XCM520 Series ETR2427-002a 600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator ■GENERAL DESCRIPTION The XCM520 series is a multi chip module which comprises of a 600mA driver transistor built-in synchronous step–down DC/DC converter and a dual CMOS LDO regulator. The device is housed in small USP-12B01 package which is ideally suited for space conscious applications. The XCM520 can replace this dual DC/DC to eliminate one inductor and reduce output noise. The DC/DC converter with a built-in 0.42ΩP-channel MOS and a 0.52ΩN-channel MOS provides a high efficiency, stable power supply up to 600mA to using only a coil and two ceramic capacitors connected externally. The highly accurate, low noise, dual CMOS LDO regulator includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensation circuits internally. The series is also fully compatible with low ESR ceramic capacitors. This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies. The EN function allows the output of each regulator to be turned off independently, resulting in greatly reduced power consumption. ■APPLICATIONS ■FEATURES ●Mobile phones, Smart phones <DC/DC Convertor Block> ●Bluetooth headsets Driver Transistor : 0.42Ω P-channel MOS Built-in Switching Transistor : 0.52Ω N-channel MOS Built-in ●WLAN PC cards Input Voltage Range : 2.7V ∼ 6.0V ●Portable HDDs, SSDs Output Voltage Range : 0.8V ∼ 4.0V ●PDAs, PNDs, UMPCs High Efficiency : 92% (TYP.) * Output Current : 600mA ●MP3 players, Media players Oscillation Frequency : 1.2MHz,3.0MHz (±15%) ●Portable game consoles Soft-Start ●Cordless phones, Radio communication equipment : Built-In Soft-Start Current Limiter Circuit : Constant Current & Latching Control : Fixed PWM, Auto PWM/PFM *Performance depends on external components and wiring on PCB wiring. <Dual LDO Regulator Block> ■TYPICAL APPLICATION CIRCUIT VOUT1 1.8V CL2 1μF CIN1 1μF VIN 3.3V CIN2 4.7μF 1 V OUT2 2 EN2 V SS 11 3 VIN1 EN1 10 4 VIN2 EN3 9 5 PGND AGND 8 6 Lx V OUT3 7 V OUT1 12 VOUT2 1.2V CL1 1μF CL3 10μF VOUT3 2.3V L 1.5μH * The dashed lines denote the connection using through-holes at the backside of the PC board. * The above circuit uses XCM520AA01 series. * The DC/DC block VOUT3 is connected to the dual LDO regulator VIN1 in this connection. * Also, it is possible to operate two VIN independently. : 150mA (Limiter 300mA TYP.) : 100mV @ 100mA : 1.5V~6.0V : 0.8V~5.0V (0.05V increments) : ±2% (VOUT>1.5V) ±30mV (VOUT≦1.5V) Low Power Consumption : 25μA (TYP.) Stand-by Current : Less than 0.1μA(TYP.) High Ripple Rejection : 70dB @1kHz Low Output Noise Operating Temperature Range : -40℃~+85℃ Low ESR Capacitor : Ceramic Capacitor Compatible Package : USP-12B01 Standard Voltage Combinations : VOUT1 VOUT2 VOUT3 XCM520xx01D 1.8V 1.2V 2.3V XCM520xx02D 1.8V 1.3V 2.3V XCM520xx03D 1.8V 1.2V 2.2V XCM520xx04D 1.8V 1.2V 2.8V XCM520xx05D 1.0V 1.2V 1.8V XCM520xx06D 0.8V 1.5V 1.8V Maximum Output Current Dropout Voltage Operating Voltage Range Output Voltage Range High Accuracy *Other combinations are available as semi-custom products. Environmentally Friendly : EU RoHS Compliant, Pb Free 1/43 XCM520 Series ■PIN CONFIGURATIOIN VOUT2 VOUT2 1 VOUT1 12 VOUT1 XC6401 EN2 2 EN2 VSS 11 VSS VIN1 3 VIN EN1 10 EN1 VIN2 VIN 4 EN/MODE 9 EN3 XC9235/9236 PGND Lx PGND 5 AGND Lx 6 VOUT3 8 7 AGND VOUT3 (TOP VIEW) 1 VOUT2 VOUT1 12 *1 VSS 11 2 EN2 EN1 10 3 VIN1 EN3/MODE 9 4 VIN2 VSSA 8 *2 VOUT3 7 PIN No XCM520 XC6401 XC9235/XC9236 1 VOUT2 VOUT2 ― 2 EN2 EN2 ― 3 VIN1 VIN ― 4 VIN2 ― VIN 5 PGND ― PGND 6 Lx ― Lx 7 VOUT3 ― VOUT 8 AGND ― AGND 9 EN3 ― CE 10 EN1 EN1 ― 11 VSS VSS ― 12 VOUT1 VOUT1 ― NOTE: * The two heat-sink pads on the back side are electrically isolated in the package. *1: The pad of the regulator should be VSS level. *2: The pad of the DC/DC should be VSS level. * The DC/DC ground pin (No. 5 and 8) should be connected for use. * The two pads are recommended to open on the board, but care must be taken for voltage level of each heat-sink pad when they are electrically connected. 5 VSSD 6 Lx (TOP VIEW) ■PIN ASSIGNMENT 2/43 PIN No XCM520 FUNCTIONS 1 VOUT2 Voltage Regulator Output2 2 EN2 Voltage Regulator ON/OFF Control 2 3 VIN1 Voltage Regulator Power Input 4 VIN2 DC/DC Power Input 5 PGND DC/DC Power Ground 6 Lx DC/DC Inductor Pin 7 VOUT3 DC/DC Output Voltage 8 AGND DC/DC Analog Ground 9 EN3 DC/DC ON/OFF Control 10 EN1 Voltage Regulator ON/OFF Control 1 11 VSS Voltage Regulator Ground 12 VOUT1 Voltage Regulator Output Voltage 1 XCM520 Series ■PRODUCT CLASSIFICATION ●Ordering Information (*1) XCM520①②③④⑤⑥-⑦ DESIGNATOR DESCRIPTION SYMBOL ①② Options − See the chart below ③④ Output Voltage combination − See the chart below Packages ⑤⑥-⑦ (*1) (*2) Taping Type DR-G (*2) DESCRIPTION USP-12B01 The XCM520 series is Halogen and Antimony free as well as being fully RoHS compliant. The device orientation is fixed in its embossed tape pocket. ●DESIGNATOR①②(Combination of XC6401 series and XC9235/XC9236 series) DESCRIPTION ①② COMBINATION OF EACH IC AA XC6401FF**+XC9235A**D F i x e d P W M , fOSC=3.0MHz AB XC6401FF**+XC9235A**C F i x e d P W M , fOSC=1.2MHz AC XC6401FF**+XC9236A**D Auto PWM/PFM, fOSC=3.0MHz AD XC6401FF**+XC9236A**C Auto PWM/PFM, fOSC=1.2MHz AE XC6401FF**+XC9235B**D F i x e d P W M , fOSC=3.0MHz, VOUT3 CL Discharge AF XC6401FF**+XC9235B**C F i x e d P W M , fOSC=1.2MHz, VOUT3 CL Discharge AG XC6401FF**+XC9236B**D Auto PWM/PFM, fOSC=3.0MHz, VOUT3 CL Discharge AH XC6401FF**+XC9236B**C Auto PWM/PFM, fOSC=1.2MHz, VOUT3 CL Discharge ●DESIGNATOR③④(Output Voltage) ③④ VOUT1(VR_1ch) VOUT2(VR_2ch) VOUT3(DC/DC) 01 1.8 1.2 2.3 02 1.8 1.3 2.3 03 1.8 1.2 2.2 04 1.8 1.2 2.8 05 1.0 1.2 1.8 06 0.8 1.5 1.8 *This series are semi-custom products. For other combinations of output voltages please consult with your Torex sales contact. 3/43 XCM520 Series ■BLOCK DIAGRAMS XC9235B/XC9236B XC9235A/XC9236A Available with CL Discharge, High Speed Soft-Start * XC9235 control scheme is a fixed PWM because that the “CE/MODE Control Logic” outputs a low level signal to the “PWM/PFM Selector”. * XC9236 control scheme is an auto PWM/PFM switching because the “CE/MODE Control Logic” outputs a high level signal to the “PWM/PFM Selector”. XC6401FF *Diodes inside the circuit are an ESD protection diode and a parasitic diode. ■MAXIMUM ABSOLUTE RATINGS PARAMETER SYMBOL VIN1 Voltage VIN1 1 RATINGS UNITS 6.5 V 700 *2 VOUT Current IOUT1+IOUT2* VOUT Voltage VOUT1 / VOUT2 VSS-0.3~VIN1+0.3 mA V EN1,EN2 Voltage VEN1 / VEN2 VSS-0.3~6.5 V VIN2 Voltage VIN2 -0.3~6.5 V Lx Voltage VLX -0.3~VIN2+0.3≦6.5 V VOUT3 Voltage VOUT3 -0.3~6.5 V EN3 Voltage VEN3 -0.3~6.5 V Lx Current ILX ±1500 150 800 (1ch operate) 600 (both 2ch operate) mA mW Operating Temperature Range Topr -40~+85 ℃ Storage Temperature Range Tstg -55~+125 ℃ Power Dissipation USP12-B01 USP12-B01 *3 (PCB mounted) Pd *1. Rating is defined as a total of VR1 and VR2 in the VR bloc. *2. Pd > { (VIN1 - VOUT1)×IOUT1+(VIN1 - VOUT2)×IOUT2 } *3. The power dissipation figure shown is PCB mounted. for each channel. 4/43 Please refer to page 41 for details. Also, the power dissipation value above is XCM520 Series ■ELECTRICAL CHARACTERISTICS ●XCM520AB, AD (DC/DC BLOCK) PARAMETER VOUT3 = 1.8V, fOSC=1.2MHz, Ta = 25℃ SYMBOL Output Voltage VOUT3 Operating Voltage Range VIN2 CONDITIONS When connected to external components, VIN2 = VEN3 =5.0V, IOUT3 =30mA When connected to external components, Maximum Output Current IOUT3MAX UVLO Voltage VUVLO Supply Current IDD Stand-by Current ISTB VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V Oscillation Frequency fOSC When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3 = 1.0V, IOUT3 = 100mA PFM Switching Current IPFM VIN2=VOUT(E)+2.0V, VEN3=1.0V (*8) VEN3=VIN2, VOUT3=0V, (*1, *10) Voltage which Lx pin holding “L” level XCM520AB VIN2=VEN3=5.0V, VOUT3 =VOUT3(E)×1.1V XCM520AD When connected to external components, (*11) VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA (*11) VEN3 = VIN2 = (C-1) IOUT3 = 1mA MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① 600 - - mA ① 1.00 1.40 1.78 V ③ - 50 33 1.0 μA ② - 22 15 0 μA ② 1020 1200 1380 kHz ① 120 160 200 mA ① ① PFM Duty Limit DTYLIMIT_PFM 200 300 % Maximum Duty Ratio DMAX VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V 100 - - % ③ Minimum Duty Ratio DMIN VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V When connected to external components, - - 0 % ③ - 92 - % ① 900 0.35 0.42 0.45 0.52 0.01 0.01 1050 0.55 0.67 0.66 0.77 1.0 1.0 1350 Ω Ω Ω Ω μA μA mA ④ ④ − − ⑤ ⑤ ⑥ - ±100 - ppm/ ℃ ① Efficiency (*2) EFFI RLxH Lx SW "H" ON Resistance 1 RLxH Lx SW "H" ON Resistance 2 RLxL Lx SW "L" ON Resistance 1 RLxL Lx SW "L" ON Resistance 2 (*5) Lx SW "H" Leak Current ILEAKH (*5) Lx SW "L" Leak Current ILEAKL (*9) Current Limit ILIM Output Voltage △VOUT3/ Temperature (VOUT3・△topr) Characteristics VEN3=VIN2=VOUT3(E)+1.2V,IOUT3= 100mA (*7) (*3) VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 = 0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX = 0V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V VOUT3 = 30mA -40℃ ≦ Topr ≦ 85℃ Applied voltage to VEN3, 0.65 6.0 V ③ (*10) Voltage changes Lx to “H” level VOUT3=30V, Applied voltage to VEN3, ③ CE "L" Level Voltage VEN3L VSS 0.25 V (*10) Voltage changes Lx to “L” level CE "H" Current IEN3H VIN2 = VEN3 = 5.0V, VOUT3 = 0V - 0.1 0.1 μA ⑤ CE "L" Current IEN3L VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V - 0.1 0.1 μA ⑤ When connected to external components, 0.5 1.0 2.5 ms ① Soft Start Time tSS VEN3 = 0V → VIN2 , VOUT3 = 1mA VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3 (E) Integral Latch Time tLAT 1.0 20.0 ms ⑦ (*6) Short Lx at 1Ω resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at Short Protection 0.900 1.125 V ⑦ VSHORT 1Ω resistance, VOUT3 voltage which Lx becomes “L” 0.675 Threshold Voltage level within 1ms Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3(E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM520A/B series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions. *The electrical characteristics above are when the voltage regulator block is in stop. CE "H" Level Voltage VEN3H VOUT3= 0V, 5/43 XCM520 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM520AA/AC (DC/DC BLOCK) PARAMETER SYMBOL Output Voltage VOUT3 Operating Voltage Range VIN2 VOUT3 = 1.8V, fOSC= 3.0MHz, Ta=25℃ CONDITIONS When connected to external components, VIN2 = VEN3 = 5.0V, IOUT3 = 30mA When connected to external components, (*8) VIN2=VOUT3(E)+2.0V, VEN3=1.0V VEN3 = VIN2 , VOUT3 = 0V , (*1, *10) Voltage which Lx pin holding “L” level XCM520AA VIN2=VEN3=5.0V, VOUT3=VOUT3(E)×1.1V XCM520AC Maximum Output Current IOUT3MAX UVLO Voltage VUVLO Supply Current IDD Stand-by Current ISTB VIN2 = 5.0V, VEN = 0V, VOUT3 = VOUT3(E) × 1.1V Oscillation Frequency fOSC When connected to external components, VIN2 = VOUT3(E) + 2.0V , VEN3=1.0V, VOUT3 = 100mA PFM Switching Current IPFM When connected to external components, (*11) VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA (*11) VEN3 = VIN2 = (C-1) IOUT3 = 1mA PFM Duty Limit DTYLIMIT_PFM Maximum Duty Ratio DMAX VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V Minimum Duty Ratio DMIN VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V When connected to external components, (*7) VEN3 = VIN2 = VOUT3 (E) + 1.2V, VOUT3 = 100mA (*3) VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 =5.0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V Efficiency (*2) EFFI RLxH Lx SW "H" ON Resistance 1 RLxH Lx SW "H" ON Resistance 2 RLxL Lx SW "L" ON Resistance 1 RLxL Lx SW "L" ON Resistance 2 (*5) Lx SW "H" Leak Current ILEAKH (*5) Lx SW "L" Leak Current ILEAKL (*9) ILIM Current Limit Output Voltage △VOUT3/ Temperature (VOUT3・△topr) Characteristics EN "H" Level Voltage VENH EN "L" Level Voltage VEN3L EN "H" Current IEN3H IEN3L VOUT3 = 30mA -40℃ ≦ Topr ≦ 85℃ VOUT3 =0V, Applied voltage to VEN3, (*10) Voltage changes Lx to “H” level VOUT3 =0V, Applied voltage to VEN3, (*10) Voltage changes Lx to “L” level VIN2 = VEN3 =5.0V, VOUT3 = 0V MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① 600 - - mA ① 1.00 1.40 1.78 V ② - 46 21 65 35 μA ③ - 0 1.0 μA ③ 2550 3000 3450 kHz ① 170 220 270 mA ① ② 200 300 % 100 - - % ② - - 0 % ② - 86 - % ① 900 0.35 0.42 0.45 0.52 0.01 0.01 1050 0.55 0.67 0.66 0.77 1.0 1.0 1350 Ω Ω Ω Ω μA μA mA ④ ④ − − ⑤ ⑤ ⑥ - ±100 - ppm/ ℃ ① 0.65 - 6.0 V ③ VSS - 0.25 V ③ 0.1 μA ⑤ - 0.1 VIN2 =5.0V, VEN3 = 0V, VOUT3 = 0V - 0.1 0.1 μA ⑤ When connected to external components, 0.5 0.9 2.5 ms ① Soft Start Time tSS VEN3 = 0V → VIN2 , VOUT3 = 1mA VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3 (E) Integral Latch Time tLAT 1.0 20.0 ms ⑦ (*6) Short Lx at 1Ω resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at Short Protection 0.675 0.900 1.125 V ⑦ VSHORT 1Ω resistance, VOUT3 voltage which Lx becomes “L” Threshold Voltage level within 1ms Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM520AA series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions. *The electrical characteristics above are when the voltage regulator block is in stop. EN "L" Current 6/43 XCM520 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM520AF,AH (DC/DC BLOCK) PARAMETER SYMBOL Output Voltage VOUT3 Operating Voltage Range VIN2 VOUT3=1.8V, fOSC=1.2MHz, Ta=25℃ CONDITIONS When connected to external components, VIN2 = VEN3 = 5.0V, IOUT3 = 30mA When connected to external components, Maximum Output Current IOUT3MAX UVLO Voltage VUVLO Supply Current IDD VIN2 =VEN3= 5.0V, VOUT3= VOUT3(E)×1.1V Stand-by Current ISTB VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V VIN2 = VOUT3(E)+2.0V, VEN3=1.0V (*8) VEN3 = VIN2, VOUT3 = 0V, Voltage which Lx pin holding “L” level (*1, *10) XCM520AF XCM520AH When connected to external components, Oscillation Frequency fOSC PFM Switching Current IPFM PFM Duty Limit DTYLIMIT_PFM Maximum Duty Ratio DMAX VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V Minimum Duty Ratio DMIN VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V When connected to external components, (*7) VEN3 = VIN2 = VOUT3 (E) + 1.2V, VOUT3 = 100mA (*3) VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 = 0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V Efficiency (*2) EFFI RLxH Lx SW "H" ON Resistance 1 RLxH Lx SW "H" ON Resistance 2 RLxL Lx SW "L" ON Resistance 1 RLxL Lx SW "L" ON Resistance 2 (*5) Lx SW "H" Leak Current ILEAKH (*9) ILIM Current Limit Output Voltage △VOUT3/ Temperature (VOUT3・△topr) Characteristics EN "H" Level Voltage VENH EN "L" Level Voltage VEN3L EN "H" Current EN "L" Current IEN3H IEN3L Soft Start Time tSS Integral Latch Time tLAT Short Protection Threshold Voltage VSHORT VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3=100mA When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA VEN3 = VIN2 = (C-1) VOUT3 = 1mA (*11) MIN. TYP. MAX. 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① 600 - - mA ① 1.00 1.40 1.78 V ③ - 22 15 50 33 μA ② - 0 1.0 μA ② 1020 1200 1380 kHz ① 120 160 200 mA ① (*11) IOUT3 = 30mA -40℃ ≦ Topr ≦ 85℃ VOUT3 =0V, Applied voltage to VEN3, (*10) Voltage changes Lx to “H” level VOUT3 =0V, Applied voltage to VEN3, (*10) Voltage changes Lx to “L” level VIN2 = VEN3 =5.0V, VOUT3 = 0V VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V When connected to external components, VEN3 = 0V → VIN2 , VOUT3 = 1mA VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3(E) (*6) Short Lx at 1Ω resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at 1Ω resistance, VOUT3 voltage which Lx becomes “L” level within 1ms VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open UNITS CIRCUIT 200 300 % ① 100 - - % ③ - - 0 % ③ - 92 - % ① 900 0.35 0.42 0.45 0.52 0.01 1050 0.55 0.67 0.66 0.77 1.0 1350 Ω Ω Ω Ω μA mA ④ ④ ― ― ⑨ ⑥ - ±100 - ppm/ ℃ ① 0.65 - 6.0 V ③ VSS - 0.25 V ③ - 0.1 - 0.1 - 0.1 0.1 μA μA ⑤ ⑤ - 0.25 0.4 ms ① 1.0 - 20.0 ms ⑦ 0.675 0.900 1.150 V ⑦ CL Discharge RDCHG 200 300 450 Ω ⑧ Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM520AF series exclude IPFM and DLIMIT_PFM because those are only for the PFM control’s functions. *The electrical characteristics above are when the voltage regulator block is in stop. 7/43 XCM520 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM520AE,AG (DC/DC BLOCK) PARAMETER SYMBOL Output Voltage VOUT3 Operating Voltage Range VIN2 VOUT3=1.8V, fOSC=3.0MHz, Ta=25℃ CONDITIONS When connected to external components, VIN2 = VEN3 = 5.0V, IOUT3 = 30mA When connected to external components, (*8) VIN2=VOUT3(E)+2.0V,VEN3=1.0V MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① 600 - - mA ① 1.00 1.40 1.78 V ③ - 65 35 1.0 μA ② - 46 21 0 μA ② 2550 3000 3450 kHz ① 170 220 270 mA ① ① Maximum Output Current VOUT3MAX UVLO Voltage VUVLO Supply Current IDD VIN2=VEN3=5.0V, VOUT3 = VOUT3(E)×1.1V Stand-by Current ISTB VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V Oscillation Frequency fOSC PFM Switching Current IPFM PFM Duty Limit DTYLIMIT_PFM - 200 300 % Maximum Duty Ratio DMAX VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V 100 - - % ③ Minimum Duty Ratio DMIN VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V - - 0 % ③ - 86 - % ① 900 0.35 0.42 0.45 0.52 0.01 1050 0.55 0.67 0.66 0.77 1.0 1350 Ω Ω Ω Ω μA mA ④ ④ ― ― ⑨ ⑥ - ±100 - ppm/ ℃ ① 0.65 - 6.0 V ③ VSS - 0.25 V ③ 0.1 μA ⑤ Efficiency (*2) EFFI RLxH Lx SW "H" ON Resistance 1 RLxH Lx SW "H" ON Resistance 2 RLxL Lx SW "L" ON Resistance 1 RLxL Lx SW "L" ON Resistance 2 (*5) ILEAKH Lx SW "H" Leak Current (*9) ILIM Current Limit Output Voltage △VOUT3/ Temperature (VOUT3・△topr) Characteristics EN "H" Level Voltage VEN3H VEN3 = VIN2, VOUT3 = 0V, Voltage which Lx pin holding “L” level XCM520AE XCM520AG When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3 = 100mA When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA VEN3 = VIN2 = (C-1) VOUT3 = 1mA When connected to external components, VEN3 = VIN2 = VOUT3 (E)+1.2V, VOUT3 =100mA (*3) VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 = 0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V (*7) VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V IOUT3 = 30mA -40℃ ≦ Topr ≦ 85℃ VOUT3 = 0V, Applied voltage to VEN3, Voltage changes Lx to “H” level (*10) VOUT3 = 0V, Applied voltage to VEN3, VEN3L EN "H" Current IEN3H Voltage changes Lx to “L” level VIN2 = VEN3 = 5.0V, VOUT3 = 0V EN "L" Current IENL VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V tSS Integral Latch Time tLAT Short Protection Threshold Voltage VSHORT CL Discharge RDCHG (*11) (*11) EN "L" Level Voltage Soft Start Time (*1, *10) (*10) When connected to external components, VEN3 = 0V → VIN2 , VOUT3 =1mA VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3(E) (*6) Short Lx at 1Ω resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at 1Ω resistance, VOUT3 voltage which Lx becomes “L” level within 1ms VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open - 0.1 - 0.1 - 0.1 μA ⑤ - 0.32 0.5 ms ① 1.0 - 20.0 ms ⑦ 0.675 0.900 1.150 V ⑦ 200 300 450 Ω ⑧ Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM520AE series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions. *The electrical characteristics above are when the voltage regulator block is in stop. 8/43 XCM520 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage 1.2MHz SETTING VOLTAGE VOUT3(E) ≦ 1.2V 1.2V < VOUT3(E) ≦1.75V 1.8V ≦ VOUT3(E) 3.0MHz SETTING VOLTAGE VOUT3(E) ≦ 1.2V 1.2V < VOUT3(E) ≦1.75V 1.8V ≦ VOUT3(E) MIN. TYP. 140 130 120 180 170 160 MIN. TYP. 190 180 170 260 240 220 (mA) MAX. 240 220 200 (mA) MAX. 350 300 270 ●Measuring PFM Duty Limit, VIN2 Voltage fOSC (C-1) 1.2MHz VOUT3(E)+0.5V 3.0MHz VOUT3(E)+1.0V Minimum operating voltage is 2.7V ex.) Although when VOUT3(E) = 1.2V, fOSC= 1.2MHz, (C-1) = 1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V. ●Soft-Start Time Chart (XCM520AE/XCM520AF/XCM520AG/XCM520AH Series Only) PRODUCT SERIES XCM520AF XCM520AH XCM520AE/AG fOSC OUTPUT VOLTAGE MIN. TYP. MAX. 1200kHz 0.8≦VOUT3(E)<1.5 - 0.25 0.4 1200kHz 1.5≦VOUT3(E)<1.8 - 0.32 0.5 1200kHz 1.8≦VOUT3(E)<2.5 - 0.25 0.4 1200kHz 2.5≦VOUT3(E)<4.0 - 0.32 0.5 1200kHz 0.8≦VOUT3(E)<2.5 - 0.25 0.4 1200kHz 2.5≦VOUT3(E)<4.0 - 0.32 0.5 3000kHz 0.8≦VOUT3(E)<1.8 - 0.25 0.4 3000kHz 1.8≦VOUT3(E)<4.0 - 0.32 0.5 UNITS ms 9/43 XCM520 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM520 Series VR Block (VR1/VR2: EN_ Active High, without Pull-down resistors) PARAMETER SYMBOL Output Voltage VOUT(E) (*2) CONDITIONS IOUT=30mA Ta=25℃ MIN. VOUT(T)≧1.5V X0.98 (*3) VOUT(T)<1.5V -0.03 (*3) TYP. VOUT (T) MAX. (*4) X1.02 (*3) +0.03 (*3) UNITS CIRCUIT V ⑩ Maximum Output Current IOUTMAX VIN1=VOUT (T) + 1.0V 150 - - mA ⑩ Load Regulation △VOUT 1mA≦IOUT≦100mA - 15 60 mV ⑩ Vdif1 IOUT=30mA E-1 mV Vdif2 IOUT=100mA E-2 mV Supply Current ISS VIN1=VEN=VOUT (T) + 1.0V, IOUT=0mA - 25 45 μA ⑫ Stand-by Current ISTB VIN1=VOUT (T) + 1.0V, VEN=VSS - 0.01 0.10 μA ⑪ △VOUT / VOUT(T)+1.0V≦VIN1≦6.0V (△VIN1 ・ VOUT) VEN=VIN1, IOUT=30mA - 0.01 0.20 %/V ⑩ 1.5 - 6.0 V - - ±100 - ppm/℃ ⑩ - 70 - dB ⑬ ⑩ Dropout Voltage Input Regulation (*5) (*8) Input Voltage VIN1 Output Voltage △VOUT / IOUT=30mA Temperature Characteristics (△Topr ・VOUT) -40℃≦Topr≦85℃ Ripple Rejection (*9) PSRR VIN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC IOUT=30mA, f=1kHz ⑩ Limit Current ILIM VIN1=VOUT (T) + 1.0V, VEN=VIN1 - 300 - mA Short Current ISHORT VIN1=VOUT (T) + 1.0V, VEN=VIN1 - 30 - mA ⑩ EN "H" Level Voltage VENH 1.30 - 6 V ⑭ ⑭ EN "L" Level Voltage VENL - - 0.25 V EN "H" Level Current IENH VIN1=VEN=VOUT (T) + 1.0V -0.10 - 0.10 μA ⑭ EN "L" Level Current IENL VIN1= VOUT (T) + 1.0V, VEN=VSS -0.10 - 0.10 μA ⑭ NOTE: *1 : Unless otherwise stated, VIN1=VOUT(T)+1.0V *2 : VOUT(E) : Effective output voltage (I.e. the output voltage when "VOUT(T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value). *3 : Please see the Voltage Chart for each voltage of VOUT(E). If VOUT (T)≦1.45V, MIN VOUT (T) - 30mV, MAX VOUT (T) + 30mV *4 : VOUT(T) : Nominal output voltage (*7) *5 : Vdif={VINa (*6) -VOUTa } *6 : VOUT1=A voltage equal to 98% of the output voltage whenever an amply stabilized IOUT {VOUT(T)+1.0V} is input. *7 : VIN1=The input voltage when VOUT1 appears as input voltage is gradually decreased. *8 : When VOUT(T)≧4.5V, 5.5V≦VIN1≦6.0V *9 : When VOUT(T)≧4.8V, VIN1=5.75VDC+0.5Vp-pAC *The electrical characteristics above are when the DC/DC block is in stop. 10/43 XCM520 Series ■OUTPUT VOLTAGE CHART ●Voltage Chart 1 NOMINAL OUTPUT VOLTAGE OUTPUT VOLTAGE (V) (V) E-1 E-2 DROPOUT VOLTAGE 1 (mV) DROPOUT VOLTAGE 2 (mV) VOUT Vdif1 Vdif2 VOUT(T) MIN. MAX. TYP. MAX. TYP. MAX. 0.80 0.85 0.770 0.820 0.830 0.880 300 700 400 800 0.90 0.870 0.930 0.95 0.920 0.980 200 600 350 700 1.00 0.970 1.030 1.05 1.020 1.080 100 500 270 600 1.10 1.070 1.130 1.15 1.120 1.180 80 400 240 500 1.20 1.170 1.230 1.25 1.220 1.280 65 300 200 400 1.30 1.270 1.330 1.35 1.320 1.380 60 200 180 300 1.40 1.370 1.430 1.45 1.420 1.480 55 100 165 250 1.50 1.470 1.530 1.55 1.519 1.581 1.60 1.568 1.632 1.65 1.617 1.683 50 75 150 200 1.70 1.666 1.734 1.75 1.715 1.785 1.80 1.764 1.836 1.85 1.813 1.887 1.90 1.862 1.938 45 65 140 180 40 60 120 170 35 55 110 160 1.95 1.911 1.989 2.00 1.960 2.040 2.05 2.009 2.091 2.10 2.058 2.142 2.15 2.107 2.193 2.20 2.156 2.244 2.25 2.205 2.295 2.30 2.254 2.346 2.35 2.303 2.397 2.40 2.352 2.448 2.45 2.401 2.499 2.50 2.450 2.550 2.55 2.499 2.601 2.60 2.548 2.652 2.65 2.597 2.703 2.70 2.646 2.754 2.75 2.695 2.805 2.80 2.744 2.856 2.85 2.793 2.907 2.90 2.842 2.958 2.95 2.891 3.009 11/43 XCM520 Series ■DROPOUT VOLTAGE CHART (Continued) ●Voltage Chart 2 NOMINAL OUTPUT VOLTAGE OUTPUT VOLTAGE (V) (V) 12/43 E-1 E-2 DROPOUT VOLTAGE 1 (mV) DROPOUT VOLTAGE 2 (mV) Vdif1 Vdif2 VOUT VOUT(T) MIN. MAX. 3.00 2.940 3.060 3.05 2.989 3.111 3.10 3.038 3.162 3.15 3.087 3.213 3.20 3.136 3.264 3.25 3.185 3.315 3.30 3.234 3.366 3.35 3.283 3.417 3.40 3.332 3.468 3.45 3.381 3.519 3.50 3.430 3.570 3.55 3.479 3.621 3.60 3.528 3.672 3.65 3.577 3.723 3.70 3.626 3.774 3.75 3.675 3.825 3.80 3.724 3.876 3.85 3.773 3.927 3.90 3.822 3.978 3.95 3.871 4.029 4.00 3.920 4.080 4.05 3.969 4.131 4.10 4.018 4.182 4.15 4.067 4.233 4.20 4.116 4.284 4.25 4.165 4.335 4.30 4.214 4.386 4.35 4.263 4.437 4.40 4.312 4.488 4.45 4.361 4.539 4.50 4.410 4.590 4.55 4.459 4.641 4.60 4.508 4.692 4.65 4.557 4.743 4.70 4.606 4.794 4.75 4.655 4.845 4.80 4.704 4.896 4.85 4.753 4.947 4.90 4.802 4.998 4.95 4.851 5.049 5.00 4.900 5.100 TYP. MAX. TYP. MAX. 30 45 100 150 XCM520 Series ■TYPICAL APPLICATION CIRCUIT CL2 VOUT2 2 EN2 VSS 11 3 VIN1 EN1 10 CL1 CIN1 VIN VOUT1 12 1 CIN2 4 VIN2 5 6 EN3/MODE 9 PGND AGND 8 Lx CL3 VOUT3 7 L ● DC/DC BLOCK fOSC=3.0MHz ● DC/DC BLOCK fOSC=1.2MHz CIN1 : 1μF (Ceramic) CIN1 : 1μF (Ceramic) CL1 : 1μF (Ceramic) CL1 : 1μF (Ceramic) CL2 : 1μF (Ceramic) CL2 : 1μF (Ceramic) L : 1.5μH L : 4.7μH (NR4018 TAIIYO YUDEN) CIN2 : 4.7μF (Ceramic) CIN2 : 4.7μF (Ceramic) CL2 : 10μF (Ceramic) CL2 : 10μF (Ceramic) (NR3015 TAIIYO YUDEN) ■OPERATIONAL EXPLANATION ●DC/DC BLOCK The DC/DC block of the XCM520 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) By using the error amplifier, the voltage of the internal voltage reference source is compared with the feedback voltage from the VOUT3 pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage. <Reference Voltage Source> The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. <Ramp Wave Circuit> The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or 3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits. <Error Amplifier> The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer. 13/43 XCM520 Series ■OPERATIONAL EXPLANATION (Continued) <Current Limit> The current limiter circuit of the XCM520 series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode. ① When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing. ② When the P-channel MOS driver transistor is turned off, the limiter circuit is then released from the current limit detection state. ③ At the next pulse, the P-channel MOS driver transistor is turned on. However, the P-channel MOS driver transistor is immediately turned off in the case of an over current state. ④ When the over current state is eliminated, the IC resumes its normal operation. The IC waits for the over current state to end by repeating the steps ① through ③. If an over current state continues for a few milliseconds and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the P-channel MOS driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the EN3 pin, or by restoring power to the VIN2 pin. The suspension mode does not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the XCM520 series can be set at 1050mA at typical. Besides, care must be taken when laying out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. Limit < a few milliseconds Limit<数ms Limit>a few milliseconds Limit>数ms Current Limit LEVEL ILx 0mA VOUT3 VSS Lx VEN3 Restart VIN1 <Short-Circuit Protection> The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT3 pin. In case where output is accidentally shorted to the ground and when the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN3 pin, or by restoring power supply to the VIN2 pin. When sharp load transient happens, a voltage drop at the VOUT3 pin is propagated to FB point through CFB, as a result, short circuit protection may operate in the voltage higher than 1/2 VOUT3 voltage. <UVLO Circuit> When the VIN2 pin voltage becomes 1.4V or lower, the P-channel MOS driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN2 pin voltage becomes 1.8V or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation. 14/43 XCM520 Series ■OPERATIONAL EXPLANATION (Continued) <PFM Switch Current> In the PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P- channel MOSFET on. In this case, on-time (tON) that the P-channel MOSFET is kept on can be given by the following formula. tON= L×IPFM (VIN2−VOUT3) →IPFM① <PFM Duty Limit> In the PFM control operation, the PFM duty limit (DLIMT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-channel MOS driver transistor to be turned off even when coil current doesn’t reach to IPFM. →IPFM② Ton PFM Duty Limit PFMデューティ制限 Lx fOSC Lx I PFM ILx IPFM 0mA IPFM ILx 0mA IPFM ① ② < CL High Speed Discharge > XCM520AE/ XCM5AF/XCM520AG/XCM520AH series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as τ(τ=C x R), discharge time of the output voltage after discharge via the N-channel transistor is calculated by the following formula. V =VOUT3(E)×e -t /τor t = τLn (VOUT3(E) / V) Where; V : Output voltage after discharge VOUT3(E) : Output voltage t: Discharge time τ: C×R C= Capacitance of Output capacitor (CL) R= CL auto-discharge resistance 100 90 CL=10uF 80 CL=20uF 70 CL=50uF 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 15/43 XCM520 Series ■OPERATIONAL EXPLANATION (Continued) ●Voltage Regulator BLOCK The voltage divided by resistors R1 and R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFETs, which are connected to the VOUT pin, are then driven by the subsequent output signal. The output voltages at the VOUT pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the EN pin's signal. < Low ESR Capacitors > With the XCM520 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that output capacitor (CL) is connected as close as possible to the output pins (VOUT) and the VSS pin. Please use an output capacitor with a capacitance value of at least 1μF. Also, please connect an input capacitor (CIN1) of 1μF between the VIN1 pin and the VSS pin in order to ensure a stable power input. < Current Limiter, Short-Circuit Protection > The XCM520 series includes a combination of a fixed current limiter circuit and a fold-back circuit which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the fold-back circuit start to operate, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 30mA flows. < EN Pins > The IC's internal circuitry can be shutdown via the signal from the EN pin with the XCM520 series. In shutdown state, output at the VOUT pin will be pulled down to the VSS level via R1 and R2. The operational logic of the IC's EN pin is selectable (please refer to the selection guide). Note that as the standard type's regulator 1 and 2 are both ' High Active/No Pull Down', operations will become unstable with the EN pin open. Although the EN pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the EN pin input current will increase when the IC is in operation. We suggest that you use this IC with either a VIN1 voltage or a VSS voltage input at the EN pin. If this IC is used with the correct specifications for the EN pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry. 16/43 XCM520 Series ■NOTES ON USE <DC/DC BLOCK> 1. The XCM520 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance. 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done. 3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple may increase. 4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty cycle may continue in several periods. 5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods. 6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula: Ipk = (VIN2-VOUT3)× OnDuty /(2×L×fOSC) + IOUT L: Coil Inductance Value fOSC: Oscillation Frequency 7. When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver transistor turns off. During the time until it detects limit current and before the built-in P-channel MOS driver transistor can be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components such as a coil. 8. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. 9. Use of the IC at voltages below the recommended voltage range may lead to instability. 10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device. 11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the P-channel MOS driver transistor. 12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the current limit functions while the VOUT3 pin is shorted to the GND pin, when P-channel MOS driver transistor is ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when N-channel MOS driver transistor is ON, there is almost no potential difference at both ends of the coil since the VOUT3 pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to the device. ①Current flows into P-channel MOS driver transistor to reach the current limit (ILIM). ②The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-channel MOS driver transistor. ③Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. ④Lx oscillates very narrow pulses by the current limit for several ms. ⑤The circuit is latched, stopping its operation. # ms 17/43 XCM520 Series ■NOTE ON USE (Continued) 13. 14. 15. In order to stabilize VIN2 voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VIN2 and VSS pins. High step-down ratio and very light load may lead an intermittent oscillation. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode. Please verify with actual design. VOUT3=3.3V, fOSC=1.2MHz VIN2=3.7V, IOUT3=100mA <External Components> L : 4.7μF(NR4018) CH1:Lx 5V/div CIN2 : 4.7μF(Ceramic) CL3 : 10μF(Ceramic) CH2:VOUT3 20mV/div 16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient temperature, output voltage, oscillation frequency, and L value are not adequate. In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even if using the L values listed below. VOUT3=3.3V, fOSC=1.2MHz ●The Range of L Value VIN2=4.0V,IOUT3=180mA CH1:Lx 2.0V/div VOUT L Value 0.8V<VOUT3≦4.0V 1.0μH∼2.2μH VOUT3≦2.5V 3.3μH∼6.8μH 2.5V<VOUT3 4.7μH∼6.8μH <External Components> L : 1.5μF(NR3015) CH2:VOUT3 20mV/div fOSC 3.0MHz CIN2 : 4.7μF(Ceramic) CL3 : 10μF(Ceramic) 1.2MHz *When a coil less value of 4.7 μ H is used at fOSC=1.2MHz or when a coil less value of 1.5μH is used at fOSC=3.0MHz, peak coil current more easily reach the current limit ILMI. In this case, it may happen that the IC can not provide 600mA output current. 18/43 XCM520 Series ■NOTE ON USE (Continued) ●Note on use of pattern layouts 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. The capacitor (CIN) should be connected as close as possible to the VIN and VSS pins. When wiring impedance is high, noise propagation by output current or phase discrepancy occur which results in unstable operating. In this case, please reinforce VIN and VSS rails. If the operation is still unstable, please increase input capacitance CIN. 3. With comparison to the separate product usage, the two chips are placed in adjacent in the package so heat generation Is influenced each other. Please evaluate and verify in the actual design. ●Instructions of pattern layouts 1. In order to stabilize VIN1・VIN2・VOUT1・VOUT2・VOUT3, we recommend that a by-pass capacitor (CIN1・CIN2・CL1・CL2・ CL3) be connected as close as possible to the VIN1・VIN2・VOUT1・VOUT2・VOUT3 and VSS pin. 2. Please mount each external component as close to the IC as possible. 3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 4. VSS(AGND・PGND・VSS)ground wiring is recommended to get large area. The IC may goes into unstable operation as a result of VSS voltage level fluctuation during the switching. 5. Heat is generated because of the output current (IOUT) and ON resistance of driver transistors. ●Reference Pattern Layout XCM52 0 L VOUT 3 V er . 1 . O USP 12 B AGND VOUT 1 VOUT 2 C l N1 CL 2 E N2 Front 2 GND CL1 IC 4 EN1 MODE 1 3 EN3 C l N2 CL 3 V l N1 V l N2 PGND Lx GND1 TO EX # 95 Back Ceramic Capacitor セラミックコンデンサ インダクタ Inductor 19/43 XCM520 Series ■TEST CIRCUITS < Circuit No.1 > < Circuit No.2 > A VIN2 EN3 Lx VOUT3 1μF AGND * External Components L : 1.5μH (NR3015) 3.0MHz EN1 4.7μH (NR4018) 1.2MHz CIN2 : 4.7μF (ceramic) CL3 10μF (ceramic) : VSS VOUT1 PGND VIN1 EN2 VOUT2 < Circuit No.4 > < Circuit No.3 > Wave Form Measure Point VIN2 EN3 VIN2 Lx Rpulldown 200Ω VOUT3 1μF AGND AGND VIN1 EN1 VSS EN2 VSS VOUT1 VOUT2 VIN2 A IENL EN3 AGND EN1 VSS VOUT1 Lx VOUT3 AI EN2 VOUT2 Wave Form Measure Point VIN2 LEAKL EN3 Lx VOUT3 V 1μF AGND PGND VIN1 EN1 EN2 VSS VOUT1 VOUT2 PGND VIN1 EN2 VOUT2 < Circuit No.8 > ILx Wave Form Measure Point VIN2 Lx VIN2 ILAT EN3 VOUT3 1μF EN3 Rpulldown 1Ω AGND PGND AGND VIN1 EN1 VSS EN2 VSS VOUT2 Lx VOUT3 1μF EN1 VOUT1 20/43 100mA VIN1 ILEAKH < Circuit No.7 > < Circuit No.9 > V PGND < Circuit No.6 > < Circuit No.5 > 1μF Lx VOUT3 1μF PGND EN1 VOUT1 IENH EN3 VOUT1 PGND VIN1 EN2 VOUT2 A ILIM XCM520 Series ■TEST CIRCUITS (Continued) < Circuit No11 > < Circuit No10 > EN1/EN2 EN1/EN2 Active High:EN = VIN1 Active High:EN = VSS Active Low:EN = VSS VIN2 Active Low:EN = VIN1 Lx EN3 VOUT3 AGND A PGND VOUT1 VIN1 EN1 VOUT2 EN2 VSS CIN1, CL1, CL2 : 1μF (ceramic) < Circuit No12 > < Circuit No13 > VIN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC VIN2 Lx EN3 VOUT3 AGND A VIN2 Lx EN3 VOUT3 AGND PGND PGND VIN1 VIN1 EN1 EN1 VOUT2 EN2 A CL1 VSS IOUT=30mA CL2 EN1/EN2 EN1/EN2 Active High (pull-down, without resistance) VR1 Supply Current, EN1=ON, EN2=OFF VR2 Supply Current, EN1= OFF, EN2=ON Active High: ON=VIN1, OFF=VSS IOUT1 V A VOUT2 EN2 V VSS IOUT=30mA VOUT1 VOUT1 IOUT2 V CL1, CL2 : 1μF (ceramic) VR1 PSRR EN1=ON, EN2=OFF VR2 PSRR EN1=OFF, EN2=ON Active High: ON=VIN1, OFF=VSS Active Low: ON=VSS, OFF=VIN1 Active Low: ON=VSS, OFF=VIN1 < Circuit No14 > EN1/EN2 CIN1 : 1μF (ceramic) EN1”H” Level Current EN1=VIN1 Level EN2”H” Level Current EN2=VIN1 Level EN1”L” Level Current EN1= VSS EN2”L” Level Current EN2=VSS * The EN which is not measured is in operation sop mode. Active High: VSS Active Low: measuring VIN1 Level 21/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS ●DC/DC Block (1) Efficiency vs. Output Current VOUT3=1.8V, fOSC=1.2MHz VOUT3=1.8V, fOSC=3.0MHz L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF 100 L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF 100 PWM/PFM Automatic Sw itching 90 80 80 70 VIN2= 4.2V PWM Control 3.6V 60 Efficency:EFFI(%) Efficency:EFFI(%) PWM/PFM Automatic Switching Control 90 VIN2= 4.2V 3.6V 50 40 30 70 30 20 10 0 1 10 100 1000 0.1 1 Output Current:I OUT3(mA) 1000 L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF 2.1 2.1 2 2 Output Voltage:VOUT3(V) Output Voltage:VOUT3(V) 100 VOUT3=1.8V, fOSC=3.0MHz L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF PWM/PFM Automatic Switching Control 1.9 10 Output Current:I OUT3(mA) (2) Output Voltage vs. Output Current VOUT3=1.8V, fOSC=1.2MHz VIN2=4.2V,3.6V 1.8 1.7 PWM Control 1.6 1.5 1.9 PWM/PFM Automatic Switching Control 1.8 VIN2=4.2V,3.6V 1.7 PWM Control 1.6 1.5 0.1 1 10 100 1000 0.1 Output Current:I OUT3(mA) 80 80 40 Ripple Voltage:Vr(mV) 100 VIN2=4.2V,3.6V PWM/PFM Automatic Switching Control VIN2=4.2V 3.6V 60 1000 0 0 1000 PWM/PFM Automatic Switching Control 40 20 1 10 100 Output Current:IOUT 3(mA) PWM Control VIN2=4.2V,3.6V 20 0.1 100 L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF 100 PWM Control 10 VOUT3=1.8V, fOSC=3.0MHz L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF 60 1 Output Current:I OUT3(mA) (3) Ripple Voltage vs. Output Current VOUT3=1.8V, fOSC=1.2MHz Ripple Voltage:Vr(mV) VIN2= 4.2V 3.6V 40 10 0.1 22/43 PWM Control 3.6V 50 20 0 VIN2= 4.2V 60 VIN2=4.2V 3.6V 0.1 1 10 100 Output Current:I OUT3(mA) 1000 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●DCDC Block (Continued) (4) Oscillation Frequency vs. Ambient Temperature VOUT3=1.8V, fOSC=1.2MHz VOUT3=1.8V, fOSC=3.0MHz L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF 3.5 Oscillation Frequency : fOSC (MHz) Oscillation Frequency : fOSC (MHz) 1.5 1.4 VIN2=3.6V 1.3 1.2 1.1 1 0.9 3.4 VIN=3.6V 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 0.8 -50 -25 0 25 50 75 -50 100 25 50 40 40 35 35 30 VIN2=6.0V 20 15 10 5 100 VIN2=4.0V VIN2 =6.0V 30 25 20 15 10 5 0 0 -50 -25 0 25 50 75 100 -50 -25 Ambient Temperature : Ta ( ℃) 0 25 50 75 100 Ambient Temperature : Ta ( ℃) (6) Output Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz (7) UVLO Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz 2.1 1.8 VIN2=3.6V EN3=VIN2 1.5 2 UVLO Voltage : VUVLO (V) Output Voltage : VOUT3 (V) 75 VOUT3=1.8V, fOSC=3.0MHz Supply Current : I DD (μA) Supply Current : I DD (μA) (5) Supply Current vs. Ambient Temperature VOUT3=1.8V, fOSC=1.2MHz VIN2=4.0V 0 Ambient Temperature : Ta (℃) Ambient Temperature : Ta (℃) 25 -25 1.9 1.8 1.7 1.6 1.2 0.9 0.6 0.3 0 1.5 -50 -25 0 25 50 75 Ambient Temperature : Ta (℃) 100 -50 -25 0 25 50 75 100 Ambient Temperature : Ta ( ℃) 23/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●DCDC Block (Continued) (9) EN" L" Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz 1.0 0.9 1.0 0.9 0.8 0.7 0.6 EN "L" Voltage: VENL (V) EN "H" Voltage: VENH (V) (8) EN "H" Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz V IN2=5.0V 0.5 0.4 0.3 0.2 V IN2=3.6V 0.1 0.0 0.8 0.7 V IN2=5.0V 0.6 0.5 0.4 0.3 0.2 V IN2=3.6V 0.1 0.0 -50 -25 0 25 50 75 100 -50 Ambient Temperature: Ta (℃) -25 5 4 4 Soft Start Time : tSS (ms) Soft Start Time : tSS (ms) 75 100 L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF 5 3 VIN2 =3.6V 1 0 3 VIN2 =3.6V 2 1 0 -50 -25 0 25 50 75 100 Ambient Temperature : Ta (℃) 1.0 0.9 0.8 Nch on Resistance 0.7 0.6 0.5 0.4 0.3 0.2 Pch on Resistance 0.1 0.0 0 1 2 3 4 Input Voltage: V IN2 (V) -50 -25 0 25 50 75 Ambient Temperature : Ta (℃) (11) "Pch / Nch" Driver on Resistance vs. Input Voltage VOUT3=1.8V, fOSC=3.0MHz Lx SW ON Resistance: RLxH,RLxL (Ω) 50 VOUT3=1.8V, fOSC=3.0MHz L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF 24/43 25 Ambient Temperature: Ta (℃) (10) Soft Start Time vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz 2 0 5 6 100 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●DCDC Block (Continued) (12) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Rise Wave Form VOUT3=1.2V, fOSC=1.2MHz VOUT3=3.3V, fOSC=3.0MHz L=1.5μH (NR3015), CIN2=4.7μF, CL3=10μF L=4.7μH (NR4018), CIN2=4.7μF, CL3=10μF VIN2=5.0V VIN2=5.0V IOUT3=1.0mA IOUT3=1.0mA VOUT3:0.5V/div VOUT3:1.0V/div EN3:0.0V⇒1.0V EN3:0.0V⇒1.0V 100μs/div 100μs/div (13) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Soft-Start Time vs. Ambient Temperature VOUT3=1.2V, fOSC=1.2MHz VOUT3=3.3V, fOSC=3.0MHz L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF 400 500 V IN2=5.0V IOUT 3=1.0mA Soft Start Time : t SS (μs) Soft Start Time : t SS (μs) 500 300 200 100 0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) 400 V IN2=5.0V IOUT 3=1.0mA 300 200 100 0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ( ℃) (14) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, CL Discharge Resistance vs. Ambient Temperature VOUT3=3.3V, fOSC=3.0MHz CL3 Aoto - Discharge Resistance : RDCHG (Ω) 600 500 V IN2=6.0V 400 300 V IN2=4.0V 200 100 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ( ℃) 25/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●DCDC Block (Continued) (15) Load Transient Response VOUT3=1.2V, fOSC=1.2MHz(PWM/PFM Automatic Switching Control) L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃ VIN2=3.6V, EN3=VIN2 IOUT3 =1mA → 100mA IOUT3=1mA → 300mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT3: 50mV/div VOUT3: 50mV/div 50μs/div 50μs/div IOUT3 =100mA → 1mA IOUT3 =300mA → 1mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT3: 50mV/div VOUT3: 50mV/div 200μs/div 26/43 200μs/div XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●DCDC Block (Continued) (15) Load Transient Response (Continued) VOUT3=1.2V, fOSC=1.2MHz(PWM Control) L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃ VIN2=3.6V, EN3=VIN2 IOUT3=1mA → 100mA IOUT3=1mA → 300mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT 3: 50mV/div VOUT3: 50mV/div 50μs/div 50μs/div IOUT3=100mA → 1mA IOUT3=300mA → 1mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT3: 50mV/div VOUT3: 50mV/div 200μs/div 200μs/div 27/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●DCDC Block (Continued) (15) Load Transient Response (Continued) VOUT3=1.8V, fOSC=3.0MHz (PWM/PFM Automatic Switching Control) L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL3=10μF(ceramic),Topr=25℃ VIN2=3.6V, EN=VIN2 IOUT3=1mA → 100mA IOUT3=1mA → 300mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT3: 50mV/div VOUT3: 50mV/div 50μs/div 50μs/div IOUT3=100mA → 1mA IOUT3=300mA → 1mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT3: 50mV/div VOUT3: 50mV/div 200μs/div 28/43 200μs/div XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●DCDC Block (Continued) (15) Load Transient Response (Continued) VOUT3=1.8V, fOSC=3.0MHz(PWM Control) L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃ VIN2=3.6V, EN1=VIN2 IOUT3=1mA → 100mA IOUT3=1mA → 300mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT3: 50mV/div VOUT3: 50mV/div 50μs/div 50μs/div IOUT3=100mA → 1mA IOUT3=300mA → 1mA 1ch: IOUT3 1ch: IOUT3 2ch 2ch VOUT3: 50mV/div VOUT3: 50mV/div 200μs/div 200μs/div 29/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (1) Output Voltage vs. Output Current VOUT=0.8V VOUT=0.8V Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 1.0 1.0 0.8 0.8 Output Voltage: VOUT (V) O utput V oltage: V O U T (V ) O utput V oltage: V O U(V) (V ) Output Voltage: VOUT T VIN1=1.8V, CIN1=1μF(ceramic), CL=1μF(ceramic) 0.6 Topr= 85℃ = 25℃ =-40℃ 0.4 0.2 0.0 0 50 100 150 200 250 300 VIN1 = = = = 0.6 0.4 0.2 0.0 350 0 50 100 150 200 250 300 350 OOutput utput CCurrent: urrent: IIOOUT (m A ) U T (mA) VOUT=2.85V VOUT=2.85V VIN1=3.85V, CIN1=1μF(ceramic), CL=1μF(ceramic) Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 4.0 4.0 3.5 3.5 Output Voltage: VOUT (V) O utput V oltage: V O U T (V ) Output Voltage: VOUT O utput V oltage: V O(V) (V ) UT (m A ) OOutput utput CCurrent: urrent:IIOUT O U T (mA) 3.0 2.5 Topr= 85℃ = 25℃ =-40℃ 2.0 1.5 1.0 0.5 0.0 3.0 2.5 VIN1 = 6.0V = 4.0V =3.15V 2.0 1.5 1.0 0.5 0.0 0 50 100 150 200 250 300 350 0 50 OOutput utput CCurrent: urrent:IIOUT (m A ) O U T (mA) 150 200 250 300 350 VOUT=3.0V VOUT=3.0V VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic) Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 4.0 4.0 3.5 3.5 3.0 2.5 Topr= 85℃ = 25℃ =-40℃ 2.0 1.5 1.0 0.5 0.0 3.0 VIN1 = 6.0V = 4.0V = 3.3V 2.5 2.0 1.5 1.0 0.5 0.0 0 50 100 150 200 250 300 Output O ut putCCurrent: urrent:IIOUT (mA) (m A ) OUT 30/43 100 (mA) (m A) OOutput utput CCurrent: urrent:IIOUT OUT Output Voltage: VOUT O utput V oltage: V O U(V) (V ) T Output O utput Voltage: V oltage: VOUT V O U(V) (V ) T 6.0V 3.8V 1.8V 1.5V 350 0 50 100 150 200 250 OOutput utputCurrent: C urrentI:OUT IO U(mA) T (m A ) 300 350 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (1) Output Voltage vs. Output Current (Continued) VOUT=5.0V VOUT=5.0V Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 6.0 6.0 5.0 5.0 O utput V oltage: V O (V) (V ) Output Voltage: VOUT UT O utput V oltage: V O(V) (V ) Output Voltage: VOUT UT VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic) 4.0 Topr= 85℃ = 25℃ =-40℃ 3.0 2.0 1.0 0.0 4.0 VIN1 = 6.0V = 5.3V 3.0 2.0 1.0 0.0 0 50 100 150 200 250 300 350 0 50 OOutput utput CCurrent: urrent: IIOOUT (m A ) U T (mA) 100 150 (2) Output Voltage vs. Input Voltage VOUT=0.8V 300 350 VOUT=0.8V 0.90 1.2 Output O utput Voltage: V oltage: VOUT V O(V) (V ) UT 1.1 Output Voltage: VOUT O utput V oltage: V O(V) (V ) UT 250 Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 1.0 0.9 0.8 IOUT = 0mA = 30mA =100mA 0.7 0.6 0.5 0.85 0.80 0.75 I OUT = 0mA = 30mA =100mA 0.70 0.65 0.5 1.0 1.5 2.0 2.5 1.5 2.0 2.5 VOUT=2.85V Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 2.95 2.85 2.90 O utput V oltage: (V ) Output Voltage: VOUTV O(V) UT 3.05 2.65 2.45 2.05 2.35 5.0 5.5 6.0 VOUT=2.85V Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) IOUT = 0mA = 30mA =100mA 2.25 3.0 3.5 4.0 4.5 InputVVoltage: (V(V) ) Input oltage: VVININ1 1 (V ) Input oltage: VVININ1 InputVVoltage: 1 (V) Output Voltage: VOUTV O(V) O utput V oltage: (V ) UT 200 Output O utputCurrent: C urrent:IOUT IO U T(mA) (m A ) 2.85 2.80 IOUT = 0mA = 30mA =100mA 2.75 2.70 2.85 Input oltage: VVININ1 (V ) InputV Voltage: 1 (V) 3.35 3.0 3.5 4.0 4.5 5.0 5.5 6.0 InputVVoltage: (V(V) ) Input oltage: VVININ1 1 31/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (2) Output Voltage vs. Input Voltage (Continued) VOUT=3.0V VOUT=3.0V Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 3.10 3.0 O utput V oltage: V O(V) (V ) Output Voltage: VOUT UT O utput V oltage: V O(V) (V ) UT Output Voltage: VOUT 3.2 2.8 IOUT = 0mA = 30mA =100mA 2.6 2.4 2.2 3.05 3.00 IOUT = 0mA = 30mA =100mA 2.95 2.90 2.85 2.5 3.0 3.5 3.5 4.0 VOUT=5.0V 5.0 5.05 O utput V oltage: V O U(V) (V ) Output Voltage: VOUT T O utput V oltage: V O U(V) (V ) Output Voltage: VOUT T 5.10 4.8 I OUT = 0mA = 30mA =100mA 4.5 5.00 4.95 IOUT = 0mA = 30mA =100mA 4.90 5.0 Input Voltage: IN1 (V (V) ) Input V oltage: V IV N1 5.5 5.5 6.0 InputVVoltage: Input oltage: VVININ1 (V(V) ) 1 (3) Dropout Voltage vs. Output Current VOUT=0.8V VOUT=2.85V CIN1=1μF(ceramic), CL=1μF(ceramic) CIN1=1μF(ceramic), CL=1μF(ceramic) 1.0 0.5 Topr = 85℃ = 25℃ = -40℃ 0.8 D ropout V oltage: V di(mV) f(m V ) Dropout Voltage: Vdif D ropout V oltage: V di f(m V ) Dropout Voltage: Vdif (mV) 6.0 4.85 4.2 0.6 0.4 0.2 0.4 Topr = 85℃ = 25℃ = -40℃ 0.3 0.2 0.1 0.0 0.0 0 50 100 150 (m A ) OOutput utputCurrent: C urrent:IOUT I (mA) OUT 32/43 5.5 VOUT=5.0V 5.2 4.4 5.0 Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic) 4.6 4.5 InputVVoltage: Input oltage: VVININ1 (V(V) ) 1 Input Voltage: Input V ol tage: V INV1IN1 (V )(V) 200 0 50 100 150 OOutput utputCurrent: C urrent:IIOUT (m A ) O U T (mA) 200 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (3) Dropout Voltage vs. Output Current (Continued) VOUT=3.0V VOUT=5.0V CIN1=1μF(ceramic), CL=1μF(ceramic) CIN1=1μF(ceramic), CL=1μF(ceramic) 0.5 Dropout Voltage: VdifV di (mV) D ropout V oltage: f(m V ) Dropout Voltage: Vdif (mV) D ropoutV oltage:V dif(m V ) 0.5 0.4 Topr=-40℃ =25℃ =85℃ 0.3 0.2 0.1 0.0 0.4 Topr=-40℃ =25℃ =85℃ 0.3 0.2 0.1 0.0 0 50 100 150 200 0 50 Output O utputCurrent: C urrent:IOUT IO U T(mA) (m A ) 100 100 100 80 80 Topr= 85℃ = 25℃ =-40℃ 40 20 0 Topr= 85℃ = 25℃ =-40℃ 60 40 20 0 0 1 2 3 4 5 6 0 1 (V ) InputVoltage: V oltage:V V IN1 Input IN (V) 2 4 5 6 5 6 VOUT=5.0V 100 80 80 Supply Current: ISS:(μA) S uppl y C ullent IS S (μ A) 100 Topr= 85℃ = 25℃ =-40℃ 60 3 IInput nput VVoltage: oltage: V V IN1 (V ) IN (V) VOUT=3.0V Supply Current: ISS:I(μA) S uppl y C ullent S S (μ A) 200 VOUT=2.85V Supply Current: ISS:(μA) S uppl y C ullent IS S (μ A) Supply Current: ISS:(μA) S uppl y C ullent IS S (μ A) (4) Supply Current vs. Input Voltage VOUT=0.8V 60 150 OOutput utput CCurrent: urrent: I (m A ) IOUT O U T (mA) 40 20 0 60 40 Topr= 85℃ = 25℃ =-40℃ 20 0 0 1 2 3 4 Input oltage: VVININ1 (V (V) ) InputVVoltage: 5 6 0 1 2 3 4 IInput nput VVoltage: oltage:V V IN1 (V ) IN (V) 33/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (5) Output Voltage vs. Ambient Temperature VOUT=0.8V VOUT=2.85V VIN1=1.8V, CIN1=1μF(ceramic), CL=1μF(ceramic) VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic) 2.95 Output VOUTV(V)(V ) O utVoltage: putV oltage: OUT Output VOUTV (V)(V ) O utVoltage: putV oltage: OUT 0.84 0.82 0.80 IOUT= 0mA = 10mA = 30mA =100mA 0.78 -25 0 25 50 75 2.85 2.80 2.75 -50 0.76 -50 2.90 100 IOUT= 0mA = 10mA = 30mA =100mA -25 0 VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic) 75 100 VIN1=6.0V, CIN1=1μF(ceramic), CL=1μF(ceramic) 5.20 Output Voltage: VOUT O utput V oltage: V O(V) (V ) UT 3.10 Output Voltage: VOUT O utput V oltage: V O(V) (V ) UT 50 VOUT=5.0V VOUT=3.0V 3.05 3.00 IOUT= 0mA = 10mA = 30mA =100mA 2.95 2.90 -50 25 AAmbient m bient TTemperature: em perature: TTaa(℃) (℃) A mAmbient bient T em perature: T a(℃) Temperature: Ta (℃) -25 0 25 50 75 100 5.10 5.00 4.90 4.80 -50 IOUT = 0mA = 10mA = 30mA =100mA -25 0 25 50 75 100 A Ambient m bient T Temperature: em perature: TTa a(℃) (℃) AAmbient m bient TTemperature: em perature: T Taa(℃) (℃) (6) Supply Current vs. Ambient Temperature VOUT=2.85V VOUT=0.8V VIN1=3.85V 30 30 28 28 Supply Current: SS (μA) S uppl y C ulIlent :IS S (μ A) Supply Current: SS (μA) S uppl y C ulIlent :IS S (μ A) VIN1=1.8V 26 24 22 20 -50 -25 0 25 50 75 AAmbient m bient TTemperature: em perature: TTa a(℃) (℃) 34/43 100 26 24 22 20 -50 -25 0 25 50 75 AAmbient m bient TTemperature: em perature: TTa a(℃) (℃) 100 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (6) Supply Current vs. Ambient Temperature (Continued) VOUT=3.0V VOUT=5.0V VIN1=6.0V 30 30 28 28 SupplySCurrent: ISS (μA) upply C ul lent :IS S (μA ) 26 24 22 -25 0 25 50 75 24 22 20 -50 100 (7) Input Transient Response VOUT=0.8V 25 50 75 100 VOUT=0.8V tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA 4 1.00 4 0.95 3 0.95 3 0.90 Input Voltage Input V oltage 0.85 2 1 0.80 0 O utput V oltage Output Voltage 0.75 -1 0.70 O utput V oltage: V O U T (V ) Output Voltage: VOUT (V) 1.00 Input V oltage: V IN (V ) Input Voltage: VIN1 (V) Output Voltage: VOUT O utput V oltage: V O U(V) (V ) T 0 AAmbient m bient TTemperature: em perature: TTaa(℃) (℃) AAmbient m bient TTemperature: em perature: T Taa(℃) (℃) 0.90 V oltage InputInput Voltage 2 0.85 1 0.80 0 O utput V oltage Output Voltage 0.75 -1 0.70 -2 Time200μ (200μs/div) s/div -2 Time (40μs/div) 40μ s/div VOUT=0.8V VOUT=2.85V tr=tf=5μs, CL=1μF(ceramic), tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA IOUT=100μA 4 3.05 6 0.95 3 3.00 5 0.90 Input V oltage Input Voltage 0.85 2 1 0.80 0 O utput V oltage Output Voltage 0.75 -1 0.70 -2 Time40μ (40μs/div) s/div O utput V oltage: V O U T (V ) Output Voltage: VOUT (V) 1.00 Input V oltage: V IN (V ) Input Voltage: VIN1 (V) Output Voltage: VOUT O utput V oltage: V O U(V) (V ) T -25 IInput nput VVoltage: oltage: VVIN (V(V) ) IN1 20 -50 26 2.95 Input V oltage Input Voltage 2.90 4 3 2.85 2 Output Voltage O utput V oltage 2.80 1 2.75 Input Voltage: VIN(V) Input Voltage: VIN1 (V) SupplySCurrent: ISS (μA) upply C ul lent :IS S (μA ) VIN1=4.0V 0 Time (200μs/div) 200μ s/div 35/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (7) Input Transient Response (Continued) VOUT=2.85V VOUT=2.85V 6 3.05 6 3.00 5 3.00 5 2.90 4 3 2.85 2 O utVoltage put V oltage Output 2.80 1 2.75 0 2.95 2.90 2 O utput V oltage Output Voltage 2.80 1 2.75 0 s/div Time40μ (40μs/div) 40μ s/div Time (40μs/div) VOUT=3.0V VOUT=3.0V tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA 6 3.20 6 3.15 5 3.15 5 3.10 Input V oltage Input Voltage 3.05 4 3 3.00 2 O utput V oltage Output Voltage 2.95 1 2.90 O utput V oltage: V U T (V ) Output Voltage: VOUTO(V) 3.20 Input V oltage: V IN (V ) Input Voltage: VIN1 (V) O utput V oltage: V O(V) (V ) UT Output Voltage: VOUT 4 3 2.85 tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA 0 3.10 Input Voltage Input V oltage 3.05 4 3 3.00 2 Output Voltage O utput V oltage 2.95 1 2.90 Time (200μs/div) 200μ s/div 0 Time (40μs/div) 40μ s/div VOUT=5.0V VOUT=3.0V tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA 6 5.20 8 3.15 5 5.15 7 3.10 Input V oltage Input Voltage 3.05 4 3 3.00 2 O utput V oltage Output Voltage 2.95 1 2.90 0 40μ s/div Time (40μs/div) 36/43 Output Voltage: VOUTV (V)(V ) O utput V oltage: OUT 3.20 Input V oltage: V IN (V ) Input Voltage: VIN1 (V) Output Voltage: VOUTV (V)(V ) O utput V oltage: OUT Input Voltage Input V oltage InputInput Voltage: VIN1 (V) V oltage: V IN (V ) Input V oltage Input Voltage 5.10 Input Input Voltage V oltage 5.05 6 5 5.00 4 OOutput utputVoltage V oltage 4.95 3 4.90 2 200μ s/div Time (200μs/div) Input Voltage: VIN1V (V) Input V oltage: IN (V ) 2.95 O utput V oltage: V T (V ) Output Voltage: VOUTO U(V) 3.05 V oltage: V IN (V ) InputInput Voltage: VIN1 (V) tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA Input V oltage: V IN(V) (V ) Input Voltage: VIN1 O utput V oltage: (V ) UT Output Voltage: VOUTV O(V) tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (7) Input Transient Response (Continued) VOUT=5.0V VOUT=5.0V 5.20 8 5.15 7 5.15 7 5 5.00 4 O utput V oltage Output Voltage 4.95 3 4.90 2 Input Voltage Input V oltage 5.10 5.05 5 5.00 4 O utput V oltage Output Voltage 4.95 3 4.90 2 s/div Time40μ (40μs/div) s/div Time40μ (40μs/div) (8) Load Transient Response VOUT=0.8V VOUT=0.8V VIN1=1.8V, tr=tf=5μs, CIN1=CL=1μF(ceramic) VIN1=1.8V, tr=tf=5μs, CIN1=CL=1μF(ceramic) 250 200 OOutput utputVoltage V oltage 0.70 150 0.60 100 50mA OOutput utputCurrent C urrent 0.50 50 10mA 0.40 O utput V oltage: V O U(V) (V ) Output Voltage: VOUT T 0.80 0.90 O utput C urrent :IO U(mA) (m A ) Output Current: IOUT T O utput V oltage: V O U(V) (V ) Output Voltage: VOUT T 0.90 0 250 0.80 200 Output OutputVoltage Voltage 0.70 0.60 150 100mA 0.50 50 10mA 0.40 0 s/div Time40μ (40μs/div) VOUT=2.85V VOUT=2.85V 2.95 250 2.85 200 O utput V oltage Output Voltage 150 100 O utCurrent put C urrent Output 2.55 50mA 50 10mA 2.45 0 Time40μ (40μs/div) s/div O utput V oltage: V O(V) (V ) Output Voltage: VOUT UT VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic) O utput C urrent (m A ) Output Current: IOUT: I(mA) OUT Output VOUTV(V) O utVoltage: put V oltage: (V ) OUT VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic) 2.65 100 Output Current Output Current s/div Time40μ (40μs/div) 2.75 6 O utput C urrent : I(mA) (m A ) Output Current: IOUT OUT 5.05 6 2.95 250 2.85 200 OutputVoltage Voltage Output 2.75 2.65 150 100mA 100 Output Current Output Current 2.55 50 10mA 2.45 Output Current: IOUTIOUT (mA) Output Current: (mA) Input Voltage Input V oltage 5.10 Output Voltage: VOUT O utput V oltage: V O(V) (V ) UT 8 Input V oltage: (V ) IN Input Voltage: VIN1V(V) Output Voltage: VOUT O utput V oltage: V O(V) (V ) UT 5.20 Input Voltage: VIN(V) Input Voltage: VIN1 (V) tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA 0 Time (40μs/div) 40μ s/div 37/43 XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (8) Load Transient Response (Continued) VOUT=3.0V VOUT=3.0V VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic) 2.90 150 2.80 100 O utput C urrent Output Current 50mA 50 10mA 2.60 250 3.00 200 O utput V oltage Output Voltage 2.90 150 100mA 2.80 100 O utput C urrent Output Current 2.70 50 10mA 2.60 0 0 40μ s/div Time (40μs/div) 40μ s/div Time (40μs/div) VOUT=5.0V VOUT=5.0V 5.00 200 OOutput utput V oltage Voltage 4.90 150 4.80 100 OOutput utputCurrent C urrent 50mA 50 10mA 4.60 0 Output VOUTV(V) O utVoltage: put V oltage: (V ) OUT 250 O utput C urrent :IO (mA) (m A ) UT Output Current: IOUT Output Voltage: VOUTV (V)(V ) O utput V oltage: OUT 5.10 5.10 250 5.00 200 Output Voltage O utput V oltage 4.90 150 100mA 4.80 100 Output Current O utput C urrent 4.70 50 10mA 4.60 0 Time40μ (40μs/div) s/div Time (40μs/div) 40μ s/div (9) Ripple Rejection Rate VOUT=2.85V VOUT=0.8V VIN1=1.8VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic) VIN1=3.85VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic) 80 Ripple Rejection Ratio: PSRR (dB) R ipple R ejection R atio: P S R R (dB ) Ripple Rejection Ratio: PSRR (dB) R ipple R ejection R atio:P S R R (dB ) 80 60 40 20 0 0.01 0.1 1 10 RRipple ipple FFrequency: requency:f(kHz) f(kH z) 38/43 100 60 40 20 0 0.01 0.1 1 10 RRipple ipple FFrequency: requency: ff(kHz) (kH z) 100 O utput C urrent : IO(mA) (m A ) Output Current: IOUT UT VIN1=6.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic) VIN1=6.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic) 4.70 O utput C urrent : IO(mA) (m A ) Output Current: IOUT UT 200 O utput V oltage Output Voltage Output VOUTV(V) (V ) O utVoltage: put V oltage: OUT 3.00 2.70 3.10 250 O utput C urrent (m A ) OUT Output Current: IOUT: I(mA) Output Voltage: VOUTV (V)(V ) O utput V oltage: OUT 3.10 VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic) XCM520 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●Regulator Block (Continued) (9) Ripple Rejection Rate (Continued) VOUT=3.0V VOUT=5.0V VIN1=5.75VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic) VIN1=4.0VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic) 80 Ripple Rejection PSRR R ippl e R ejectRatio: ion R at io: P S R(dB) R (dB ) Ripple Rejection Ratio: PSRR (dB) R ipple R ejection R atio:P S R R (dB ) 80 60 40 20 0 0.01 0.1 1 10 100 R Ripple ipple F Frequency: requency: f(kH z) f(kHz) 60 40 20 0 0.01 0.1 1 10 100 RRipple ipple FFrequency: requency: ff(kHz) (kH z) (10) Cross Talk VOUT1:3.0V & VOUT2:2.85V VIN1=4.0V, CIN1=CL1=CL2=1μF(ceramic) 3.1 500 3.0 400 2.9 300 V R 2Output O utput V oltage(2. VR2 Voltage (2.85V)85V ) 2.8 2.7 100mA VVR1 R1 10mA 200 100 O utputCurrent: C urrent:IOUT IO U T(mA) (m A ) Output Output Voltage: VOUTV (V)(V ) O utput V oltage: OUT V ROutput 1 O utVoltage put V ol tage(3.0V ) VR1 (3.0V) Output Current O utput C urrent 2.6 0 s/div Time40μ (40μs/div) 39/43 XCM520 Series ■PACKAGING INFORMATION ●USP-12B01 2.8±0.08 (0.4) (0.4) (0.4) (0.4) (0.4) (0.15) (0.25) 0.25± 0.2± 0.2± 0.2± 0.2± 0.2± 0.05 0.05 0.05 0.05 0.05 0.05 1 2 3 4 12 11 10 9 1.2±0.1 5 6 8 7 1.2±0.1 UNIT: mm 0.7±0.05 0.7±0.05 ●USP-12B01 Reference Pattern Layout 1 .35 1 .35 0 .90 0 .90 0 .45 0 .65 0 .65 0 .25 0 .25 0 .50 0 .20 1 .30 1 .30 0 .95 0 .95 0 .55 0 .55 0 .25 0 .25 0 .35 0 .60 1 .10 1 .55 0 .60 1 .10 1 .55 1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .05 0 .15 0 .05 0 .05 0 .20 0 .05 0 .10 0 .10 1 .30 1 .60 0 .20 40/43 0 .35 1 .30 1 .60 1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .25 0 .30 0 .025 0 .025 0 .025 0 .025 0 .45 ●USP-12B01 Reference Metal Mask Design 0 .15 0 .40 0 .15 XCM520 Series ■PACKAGING INFORMATION (Continued) ● USP-12B01 Power Dissipation Power dissipation data for the USP-12B01 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition. 1. Measurement Condition (Reference data) Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free Board: Dimensions 40 x 40 mm (1600 mm in one side) 2 st 1 Layer: Land and a wiring pattern nd st rd nd 2 Layer: Connecting to approximate 50% of the 1 heat sink 3 Layer: Connecting to approximate 50% of the 2 heat sink th 4 Layer: Noting Material: Glass Epoxy (FR-4) Thickness: 1.6 mm Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole) 2. Evaluation Board (Unit: mm) Power Dissipation vs. Operating temperature ●Only 1ch heating, Board Mount (Tj max = 125℃) Ambient Temperature(℃) Power Dissipation Pd(mW) 25 800 85 320 Thermal Resistance (℃/W) 125.00 Power Dissipation: Pd (mW) 許容損失Pd(mW) Pd-Ta特性グラフ Pd vs. Ta 1000 800 600 400 200 0 25 45 65 85 105 125 周囲温度Ta(℃) Ambient Temperature: Ta (℃) ●Both 2ch heating same time, Board Mount (Tj max = 125℃) Ambient Temperature(℃) Power Dissipation Pd(mW) 25 600 85 240 Thermal Resistance (℃/W) 166.67 Power許容損失Pd(mW) Dissipation: Pd (mW) Pd-Ta特性グラフ Pd vs. Ta 1000 800 600 400 200 0 25 45 65 85 周囲温度Ta(℃) Ambient Temperature: Ta (℃) 105 125 41/43 XCM520 Series ■MARKING RULE ●USP-12B01 ① ② ③ ④ ⑤ ⑥ 1 2 3 4 5 6 ① represents product series 12 11 10 9 8 7 MARK PRODUCT SERIES 1 XCM520 Series ②③ represents combination of IC MARK USP-12B01 ④ PRODUCT SERIES ② ③ A A XC6401FF**+XC9235A**D A B XC6401FF**+XC9235A**C A C XC6401FF**+XC9236A**D A D XC6401FF**+XC9236A**C A E XC6401FF**+XC9235B**D A F XC6401FF**+XC9235B**C A G XC6401FF**+XC9236B**D A H XC6401FF**+XC9236B**C represents combination of voltage for each IC (Sequence No.) MARK PRODUCT SERIES 1 XCM520**01** 2 XCM520**02** 3 XCM520**03** 4 XCM520**04** ⑤,⑥ represents production lot number 01∼09、0A∼0Z、11・・・9Z、 A1∼A9、AA・・・Z9、ZA∼ZZ repeated (G, I, J, O, Q, W excluded) * No character inversion used. 42/43 XCM520 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 43/43