size:0.4MB - Torex Semiconductor

XE61C Series
ETR0208-014
Standard Voltage Detectors (VDF=1.6V~6.0V)
■GENERAL DESCRIPTION
The XE61C series is a highly precise, low power consumption voltage detector, manufactured using CMOS process and laser
trimming technologies.
Detect voltage is extremely accurate with minimal temperature drift.
Both CMOS and N-ch open drain output configurations are available.
The XE61C assures all temperature range (Ta= - 40OC ~ + 85OC).
●Microprocessor reset circuitry
●Memory battery back-up circuits
●Power-on reset circuits
●Power failure detection
●System battery life and charge voltage monitors
■TYPICAL APPLICATION CIRCUITS
■FEATURES
: ± 2% (Ta=25OC)
± 4% (Ta=-40OC~+85℃)
Detect Voltage
: 1.6V~6.0V (0.1V increments)
Temperature Characteristics : ±400ppm/℃ (Ta=- 40OC~+85OC)
Operating Voltage Range
: 0.7V~10.0V
Low Power Consumption : 0.7μA TYP. (VIN=1.5V)
Output Configuration
: N-ch open drain output or CMOS
Packages
: SOT-23
SOT-89
Environmentally Friendly
: EU RoHS Compliant, Pb Free
Detect Voltage Accuracy
■TYPICAL PERFORMANCE
CHARACTERISTICS
XE61CC4502 (4.5V)
3.5
3.0
Supply Current: ISS (μA)
■APPLICATIONS
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
2
4
6
8
10
Input Voltage: VIN (V)
1/15
XE61C Series
■PIN CONFIGURATION
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTION
2
VIN
Supply Voltage Input
3
VSS
Ground
1
VOUT
Output
SOT-23
SOT-89
3
2
1
■PRODUCT CLASSIFICATION
●Ordering Information
XE61C①②③④⑤⑥⑦-⑧(*1)
DESIGNATOR
ITEM
①
Output Configuration
②③
④
⑤
Detect Voltage (VDF)
Output Delay
Detect Accuracy
⑥⑦-⑧
Packages
(Order Unit)
(*1)
2/15
SYMBOL
C
N
16 ~ 60
0
2
MR
DESCRIPTION
CMOS output
N-ch open drain output
e.g.1.6V → ②1, ③6
No delay
Within ±2%
SOT-23 (3,000/Reel)
MR-G
SOT-23 (3,000/Reel)
PR
SOT-89 (1,000/Reel)
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
XE61C
Series
■BLOCK DIAGRAMS
(1) CMOS Output
(2) N-ch Open Drain Output
■ABSOLUTE MAXIMUM RATINGS
Ta = 25OC
PARAMETER
Input Voltage
Output Current
Output Voltage
Power Dissipation
SYMBOL
VIN
IOUT
CMOS
N-ch Open Drain Output
SOT-23
SOT-89
Operating Temperature Range
Storage Temperature Range
VOUT
Pd
Topr
Tstg
RATINGS
VSS-0.3~12.0
50
VSS -0.3 ~ VIN +0.3
VSS -0.3 ~ 12.0
250
500
- 40~+85
-55~+125
UNITS
V
mA
V
mW
O
O
C
C
3/15
XE61C Series
■ELECTRICAL CHARACTERISTICS
XE61C Series
VDF(T)=1.6~6.0V, Ta= - 40℃ ~ 85℃
PARAMETER
SYMBOL
Detect Voltage
VDF
Hysteresis Width
VHYS
Supply Current
ISS
Operating Voltage
VIN
Output Current
IOUT
CMOS
Output
(Pch)
Leakage
ILEAK
Current
N-ch Open
Drain
Output
Temperature
ΔVDF/
Characteristics
(ΔTopr・VDF)
Delay Time
tDLY
(VDR→VOUT inversion)
NOTE:
VDF(T): Nominal detect voltage
Release Voltage: VDR = VDF + VHYS
4/15
CONDITIONS
MIN.
VIN = 1.5V
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VDF(T) = 1.6V to 6.0V
VIN = 1.0V
VIN = 2.0V
N-ch VDS = 0.5V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
CMOS, P-ch VDS = 2.1V,
VIN = 8.0V
VDF(T)
x 0.96
VDF
x 0.02
0.7
0.4
3.0
5.0
6.0
7.0
-
VIN=VDFx0.9V,VOUT=0V
-
TYP.
MAX.
VDF
x 0.05
0.7
0.8
0.9
1.0
1.1
2.2
7.7
10.1
11.5
13.0
-10.0
VDF(T)
x 1.04
VDF
x 0.08
2.8
3.3
3.5
3.7
3.9
10.0
-2.0
-10
-
VDF(T)
UNITS CIRCUITS
V
1
V
1
μA
2
V
1
mA
3
4
nA
3
VIN=10.0V,VOUT=10.0V
-
10
400
-40℃ ≦ Topr ≦ 85℃
-
±100
±400
ppm/
℃
1
Inverts from VDR to VOUT
-
0.03
0.20
ms
5
XE61C
Series
■OPERATIONAL EXPLANATION
(Especially explained for the CMOS output products)
① When input voltage (VIN) is higher than detect voltage (VDF), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
② When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage
(VSS) level.
③ When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become
unstable.(As for the N-ch open drain product of XC61CN, the pull-up voltage goes out at the output voltage.)
④ When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)
level will be maintained.
⑤ When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
⑥ The difference between VDR and VDF represents the hysteresis range.
●Timing Chart
5/15
XE61C Series
■NOTES ON USE
1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising
phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, oscillation may
occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)
3. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, irrespective of
N-ch open-drain output configurations, oscillation may occur as a result of through current at the time of voltage release
even if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below )
4. Please use N-ch open drain output configuration, when a resistor RIN is connected between the VIN pin and power
source.
In such cases, please ensure that RIN is less than 10kΩ and that C is more than 0.1μF, please test with the actual device.
(refer to the Oscillation Description (1) below)
5. With a resistor RIN connected between the VIN pin and the power supply, the VIN pin voltage will be getting lower than the
power supply voltage as a result of the IC's supply current flowing through the VIN pin.
6. In order to stabilize the IC's operations, please ensure that VIN pin input frequency's rise and fall times are more than 2 μ
s/ V.
7. Torex places an importance on improving our products and its reliability.
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.
XE61CN Series
RIN
Power supply
VIN
C
VOUT
VSS
Figure 1: Circuit using an input resistor
●Oscillation Description
(1) Load current oscillation with the CMOS output configuration
When the voltage applied at power supply, release operations commence and the detector's output voltage increases.
Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the
power supply and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the
voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will
commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the
voltage level at the VIN pin will rise and release operations will begin over again.
Oscillation may occur with this " release - detect - release " repetition.
Further, this condition will also appear via means of a similar mechanism during detect operations.
(2) Oscillation as a result of through current
Since the XE61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through
current's resistor (RIN) during release voltage operations. (refer to Figure 3)
Since hysteresis exists during detect operations, oscillation is unlikely to occur.
Power supply
Power supply
XE61CC Series
6/15
XE61CC Series
XE61CN Series
XE61C
Series
100kΩ*
7/15
XE61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Input Voltage
XE61CC2702 (2.7V)
XE61CC1802 (1.8V)
3.5
3.5
3.0
Supply Current: ISS (μA)
Supply Current: ISS (μA)
3.0
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
2.5
2.0
1.5
1.0
-40℃
0.5
0
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
3.0
3.0
Supply Current: ISS (μA)
3.5
2.5
Ta=85℃
25℃
1.5
6
8
10
XE61CC4502 (4.5V)
3.5
2.0
4
Input Voltage: VIN (V)
XE61CC3602 (3.6V)
Supply Current: ISS (μA)
Ta=85℃
25℃
1.0
-40℃
0.5
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
4
6
8
10
Input Voltage: VIN (V)
(2) Detect, Release Voltage vs. Ambient Temperature
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
2.80
1.85
Detect, Release Voltage: VDF,VDR (V)
Detect, Release Voltage: VDF,VDR (V)
1.90
VDR
1.80
VDF
1.75
-50
-25
0
25
50
75
Ambient Temperature: Ta (℃ )
8/15
100
VDR
2.75
2.70
VDF
2.65
-50
-25
0
25
50
75
Ambient Temperature: Ta (℃ )
100
XE61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Detect, Release Voltage vs. Ambient Temperature (Continued)
XE61CC3602 (3.6V)
XE61CC4502 (4.5V)
4.7
Detect, Release Voltage: VDF,VDR (V)
Detect, Release Voltage: VDF,VDR (V)
3.8
VDR
3.7
3.6
VDF
3.5
-50
-25
0
25
50
75
VDR
4.6
4.5
VDF
4.4
100
-50
Ambient Temperature: Ta (℃ )
-25
0
25
50
75
100
Ambient Temperature: Ta (℃ )
(3) Output Voltage vs. Input Voltage
XE61CN1802 (1.8V)
2
XE61CN2702 (2.7V)
3
Ta=25℃
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
Ta=25℃
1
0
2
1
0
0
1
2
0
1
Input Voltage: VIN (V)
XE61CN3602 (3.6V)
4
3
XE61CN4502 (4.5V)
5
Ta=25℃
Output Voltage: VOUT (V)
Ta=25℃
Output Voltage: VOUT (V)
2
Input Voltage: VIN (V)
3
2
1
0
4
3
2
1
0
0
1
2
3
Input Voltage: VIN (V)
4
0
1
2
3
4
5
Input Voltage: VIN (V)
* Unless otherwise stated, the pull-up resistor’s value of the N-ch open drain output type is 100kΩ.
9/15
XE61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) N-ch Driver Output Current vs. VDS Characteristics
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
10
30
VIN =1.5V
Ta=25℃
VIN =2.5V
25
8
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Ta=25℃
6
4
1.0V
2
20
2.0V
15
10
1.5V
5
1.0V
0
0
0
0.5
1.0
1.5
2.0
0
0.5
1.0
XE61CC3602 (3.6V)
3.0
XE61CC4502 (4.5V)
Ta=25℃
Ta=25℃
70
VIN =3.0V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
2.5
80
40
30
2.5V
20
2.0V
10
60
VIN =4.0V
0
3.5V
50
40
3.0V
30
2.5V
20
2.0V
10
1.5V
1.5V
0
0
0.5
1.0
1.5
2.0
2.5
0
3.0
0.5
1.0
VDS (V)
1.5
2.0
2.5
3.0
3.5
4.0
VDS (V)
XE61CC1802 (1.8V)
1000
XE61CC2802 (2.7V)
1000
VIN =0.8V
Ta=25℃
Ta=25℃
800
Output Current: IOUT (μA)
Output Current: IOUT (μA)
2.0
VDS (V)
VDS (V)
600
0.7V
400
200
0
800
VIN =0.8V
600
400
0.7V
200
0
0
0.2
0.4
0.6
VDS (V)
10/15
1.5
0.8
1.0
0
0.2
0.4
0.6
VDS (V)
0.8
1.0
XE61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) N-ch Driver Output Current vs. VDS Characteristics (Continued)
XE61CC3602 (3.6V)
XE61CC4502 (4.5V)
1000
1000
Ta=25℃
800
VIN =0.8V
Output Current: IOUT (μA)
Output Current: IOUT (μA)
Ta=25℃
600
400
0.7V
200
VIN =0.8V
800
600
400
0.7V
200
0
0
0
0.2
0.4
0.6
0.8
1.0
0
0.2
0.4
VDS (V)
0.6
0.8
1.0
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
15
25
VDS=0.5V
VDS=0.5V
10
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Ta=-40℃
25℃
5
85℃
0
20
25℃
15
10
85℃
5
0
0
0.5
1.0
1.5
2.0
0
0.5
1.0
1.5
2.0
2.5
3.0
Input Voltage: VIN (V)
Input Voltage: VIN (V)
XE61CC3602 (3.6V)
XE61CC4502 (4.5V)
30
40
VDS=0.5V
VDS=0.5V
Ta=-40℃
25
Output Current: IOUT (mA)
Output Current: IOUT (mA)
Ta=-40℃
25℃
20
15
10
85℃
5
0
Ta=-40℃
30
25℃
20
85℃
10
0
0
1
2
3
Input Voltage: VIN (V)
4
0
1
2
3
4
5
Input Voltage: VIN (V)
11/15
XE61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(6) P-ch Driver Output Current vs. Input Voltage
XE61CC1802 (1.8V)
XE61CC2702 (2.7V)
15
15
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
VDS=2.1V
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
4
XE61CC3602 (3.6V)
10
XE61CC4502 (4.5V)
15
VDS=2.1V
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
8
Input Voltage: VIN (V)
15
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
Input Voltage: VIN (V)
12/15
6
8
10
0
2
4
6
Input Voltage: VIN (V)
8
10
XE61C
Series
■PACKAGING INFORMATION
●SOT-23
●SOT-89
(unit : mm)
4.5±0.1
1.6 +0.15
-0.2
+0.03
0.4 -0.02
φ1.0
0.42±0.06
0.47±0.06
0.42±0.06
+0.03
0.4 -0.02
8°
8°
1.5±0.1
1.5±0.1
13/15
XE61C Series
■MARKING RULE
●SOT-23, SOT-89
a
b
c
d
a
b
c
①
②
e
f
③ ④
g
h
①
e
d
④
②
③
f
g
SOT-23
SOT-89
(TOP VIEW)
(TOP VIEW)
h
① represents integer of output configuration and detect voltage
XE61CC Series (CMOS Output)
XE61CN Series (N-ch Open Drain Output)
MARK
VOLTAGE (V)
PRODUCT SEIRES
MARK
VOLTAGE (V)
PRODUCT SERIES
B
1.x
XE61CC1xxxxx
L
1.x
XE61CN1xxxxx
C
2.x
XE61CC2xxxxx
M
2.x
XE61CN2xxxxx
D
3.x
XE61CC3xxxxx
N
3.x
XE61CN3xxxxx
E
4.x
XE61CC4xxxxx
P
4.x
XE61CN4xxxxx
F
5.x
XE61CC5xxxxx
R
5.x
XE61CN5xxxxx
H
6.x
XE61CC6xxxxx
S
6.x
XE61CN6xxxxx
② represents decimal number of detect voltage
MARK
VOLTAGE (V)
PRODUCT SEIRES
3
x.3
XE61Cxxx3xxx
0
x.0
XE61Cxxx0xxx
③ represents delay time
MARK
DELAY TIME
3
No Delay
PRODUCT SERIES
XE61Cxxxx0xx
④ represents production lot number
Based on internal standard. (G, I, J, O, Q, W excluded)
Bar Mark: a, b, c, d
PRODUCTION YEAR
xxx0
xxx1
xxx2
xxx3
xxx4
xxx5
xxx6
xxx7
xxx8
xxx9
a
□
□
□
□
-
b
□
□
□
□
-
c
□
□
□
□
d
□
□
□
□
Bar Mark: e, f, g, h
PRODUCTION MONTH
January
February
March
April
May
June
July
August
September
October
November
December
e
□
□
□
□
□
□
f
□
□
□
□
□
□
g
□
□
□
□
□
-
h
□
□
□
□
□
14/15
XE61C
Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
15/15