TOREX XC61CC1202PR

◆CMOS
◆Highly Accurate:±1% (VDF=2.6V~5.0V)
±2% (VDF=0.8V~6.0V)
◆Low Power Consumption: 0.7μA
(VIN=1.5V)
Highly Accurate
The XC61C series are highly precise, low power
voltage detectors, manufactured using
CMOS and laser trimming technologies.
Detect voltage is extremely accurate with minimal
temperature drift.
Both
CMOS
and
N-channel
open
drain
●Microprocessor reset circuitry
●Memory battery back-up circuits
●Power-on reset circuits
●Power failure detection
●System battery life and charge voltage monitors
■FEATURES
■GENERAL DESCRIPTION
consumption
■APPLICATIONS
output
configurations are available.
■TYPICAL APPLICATION CIRCUITS
: ± 2%
(Low Voltage VD: 0.8V~1.5V)
(Standard Voltage VD: 1.6V~6.0V)
± 1%
(Standard Voltage VD: 2.6V~5.0V)
Low Power Consumption : 0.7μA (TYP.) [VIN=1.5V]
Detect Voltage Range
:0.8V ~ 6.0V in 100mV increments
Operating Voltage Range :0.7V ~ 6.0V (Low Voltage)
0.7V~10.0V (Standard Voltage)
Detect Voltage Temperature Characteristics
: ±100ppm/℃ (TYP.) @Ta=25 OC
Output Configuration
: N-channel open drain or CMOS
Ultra Small Packages
: SSOT-24 (150mW)
SOT-23 (250mW)
SOT-25 (250mW)
SOT-89 (500mW)
TO-92 (300mW)
USP-6B (100mW)
USP-6C (100mW)
USP-4 (120mW)
■TYPICAL PERFORMANCE CHARACTERISTICS
XC61C ETR0201_004
1/19
XC61C Series
■PIN CONFIGURATION
NC 6
1 VSS
VIN 5
2 NC
NC 4
3 VOUT
USP-6C
(BOTTOM VIEW)
VSS
2
3
NC
VOUT
1
4 VIN
USP-4
(BOTTOM VIEW)
SOT-25
(TOP VIEW)
*Please use the circuit without connecting
the heat dissipation pad. If the pad needs
to be connected to other pins, it should be
connected to the VIN pin.
■PIN ASSIGNMENT
PIN NUMBER
SSOT-24 SOT-23 SOT-25 SOT-89 TO-92 (T) TO-92 (L) USP-6B USP-6C
USP-4
PIN NAME
FUNCTION
2
3
2
2
2
1
5
5
4
VIN
4
2
3
3
3
2
1
1
2
VSS
Supply Voltage
t
I
t
Ground
1
1
1
1
1
3
3
3
1
VOUT
Output
3
-
4, 5
-
-
-
2,4,6
2,4,6
3
NC
No Connection
■PRODUCT CLASSIFICATION
●Ordering Information
XC61C①②③④⑤⑥⑦
DESIGNATOR
2/19
DESCRIPTION
SYMBOL
①
Output Configuration
C
N
② ③
Detect Voltage
08 ~ 60
④
Output Delay
⑤
Detect Accuracy
⑥
Package
⑦
Device Orientation
0
1
2
N
M
P
S
T
L
D
E
G
R
L
H
B
DESCRIPTION
: CMOS output
: N-ch open drain output
: e.g.0.9V → ②0, ③9
: e.g.1.5V → ②1, ③5
: No delay
: Within ±1%
: Within ±2%
: SSOT-24 (SC-82)
: SOT-23
: SOT-89
: SOT-25
: TO-92 (Standard)
: TO-92 (Custom pin configuration)
: USP-6B
: USP-6C
: USP-4
: Embossed tape, standard feed
: Embossed tape, reverse feed
: Paper type (TO-92)
: Bag (TO-92)
XC61C
Series
■PACKAGING INFORMATION
●SSOT-24 (SC-82)
●SOT-23
●SOT-25
3/19
XC61C Series
■PACKAGING INFORMATION (Continued)
●SOT-89
●TO-92
4/19
XC61C
Series
■PACKAGING INFORMATION (Continued)
●USP-6C
●USP-4
* Soldering fillet surface is not
formed because the sides of the
pins are plated.
5/19
XC61C Series
■MARKING RULE
● SSOT-24, SOT-23, SOT-25,
SOT-89, USP-4
4
3
①
②
MARK
A
B
C
D
E
F
H
④
1
① Represents integer of detect voltage and
CMOS Output (XC61CC series)
2
3
CONFIGURATION
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
VOLTAGE (V)
0.X
1.X
2.X
3.X
4.X
5.X
6.X
N-Channel Open Drain Output (XC61CN series)
①
②
③ ④
1
2
5
4
①
②
1
MARK
K
L
M
N
P
R
S
③ ④
2
MARK
0
1
2
3
4
3
SOT-25
②
④
①
③
2
VOLTAGE (V)
0.X
1.X
2.X
3.X
4.X
5.X
6.X
②Represents decimal number of detect voltage
(TOP VIEW)
1
CONFIGURATION
N-ch
N-ch
N-ch
N-ch
N-ch
N-ch
N-ch
VOLTAGE (V)
X.0
X.1
X.2
X.3
X.4
MARK
5
6
7
8
9
VOLTAGE (V)
X.5
X.6
X.7
X.8
X.9
③Represents delay time
(Except for SSOT-24)
3
MARK
DELAY TIME
PRODUCT SERIES
3
No Delay Time
XC61Cxxx0xxx
④Represents production lot number
Based on the internal standard. (G, I, J, O, Q, W excepted)
USP-4
(TOP VIEW)
6/19
XC61C
Series
■MARKING RULE (Continued)
●TO-92
①Represents output configuration
MARK
OUTPUT
CONFIGURATION
C
N
CMOS
N-ch
②, ③Represents detect voltage (ex.)
MARK
②
3
5
③
3
0
VOLTAGE (V)
3.3
5.0
④Represents delay time
MARK
DELAY TIME
0
No delay
⑤Represents detect voltage accuracy
MARK
DETECT VOLTAGE ACCURACY
1
2
Within ± 1% (Semi-custom)
Within ± 2%
⑥Represents a least significant digit of production year
MARK
PRODUCTION YEAR
5
6
2005
2006
⑦Represents production lot number
0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted)
* No character inversion used.
●USP-6B, USP-6C
①, ②Represents product series
MARK
①
②
1
C
PRODUCT SERIES
XC61Cxxx0xDx
③Represents output configuration
USP-6B
(TOP VIEW)
MARK
OUTPUT CONFIGURATION
PRODUCT SERIES
C
CMOS
XC61CCxx0xDx
N
N-ch
XC61CNxx0xDx
VOLTAGE (V)
PRODUCT SERIES
④, ⑤Represents detect voltage
(ex.)
MARK
USP-6C
④
⑤
3
3
3.3
XC61Cx330xDx
5
0
5.0
XC61Cx500xDx
(TOP VIEW)
⑥Represents production lot number
0 to 9, A to Z repeated (G, I, J, O, Q, W excepted)
Note: No character inversion used.
7/19
XC61C Series
■BLOCK DIAGRAMS
(1) CMOS Output
(2) N-ch Open Drain Output
■ABSOLUTE MAXIMUM RATINGS
Ta = 25OC
PARAMETER
SYMBOL
*1
*2
Input Voltage
Output Current
VIN
IOUT
CMOS
Output Voltage
N-ch Open Drain Output *1
N-ch Open Drain Output *2
SSOT-24
SOT-23
SOT-25
SOT-89
Power Dissipation
TO-92
USP-6B
USP-6C
USP-4
Operating Temperature Range
Storage Temperature Range
*1: Low voltage: VDF(T)=0.8V~1.5V
*2: Standard voltage: VDF(T)=1.6V~6.0V
8/19
RATINGS
9.0
12.0
UNITS
50
mA
V
VSS -0.3 ~ VIN +0.3
VOUT
VSS -0.3 ~ 9.0
V
VSS -0.3 ~ 12.0
Pd
Topr
Tstg
150
250
250
500
300
100
100
120
-40~+85
-40~+125
mW
O
O
C
C
XC61C
Series
■ELECTRICAL CHARACTERISTICS
VDF (T) = 0.8V to 6.0V ± 2%
VDF (T) = 2.6V to 5.0V ± 1%
PARAMETER
SYMBOL
Detect Voltage
VDF
Hysteresis Range
VHYS
Supply Current
ISS
Operating Voltage *1
Operating Voltage *2
VIN
Output Current *1
IOUT
Output Current *2
Leak Current
Ileak
Temperature
ΔVDF
Characteristics
ΔTopr・VDF
Delay Time
tDLY
(VDR→VOUT inversion)
CONDITIONS
VDF(T)=0.8V~1.5V *1
VDF(T)=1.6V~6.0V *2
MIN.
VDF(T)
x 0.98
VDF(T)
VDF(T)=2.6V~5.0V *2
x 0.99
VDF
x 0.02
VIN = 1.5V
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VDF(T) = 0.8V to 1.5V
0.7
VDF(T) = 1.6V to 6.0V
0.7
VIN = 0.7V
0.10
N-ch VDS = 0.5V
0.85
VIN = 1.0V
VIN = 6.0V
CMOS, P-ch VDS = 2.1V
VIN = 1.0V
1.0
VIN = 2.0V
3.0
N-ch VDS = 0.5V
VIN = 3.0V
5.0
VIN = 4.0V
6.0
7.0
VIN = 5.0V
CMOS, P-ch VDS = 2.1V
VIN = 8.0V
VIN=6.0V, VOUT=6.0V*1
CMOS
VIN=10.0V, VOUT=10.0V*2 N-ch Open Drain
-
TYP.
VDF
x 0.05
0.7
0.8
0.9
1.0
1.1
0.80
2.70
-7.5
2.2
7.7
10.1
11.5
13.0
-10.0
10
10
MAX.
VDF(T)
x 1.02
VDF(T)
x 1.01
VDF
x 0.08
2.3
2.7
3.0
3.2
3.6
6.0
10.0
-1.5
-2.0
100
VDF(T)
VDF(T)
Ta=25℃
UNITS CIRCUITS
V
1
V
1
V
1
μA
2
V
1
3
4
mA
3
4
nA
3
-40℃ ≦ Topr ≦ 85℃
-
±100
-
ppm/
℃
-
Inverts from VDR to VOUT
-
0.03
0.20
ms
5
NOTE:
*1: Low Voltage: VDF(T)=0.8V~1.5V
*2: Standard Voltage: VDF(T)=1.6V~6.0V
VDF (T): Setting detect voltage
Release Voltage: VDR = VDF + VHYS
9/19
XC61C Series
■OPERATIONAL EXPLANATION
(Especially prepared for CMOS output products)
① When input voltage (VIN) rises above detect voltage (VDF), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
② When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage
(VSS) level.
③ When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become
unstable. In this condition, VIN will equal the pulled-up output (should output be pulled-up.)
④ When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)
level will be maintained.
⑤ When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.
(A condition of high impedance exists with N-ch open drain output configurations.)
⑥ The difference between VDR and VDF represents the hysteresis range.
●Timing Chart
10/19
XC61C
Series
■NOTES ON USE
1. Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent
damage to the device.
2. When a resistor is connected between the VIN pin and the input with CMOS output configurations, oscillation may occur
as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)
3. When a resistor is connected between the VIN pin and the input with CMOS output configurations, irrespective of N-ch
output configurations, oscillation may occur as a result of through current at the time of voltage release even if load
current (IOUT) does not exist. (refer to the Oscillation Description (2) below )
4. With a resistor connected between the VIN pin and the input, detect and release voltage will rise as a result of the IC's
supply current flowing through the VIN pin.
5. In order to stabilize the IC's operations, please ensure that VIN pin's input frequency's rise and fall times are more than
several µ sec / V.
6. Please use N-ch open drains configuration, when a resistor RIN is connected between the VIN pin and power source.
In such cases, please ensure that RIN is less than 10kΩ and that C is more than 0.1µF.
●Oscillation Description
(1) Output current oscillation with the CMOS output configuration
When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load
current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the input
(IN) and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level
at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will commence.
Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the voltage level at
the VIN pin will rise and release operations will begin over again.
Oscillation may occur with this " release - detect - release " repetition.
Further, this condition will also appear via means of a similar mechanism during detect operations.
(2) Oscillation as a result of through current
Since the XC61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through
current's resistor (RIN) during release voltage operations. (refer to Figure 3)
Since hysteresis exists during detect operations, oscillation is unlikely to occur.
11/19
XC61C Series
100kΩ*
12/19
XC61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
●Low Voltage
13/19
XC61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Low Voltage (Continued)
(4) N-ch Driver Output Current vs. VDS
XC61CC0902 (0.9V)
XC61CC1102(1.1V)
VIN =0.8V
1.0
0.8
0.6
0.7V
0.4
0.2
0
0.2
0.4
0.6
0.8
Ta=25℃
VIN =0.8V
1.0
0.8
0.6
0.7V
0.4
0.2
0
1.0
Ta=25℃
1.2
0
0.2
0.4
VDS (V)
XC61CC1502(1.5V)
0.8
1.5
1.0
0.5
0
1.0
0.2
0.4
0.6
0.8
1.0
VDS (V)
Ta=25℃
VIN =0.8V
1.0
0.8
0.6
0.7V
0.4
0.2
0
0.2
0.4
0.6
0.8
VIN =1.4V
6.0
1.0V
2.0
0
1.0
1.2V
4.0
0
0.2
0.4
VDS (V)
0.6
0.8
1.0
1.2
1.4
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage
XC61CC0902 (0.9V)
XC61CC1102 (1.1V)
XC61CC1502(1.5V)
5.0
Output Current: IOUT (mA)
VDS=0.5V
2.0
1.5
1.0
Ta=85℃
25℃
0.5
-40℃
0
0.2
0.4
0.6
0.8
Ta=-40℃
VDS=0.5V
4.0
25℃
3.0
2.0
80℃
1.0
0
1.0
10
Output Current: IOUT (mA)
2.5
Output Current: IOUT (mA)
0
XC61CC1502(1.5V)
Ta=25℃
1.2
0
VIN =1.0V
2.0
8.0
Output Current: IOUT (mA)
Output Current: IOUT (mA)
0.6
2.5
VDS (V)
1.4
0
Output Current: IOUT (mA)
Ta=25℃
1.2
0
XC61CC1102(1.1V)
3.0
1.4
Output Current: IOUT (mA)
Output Current: IOUT (mA)
1.4
0
Input Voltage: VIN (V)
0.2
0.4
0.6
0.8
1.0
VDS=0.5V
25℃
6
4
85℃
2
0
1.2
Ta=-40℃
8
0
Input Voltage: VIN (V)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Input Voltage: VIN (V)
(6) P-ch Driver Output Current vs. Input Voltage
XC61CC0902 (0.9V)
XC61CC1102 (1.1V)
1.5V
6
1.0V
4
0.5V
2
1
2
3
4
Input Voltage: VIN (V)
14/19
Ta= 25℃
VDS=2.1V
8
0
5
12
6
VDS=2.1V
10
8
1.5V
6
1.0V
4
0.5V
2
0
0
1
2
3
4
Input Voltage: VIN (V)
5
6
Output Current: IOUT (mA)
Ta= 25℃
10
0
XC61CC1502(1.5V)
12
Output Current: IOUT (mA)
Output Current: IOUT (mA)
12
Ta= 25℃
10
VDS=2.1V
8
1.5V
6
1.0V
4
0.5V
2
0
0
1
2
3
4
Input Voltage: VIN (V)
5
6
XC61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage
XC61CC2702 (2.7V)
3.5
3.5
3.0
3.0
Supply Current: ISS (μA)
Supply Current: ISS (μA)
(1) Supply Current vs. Input Voltage
XC61CC1802 (1.8V)
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
2
4
6
8
2.5
2.0
1.0
-40℃
0.5
0
10
0
Input Voltage: VIN (V)
3.0
3.0
2.5
1.5
4
6
8
10
XC61CC4502 (4.5V)
3.5
Supply Current: ISS (μA)
Supply Current: ISS (μA)
XC61CC3602 (3.6V)
Ta=85℃
25℃
2
Input Voltage: VIN (V)
3.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
2.5
2.0
Ta=85℃
25℃
1.5
1.0
-40℃
0.5
0
0
2
4
6
8
10
0
Input Voltage: VIN (V)
2
4
6
8
10
Input Voltage: VIN (V)
(2) Detect, Release Voltage vs. Ambient Temperature
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
1.85
Detect, Release Voltage: VDF, VDR (V)
Detect, Release Voltage: VDF, VDR (V)
1.90
VDR
1.80
VDF
1.75
-50
-25
0
25
50
75
100
2.80
VDR
2.75
2.70
VDF
2.65
-50
Ambient Temperature : Ta (℃)
XC61CC3602 (3.6V)
25
50
75
100
4.7
Detect, Release Voltage: VDF, VDR (V)
Detect, Release Voltage: VDF, VDR (V)
0
XC61CC4502 (4.5V)
3.8
VDR
3.7
3.6
VDF
3.5
-50
-25
Ambient Temperature : Ta (℃)
-25
0
25
50
75
Ambient Temperature : Ta (℃)
100
VDR
4.6
4.5
VDF
4.4
-50
-25
0
25
50
75
100
Ambient Temperature : Ta (℃)
15/19
XC61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage (Continued)
(3) Output Voltage vs. Input Voltage
XC61CN1802 (1.8V)
XC61CN2702 (2.7V)
3
2
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
Ta=25℃
1
0
0
1
Ta=25℃
2
1
0
2
0
1
Input Voltage: VIN (V)
XC61CN3602 (3.6V)
5
Output Voltage: VOUT (V)
Ta=25℃
Output Voltage: VOUT (V)
3
XC61CN4502 (4.5V)
4
3
2
1
0
2
Input Voltage: VIN (V)
0
1
2
3
Ta=25℃
4
3
2
1
0
4
0
1
Input Voltage: VIN (V)
2
3
4
5
Input Voltage: VIN (V)
Note : The N-channel open
open drain
drain pull
pull up
up resistance
resistance value
value is
is 100k
100kΩ.Ω.
(4) N-ch Driver Output Current vs. VDS
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
10
30
VIN =1.5V
Ta=25℃
Output Current: I OUT (mA)
Output Current: I OUT (mA)
Ta=25℃
8
6
4
1.0V
2
0
0
0.5
1.0
1.5
Ta=25℃
VIN =3.0V
30
2.5V
20
2.0V
10
1.5V
1.0
1.5
VDS (V)
16/19
2.0
2.5
3.0
Output Current: I OUT (mA)
Output Current: I OUT (mA)
40
0.5
10
1.5V
5
1.0V
0
0.5
1.0
1.5
2.0
2.5
XC61CC4502 (4.5V品)
XC61CC3602 (3.6V)
0
2.0V
15
3.0
VDS (V)
VDS (V)
0
20
0
2.0
VIN =2.5V
25
80 XC61CC4502 (4.5V)
Ta=25℃
80
70
Ta=25℃
VIN =4.0V
70
60
VIN =4.0V
60
3.5V
50
3.5V
50
40
3.0V
40
3.0V
30
2.5V
30
2.5V
20
20
2.0V
2.0V
10
1.5V
10
1.5V
0
0
00 0.5
1.0 1.5
1.5 2.0
2.0 2.5
2.5 3.0
3.0 3.5
3.5 4.0
4.0
0.5 1.0
(V)
DS(V)
VVDS
XC61C
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage (Continued)
(4) N-ch Driver Output Current vs. VDS
XC61CC1802 (1.8V)
1000
Output Current: IOUT (μA)
VIN =0.8V
Ta=25℃
Output Current: IOUT (μA)
XC61CC2702 (2.7V)
1000
800
600
0.7V
400
200
0
0
0.2
0.4
0.6
0.8
Ta=25℃
800
600
400
0.7V
200
0
1.0
VIN =0.8V
0
0.2
0.4
XC61CC3602 (3.6V)
Ta=25℃
VIN =0.8V
600
400
0.7V
200
0
0.2
1.0
XC61CC4502 (4.5V)
Ta=25℃
800
0
0.8
1000
Output Current: IOUT (μA)
Output Current: IOUT (μA)
1000
0.6
VDS (V)
VDS (V)
0.4
0.6
0.8
600
400
0.7V
200
0
1.0
VIN =0.8V
800
0
0.2
0.4
VDS (V)
0.6
0.8
1.0
VDS (V)
(5) N-ch Driver Output Current vs. Input Voltage
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
15
25
VDS=0.5V
Ta=-40℃
10
Output Current: IOUT (mA)
Output Current: IOUT (mA)
VDS=0.5V
25℃
5
85℃
0
0
0.5
1.0
1.5
25℃
15
10
85℃
5
0
2.0
0
Input Voltage: VIN (V)
XC61CC3602 (3.6V)
1.0
1.5
2.0
2.5
3.0
XC61CC4502 (4.5V)
40
VDS=0.5V
VDS=0.5V
Ta=-40℃
25
Output Current: IOUT (mA)
Output Current: IOUT (mA)
0.5
Input Voltage: VIN (V)
30
25℃
20
15
10
85℃
5
0
Ta=-40℃
20
0
1
2
3
Input Voltage: VIN (V)
4
Ta=-40℃
30
25℃
20
85℃
10
0
0
1
2
3
4
5
Input Voltage: VIN (V)
17/19
XC61C Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Standard Voltage (Continued)
(6) P-ch Driver Output Current vs. Input Voltage
XC61CC1802 (1.8V)
XC61CC2702 (2.7V)
15
15
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
VDS=2.1V
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
8
10
0
2
Input Voltage: VIN (V)
4
XC61CC3602 (3.6V)
10
XC61CC4502 (4.5V)
15
VDS=2.1V
VDS=2.1V
Output Current: IOUT (mA)
Output Current: IOUT (mA)
8
Input Voltage: VIN (V)
15
1.5V
10
1.0V
5
0.5V
0
1.5V
10
1.0V
5
0.5V
0
0
2
4
6
Input Voltage: VIN (V)
18/19
6
8
10
0
2
4
6
Input Voltage: VIN (V)
8
10
XC61C
Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this catalog is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this catalog.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this catalog.
4. The products in this catalog are not developed, designed, or approved for use with such
equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this catalog within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this catalog may be copied or reproduced without the
prior permission of Torex Semiconductor Ltd.
19/19