XE61C Series ETR0208-004 Standard Voltage Detectors (VDF=1.6V∼6.0V) ■GENERAL DESCRIPTION The XE61C series is a highly precise, low power consumption voltage detector, manufactured using CMOS process and laser trimming technologies. Detect voltage is extremely accurate with minimal temperature drift. Both CMOS and N-channel open drain output configurations are available. The XE61C assures all temperature range (Ta= - 40OC ~ + 85OC). ●Microprocessor reset circuitry ●Memory battery back-up circuits ●Power-on reset circuits ●Power failure detection ●System battery life and charge voltage monitors ■TYPICAL APPLICATION CIRCUITS ■FEATURES : ± 2% (Ta=25OC) ± 4% (Ta=-40OC∼+85℃) Detect Voltage : 1.6V∼6.0V (0.1V increments) Temperature Characteristics : ±400ppm/℃ (Ta=- 40OC~+85OC) Operating Voltage Range : 0.7V∼10.0V Low Power Consumption : 0.7μA TYP. (VIN=1.5V) Output Configuration : N-channel open drain or CMOS Packages : SOT-23 SOT-89 Environmentally Friendly : EU RoHS Compliant, Pb Free Detect Voltage Accuracy ■TYPICAL PERFORMANCE CHARACTERISTICS XE61CC4502 (4.5V) 3.5 3.0 Supply Current: ISS (μA) ■APPLICATIONS 2.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 0 2 4 6 8 10 Input Voltage: VIN (V) 1/15 XE61C Series ■PIN CONFIGURATION ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTION 2 VIN Supply Voltage 3 VSS Ground 1 VOUT Output NC No Connection SOT-23 SOT-89 3 2 1 - ■PRODUCT CLASSIFICATION ●Ordering Information XE61C①②③④⑤⑥⑦-⑧(*1) DESIGNATOR DESCRIPTION ① Output Configuration ② ③ ④ ⑤ Detect Voltage (VDF) Output Delay Detect Accuracy ⑥⑦-⑧ Packages Taping Type (*2) (*1) (*2) 2/15 SYMBOL C N 16 ~ 60 0 2 MR MR-G PR DESCRIPTION CMOS output N-ch open drain output e.g.1.6V → ②1, ③6 No delay Within ±2% SOT-23 SOT-23 (Halogen & Antimony free) SOT-89 The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant. The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑥R-⑧, Reverse orientation: ⑥L-⑧) XE61C Series ■BLOCK DIAGRAMS (1) CMOS Output (2) N-ch Open Drain Output ■ABSOLUTE MAXIMUM RATINGS Ta = 25OC PARAMETER Input Voltage Output Current Output Voltage Power Dissipation SYMBOL VIN IOUT CMOS N-ch Open Drain Output SOT-23 SOT-89 Operating Temperature Range Storage Temperature Range VOUT Pd Topr Tstg RATINGS 12.0 50 VSS -0.3 ~ VIN +0.3 VSS -0.3 ~ 12.0 250 500 - 40∼+85 -55∼+125 UNITS V mA V mW O O C C 3/15 XE61C Series ■ELECTRICAL CHARACTERISTICS XE61C Series VDF(T)=1.6~6.0V, Ta= - 40℃ ~ 85℃ PARAMETER SYMBOL Detect Voltage VDF Hysteresis Width VHYS Supply Current ISS Operating Voltage VIN Output Current IOUT Leakage Current Ileak (CMOS Output) Leakage Current Ileak (N-ch Open Drain Output) Temperature ΔVDF Characteristics ΔTopr・VDF Delay Time TDLY (VDR→VOUT inversion) NOTE: VDF (T): Nominal detect voltage Release Voltage: VDR = VDF + VHYS 4/15 CONDITIONS MIN. VIN = 1.5V VIN = 2.0V VIN = 3.0V VIN = 4.0V VIN = 5.0V VDF(T) = 1.6V to 6.0V VIN = 1.0V VIN = 2.0V N-ch VDS = 0.5V VIN = 3.0V VIN = 4.0V VIN = 5.0V CMOS, P-ch VDS = 2.1V, VIN = 8.0V VDF(T) x 0.96 VDF x 0.02 0.7 0.4 3.0 5.0 6.0 7.0 - TYP. MAX. VDF x 0.05 0.7 0.8 0.9 1.0 1.1 2.2 7.7 10.1 11.5 13.0 -10.0 VDF(T) x 1.04 VDF x 0.08 2.8 3.3 3.5 3.7 3.9 10.0 -2.0 - 10 - - 10 400 -40℃ ≦ Topr ≦ 85℃ - ±100 Inverts from VDR to VOUT - 0.03 VIN=10.0V VOUT=10.0V VDF(T) UNITS CIRCUITS V 1 V 1 μA 2 V 1 mA 3 4 nA 3 ±400 ppm/ ℃ - 0.20 ms 5 XE61C Series ■OPERATIONAL EXPLANATION (Especially explained for the CMOS output products) ① When input voltage (VIN) rises above detect voltage (VDF), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) ② When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage (VSS) level. ③ When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become unstable. In this condition, VIN will equal the pulled-up output (should output be pulled-up.) ④ When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS) level will be maintained. ⑤ When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN. (A condition of high impedance exists with N-ch open drain output configurations.) ⑥ The difference between VDR and VDF represents the hysteresis range. ●Timing Chart 5/15 XE61C Series ■NOTES ON USE 1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device. 2. When a resistor is connected between the VIN pin and the input with CMOS output configurations, oscillation may occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below) 3. When a resistor is connected between the VIN pin and the input with CMOS output configurations, irrespective of N-ch output configurations, oscillation may occur as a result of through current at the time of voltage release even if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below ) 4. With a resistor connected between the VIN pin and the input, detect and release voltage will rise as a result of the IC's supply current flowing through the VIN pin. 5. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than several μ sec / V. 6. Please use N-ch open drains configuration, when a resistor RIN is connected between the VIN pin and power source. In such cases, please ensure that RIN is less than 10kΩ and that C is more than 0.1μF. XE61CN Series RIN VIN C VOUT VSS Figure 1: Circuit using an input resistor ●Oscillation Description (1) Output current oscillation with the CMOS output configuration When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the input (IN) and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at the VIN pin will rise and release operations will begin over again. Oscillation may occur with this " release - detect - release " repetition. Further, this condition will also appear via means of a similar mechanism during detect operations. (2) Oscillation as a result of through current Since the XE61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through current's resistor (RIN) during release voltage operations. (refer to Figure 3) Since hysteresis exists during detect operations, oscillation is unlikely to occur. IN IN XE61CC Series 6/15 XE61CC Series XE61CN Series XE61C Series 100kΩ* 7/15 XE61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Supply Current vs. Input Voltage XE61CC2702 (2.7V) XE61CC1802 (1.8V) 3.5 3.5 3.0 Supply Current: ISS (μA) Supply Current: ISS (μA) 3.0 2.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 2.5 2.0 1.5 1.0 -40℃ 0.5 0 0 0 2 4 6 8 10 0 2 Input Voltage: VIN (V) 3.0 3.0 Supply Current: ISS (μA) 3.5 2.5 Ta=85℃ 25℃ 1.5 6 8 10 XE61CC4502 (4.5V) 3.5 2.0 4 Input Voltage: VIN (V) XE61CC3602 (3.6V) Supply Current: ISS (μA) Ta=85℃ 25℃ 1.0 -40℃ 0.5 2.5 2.0 Ta=85℃ 25℃ 1.5 1.0 -40℃ 0.5 0 0 0 2 4 6 8 10 0 2 Input Voltage: VIN (V) 4 6 8 10 Input Voltage: VIN (V) (2) Detect, Release Voltage vs. Ambient Temperature XE61CC1802 (1.8V) XE61CC2702 (2.7V) 2.80 1.85 Detect, Release Voltage: VDF,VDR (V) Detect, Release Voltage: VDF,VDR (V) 1.90 VDR 1.80 VDF 1.75 -50 -25 0 25 50 75 Ambient Temperature: Ta (℃ ) 8/15 100 VDR 2.75 2.70 VDF 2.65 -50 -25 0 25 50 75 Ambient Temperature: Ta (℃ ) 100 XE61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Detect, Release Voltage vs. Ambient Temperature (Continued) XE61CC3602 (3.6V) XE61CC4502 (4.5V) 4.7 Detect, Release Voltage: VDF,VDR (V) Detect, Release Voltage: VDF,VDR (V) 3.8 VDR 3.7 3.6 VDF 3.5 -50 -25 0 25 50 75 VDR 4.6 4.5 VDF 4.4 100 -50 Ambient Temperature: Ta (℃ ) -25 0 25 50 75 100 Ambient Temperature: Ta (℃ ) (3) Output Voltage vs. Input Voltage XE61CN1802 (1.8V) 2 XE61CN2702 (2.7V) 3 Ta=25℃ Output Voltage: VOUT (V) Output Voltage: VOUT (V) Ta=25℃ 1 0 2 1 0 0 1 2 0 1 Input Voltage: VIN (V) XE61CN3602 (3.6V) 4 3 XE61CN4502 (4.5V) 5 Ta=25℃ Output Voltage: VOUT (V) Ta=25℃ Output Voltage: VOUT (V) 2 Input Voltage: VIN (V) 3 2 1 0 4 3 2 1 0 0 1 2 3 Input Voltage: VIN (V) 4 0 1 2 3 4 5 Input Voltage: VIN (V) * Unless otherwise stated, the pull-up resistor’s value of the N-ch open drain output type is 100kΩ. 9/15 XE61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4) N-ch Driver Output Current vs. VDS Characteristics XE61CC1802 (1.8V) XE61CC2702 (2.7V) 10 30 VIN =1.5V Ta=25℃ VIN =2.5V 25 8 Output Current: IOUT (mA) Output Current: IOUT (mA) Ta=25℃ 6 4 1.0V 2 20 2.0V 15 10 1.5V 5 1.0V 0 0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 XE61CC3602 (3.6V) 3.0 XE61CC4502 (4.5V) Ta=25℃ Ta=25℃ 70 VIN =3.0V Output Current: IOUT (mA) Output Current: IOUT (mA) 2.5 80 40 30 2.5V 20 2.0V 10 60 VIN =4.0V 0 3.5V 50 40 3.0V 30 2.5V 20 2.0V 10 1.5V 1.5V 0 0 0.5 1.0 1.5 2.0 2.5 0 3.0 0.5 1.0 VDS (V) 1.5 2.0 2.5 3.0 3.5 4.0 VDS (V) XE61CC1802 (1.8V) 1000 XE61CC2802 (2.7V) 1000 VIN =0.8V Ta=25℃ Ta=25℃ 800 Output Current: IOUT (μA) Output Current: IOUT (μA) 2.0 VDS (V) VDS (V) 600 0.7V 400 200 0 800 VIN =0.8V 600 400 0.7V 200 0 0 0.2 0.4 0.6 VDS (V) 10/15 1.5 0.8 1.0 0 0.2 0.4 0.6 VDS (V) 0.8 1.0 XE61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4) N-ch Driver Output Current vs. VDS Characteristics (Continued) XE61CC3602 (3.6V) XE61CC4502 (4.5V) 1000 1000 Ta=25℃ 800 VIN =0.8V Output Current: IOUT (μA) Output Current: IOUT (μA) Ta=25℃ 600 400 0.7V 200 VIN =0.8V 800 600 400 0.7V 200 0 0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 VDS (V) 0.6 0.8 1.0 VDS (V) (5) N-ch Driver Output Current vs. Input Voltage XE61CC1802 (1.8V) XE61CC2702 (2.7V) 15 25 VDS=0.5V VDS=0.5V 10 Output Current: IOUT (mA) Output Current: IOUT (mA) Ta=-40℃ 25℃ 5 85℃ 0 20 25℃ 15 10 85℃ 5 0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 2.5 3.0 Input Voltage: VIN (V) Input Voltage: VIN (V) XE61CC3602 (3.6V) XE61CC4502 (4.5V) 30 40 VDS=0.5V VDS=0.5V Ta=-40℃ 25 Output Current: IOUT (mA) Output Current: IOUT (mA) Ta=-40℃ 25℃ 20 15 10 85℃ 5 0 Ta=-40℃ 30 25℃ 20 85℃ 10 0 0 1 2 3 Input Voltage: VIN (V) 4 0 1 2 3 4 5 Input Voltage: VIN (V) 11/15 XE61C Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (6) P-ch Driver Output Current vs. Input Voltage XE61CC1802 (1.8V) XE61CC2702 (2.7V) 15 15 VDS=2.1V Output Current: IOUT (mA) Output Current: IOUT (mA) VDS=2.1V 1.5V 10 1.0V 5 0.5V 0 1.5V 10 1.0V 5 0.5V 0 0 2 4 6 8 10 0 2 Input Voltage: VIN (V) 4 XE61CC3602 (3.6V) 10 XE61CC4502 (4.5V) 15 VDS=2.1V VDS=2.1V Output Current: IOUT (mA) Output Current: IOUT (mA) 8 Input Voltage: VIN (V) 15 1.5V 10 1.0V 5 0.5V 0 1.5V 10 1.0V 5 0.5V 0 0 2 4 6 Input Voltage: VIN (V) 12/15 6 8 10 0 2 4 6 Input Voltage: VIN (V) 8 10 XE61C Series ■PACKAGING INFORMATION ●SOT-23 ●SOT-89 (unit : mm) 4.5±0.1 1.6 +0.15 -0.2 +0.03 0.4 -0.02 φ1.0 0.42±0.06 0.47±0.06 0.42±0.06 +0.03 0.4 -0.02 8° 8° 1.5±0.1 1.5±0.1 13/15 XE61C Series ■MARKING RULE ●SOT-23, SOT-89 a b c d a b c ① ② e f ③ ④ g h ① e d ④ ② ③ f g SOT-23 SOT-89 (TOP VIEW) (TOP VIEW) h ① represents integer of output configuration and detect voltage XE61CC Series (CMOS Output) XE61CN Series (N-ch Open Drain Output) MARK VOLTAGE (V) PRODUCT SEIRES MARK VOLTAGE (V) PRODUCT SERIES B 1.x XE61CC1xxxxx L 1.x XE61CN1xxxxx C 2.x XE61CC2xxxxx M 2.x XE61CN2xxxxx D 3.x XE61CC3xxxxx N 3.x XE61CN3xxxxx E 4.x XE61CC4xxxxx P 4.x XE61CN4xxxxx F 5.x XE61CC5xxxxx R 5.x XE61CN5xxxxx H 6.x XE61CC6xxxxx S 6.x XE61CN6xxxxx ② represents decimal number of detect voltage MARK VOLTAGE (V) PRODUCT SEIRES 3 x.3 XE61Cxxx3xxx 0 x.0 XE61Cxxx0xxx ③ represents delay time MARK DELAY TIME 3 No Delay PRODUCT SERIES XE61Cxxxx0xx ④ represents production lot number Based on internal standard. (G, I, J, O, Q, W excluded) Bar Mark: a, b, c, d PRODUCTION YEAR xxx0 xxx1 xxx2 xxx3 xxx4 xxx5 xxx6 xxx7 xxx8 xxx9 a □ □ □ □ - b □ □ □ □ - c □ □ □ □ d □ □ □ □ Bar Mark: e, f, g, h PRODUCTION MONTH January February March April May June July August September October November December e □ □ □ □ □ □ f □ □ □ □ □ □ g □ □ □ □ □ - h □ □ □ □ □ 14/15 XE61C Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 15/15