4 (120mW) ■TYPICAL PERFORMANCE CHARACTERISTICS XC61C ETR0201_004 1/19 XC61C Series ■PIN CONFIGURATION NC 6 1 VSS VIN 5 2 NC NC 4 3 VOUT USP-6C (BOTTOM VIEW) VSS 2 3 NC VOUT 1 4 VIN USP-4 (BOTTOM VIEW) SOT-25 (TOP VIEW) *Please use the circuit without connecting the heat dissipation pad. If the pad needs to be connected to other pins, it should be connected to the VIN pin. ■PIN ASSIGNMENT PIN NUMBER SSOT-24 SOT-23 SOT-25 SOT-89 TO-92 (T) TO-92 (L) USP-6B USP-6C USP-4 PIN NAME FUNCTION 2 3 2 2 2 1 5 5 4 VIN 4 2 3 3 3 2 1 1 2 VSS Supply Voltage t I t Ground 1 1 1 1 1 3 3 3 1 VOUT Output 3 - 4, 5 - - - 2,4,6 2,4,6 3 NC No Connection ■PRODUCT CLASSIFICATION ●Ordering Information XC61C①②③④⑤⑥⑦ DESIGNATOR 2/19 DESCRIPTION SYMBOL ① Output Configuration C N ② ③ Detect Voltage 08 ~ 60 ④ Output Delay ⑤ Detect Accuracy ⑥ Package ⑦ Device Orientation 0 1 2 N M P S T L D E G R L H B DESCRIPTION : CMOS output : N-ch open drain output : e.g.0.9V → ②0, ③9 : e.g.1.5V → ②1, ③5 : No delay : Within ±1% : Within ±2% : SSOT-24 (SC-82) : SOT-23 : SOT-89 : SOT-25 : TO-92 (Standard) : TO-92 (Custom pin configuration) : USP-6B : USP-6C : USP-4 : Embossed tape, standard feed : Embossed tape, reverse feed : Paper type (TO-92) : Bag (TO-92) XC61C Series ■PACKAGING INFORMATION ●SSOT-24 (SC-82) ●SOT-23 ●SOT-25 3/19 XC61C Series ■PACKAGING INFORMATION (Continued) ●SOT-89 ●TO-92 4/19 XC61C Series ■PACKAGING INFORMATION (Continued) ●USP-6C ●USP-4 * Soldering fillet surface is not formed because the sides of the pins are plated. 5/19 XC61C Series ■MARKING RULE ● SSOT-24, SOT-23, SOT-25, SOT-89, USP-4 4 3 ① ② MARK A B C D E F H ④ 1 ① Represents integer of detect voltage and CMOS Output (XC61CC series) 2 3 CONFIGURATION CMOS CMOS CMOS CMOS CMOS CMOS CMOS VOLTAGE (V) 0.X 1.X 2.X 3.X 4.X 5.X 6.X N-Channel Open Drain Output (XC61CN series) ① ② ③ ④ 1 2 5 4 ① ② 1 MARK K L M N P R S ③ ④ 2 MARK 0 1 2 3 4 3 SOT-25 ② ④ ① ③ 2 VOLTAGE (V) 0.X 1.X 2.X 3.X 4.X 5.X 6.X ②Represents decimal number of detect voltage (TOP VIEW) 1 CONFIGURATION N-ch N-ch N-ch N-ch N-ch N-ch N-ch VOLTAGE (V) X.0 X.1 X.2 X.3 X.4 MARK 5 6 7 8 9 VOLTAGE (V) X.5 X.6 X.7 X.8 X.9 ③Represents delay time (Except for SSOT-24) 3 MARK DELAY TIME PRODUCT SERIES 3 No Delay Time XC61Cxxx0xxx ④Represents production lot number Based on the internal standard. (G, I, J, O, Q, W excepted) USP-4 (TOP VIEW) 6/19 XC61C Series ■MARKING RULE (Continued) ●TO-92 ①Represents output configuration MARK OUTPUT CONFIGURATION C N CMOS N-ch ②, ③Represents detect voltage (ex.) MARK ② 3 5 ③ 3 0 VOLTAGE (V) 3.3 5.0 ④Represents delay time MARK DELAY TIME 0 No delay ⑤Represents detect voltage accuracy MARK DETECT VOLTAGE ACCURACY 1 2 Within ± 1% (Semi-custom) Within ± 2% ⑥Represents a least significant digit of production year MARK PRODUCTION YEAR 5 6 2005 2006 ⑦Represents production lot number 0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted) * No character inversion used. ●USP-6B, USP-6C ①, ②Represents product series MARK ① ② 1 C PRODUCT SERIES XC61Cxxx0xDx ③Represents output configuration USP-6B (TOP VIEW) MARK OUTPUT CONFIGURATION PRODUCT SERIES C CMOS XC61CCxx0xDx N N-ch XC61CNxx0xDx VOLTAGE (V) PRODUCT SERIES ④, ⑤Represents detect voltage (ex.) MARK USP-6C ④ ⑤ 3 3 3.3 XC61Cx330xDx 5 0 5.0 XC61Cx500xDx (TOP VIEW) ⑥Represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excepted) Note: No character inversion used. 7/19 XC61C Series ■BLOCK DIAGRAMS (1) CMOS Output (2) N-ch Open Drain Output ■ABSOLUTE MAXIMUM RATINGS Ta = 25OC PARAMETER SYMBOL *1 *2 Input Voltage Output Current VIN IOUT CMOS Output Voltage N-ch Open Drain Output *1 N-ch Open Drain Output *2 SSOT-24 SOT-23 SOT-25 SOT-89 Power Dissipation TO-92 USP-6B USP-6C USP-4 Operating Temperature Range Storage Temperature Range *1: Low voltage: VDF(T)=0.8V~1.5V *2: Standard voltage: VDF(T)=1.6V~6.0V 8/19 RATINGS 9.0 12.0 UNITS 50 mA V VSS -0.3 ~ VIN +0.3 VOUT VSS -0.3 ~ 9.0 V VSS -0.3 ~ 12.0 Pd Topr Tstg 150 250 250 500 300 100 100 120 -40~+85 -40~+125 mW O O C C XC61C Series ■ELECTRICAL CHARACTERISTICS VDF (T) = 0.8V to 6.0V ± 2% VDF (T) = 2.6V to 5.0V ± 1% PARAMETER SYMBOL Detect Voltage VDF Hysteresis Range VHYS Supply Current ISS Operating Voltage *1 Operating Voltage *2 VIN Output Current *1 IOUT Output Current *2 Leak Current Ileak Temperature ΔVDF Characteristics ΔTopr・VDF Delay Time tDLY (VDR→VOUT inversion) CONDITIONS VDF(T)=0.8V~1.5V *1 VDF(T)=1.6V~6.0V *2 MIN. VDF(T) x 0.98 VDF(T) VDF(T)=2.6V~5.0V *2 x 0.99 VDF x 0.02 VIN = 1.5V VIN = 2.0V VIN = 3.0V VIN = 4.0V VIN = 5.0V VDF(T) = 0.8V to 1.5V 0.7 VDF(T) = 1.6V to 6.0V 0.7 VIN = 0.7V 0.10 N-ch VDS = 0.5V 0.85 VIN = 1.0V VIN = 6.0V CMOS, P-ch VDS = 2.1V VIN = 1.0V 1.0 VIN = 2.0V 3.0 N-ch VDS = 0.5V VIN = 3.0V 5.0 VIN = 4.0V 6.0 7.0 VIN = 5.0V CMOS, P-ch VDS = 2.1V VIN = 8.0V VIN=6.0V, VOUT=6.0V*1 CMOS VIN=10.0V, VOUT=10.0V*2 N-ch Open Drain - TYP. VDF x 0.05 0.7 0.8 0.9 1.0 1.1 0.80 2.70 -7.5 2.2 7.7 10.1 11.5 13.0 -10.0 10 10 MAX. VDF(T) x 1.02 VDF(T) x 1.01 VDF x 0.08 2.3 2.7 3.0 3.2 3.6 6.0 10.0 -1.5 -2.0 100 VDF(T) VDF(T) Ta=25℃ UNITS CIRCUITS V 1 V 1 V 1 μA 2 V 1 3 4 mA 3 4 nA 3 -40℃ ≦ Topr ≦ 85℃ - ±100 - ppm/ ℃ - Inverts from VDR to VOUT - 0.03 0.20 ms 5 NOTE: *1: Low Voltage: VDF(T)=0.8V~1.5V *2: Standard Voltage: VDF(T)=1.6V~6.0V VDF (T): Setting detect voltage Release Voltage: VDR = VDF + VHYS 9/19 XC61C Series ■OPERATIONAL EXPLANATION (Especially prepared for CMOS output products) ① When input voltage (VIN) rises above detect voltage (VDF), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) ② When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage (VSS) level. ③ When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become unstable. In this condition, VIN will equal the pulled-up output (should output be pulled-up.) ④ When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS) level will be maintained. ⑤ When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) ⑥ The difference between VDR and VDF represents the hysteresis range. ●Timing Chart 10/19 XC61C Series ■NOTES ON USE 1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device. 2. When a resistor is connected between the VIN pin and the input with CMOS output configurations, oscillation may occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below) 3. When a resistor is connected between the VIN pin and the input with CMOS output configurations, irrespective of N-ch output configurations, oscillation may occur as a result of through current at the time of voltage release even if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below ) 4. With a resistor connected between the VIN pin and the input, detect and release voltage will rise as a result of the IC's supply current flowing through the VIN pin. 5. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than several µ sec / V. 6. Please use N-ch open drains configuration, when a resistor RIN is connected between the VIN pin and power source. In such cases, please ensure that RIN is less than 10kΩ and that C is more than 0.1µF. ●Oscillation Description (1) Output current oscillation with the CMOS output configuration When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the input (IN) and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at the VIN pin will rise and release operations will begin over again. Oscillation may occur with this " release - detect - release " repetition. Further, this condition will also appear via means of a similar mechanism during detect operations. (2) Oscillation as a result of through current Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through current's resistor (RIN) during release voltage operations. (refer to Figure 3) Since hysteresis exists during detect operations, oscillation is unlikely to occur. 11/19 XC61C Series 100kΩ* 12/19 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS ●Low Voltage 13/19 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Low Voltage (Continued) (4) N-ch Driver Output Current vs. VDS XC61CC0902 (0.9V) XC61CC1102(1.1V) VIN =0.8V 1.0 0.8 0.6 0.7V 0.4 0.2 0 0.2 0.4 0.6 0.8 Ta=25℃ VIN =0.8V 1.0 0.8 0.6 0.7V 0.4 0.2 0 1.0 Ta=25℃ 1.2 0 0.2 0.4 VDS (V) XC61CC1502(1.5V) 0.8 1.5 1.0 0.5 0 1.0 0.2 0.4 0.6 0.8 1.0 VDS (V) Ta=25℃ VIN =0.8V 1.0 0.8 0.6 0.7V 0.4 0.2 0 0.2 0.4 0.6 0.8 VIN =1.4V 6.0 1.0V 2.0 0 1.0 1.2V 4.0 0 0.2 0.4 VDS (V) 0.6 0.8 1.0 1.2 1.4 VDS (V) (5) N-ch Driver Output Current vs. Input Voltage XC61CC0902 (0.9V) XC61CC1102 (1.1V) XC61CC1502(1.5V) 5.0 Output Current: IOUT (mA) VDS=0.5V 2.0 1.5 1.0 Ta=85℃ 25℃ 0.5 -40℃ 0 0.2 0.4 0.6 0.8 Ta=-40℃ VDS=0.5V 4.0 25℃ 3.0 2.0 80℃ 1.0 0 1.0 10 Output Current: IOUT (mA) 2.5 Output Current: IOUT (mA) 0 XC61CC1502(1.5V) Ta=25℃ 1.2 0 VIN =1.0V 2.0 8.0 Output Current: IOUT (mA) Output Current: IOUT (mA) 0.6 2.5 VDS (V) 1.4 0 Output Current: IOUT (mA) Ta=25℃ 1.2 0 XC61CC1102(1.1V) 3.0 1.4 Output Current: IOUT (mA) Output Current: IOUT (mA) 1.4 0 Input Voltage: VIN (V) 0.2 0.4 0.6 0.8 1.0 VDS=0.5V 25℃ 6 4 85℃ 2 0 1.2 Ta=-40℃ 8 0 Input Voltage: VIN (V) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Input Voltage: VIN (V) (6) P-ch Driver Output Current vs. Input Voltage XC61CC0902 (0.9V) XC61CC1102 (1.1V) 1.5V 6 1.0V 4 0.5V 2 1 2 3 4 Input Voltage: VIN (V) 14/19 Ta= 25℃ VDS=2.1V 8 0 5 12 6 VDS=2.1V 10 8 1.5V 6 1.0V 4 0.5V 2 0 0 1 2 3 4 Input Voltage: VIN (V) 5 6 Output Current: IOUT (mA) Ta= 25℃ 10 0 XC61CC1502(1.5V) 12 Output Current: IOUT (mA) Output Current: IOUT (mA) 12 Ta= 25℃ 10 VDS=2.1V 8 1.5V 6 1.0V 4 0.5V 2 0 0 1 2 3 4 Input Voltage: VIN (V) 5 6 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage XC61CC2702 (2.7V) 3.5 3.5 3.0 3.0 Supply Current: ISS (μA) Supply Current: ISS (μA) (1) Supply Current vs. Input Voltage XC61CC1802 (1.8V) 2.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 0 2 4 6 8 2.5 2.0 1.0 -40℃ 0.5 0 10 0 Input Voltage: VIN (V) 3.0 3.0 2.5 1.5 4 6 8 10 XC61CC4502 (4.5V) 3.5 Supply Current: ISS (μA) Supply Current: ISS (μA) XC61CC3602 (3.6V) Ta=85℃ 25℃ 2 Input Voltage: VIN (V) 3.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 2.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 0 2 4 6 8 10 0 Input Voltage: VIN (V) 2 4 6 8 10 Input Voltage: VIN (V) (2) Detect, Release Voltage vs. Ambient Temperature XC61CC1802 (1.8V) XC61CC2702 (2.7V) 1.85 Detect, Release Voltage: VDF, VDR (V) Detect, Release Voltage: VDF, VDR (V) 1.90 VDR 1.80 VDF 1.75 -50 -25 0 25 50 75 100 2.80 VDR 2.75 2.70 VDF 2.65 -50 Ambient Temperature : Ta (℃) XC61CC3602 (3.6V) 25 50 75 100 4.7 Detect, Release Voltage: VDF, VDR (V) Detect, Release Voltage: VDF, VDR (V) 0 XC61CC4502 (4.5V) 3.8 VDR 3.7 3.6 VDF 3.5 -50 -25 Ambient Temperature : Ta (℃) -25 0 25 50 75 Ambient Temperature : Ta (℃) 100 VDR 4.6 4.5 VDF 4.4 -50 -25 0 25 50 75 100 Ambient Temperature : Ta (℃) 15/19 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage (Continued) (3) Output Voltage vs. Input Voltage XC61CN1802 (1.8V) XC61CN2702 (2.7V) 3 2 Output Voltage: VOUT (V) Output Voltage: VOUT (V) Ta=25℃ 1 0 0 1 Ta=25℃ 2 1 0 2 0 1 Input Voltage: VIN (V) XC61CN3602 (3.6V) 5 Output Voltage: VOUT (V) Ta=25℃ Output Voltage: VOUT (V) 3 XC61CN4502 (4.5V) 4 3 2 1 0 2 Input Voltage: VIN (V) 0 1 2 3 Ta=25℃ 4 3 2 1 0 4 0 1 Input Voltage: VIN (V) 2 3 4 5 Input Voltage: VIN (V) Note : The N-channel open open drain drain pull pull up up resistance resistance value value is is 100k 100kΩ.Ω. (4) N-ch Driver Output Current vs. VDS XC61CC1802 (1.8V) XC61CC2702 (2.7V) 10 30 VIN =1.5V Ta=25℃ Output Current: I OUT (mA) Output Current: I OUT (mA) Ta=25℃ 8 6 4 1.0V 2 0 0 0.5 1.0 1.5 Ta=25℃ VIN =3.0V 30 2.5V 20 2.0V 10 1.5V 1.0 1.5 VDS (V) 16/19 2.0 2.5 3.0 Output Current: I OUT (mA) Output Current: I OUT (mA) 40 0.5 10 1.5V 5 1.0V 0 0.5 1.0 1.5 2.0 2.5 XC61CC4502 (4.5V品) XC61CC3602 (3.6V) 0 2.0V 15 3.0 VDS (V) VDS (V) 0 20 0 2.0 VIN =2.5V 25 80 XC61CC4502 (4.5V) Ta=25℃ 80 70 Ta=25℃ VIN =4.0V 70 60 VIN =4.0V 60 3.5V 50 3.5V 50 40 3.0V 40 3.0V 30 2.5V 30 2.5V 20 20 2.0V 2.0V 10 1.5V 10 1.5V 0 0 00 0.5 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0 0.5 1.0 (V) DS(V) VVDS XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage (Continued) (4) N-ch Driver Output Current vs. VDS XC61CC1802 (1.8V) 1000 Output Current: IOUT (μA) VIN =0.8V Ta=25℃ Output Current: IOUT (μA) XC61CC2702 (2.7V) 1000 800 600 0.7V 400 200 0 0 0.2 0.4 0.6 0.8 Ta=25℃ 800 600 400 0.7V 200 0 1.0 VIN =0.8V 0 0.2 0.4 XC61CC3602 (3.6V) Ta=25℃ VIN =0.8V 600 400 0.7V 200 0 0.2 1.0 XC61CC4502 (4.5V) Ta=25℃ 800 0 0.8 1000 Output Current: IOUT (μA) Output Current: IOUT (μA) 1000 0.6 VDS (V) VDS (V) 0.4 0.6 0.8 600 400 0.7V 200 0 1.0 VIN =0.8V 800 0 0.2 0.4 VDS (V) 0.6 0.8 1.0 VDS (V) (5) N-ch Driver Output Current vs. Input Voltage XC61CC1802 (1.8V) XC61CC2702 (2.7V) 15 25 VDS=0.5V Ta=-40℃ 10 Output Current: IOUT (mA) Output Current: IOUT (mA) VDS=0.5V 25℃ 5 85℃ 0 0 0.5 1.0 1.5 25℃ 15 10 85℃ 5 0 2.0 0 Input Voltage: VIN (V) XC61CC3602 (3.6V) 1.0 1.5 2.0 2.5 3.0 XC61CC4502 (4.5V) 40 VDS=0.5V VDS=0.5V Ta=-40℃ 25 Output Current: IOUT (mA) Output Current: IOUT (mA) 0.5 Input Voltage: VIN (V) 30 25℃ 20 15 10 85℃ 5 0 Ta=-40℃ 20 0 1 2 3 Input Voltage: VIN (V) 4 Ta=-40℃ 30 25℃ 20 85℃ 10 0 0 1 2 3 4 5 Input Voltage: VIN (V) 17/19 XC61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Standard Voltage (Continued) (6) P-ch Driver Output Current vs. Input Voltage XC61CC1802 (1.8V) XC61CC2702 (2.7V) 15 15 VDS=2.1V Output Current: IOUT (mA) Output Current: IOUT (mA) VDS=2.1V 1.5V 10 1.0V 5 0.5V 0 1.5V 10 1.0V 5 0.5V 0 0 2 4 6 8 10 0 2 Input Voltage: VIN (V) 4 XC61CC3602 (3.6V) 10 XC61CC4502 (4.5V) 15 VDS=2.1V VDS=2.1V Output Current: IOUT (mA) Output Current: IOUT (mA) 8 Input Voltage: VIN (V) 15 1.5V 10 1.0V 5 0.5V 0 1.5V 10 1.0V 5 0.5V 0 0 2 4 6 Input Voltage: VIN (V) 18/19 6 8 10 0 2 4 6 Input Voltage: VIN (V) 8 10 XC61C Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this catalog. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog. 4. The products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this catalog within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this catalog may be copied or reproduced without the prior permission of Torex Semiconductor Ltd. 19/19