TOREX XE61CC1602MR-G

XE61C Series
ETR0208-004
Standard Voltage Detectors (VDF=1.6V∼6.0V)
■GENERAL DESCRIPTION
The XE61C series is a highly precise, low power consumption voltage detector, manufactured using CMOS process and laser
trimming technologies.
Detect voltage is extremely accurate with minimal temperature drift.
Both CMOS and N-channel open drain output configurations are available.
The XE61C assures all temperature range (Ta= - 40OC ~ + 85OC).
●Microprocessor reset circuitry
●Memory battery back-up circuits
●Power-on reset circuits
●Power failure detection
●System battery life and charge voltage monitors
■TYPICAL APPLICATION CIRCUITS
■FEATURES
: ± 2% (Ta=25OC)
± 4% (Ta=-40OC∼+85℃)
Detect Voltage
: 1.6V∼6.0V (0.1V increments)
Temperature Characteristics : ±400ppm/℃ (Ta=- 40OC~+85OC)
Operating Voltage Range
: 0.7V∼10.0V
Low Power Consumption : 0.7μA TYP. (VIN=1.5V)
Output Configuration
: N-channel open drain or CMOS
Packages
: SOT-23
SOT-89
Environmentally Friendly
: EU RoHS Compliant, Pb Free
Detect Voltage Accuracy
■TYPICAL PERFORMANCE
CHARACTERISTICS
XE61CC4502 (4.5V)
3.5
3.0
Supply Current: ISS (μA)
■APPLICATIONS
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
2
4
6
8
10
Input Voltage: VIN (V)
1/15
XE61C Series
■PIN CONFIGURATION
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTION
2
VIN
Supply Voltage
3
VSS
Ground
1
VOUT
Output
NC
No Connection
SOT-23
SOT-89
3
2
1
-
■PRODUCT CLASSIFICATION
●Ordering Information
XE61C①②③④⑤⑥⑦-⑧(*1)
DESIGNATOR
DESCRIPTION
①
Output Configuration
② ③
④
⑤
Detect Voltage (VDF)
Output Delay
Detect Accuracy
⑥⑦-⑧
Packages
Taping Type (*2)
(*1)
(*2)
2/15
SYMBOL
C
N
16 ~ 60
0
2
MR
MR-G
PR
DESCRIPTION
CMOS output
N-ch open drain output
e.g.1.6V → ②1, ③6
No delay
Within ±2%
SOT-23
SOT-23 (Halogen & Antimony free)
SOT-89
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or
representative. (Standard orientation: ⑥R-⑧, Reverse orientation: ⑥L-⑧)
XE61C
Series
■BLOCK DIAGRAMS
(1) CMOS Output
(2) N-ch Open Drain Output
■ABSOLUTE MAXIMUM RATINGS
Ta = 25OC
PARAMETER
Input Voltage
Output Current
Output Voltage
Power Dissipation
SYMBOL
VIN
IOUT
CMOS
N-ch Open Drain Output
SOT-23
SOT-89
Operating Temperature Range
Storage Temperature Range
VOUT
Pd
Topr
Tstg
RATINGS
12.0
50
VSS -0.3 ~ VIN +0.3
VSS -0.3 ~ 12.0
250
500
- 40∼+85
-55∼+125
UNITS
V
mA
V
mW
O
O
C
C
3/15
XE61C Series
■ELECTRICAL CHARACTERISTICS
XE61C Series
VDF(T)=1.6~6.0V, Ta= - 40℃ ~ 85℃
PARAMETER
SYMBOL
Detect Voltage
VDF
Hysteresis Width
VHYS
Supply Current
ISS
Operating Voltage
VIN
Output Current
IOUT
Leakage Current
Ileak
(CMOS Output)
Leakage Current
Ileak
(N-ch Open Drain Output)
Temperature
ΔVDF
Characteristics
ΔTopr・VDF
Delay Time
TDLY
(VDR→VOUT inversion)
NOTE:
VDF (T): Nominal detect voltage
Release Voltage: VDR = VDF + VHYS
4/15
CONDITIONS
MIN.
VIN = 1.5V
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VDF(T) = 1.6V to 6.0V
VIN = 1.0V
VIN = 2.0V
N-ch VDS = 0.5V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
CMOS, P-ch VDS = 2.1V,
VIN = 8.0V
VDF(T)
x 0.96
VDF
x 0.02
0.7
0.4
3.0
5.0
6.0
7.0
-
TYP.
MAX.
VDF
x 0.05
0.7
0.8
0.9
1.0
1.1
2.2
7.7
10.1
11.5
13.0
-10.0
VDF(T)
x 1.04
VDF
x 0.08
2.8
3.3
3.5
3.7
3.9
10.0
-2.0
-
10
-
-
10
400
-40℃ ≦ Topr ≦ 85℃
-
±100
Inverts from VDR to VOUT
-
0.03
VIN=10.0V
VOUT=10.0V
VDF(T)
UNITS CIRCUITS
V
1
V
1
μA
2
V
1
mA
3
4
nA
3
±400
ppm/
℃
-
0.20
ms
5
XE61C
Series
■OPERATIONAL EXPLANATION
(Especially explained for the CMOS output products)
① When input voltage (VIN) rises above detect voltage (VDF), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
② When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage
(VSS) level.
③ When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become
unstable. In this condition, VIN will equal the pulled-up output (should output be pulled-up.)
④ When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)
level will be maintained.
⑤ When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
⑥ The difference between VDR and VDF represents the hysteresis range.
●Timing Chart
5/15
XE61C Series
■NOTES ON USE
1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent
damage to the device.
2. When a resistor is connected between the VIN pin and the input with CMOS output configurations, oscillation may occur
as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)
3. When a resistor is connected between the VIN pin and the input with CMOS output configurations, irrespective of N-ch
output configurations, oscillation may occur as a result of through current at the time of voltage release even if load
current (IOUT) does not exist. (refer to the Oscillation Description (2) below )
4. With a resistor connected between the VIN pin and the input, detect and release voltage will rise as a result of the IC's
supply current flowing through the VIN pin.
5. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than
several μ sec / V.
6. Please use N-ch open drains configuration, when a resistor RIN is connected between the VIN pin and power source.
In such cases, please ensure that RIN is less than 10kΩ and that C is more than 0.1μF.
XE61CN Series
RIN
VIN
C
VOUT
VSS
Figure 1: Circuit using an input resistor
●Oscillation Description
(1) Output current oscillation with the CMOS output configuration
When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load
current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the input
(IN) and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level
at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence.
Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at
the VIN pin will rise and release operations will begin over again.
Oscillation may occur with this " release - detect - release " repetition.
Further, this condition will also appear via means of a similar mechanism during detect operations.
(2) Oscillation as a result of through current
Since the XE61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through
current's resistor (RIN) during release voltage operations. (refer to Figure 3)
Since hysteresis exists during detect operations, oscillation is unlikely to occur.
IN
IN
XE61CC Series
6/15
XE61CC Series
XE61CN Series
XE61C
Series
100kΩ*
7/15
XE61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Input Voltage
XE61CC2702 (2.7V)
XE61CC1802 (1.8V)
3.5
3.5
3.0
Supply Current: ISS (μA)
Supply Current: ISS (μA)
3.0
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
2.5
2.0
1.5
1.0
-40℃
0.5
0
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
3.0
3.0
Supply Current: ISS (μA)
3.5
2.5
Ta=85℃
25℃
1.5
6
8
10
XE61CC4502 (4.5V)
3.5
2.0
4
Input Voltage: VIN (V)
XE61CC3602 (3.6V)
Supply Current: ISS (μA)
Ta=85℃
25℃
1.0
-40℃
0.5
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
4
6
8
10
Input Voltage: VIN (V)
(2) Detect, Release Voltage vs. Ambient Temperature
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
2.80
1.85
Detect, Release Voltage: VDF,VDR (V)
Detect, Release Voltage: VDF,VDR (V)
1.90
VDR
1.80
VDF
1.75
-50
-25
0
25
50
75
Ambient Temperature: Ta (℃ )
8/15
100
VDR
2.75
2.70
VDF
2.65
-50
-25
0
25
50
75
Ambient Temperature: Ta (℃ )
100
XE61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Detect, Release Voltage vs. Ambient Temperature (Continued)
XE61CC3602 (3.6V)
XE61CC4502 (4.5V)
4.7
Detect, Release Voltage: VDF,VDR (V)
Detect, Release Voltage: VDF,VDR (V)
3.8
VDR
3.7
3.6
VDF
3.5
-50
-25
0
25
50
75
VDR
4.6
4.5
VDF
4.4
100
-50
Ambient Temperature: Ta (℃ )
-25
0
25
50
75
100
Ambient Temperature: Ta (℃ )
(3) Output Voltage vs. Input Voltage
XE61CN1802 (1.8V)
2
XE61CN2702 (2.7V)
3
Ta=25℃
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
Ta=25℃
1
0
2
1
0
0
1
2
0
1
Input Voltage: VIN (V)
XE61CN3602 (3.6V)
4
3
XE61CN4502 (4.5V)
5
Ta=25℃
Output Voltage: VOUT (V)
Ta=25℃
Output Voltage: VOUT (V)
2
Input Voltage: VIN (V)
3
2
1
0
4
3
2
1
0
0
1
2
3
Input Voltage: VIN (V)
4
0
1
2
3
4
5
Input Voltage: VIN (V)
* Unless otherwise stated, the pull-up resistor’s value of the N-ch open drain output type is 100kΩ.
9/15
XE61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) N-ch Driver Output Current vs. VDS Characteristics
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
10
30
VIN =1.5V
Ta=25℃
VIN =2.5V
25
8
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Ta=25℃
6
4
1.0V
2
20
2.0V
15
10
1.5V
5
1.0V
0
0
0
0.5
1.0
1.5
2.0
0
0.5
1.0
XE61CC3602 (3.6V)
3.0
XE61CC4502 (4.5V)
Ta=25℃
Ta=25℃
70
VIN =3.0V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
2.5
80
40
30
2.5V
20
2.0V
10
60
VIN =4.0V
0
3.5V
50
40
3.0V
30
2.5V
20
2.0V
10
1.5V
1.5V
0
0
0.5
1.0
1.5
2.0
2.5
0
3.0
0.5
1.0
VDS (V)
1.5
2.0
2.5
3.0
3.5
4.0
VDS (V)
XE61CC1802 (1.8V)
1000
XE61CC2802 (2.7V)
1000
VIN =0.8V
Ta=25℃
Ta=25℃
800
Output Current: IOUT (μA)
Output Current: IOUT (μA)
2.0
VDS (V)
VDS (V)
600
0.7V
400
200
0
800
VIN =0.8V
600
400
0.7V
200
0
0
0.2
0.4
0.6
VDS (V)
10/15
1.5
0.8
1.0
0
0.2
0.4
0.6
VDS (V)
0.8
1.0
XE61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) N-ch Driver Output Current vs. VDS Characteristics (Continued)
XE61CC3602 (3.6V)
XE61CC4502 (4.5V)
1000
1000
Ta=25℃
800
VIN =0.8V
Output Current: IOUT (μA)
Output Current: IOUT (μA)
Ta=25℃
600
400
0.7V
200
VIN =0.8V
800
600
400
0.7V
200
0
0
0
0.2
0.4
0.6
0.8
1.0
0
0.2
0.4
VDS (V)
0.6
0.8
1.0
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
15
25
VDS=0.5V
VDS=0.5V
10
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Ta=-40℃
25℃
5
85℃
0
20
25℃
15
10
85℃
5
0
0
0.5
1.0
1.5
2.0
0
0.5
1.0
1.5
2.0
2.5
3.0
Input Voltage: VIN (V)
Input Voltage: VIN (V)
XE61CC3602 (3.6V)
XE61CC4502 (4.5V)
30
40
VDS=0.5V
VDS=0.5V
Ta=-40℃
25
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Ta=-40℃
25℃
20
15
10
85℃
5
0
Ta=-40℃
30
25℃
20
85℃
10
0
0
1
2
3
Input Voltage: VIN (V)
4
0
1
2
3
4
5
Input Voltage: VIN (V)
11/15
XE61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(6) P-ch Driver Output Current vs. Input Voltage
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
15
15
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
VDS=2.1V
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
4
XE61CC3602 (3.6V)
10
XE61CC4502 (4.5V)
15
VDS=2.1V
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
8
Input Voltage: VIN (V)
15
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
Input Voltage: VIN (V)
12/15
6
8
10
0
2
4
6
Input Voltage: VIN (V)
8
10
XE61C
Series
■PACKAGING INFORMATION
●SOT-23
●SOT-89
(unit : mm)
4.5±0.1
1.6 +0.15
-0.2
+0.03
0.4 -0.02
φ1.0
0.42±0.06
0.47±0.06
0.42±0.06
+0.03
0.4 -0.02
8°
8°
1.5±0.1
1.5±0.1
13/15
XE61C Series
■MARKING RULE
●SOT-23, SOT-89
a
b
c
d
a
b
c
①
②
e
f
③ ④
g
h
①
e
d
④
②
③
f
g
SOT-23
SOT-89
(TOP VIEW)
(TOP VIEW)
h
① represents integer of output configuration and detect voltage
XE61CC Series (CMOS Output)
XE61CN Series (N-ch Open Drain Output)
MARK
VOLTAGE (V)
PRODUCT SEIRES
MARK
VOLTAGE (V)
PRODUCT SERIES
B
1.x
XE61CC1xxxxx
L
1.x
XE61CN1xxxxx
C
2.x
XE61CC2xxxxx
M
2.x
XE61CN2xxxxx
D
3.x
XE61CC3xxxxx
N
3.x
XE61CN3xxxxx
E
4.x
XE61CC4xxxxx
P
4.x
XE61CN4xxxxx
F
5.x
XE61CC5xxxxx
R
5.x
XE61CN5xxxxx
H
6.x
XE61CC6xxxxx
S
6.x
XE61CN6xxxxx
② represents decimal number of detect voltage
MARK
VOLTAGE (V)
PRODUCT SEIRES
3
x.3
XE61Cxxx3xxx
0
x.0
XE61Cxxx0xxx
③ represents delay time
MARK
DELAY TIME
3
No Delay
PRODUCT SERIES
XE61Cxxxx0xx
④ represents production lot number
Based on internal standard. (G, I, J, O, Q, W excluded)
Bar Mark: a, b, c, d
PRODUCTION YEAR
xxx0
xxx1
xxx2
xxx3
xxx4
xxx5
xxx6
xxx7
xxx8
xxx9
a
□
□
□
□
-
b
□
□
□
□
-
c
□
□
□
□
d
□
□
□
□
Bar Mark: e, f, g, h
PRODUCTION MONTH
January
February
March
April
May
June
July
August
September
October
November
December
e
□
□
□
□
□
□
f
□
□
□
□
□
□
g
□
□
□
□
□
-
h
□
□
□
□
□
14/15
XE61C
Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
15/15