TOREX XCM520AB02DR-G

XCM520 Series
ETR2427-002a
600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
■GENERAL DESCRIPTION
The XCM520 series is a multi chip module which comprises of a 600mA driver transistor built-in synchronous step–down
DC/DC converter and a dual CMOS LDO regulator. The device is housed in small USP-12B01 package which is ideally
suited for space conscious applications.
The XCM520 can replace this dual DC/DC to eliminate one inductor and reduce output noise.
The DC/DC converter with a built-in 0.42ΩP-channel MOS and a 0.52ΩN-channel MOS provides a high efficiency, stable
power supply up to 600mA to using only a coil and two ceramic capacitors connected externally.
The highly accurate, low noise, dual CMOS LDO regulator includes a reference voltage source, error amplifiers, driver
transistors, current limiters and phase compensation circuits internally. The series is also fully compatible with low ESR
ceramic capacitors.
This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response
performance and high PSRR achieved across a broad range of frequencies. The EN function allows the output of each
regulator to be turned off independently, resulting in greatly reduced power consumption.
■APPLICATIONS
■FEATURES
●Mobile phones, Smart phones
<DC/DC Convertor Block>
●Bluetooth headsets
Driver Transistor
: 0.42Ω P-channel MOS Built-in
Switching Transistor
: 0.52Ω N-channel MOS Built-in
●WLAN PC cards
Input Voltage Range
: 2.7V ∼ 6.0V
●Portable HDDs, SSDs
Output Voltage Range : 0.8V ∼ 4.0V
●PDAs, PNDs, UMPCs
High Efficiency
: 92% (TYP.) *
Output Current
: 600mA
●MP3 players, Media players
Oscillation Frequency : 1.2MHz,3.0MHz (±15%)
●Portable game consoles
Soft-Start
●Cordless phones, Radio communication equipment
: Built-In Soft-Start
Current Limiter Circuit : Constant Current & Latching
Control
: Fixed PWM, Auto PWM/PFM
*Performance depends on external components and wiring on PCB wiring.
<Dual LDO Regulator Block>
■TYPICAL APPLICATION CIRCUIT
VOUT1
1.8V
CL2
1μF
CIN1
1μF
VIN
3.3V
CIN2
4.7μF
1
V OUT2
2
EN2
V SS 11
3
VIN1
EN1 10
4
VIN2
EN3 9
5
PGND
AGND 8
6
Lx
V OUT3 7
V OUT1 12
VOUT2
1.2V
CL1
1μF
CL3
10μF
VOUT3
2.3V
L
1.5μH
* The dashed lines denote the connection using through-holes
at the backside of the PC board.
* The above circuit uses XCM520AA01 series.
* The DC/DC block VOUT3 is connected to the dual LDO regulator
VIN1 in this connection.
* Also, it is possible to operate two VIN independently.
: 150mA (Limiter 300mA TYP.)
: 100mV @ 100mA
: 1.5V~6.0V
: 0.8V~5.0V (0.05V increments)
: ±2% (VOUT>1.5V)
±30mV (VOUT≦1.5V)
Low Power Consumption : 25μA (TYP.)
Stand-by Current
: Less than 0.1μA(TYP.)
High Ripple Rejection : 70dB @1kHz
Low Output Noise
Operating Temperature Range : -40℃~+85℃
Low ESR Capacitor
: Ceramic Capacitor Compatible
Package
: USP-12B01
Standard Voltage Combinations : VOUT1
VOUT2
VOUT3
XCM520xx01D
1.8V
1.2V
2.3V
XCM520xx02D
1.8V
1.3V
2.3V
XCM520xx03D
1.8V
1.2V
2.2V
XCM520xx04D
1.8V
1.2V
2.8V
XCM520xx05D
1.0V
1.2V
1.8V
XCM520xx06D
0.8V
1.5V
1.8V
Maximum Output Current
Dropout Voltage
Operating Voltage Range
Output Voltage Range
High Accuracy
*Other combinations are available as semi-custom products.
Environmentally Friendly : EU RoHS Compliant, Pb Free
1/43
XCM520 Series
■PIN CONFIGURATIOIN
VOUT2
VOUT2
1
VOUT1
12
VOUT1
XC6401
EN2
2
EN2
VSS
11
VSS
VIN1
3
VIN
EN1
10
EN1
VIN2
VIN
4
EN/MODE
9
EN3
XC9235/9236
PGND
Lx
PGND
5
AGND
Lx
6
VOUT3
8
7
AGND
VOUT3
(TOP VIEW)
1 VOUT2
VOUT1 12
*1
VSS 11
2 EN2
EN1 10
3 VIN1
EN3/MODE 9
4 VIN2
VSSA 8
*2
VOUT3 7
PIN No
XCM520
XC6401
XC9235/XC9236
1
VOUT2
VOUT2
―
2
EN2
EN2
―
3
VIN1
VIN
―
4
VIN2
―
VIN
5
PGND
―
PGND
6
Lx
―
Lx
7
VOUT3
―
VOUT
8
AGND
―
AGND
9
EN3
―
CE
10
EN1
EN1
―
11
VSS
VSS
―
12
VOUT1
VOUT1
―
NOTE:
* The two heat-sink pads on the back side are electrically isolated in the package.
*1: The pad of the regulator should be VSS level.
*2: The pad of the DC/DC should be VSS level.
* The DC/DC ground pin (No. 5 and 8) should be connected for use.
* The two pads are recommended to open on the board, but care must be taken for
voltage level of each heat-sink pad when they are electrically connected.
5 VSSD
6
Lx
(TOP VIEW)
■PIN ASSIGNMENT
2/43
PIN No
XCM520
FUNCTIONS
1
VOUT2
Voltage Regulator Output2
2
EN2
Voltage Regulator ON/OFF Control 2
3
VIN1
Voltage Regulator Power Input
4
VIN2
DC/DC Power Input
5
PGND
DC/DC Power Ground
6
Lx
DC/DC Inductor Pin
7
VOUT3
DC/DC Output Voltage
8
AGND
DC/DC Analog Ground
9
EN3
DC/DC ON/OFF Control
10
EN1
Voltage Regulator ON/OFF Control 1
11
VSS
Voltage Regulator Ground
12
VOUT1
Voltage Regulator Output Voltage 1
XCM520
Series
■PRODUCT CLASSIFICATION
●Ordering Information
(*1)
XCM520①②③④⑤⑥-⑦
DESIGNATOR
DESCRIPTION
SYMBOL
①②
Options
−
See the chart below
③④
Output Voltage combination
−
See the chart below
Packages
⑤⑥-⑦
(*1)
(*2)
Taping Type
DR-G
(*2)
DESCRIPTION
USP-12B01
The XCM520 series is Halogen and Antimony free as well as being fully RoHS compliant.
The device orientation is fixed in its embossed tape pocket.
●DESIGNATOR①②(Combination of XC6401 series and XC9235/XC9236 series)
DESCRIPTION
①②
COMBINATION OF EACH IC
AA
XC6401FF**+XC9235A**D
F i x e d P W M , fOSC=3.0MHz
AB
XC6401FF**+XC9235A**C
F i x e d P W M , fOSC=1.2MHz
AC
XC6401FF**+XC9236A**D
Auto PWM/PFM, fOSC=3.0MHz
AD
XC6401FF**+XC9236A**C
Auto PWM/PFM, fOSC=1.2MHz
AE
XC6401FF**+XC9235B**D
F i x e d P W M , fOSC=3.0MHz, VOUT3 CL Discharge
AF
XC6401FF**+XC9235B**C
F i x e d P W M , fOSC=1.2MHz, VOUT3 CL Discharge
AG
XC6401FF**+XC9236B**D
Auto PWM/PFM, fOSC=3.0MHz, VOUT3 CL Discharge
AH
XC6401FF**+XC9236B**C
Auto PWM/PFM, fOSC=1.2MHz, VOUT3 CL Discharge
●DESIGNATOR③④(Output Voltage)
③④
VOUT1(VR_1ch)
VOUT2(VR_2ch)
VOUT3(DC/DC)
01
1.8
1.2
2.3
02
1.8
1.3
2.3
03
1.8
1.2
2.2
04
1.8
1.2
2.8
05
1.0
1.2
1.8
06
0.8
1.5
1.8
*This series are semi-custom products.
For other combinations of output voltages please consult with your Torex sales contact.
3/43
XCM520 Series
■BLOCK DIAGRAMS
XC9235B/XC9236B
XC9235A/XC9236A
Available with CL Discharge, High Speed Soft-Start
* XC9235 control scheme is a fixed PWM because that the “CE/MODE Control Logic” outputs a low level signal to the “PWM/PFM Selector”.
* XC9236 control scheme is an auto PWM/PFM switching because the “CE/MODE Control Logic” outputs a high level signal to the “PWM/PFM Selector”.
XC6401FF
*Diodes inside the circuit are an ESD protection diode and a parasitic diode.
■MAXIMUM ABSOLUTE RATINGS
PARAMETER
SYMBOL
VIN1 Voltage
VIN1
1
RATINGS
UNITS
6.5
V
700
*2
VOUT Current
IOUT1+IOUT2*
VOUT Voltage
VOUT1 / VOUT2
VSS-0.3~VIN1+0.3
mA
V
EN1,EN2 Voltage
VEN1 / VEN2
VSS-0.3~6.5
V
VIN2 Voltage
VIN2
-0.3~6.5
V
Lx Voltage
VLX
-0.3~VIN2+0.3≦6.5
V
VOUT3 Voltage
VOUT3
-0.3~6.5
V
EN3 Voltage
VEN3
-0.3~6.5
V
Lx Current
ILX
±1500
150
800 (1ch operate)
600 (both 2ch operate)
mA
mW
Operating Temperature Range
Topr
-40~+85
℃
Storage Temperature Range
Tstg
-55~+125
℃
Power Dissipation
USP12-B01
USP12-B01 *3
(PCB mounted)
Pd
*1. Rating is defined as a total of VR1 and VR2 in the VR bloc.
*2. Pd > { (VIN1 - VOUT1)×IOUT1+(VIN1 - VOUT2)×IOUT2 }
*3. The power dissipation figure shown is PCB mounted.
for each channel.
4/43
Please refer to page 41 for details.
Also, the power dissipation value above is
XCM520
Series
■ELECTRICAL CHARACTERISTICS
●XCM520AB, AD (DC/DC BLOCK)
PARAMETER
VOUT3 = 1.8V, fOSC=1.2MHz, Ta = 25℃
SYMBOL
Output Voltage
VOUT3
Operating Voltage Range
VIN2
CONDITIONS
When connected to external components,
VIN2 = VEN3 =5.0V, IOUT3 =30mA
When connected to external components,
Maximum Output Current
IOUT3MAX
UVLO Voltage
VUVLO
Supply Current
IDD
Stand-by Current
ISTB
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V
Oscillation Frequency
fOSC
When connected to external components,
VIN2 = VOUT3(E) + 2.0V, VEN3 = 1.0V, IOUT3 = 100mA
PFM Switching Current
IPFM
VIN2=VOUT(E)+2.0V, VEN3=1.0V
(*8)
VEN3=VIN2, VOUT3=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
XCM520AB
VIN2=VEN3=5.0V,
VOUT3 =VOUT3(E)×1.1V
XCM520AD
When connected to external components,
(*11)
VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA
(*11)
VEN3 = VIN2 = (C-1) IOUT3 = 1mA
MIN.
TYP.
MAX.
UNITS CIRCUIT
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
600
-
-
mA
①
1.00
1.40
1.78
V
③
-
50
33
1.0
μA
②
-
22
15
0
μA
②
1020
1200
1380
kHz
①
120
160
200
mA
①
①
PFM Duty Limit
DTYLIMIT_PFM
200
300
%
Maximum Duty Ratio
DMAX
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
100
-
-
%
③
Minimum Duty Ratio
DMIN
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V
When connected to external components,
-
-
0
%
③
-
92
-
%
①
900
0.35
0.42
0.45
0.52
0.01
0.01
1050
0.55
0.67
0.66
0.77
1.0
1.0
1350
Ω
Ω
Ω
Ω
μA
μA
mA
④
④
−
−
⑤
⑤
⑥
-
±100
-
ppm/ ℃
①
Efficiency
(*2)
EFFI
RLxH
Lx SW "H" ON Resistance 1
RLxH
Lx SW "H" ON Resistance 2
RLxL
Lx SW "L" ON Resistance 1
RLxL
Lx SW "L" ON Resistance 2
(*5)
Lx SW "H" Leak Current
ILEAKH
(*5)
Lx SW "L" Leak Current
ILEAKL
(*9)
Current Limit
ILIM
Output Voltage
△VOUT3/
Temperature
(VOUT3・△topr)
Characteristics
VEN3=VIN2=VOUT3(E)+1.2V,IOUT3= 100mA
(*7)
(*3)
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA
(*3)
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA
(*4)
VIN2 = VEN3 = 0V
(*4)
VIN2 = VEN3 = 3.6V
VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX = 0V
VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
VOUT3 = 30mA
-40℃ ≦ Topr ≦ 85℃
Applied voltage to VEN3,
0.65
6.0
V
③
(*10)
Voltage changes Lx to “H” level
VOUT3=30V, Applied voltage to VEN3,
③
CE "L" Level Voltage
VEN3L
VSS
0.25
V
(*10)
Voltage changes Lx to “L” level
CE "H" Current
IEN3H
VIN2 = VEN3 = 5.0V, VOUT3 = 0V
- 0.1
0.1
μA
⑤
CE "L" Current
IEN3L
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V
- 0.1
0.1
μA
⑤
When connected to external components,
0.5
1.0
2.5
ms
①
Soft Start Time
tSS
VEN3 = 0V → VIN2 , VOUT3 = 1mA
VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3 (E)
Integral Latch Time
tLAT
1.0
20.0
ms
⑦
(*6)
Short Lx at 1Ω resistance
Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at
Short Protection
0.900
1.125
V
⑦
VSHORT
1Ω resistance, VOUT3 voltage which Lx becomes “L” 0.675
Threshold Voltage
level within 1ms
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VOUT3(E)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM520A/B series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.
*The electrical characteristics above are when the voltage regulator block is in stop.
CE "H" Level Voltage
VEN3H
VOUT3= 0V,
5/43
XCM520 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM520AA/AC (DC/DC BLOCK)
PARAMETER
SYMBOL
Output Voltage
VOUT3
Operating Voltage Range
VIN2
VOUT3 = 1.8V, fOSC= 3.0MHz, Ta=25℃
CONDITIONS
When connected to external components,
VIN2 = VEN3 = 5.0V, IOUT3 = 30mA
When connected to external components,
(*8)
VIN2=VOUT3(E)+2.0V, VEN3=1.0V
VEN3 = VIN2 , VOUT3 = 0V ,
(*1, *10)
Voltage which Lx pin holding “L” level
XCM520AA
VIN2=VEN3=5.0V,
VOUT3=VOUT3(E)×1.1V
XCM520AC
Maximum Output Current
IOUT3MAX
UVLO Voltage
VUVLO
Supply Current
IDD
Stand-by Current
ISTB
VIN2 = 5.0V, VEN = 0V, VOUT3 = VOUT3(E) × 1.1V
Oscillation Frequency
fOSC
When connected to external components,
VIN2 = VOUT3(E) + 2.0V , VEN3=1.0V, VOUT3 = 100mA
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA
(*11)
VEN3 = VIN2 = (C-1) IOUT3 = 1mA
PFM Duty Limit
DTYLIMIT_PFM
Maximum Duty Ratio
DMAX
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
Minimum Duty Ratio
DMIN
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V
When connected to external components,
(*7)
VEN3 = VIN2 = VOUT3 (E) + 1.2V, VOUT3 = 100mA
(*3)
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA
(*3)
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA
(*4)
VIN2 = VEN3 =5.0V
(*4)
VIN2 = VEN3 = 3.6V
VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V
VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
Efficiency
(*2)
EFFI
RLxH
Lx SW "H" ON Resistance 1
RLxH
Lx SW "H" ON Resistance 2
RLxL
Lx SW "L" ON Resistance 1
RLxL
Lx SW "L" ON Resistance 2
(*5)
Lx SW "H" Leak Current
ILEAKH
(*5)
Lx SW "L" Leak Current
ILEAKL
(*9)
ILIM
Current Limit
Output Voltage
△VOUT3/
Temperature
(VOUT3・△topr)
Characteristics
EN "H" Level Voltage
VENH
EN "L" Level Voltage
VEN3L
EN "H" Current
IEN3H
IEN3L
VOUT3 = 30mA
-40℃ ≦ Topr ≦ 85℃
VOUT3 =0V, Applied voltage to VEN3,
(*10)
Voltage changes Lx to “H” level
VOUT3 =0V, Applied voltage to VEN3,
(*10)
Voltage changes Lx to “L” level
VIN2 = VEN3 =5.0V, VOUT3 = 0V
MIN.
TYP.
MAX.
UNITS CIRCUIT
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
600
-
-
mA
①
1.00
1.40
1.78
V
②
-
46
21
65
35
μA
③
-
0
1.0
μA
③
2550
3000
3450
kHz
①
170
220
270
mA
①
②
200
300
%
100
-
-
%
②
-
-
0
%
②
-
86
-
%
①
900
0.35
0.42
0.45
0.52
0.01
0.01
1050
0.55
0.67
0.66
0.77
1.0
1.0
1350
Ω
Ω
Ω
Ω
μA
μA
mA
④
④
−
−
⑤
⑤
⑥
-
±100
-
ppm/ ℃
①
0.65
-
6.0
V
③
VSS
-
0.25
V
③
0.1
μA
⑤
- 0.1
VIN2 =5.0V, VEN3 = 0V, VOUT3 = 0V
- 0.1
0.1
μA
⑤
When connected to external components,
0.5
0.9
2.5
ms
①
Soft Start Time
tSS
VEN3 = 0V → VIN2 , VOUT3 = 1mA
VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3 (E)
Integral Latch Time
tLAT
1.0
20.0
ms
⑦
(*6)
Short Lx at 1Ω resistance
Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at
Short Protection
0.675
0.900
1.125
V
⑦
VSHORT
1Ω resistance, VOUT3 voltage which Lx becomes “L”
Threshold Voltage
level within 1ms
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM520AA series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.
*The electrical characteristics above are when the voltage regulator block is in stop.
EN "L" Current
6/43
XCM520
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM520AF,AH (DC/DC BLOCK)
PARAMETER
SYMBOL
Output Voltage
VOUT3
Operating Voltage Range
VIN2
VOUT3=1.8V, fOSC=1.2MHz, Ta=25℃
CONDITIONS
When connected to external components,
VIN2 = VEN3 = 5.0V, IOUT3 = 30mA
When connected to external components,
Maximum Output Current
IOUT3MAX
UVLO Voltage
VUVLO
Supply Current
IDD
VIN2 =VEN3= 5.0V,
VOUT3= VOUT3(E)×1.1V
Stand-by Current
ISTB
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V
VIN2 = VOUT3(E)+2.0V, VEN3=1.0V
(*8)
VEN3 = VIN2, VOUT3 = 0V,
Voltage which Lx pin holding “L” level
(*1, *10)
XCM520AF
XCM520AH
When connected to external components,
Oscillation Frequency
fOSC
PFM Switching Current
IPFM
PFM Duty Limit
DTYLIMIT_PFM
Maximum Duty Ratio
DMAX
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
Minimum Duty Ratio
DMIN
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V
When connected to external components,
(*7)
VEN3 = VIN2 = VOUT3 (E) + 1.2V, VOUT3 = 100mA
(*3)
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA
(*3)
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA
(*4)
VIN2 = VEN3 = 0V
(*4)
VIN2 = VEN3 = 3.6V
VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
Efficiency
(*2)
EFFI
RLxH
Lx SW "H" ON Resistance 1
RLxH
Lx SW "H" ON Resistance 2
RLxL
Lx SW "L" ON Resistance 1
RLxL
Lx SW "L" ON Resistance 2
(*5)
Lx SW "H" Leak Current
ILEAKH
(*9)
ILIM
Current Limit
Output Voltage
△VOUT3/
Temperature
(VOUT3・△topr)
Characteristics
EN "H" Level Voltage
VENH
EN "L" Level Voltage
VEN3L
EN "H" Current
EN "L" Current
IEN3H
IEN3L
Soft Start Time
tSS
Integral Latch Time
tLAT
Short Protection
Threshold Voltage
VSHORT
VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3=100mA
When connected to external components,
VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA
VEN3 = VIN2 = (C-1) VOUT3 = 1mA
(*11)
MIN.
TYP.
MAX.
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
600
-
-
mA
①
1.00
1.40
1.78
V
③
-
22
15
50
33
μA
②
-
0
1.0
μA
②
1020
1200
1380
kHz
①
120
160
200
mA
①
(*11)
IOUT3 = 30mA
-40℃ ≦ Topr ≦ 85℃
VOUT3 =0V, Applied voltage to VEN3,
(*10)
Voltage changes Lx to “H” level
VOUT3 =0V, Applied voltage to VEN3,
(*10)
Voltage changes Lx to “L” level
VIN2 = VEN3 =5.0V, VOUT3 = 0V
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V
When connected to external components,
VEN3 = 0V → VIN2 , VOUT3 = 1mA
VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3(E)
(*6)
Short Lx at 1Ω resistance
Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at
1Ω resistance, VOUT3 voltage which Lx becomes “L”
level within 1ms
VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open
UNITS CIRCUIT
200
300
%
①
100
-
-
%
③
-
-
0
%
③
-
92
-
%
①
900
0.35
0.42
0.45
0.52
0.01
1050
0.55
0.67
0.66
0.77
1.0
1350
Ω
Ω
Ω
Ω
μA
mA
④
④
―
―
⑨
⑥
-
±100
-
ppm/ ℃
①
0.65
-
6.0
V
③
VSS
-
0.25
V
③
- 0.1
- 0.1
-
0.1
0.1
μA
μA
⑤
⑤
-
0.25
0.4
ms
①
1.0
-
20.0
ms
⑦
0.675
0.900
1.150
V
⑦
CL Discharge
RDCHG
200
300
450
Ω
⑧
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM520AF series exclude IPFM and DLIMIT_PFM because those are only for the PFM control’s functions.
*The electrical characteristics above are when the voltage regulator block is in stop.
7/43
XCM520 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM520AE,AG (DC/DC BLOCK)
PARAMETER
SYMBOL
Output Voltage
VOUT3
Operating Voltage Range
VIN2
VOUT3=1.8V, fOSC=3.0MHz, Ta=25℃
CONDITIONS
When connected to external components,
VIN2 = VEN3 = 5.0V, IOUT3 = 30mA
When connected to external components,
(*8)
VIN2=VOUT3(E)+2.0V,VEN3=1.0V
MIN.
TYP.
MAX.
UNITS CIRCUIT
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
600
-
-
mA
①
1.00
1.40
1.78
V
③
-
65
35
1.0
μA
②
-
46
21
0
μA
②
2550
3000
3450
kHz
①
170
220
270
mA
①
①
Maximum Output Current
VOUT3MAX
UVLO Voltage
VUVLO
Supply Current
IDD
VIN2=VEN3=5.0V,
VOUT3 = VOUT3(E)×1.1V
Stand-by Current
ISTB
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) × 1.1V
Oscillation Frequency
fOSC
PFM Switching Current
IPFM
PFM Duty Limit
DTYLIMIT_PFM
-
200
300
%
Maximum Duty Ratio
DMAX
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
100
-
-
%
③
Minimum Duty Ratio
DMIN
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 1.1V
-
-
0
%
③
-
86
-
%
①
900
0.35
0.42
0.45
0.52
0.01
1050
0.55
0.67
0.66
0.77
1.0
1350
Ω
Ω
Ω
Ω
μA
mA
④
④
―
―
⑨
⑥
-
±100
-
ppm/ ℃
①
0.65
-
6.0
V
③
VSS
-
0.25
V
③
0.1
μA
⑤
Efficiency
(*2)
EFFI
RLxH
Lx SW "H" ON Resistance 1
RLxH
Lx SW "H" ON Resistance 2
RLxL
Lx SW "L" ON Resistance 1
RLxL
Lx SW "L" ON Resistance 2
(*5)
ILEAKH
Lx SW "H" Leak Current
(*9)
ILIM
Current Limit
Output Voltage
△VOUT3/
Temperature
(VOUT3・△topr)
Characteristics
EN "H" Level Voltage
VEN3H
VEN3 = VIN2, VOUT3 = 0V,
Voltage which Lx pin holding “L” level
XCM520AE
XCM520AG
When connected to external components,
VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3 = 100mA
When connected to external components,
VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA
VEN3 = VIN2 = (C-1) VOUT3 = 1mA
When connected to external components,
VEN3 = VIN2 = VOUT3 (E)+1.2V, VOUT3 =100mA
(*3)
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA
(*3)
VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA
(*4)
VIN2 = VEN3 = 0V
(*4)
VIN2 = VEN3 = 3.6V
VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V
(*7)
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) × 0.9V
IOUT3 = 30mA
-40℃ ≦ Topr ≦ 85℃
VOUT3 = 0V, Applied voltage to VEN3,
Voltage changes Lx to “H” level
(*10)
VOUT3 = 0V, Applied voltage to VEN3,
VEN3L
EN "H" Current
IEN3H
Voltage changes Lx to “L” level
VIN2 = VEN3 = 5.0V, VOUT3 = 0V
EN "L" Current
IENL
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V
tSS
Integral Latch Time
tLAT
Short Protection
Threshold Voltage
VSHORT
CL Discharge
RDCHG
(*11)
(*11)
EN "L" Level Voltage
Soft Start Time
(*1, *10)
(*10)
When connected to external components,
VEN3 = 0V → VIN2 , VOUT3 =1mA
VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 × VOUT3(E)
(*6)
Short Lx at 1Ω resistance
Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at
1Ω resistance, VOUT3 voltage which Lx becomes “L”
level within 1ms
VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open
- 0.1
- 0.1
-
0.1
μA
⑤
-
0.32
0.5
ms
①
1.0
-
20.0
ms
⑦
0.675
0.900
1.150
V
⑦
200
300
450
Ω
⑧
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits VOUT3 with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM520AE series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.
*The electrical characteristics above are when the voltage regulator block is in stop.
8/43
XCM520
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage
1.2MHz
SETTING VOLTAGE
VOUT3(E) ≦ 1.2V
1.2V < VOUT3(E) ≦1.75V
1.8V ≦ VOUT3(E)
3.0MHz
SETTING VOLTAGE
VOUT3(E) ≦ 1.2V
1.2V < VOUT3(E) ≦1.75V
1.8V ≦ VOUT3(E)
MIN.
TYP.
140
130
120
180
170
160
MIN.
TYP.
190
180
170
260
240
220
(mA)
MAX.
240
220
200
(mA)
MAX.
350
300
270
●Measuring PFM Duty Limit, VIN2 Voltage
fOSC
(C-1)
1.2MHz
VOUT3(E)+0.5V
3.0MHz
VOUT3(E)+1.0V
Minimum operating voltage is 2.7V
ex.) Although when VOUT3(E) = 1.2V, fOSC= 1.2MHz, (C-1) = 1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.
●Soft-Start Time Chart (XCM520AE/XCM520AF/XCM520AG/XCM520AH Series Only)
PRODUCT SERIES
XCM520AF
XCM520AH
XCM520AE/AG
fOSC
OUTPUT VOLTAGE
MIN.
TYP.
MAX.
1200kHz
0.8≦VOUT3(E)<1.5
-
0.25
0.4
1200kHz
1.5≦VOUT3(E)<1.8
-
0.32
0.5
1200kHz
1.8≦VOUT3(E)<2.5
-
0.25
0.4
1200kHz
2.5≦VOUT3(E)<4.0
-
0.32
0.5
1200kHz
0.8≦VOUT3(E)<2.5
-
0.25
0.4
1200kHz
2.5≦VOUT3(E)<4.0
-
0.32
0.5
3000kHz
0.8≦VOUT3(E)<1.8
-
0.25
0.4
3000kHz
1.8≦VOUT3(E)<4.0
-
0.32
0.5
UNITS
ms
9/43
XCM520 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM520 Series VR Block (VR1/VR2: EN_ Active High, without Pull-down resistors)
PARAMETER
SYMBOL
Output Voltage
VOUT(E)
(*2)
CONDITIONS
IOUT=30mA
Ta=25℃
MIN.
VOUT(T)≧1.5V
X0.98
(*3)
VOUT(T)<1.5V
-0.03
(*3)
TYP.
VOUT (T)
MAX.
(*4)
X1.02
(*3)
+0.03
(*3)
UNITS
CIRCUIT
V
⑩
Maximum Output Current
IOUTMAX
VIN1=VOUT (T) + 1.0V
150
-
-
mA
⑩
Load Regulation
△VOUT
1mA≦IOUT≦100mA
-
15
60
mV
⑩
Vdif1
IOUT=30mA
E-1
mV
Vdif2
IOUT=100mA
E-2
mV
Supply Current
ISS
VIN1=VEN=VOUT (T) + 1.0V, IOUT=0mA
-
25
45
μA
⑫
Stand-by Current
ISTB
VIN1=VOUT (T) + 1.0V, VEN=VSS
-
0.01
0.10
μA
⑪
△VOUT /
VOUT(T)+1.0V≦VIN1≦6.0V
(△VIN1 ・ VOUT)
VEN=VIN1, IOUT=30mA
-
0.01
0.20
%/V
⑩
1.5
-
6.0
V
-
-
±100
-
ppm/℃
⑩
-
70
-
dB
⑬
⑩
Dropout Voltage
Input Regulation
(*5)
(*8)
Input Voltage
VIN1
Output Voltage
△VOUT /
IOUT=30mA
Temperature Characteristics
(△Topr ・VOUT)
-40℃≦Topr≦85℃
Ripple Rejection
(*9)
PSRR
VIN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC
IOUT=30mA, f=1kHz
⑩
Limit Current
ILIM
VIN1=VOUT (T) + 1.0V, VEN=VIN1
-
300
-
mA
Short Current
ISHORT
VIN1=VOUT (T) + 1.0V, VEN=VIN1
-
30
-
mA
⑩
EN "H" Level Voltage
VENH
1.30
-
6
V
⑭
⑭
EN "L" Level Voltage
VENL
-
-
0.25
V
EN "H" Level Current
IENH
VIN1=VEN=VOUT (T) + 1.0V
-0.10
-
0.10
μA
⑭
EN "L" Level Current
IENL
VIN1= VOUT (T) + 1.0V, VEN=VSS
-0.10
-
0.10
μA
⑭
NOTE:
*1 : Unless otherwise stated, VIN1=VOUT(T)+1.0V
*2 : VOUT(E) : Effective output voltage
(I.e. the output voltage when "VOUT(T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value).
*3 : Please see the Voltage Chart for each voltage of VOUT(E).
If VOUT (T)≦1.45V, MIN VOUT (T) - 30mV, MAX VOUT (T) + 30mV
*4 : VOUT(T) : Nominal output voltage
(*7)
*5 : Vdif={VINa
(*6)
-VOUTa
}
*6 : VOUT1=A voltage equal to 98% of the output voltage whenever an amply stabilized IOUT {VOUT(T)+1.0V} is input.
*7 : VIN1=The input voltage when VOUT1 appears as input voltage is gradually decreased.
*8 : When VOUT(T)≧4.5V, 5.5V≦VIN1≦6.0V
*9 : When VOUT(T)≧4.8V, VIN1=5.75VDC+0.5Vp-pAC
*The electrical characteristics above are when the DC/DC block is in stop.
10/43
XCM520
Series
■OUTPUT VOLTAGE CHART
●Voltage Chart 1
NOMINAL OUTPUT
VOLTAGE
OUTPUT VOLTAGE (V)
(V)
E-1
E-2
DROPOUT VOLTAGE 1 (mV)
DROPOUT VOLTAGE 2 (mV)
VOUT
Vdif1
Vdif2
VOUT(T)
MIN.
MAX.
TYP.
MAX.
TYP.
MAX.
0.80
0.85
0.770
0.820
0.830
0.880
300
700
400
800
0.90
0.870
0.930
0.95
0.920
0.980
200
600
350
700
1.00
0.970
1.030
1.05
1.020
1.080
100
500
270
600
1.10
1.070
1.130
1.15
1.120
1.180
80
400
240
500
1.20
1.170
1.230
1.25
1.220
1.280
65
300
200
400
1.30
1.270
1.330
1.35
1.320
1.380
60
200
180
300
1.40
1.370
1.430
1.45
1.420
1.480
55
100
165
250
1.50
1.470
1.530
1.55
1.519
1.581
1.60
1.568
1.632
1.65
1.617
1.683
50
75
150
200
1.70
1.666
1.734
1.75
1.715
1.785
1.80
1.764
1.836
1.85
1.813
1.887
1.90
1.862
1.938
45
65
140
180
40
60
120
170
35
55
110
160
1.95
1.911
1.989
2.00
1.960
2.040
2.05
2.009
2.091
2.10
2.058
2.142
2.15
2.107
2.193
2.20
2.156
2.244
2.25
2.205
2.295
2.30
2.254
2.346
2.35
2.303
2.397
2.40
2.352
2.448
2.45
2.401
2.499
2.50
2.450
2.550
2.55
2.499
2.601
2.60
2.548
2.652
2.65
2.597
2.703
2.70
2.646
2.754
2.75
2.695
2.805
2.80
2.744
2.856
2.85
2.793
2.907
2.90
2.842
2.958
2.95
2.891
3.009
11/43
XCM520 Series
■DROPOUT VOLTAGE CHART (Continued)
●Voltage Chart 2
NOMINAL OUTPUT
VOLTAGE
OUTPUT VOLTAGE (V)
(V)
12/43
E-1
E-2
DROPOUT VOLTAGE 1 (mV)
DROPOUT VOLTAGE 2 (mV)
Vdif1
Vdif2
VOUT
VOUT(T)
MIN.
MAX.
3.00
2.940
3.060
3.05
2.989
3.111
3.10
3.038
3.162
3.15
3.087
3.213
3.20
3.136
3.264
3.25
3.185
3.315
3.30
3.234
3.366
3.35
3.283
3.417
3.40
3.332
3.468
3.45
3.381
3.519
3.50
3.430
3.570
3.55
3.479
3.621
3.60
3.528
3.672
3.65
3.577
3.723
3.70
3.626
3.774
3.75
3.675
3.825
3.80
3.724
3.876
3.85
3.773
3.927
3.90
3.822
3.978
3.95
3.871
4.029
4.00
3.920
4.080
4.05
3.969
4.131
4.10
4.018
4.182
4.15
4.067
4.233
4.20
4.116
4.284
4.25
4.165
4.335
4.30
4.214
4.386
4.35
4.263
4.437
4.40
4.312
4.488
4.45
4.361
4.539
4.50
4.410
4.590
4.55
4.459
4.641
4.60
4.508
4.692
4.65
4.557
4.743
4.70
4.606
4.794
4.75
4.655
4.845
4.80
4.704
4.896
4.85
4.753
4.947
4.90
4.802
4.998
4.95
4.851
5.049
5.00
4.900
5.100
TYP.
MAX.
TYP.
MAX.
30
45
100
150
XCM520
Series
■TYPICAL APPLICATION CIRCUIT
CL2
VOUT2
2
EN2
VSS 11
3
VIN1
EN1 10
CL1
CIN1
VIN
VOUT1 12
1
CIN2
4 VIN2
5
6
EN3/MODE 9
PGND
AGND 8
Lx
CL3
VOUT3 7
L
● DC/DC BLOCK
fOSC=3.0MHz
● DC/DC BLOCK
fOSC=1.2MHz
CIN1
:
1μF
(Ceramic)
CIN1
:
1μF
(Ceramic)
CL1
:
1μF
(Ceramic)
CL1
:
1μF
(Ceramic)
CL2
:
1μF
(Ceramic)
CL2
:
1μF
(Ceramic)
L
:
1.5μH
L
:
4.7μH
(NR4018 TAIIYO YUDEN)
CIN2
:
4.7μF
(Ceramic)
CIN2
:
4.7μF
(Ceramic)
CL2
:
10μF
(Ceramic)
CL2
:
10μF
(Ceramic)
(NR3015 TAIIYO YUDEN)
■OPERATIONAL EXPLANATION
●DC/DC BLOCK
The DC/DC block of the XCM520 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel
MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block
diagram above.)
By using the error amplifier, the voltage of the internal voltage reference source is compared with the feedback voltage from the
VOUT3 pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a
signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms
of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting
output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to
ensure stable output voltage.
The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates
the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low
ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage.
<Reference Voltage Source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.
<Ramp Wave Circuit>
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to
synchronize all the internal circuits.
<Error Amplifier>
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback
voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed
internally to deliver an optimized signal to the mixer.
13/43
XCM520 Series
■OPERATIONAL EXPLANATION (Continued)
<Current Limit>
The current limiter circuit of the XCM520 series monitors the current flowing through the P-channel MOS driver transistor
connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.
① When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin
at any given timing.
② When the P-channel MOS driver transistor is turned off, the limiter circuit is then released from the current limit detection state.
③ At the next pulse, the P-channel MOS driver transistor is turned on. However, the P-channel MOS driver transistor is
immediately turned off in the case of an over current state.
④ When the over current state is eliminated, the IC resumes its normal operation.
The IC waits for the over current state to end by repeating the steps ① through ③. If an over current state continues for a few
milliseconds and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the
P-channel MOS driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations
can be resumed by either turning the IC off via the EN3 pin, or by restoring power to the VIN2 pin. The suspension mode does
not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in
operation. The current limit of the XCM520 series can be set at 1050mA at typical. Besides, care must be taken when laying
out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch
time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so
that input capacitors are placed as close to the IC as possible.
Limit < a few milliseconds
Limit<数ms
Limit>a few milliseconds
Limit>数ms
Current Limit LEVEL
ILx
0mA
VOUT3
VSS
Lx
VEN3
Restart
VIN1
<Short-Circuit Protection>
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT3 pin. In case where output
is accidentally shorted to the ground and when the FB point voltage decreases less than half of the reference voltage (Vref)
and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to
latch the driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN3 pin, or
by restoring power supply to the VIN2 pin.
When sharp load transient happens, a voltage drop at the VOUT3 pin is propagated to FB point through CFB, as a result, short
circuit protection may operate in the voltage higher than 1/2 VOUT3 voltage.
<UVLO Circuit>
When the VIN2 pin voltage becomes 1.4V or lower, the P-channel MOS driver transistor is forced OFF to prevent false pulse
output caused by unstable operation of the internal circuitry. When the VIN2 pin voltage becomes 1.8V or higher, switching
operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation.
The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO
circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry
remains in operation.
14/43
XCM520
Series
■OPERATIONAL EXPLANATION (Continued)
<PFM Switch Current>
In the PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P- channel MOSFET on. In
this case, on-time (tON) that the P-channel MOSFET is kept on can be given by the following formula.
tON= L×IPFM (VIN2−VOUT3) →IPFM①
<PFM Duty Limit>
In the PFM control operation, the PFM duty limit (DLIMT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty
increases (e.g. the condition that the step-down ratio is small), it’s possible for P-channel MOS driver transistor to be turned off
even when coil current doesn’t reach to IPFM.
→IPFM②
Ton
PFM
Duty Limit
PFMデューティ制限
Lx
fOSC
Lx
I PFM
ILx
IPFM
0mA
IPFM
ILx
0mA
IPFM
①
②
< CL High Speed Discharge >
XCM520AE/ XCM5AF/XCM520AG/XCM520AH series can quickly discharge the electric charge at the output capacitor (CL)
when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor
located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly
discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL
auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R]
and an output capacitor value (CL) as
τ(τ=C x R), discharge time of the output voltage after discharge via the N-channel transistor is calculated by the following
formula.
V =VOUT3(E)×e -t /τor t = τLn (VOUT3(E) / V)
Where;
V : Output voltage after discharge
VOUT3(E) : Output voltage
t: Discharge time
τ: C×R
C= Capacitance of Output capacitor (CL)
R= CL auto-discharge resistance
100
90
CL=10uF
80
CL=20uF
70
CL=50uF
60
50
40
30
20
10
0
0
10
20
30
40
50
60
70
80
90
100
15/43
XCM520 Series
■OPERATIONAL EXPLANATION (Continued)
●Voltage Regulator BLOCK
The voltage divided by resistors R1 and R2 is compared with the internal reference voltage by the error amplifier. The
P-channel MOSFETs, which are connected to the VOUT pin, are then driven by the subsequent output signal. The
output voltages at the VOUT pin is controlled and stabilized by a system of negative feedback. The current limit circuit
and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be
shutdown via the EN pin's signal.
< Low ESR Capacitors >
With the XCM520 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase
compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that output
capacitor (CL) is connected as close as possible to the output pins (VOUT) and the VSS pin. Please use an output capacitor
with a capacitance value of at least 1μF. Also, please connect an input capacitor (CIN1) of 1μF between the VIN1 pin and the
VSS pin in order to ensure a stable power input.
< Current Limiter, Short-Circuit Protection >
The XCM520 series includes a combination of a fixed current limiter circuit and a fold-back circuit which aid the operations of
the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit
operates and output voltage drops. As a result of this drop in output voltage, the fold-back circuit start to operate, output
voltage drops further and output current decreases. When the output pin is shorted, a current of about 30mA flows.
< EN Pins >
The IC's internal circuitry can be shutdown via the signal from the EN pin with the XCM520 series. In shutdown state, output
at the VOUT pin will be pulled down to the VSS level via R1 and R2. The operational logic of the IC's EN pin is selectable
(please refer to the selection guide). Note that as the standard type's regulator 1 and 2 are both ' High Active/No Pull Down',
operations will become unstable with the EN pin open. Although the EN pin is equal to an inverter input with CMOS
hysteresis, with either the pull-up or pull-down options, the EN pin input current will increase when the IC is in operation. We
suggest that you use this IC with either a VIN1 voltage or a VSS voltage input at the EN pin. If this IC is used with the correct
specifications for the EN pin, the operational logic is fixed and the IC will operate normally. However, supply current may
increase as a result of through current in the IC's internal circuitry.
16/43
XCM520
Series
■NOTES ON USE
<DC/DC BLOCK>
1. The XCM520 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large
between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy
and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in
parallel to compensate for insufficient capacitance.
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by
external component selection, such as the coil inductance, capacitance values, and board layout of external components.
Once the design has been completed, verification with actual components should be done.
3.
As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple
may increase.
4.
When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty
cycle may continue in several periods.
5.
When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may
continues100% duty cycle in several periods.
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate
the peak current according to the following formula:
Ipk = (VIN2-VOUT3)× OnDuty /(2×L×fOSC) + IOUT
L: Coil Inductance Value
fOSC: Oscillation Frequency
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver
transistor turns off. During the time until it detects limit current and before the built-in P-channel MOS driver transistor can
be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external
components such as a coil.
8.
Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid
the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
9.
Use of the IC at voltages below the recommended voltage range may lead to instability.
10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.
11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the
leak current of the P-channel MOS driver transistor.
12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow.
In case that the current limit functions while the VOUT3 pin is shorted to the GND pin, when P-channel MOS driver transistor is
ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes
large. By contrast, when N-channel MOS driver transistor is ON, there is almost no potential difference at both ends of the
coil since the VOUT3 pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small.
According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain
current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after
the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute
maximum rating in order to prevent damage to the device.
①Current flows into P-channel MOS driver transistor to reach the current limit (ILIM).
②The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to
OFF of P-channel MOS driver transistor.
③Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.
④Lx oscillates very narrow pulses by the current limit for several ms.
⑤The circuit is latched, stopping its operation.
# ms
17/43
XCM520 Series
■NOTE ON USE (Continued)
13.
14.
15.
In order to stabilize VIN2 voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected
as close as possible to the VIN2 and VSS pins.
High step-down ratio and very light load may lead an intermittent oscillation.
During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.
Please verify with actual design.
VOUT3=3.3V, fOSC=1.2MHz
VIN2=3.7V, IOUT3=100mA
<External Components>
L : 4.7μF(NR4018)
CH1:Lx 5V/div
CIN2 : 4.7μF(Ceramic)
CL3 : 10μF(Ceramic)
CH2:VOUT3 20mV/div
16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient temperature,
output voltage, oscillation frequency, and L value are not adequate.
In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even
if using the L values listed below.
VOUT3=3.3V, fOSC=1.2MHz
●The Range of L Value
VIN2=4.0V,IOUT3=180mA
CH1:Lx 2.0V/div
VOUT
L Value
0.8V<VOUT3≦4.0V
1.0μH∼2.2μH
VOUT3≦2.5V
3.3μH∼6.8μH
2.5V<VOUT3
4.7μH∼6.8μH
<External Components>
L : 1.5μF(NR3015)
CH2:VOUT3 20mV/div
fOSC
3.0MHz
CIN2 : 4.7μF(Ceramic)
CL3 : 10μF(Ceramic)
1.2MHz
*When a coil less value of 4.7 μ H is used at
fOSC=1.2MHz or when a coil less value of 1.5μH is used
at fOSC=3.0MHz, peak coil current more easily reach the
current limit ILMI. In this case, it may happen that the IC
can not provide 600mA output current.
18/43
XCM520
Series
■NOTE ON USE (Continued)
●Note on use of pattern layouts
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be
exceeded.
2. The capacitor (CIN) should be connected as close as possible to the VIN and VSS pins.
When wiring impedance is high, noise propagation by output current or phase discrepancy occur which results in
unstable operating. In this case, please reinforce VIN and VSS rails. If the operation is still unstable, please increase
input capacitance CIN.
3. With comparison to the separate product usage, the two chips are placed in adjacent in the package so heat generation
Is influenced each other. Please evaluate and verify in the actual design.
●Instructions of pattern layouts
1.
In order to stabilize VIN1・VIN2・VOUT1・VOUT2・VOUT3, we recommend that a by-pass capacitor (CIN1・CIN2・CL1・CL2・
CL3) be connected as close as possible to the VIN1・VIN2・VOUT1・VOUT2・VOUT3 and VSS pin.
2. Please mount each external component as close to the IC as possible.
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit
impedance.
4. VSS(AGND・PGND・VSS)ground wiring is recommended to get large area. The IC may goes into unstable operation
as a result of VSS voltage level fluctuation during the switching.
5. Heat is generated because of the output current (IOUT) and ON resistance of driver transistors.
●Reference Pattern Layout
XCM52 0
L
VOUT 3
V er . 1 . O
USP 12 B
AGND
VOUT 1
VOUT 2
C l N1
CL 2
E N2
Front
2
GND
CL1
IC
4
EN1
MODE
1
3
EN3
C l N2
CL 3
V l N1 V l N2
PGND
Lx
GND1
TO EX
# 95
Back
Ceramic
Capacitor
セラミックコンデンサ
インダクタ
Inductor
19/43
XCM520 Series
■TEST CIRCUITS
< Circuit No.1 >
< Circuit No.2 >
A
VIN2
EN3
Lx
VOUT3
1μF
AGND
* External Components
L
:
1.5μH (NR3015) 3.0MHz
EN1
4.7μH (NR4018) 1.2MHz
CIN2 :
4.7μF (ceramic)
CL3
10μF (ceramic)
:
VSS
VOUT1
PGND
VIN1
EN2
VOUT2
< Circuit No.4 >
< Circuit No.3 >
Wave Form Measure Point
VIN2
EN3
VIN2
Lx
Rpulldown
200Ω
VOUT3
1μF
AGND
AGND
VIN1
EN1
VSS
EN2
VSS
VOUT1
VOUT2
VIN2
A
IENL
EN3
AGND
EN1
VSS
VOUT1
Lx
VOUT3
AI
EN2
VOUT2
Wave Form Measure Point
VIN2
LEAKL
EN3
Lx
VOUT3
V
1μF
AGND
PGND
VIN1
EN1
EN2
VSS
VOUT1
VOUT2
PGND
VIN1
EN2
VOUT2
< Circuit No.8 >
ILx
Wave Form Measure Point
VIN2
Lx
VIN2
ILAT
EN3
VOUT3
1μF
EN3
Rpulldown
1Ω
AGND
PGND
AGND
VIN1
EN1
VSS
EN2
VSS
VOUT2
Lx
VOUT3
1μF
EN1
VOUT1
20/43
100mA
VIN1
ILEAKH
< Circuit No.7 >
< Circuit No.9 >
V
PGND
< Circuit No.6 >
< Circuit No.5 >
1μF
Lx
VOUT3
1μF
PGND
EN1
VOUT1
IENH
EN3
VOUT1
PGND
VIN1
EN2
VOUT2
A
ILIM
XCM520
Series
■TEST CIRCUITS (Continued)
< Circuit No11 >
< Circuit No10 >
EN1/EN2
EN1/EN2
Active High:EN = VIN1
Active High:EN = VSS
Active Low:EN = VSS
VIN2
Active Low:EN = VIN1
Lx
EN3
VOUT3
AGND
A
PGND
VOUT1
VIN1
EN1
VOUT2
EN2
VSS
CIN1, CL1, CL2 : 1μF (ceramic)
< Circuit No12 >
< Circuit No13 >
VIN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC
VIN2
Lx
EN3
VOUT3
AGND
A
VIN2
Lx
EN3
VOUT3
AGND
PGND
PGND
VIN1
VIN1
EN1
EN1
VOUT2
EN2
A
CL1
VSS
IOUT=30mA
CL2
EN1/EN2
EN1/EN2
Active High (pull-down, without resistance)
VR1 Supply Current, EN1=ON, EN2=OFF
VR2 Supply Current, EN1= OFF, EN2=ON
Active High: ON=VIN1, OFF=VSS
IOUT1
V
A
VOUT2
EN2
V
VSS
IOUT=30mA
VOUT1
VOUT1
IOUT2 V
CL1, CL2 : 1μF (ceramic)
VR1 PSRR
EN1=ON, EN2=OFF
VR2 PSRR
EN1=OFF, EN2=ON
Active High: ON=VIN1, OFF=VSS
Active Low: ON=VSS, OFF=VIN1
Active Low: ON=VSS, OFF=VIN1
< Circuit No14 >
EN1/EN2
CIN1 : 1μF (ceramic)
EN1”H” Level Current
EN1=VIN1 Level
EN2”H” Level Current
EN2=VIN1 Level
EN1”L” Level Current
EN1= VSS
EN2”L” Level Current
EN2=VSS
* The EN which is not measured is in operation sop mode.
Active High: VSS
Active Low: measuring VIN1 Level
21/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
●DC/DC Block
(1) Efficiency vs. Output Current
VOUT3=1.8V, fOSC=1.2MHz
VOUT3=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF
100
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF
100
PWM/PFM Automatic Sw itching
90
80
80
70
VIN2= 4.2V
PWM Control
3.6V
60
Efficency:EFFI(%)
Efficency:EFFI(%)
PWM/PFM Automatic Switching Control
90
VIN2= 4.2V
3.6V
50
40
30
70
30
20
10
0
1
10
100
1000
0.1
1
Output Current:I OUT3(mA)
1000
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF
2.1
2.1
2
2
Output Voltage:VOUT3(V)
Output Voltage:VOUT3(V)
100
VOUT3=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF
PWM/PFM Automatic Switching Control
1.9
10
Output Current:I OUT3(mA)
(2) Output Voltage vs. Output Current
VOUT3=1.8V, fOSC=1.2MHz
VIN2=4.2V,3.6V
1.8
1.7
PWM Control
1.6
1.5
1.9
PWM/PFM Automatic Switching Control
1.8
VIN2=4.2V,3.6V
1.7
PWM Control
1.6
1.5
0.1
1
10
100
1000
0.1
Output Current:I OUT3(mA)
80
80
40
Ripple Voltage:Vr(mV)
100
VIN2=4.2V,3.6V
PWM/PFM Automatic
Switching Control
VIN2=4.2V
3.6V
60
1000
0
0
1000
PWM/PFM Automatic
Switching Control
40
20
1
10
100
Output Current:IOUT 3(mA)
PWM Control
VIN2=4.2V,3.6V
20
0.1
100
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF
100
PWM Control
10
VOUT3=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF
60
1
Output Current:I OUT3(mA)
(3) Ripple Voltage vs. Output Current
VOUT3=1.8V, fOSC=1.2MHz
Ripple Voltage:Vr(mV)
VIN2= 4.2V
3.6V
40
10
0.1
22/43
PWM Control
3.6V
50
20
0
VIN2= 4.2V
60
VIN2=4.2V
3.6V
0.1
1
10
100
Output Current:I OUT3(mA)
1000
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●DCDC Block (Continued)
(4) Oscillation Frequency vs. Ambient Temperature
VOUT3=1.8V, fOSC=1.2MHz
VOUT3=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF
3.5
Oscillation Frequency : fOSC (MHz)
Oscillation Frequency : fOSC (MHz)
1.5
1.4
VIN2=3.6V
1.3
1.2
1.1
1
0.9
3.4
VIN=3.6V
3.3
3.2
3.1
3
2.9
2.8
2.7
2.6
2.5
0.8
-50
-25
0
25
50
75
-50
100
25
50
40
40
35
35
30
VIN2=6.0V
20
15
10
5
100
VIN2=4.0V
VIN2 =6.0V
30
25
20
15
10
5
0
0
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature : Ta ( ℃)
0
25
50
75
100
Ambient Temperature : Ta ( ℃)
(6) Output Voltage vs. Ambient Temperature
VOUT3=1.8V, fOSC=3.0MHz
(7) UVLO Voltage vs. Ambient Temperature
VOUT3=1.8V, fOSC=3.0MHz
2.1
1.8
VIN2=3.6V
EN3=VIN2
1.5
2
UVLO Voltage : VUVLO (V)
Output Voltage : VOUT3 (V)
75
VOUT3=1.8V, fOSC=3.0MHz
Supply Current : I DD (μA)
Supply Current : I DD (μA)
(5) Supply Current vs. Ambient Temperature
VOUT3=1.8V, fOSC=1.2MHz
VIN2=4.0V
0
Ambient Temperature : Ta (℃)
Ambient Temperature : Ta (℃)
25
-25
1.9
1.8
1.7
1.6
1.2
0.9
0.6
0.3
0
1.5
-50
-25
0
25
50
75
Ambient Temperature : Ta (℃)
100
-50
-25
0
25
50
75
100
Ambient Temperature : Ta ( ℃)
23/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●DCDC Block (Continued)
(9) EN" L" Voltage vs. Ambient Temperature
VOUT3=1.8V, fOSC=3.0MHz
1.0
0.9
1.0
0.9
0.8
0.7
0.6
EN "L" Voltage: VENL (V)
EN "H" Voltage: VENH (V)
(8) EN "H" Voltage vs. Ambient Temperature
VOUT3=1.8V, fOSC=3.0MHz
V IN2=5.0V
0.5
0.4
0.3
0.2
V IN2=3.6V
0.1
0.0
0.8
0.7
V IN2=5.0V
0.6
0.5
0.4
0.3
0.2
V IN2=3.6V
0.1
0.0
-50
-25
0
25
50
75
100
-50
Ambient Temperature: Ta (℃)
-25
5
4
4
Soft Start Time : tSS (ms)
Soft Start Time : tSS (ms)
75
100
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF
5
3
VIN2 =3.6V
1
0
3
VIN2 =3.6V
2
1
0
-50
-25
0
25
50
75
100
Ambient Temperature : Ta (℃)
1.0
0.9
0.8
Nch on Resistance
0.7
0.6
0.5
0.4
0.3
0.2
Pch on Resistance
0.1
0.0
0
1
2
3
4
Input Voltage: V IN2 (V)
-50
-25
0
25
50
75
Ambient Temperature : Ta (℃)
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage
VOUT3=1.8V, fOSC=3.0MHz
Lx SW ON Resistance: RLxH,RLxL (Ω)
50
VOUT3=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF
24/43
25
Ambient Temperature: Ta (℃)
(10) Soft Start Time vs. Ambient Temperature
VOUT3=1.8V, fOSC=3.0MHz
2
0
5
6
100
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●DCDC Block (Continued)
(12) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Rise Wave Form
VOUT3=1.2V, fOSC=1.2MHz
VOUT3=3.3V, fOSC=3.0MHz
L=1.5μH (NR3015), CIN2=4.7μF, CL3=10μF
L=4.7μH (NR4018), CIN2=4.7μF, CL3=10μF
VIN2=5.0V
VIN2=5.0V
IOUT3=1.0mA
IOUT3=1.0mA
VOUT3:0.5V/div
VOUT3:1.0V/div
EN3:0.0V⇒1.0V
EN3:0.0V⇒1.0V
100μs/div
100μs/div
(13) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Soft-Start Time vs. Ambient Temperature
VOUT3=1.2V, fOSC=1.2MHz
VOUT3=3.3V, fOSC=3.0MHz
L=4.7μH(NR4018), CIN2=4.7μF, CL3=10μF
L=1.5μH(NR3015), CIN2=4.7μF, CL3=10μF
400
500
V IN2=5.0V
IOUT 3=1.0mA
Soft Start Time : t SS (μs)
Soft Start Time : t SS (μs)
500
300
200
100
0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
400
V IN2=5.0V
IOUT 3=1.0mA
300
200
100
0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta ( ℃)
(14) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, CL Discharge Resistance vs. Ambient Temperature
VOUT3=3.3V, fOSC=3.0MHz
CL3 Aoto - Discharge
Resistance : RDCHG (Ω)
600
500
V IN2=6.0V
400
300
V IN2=4.0V
200
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta ( ℃)
25/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●DCDC Block (Continued)
(15) Load Transient Response
VOUT3=1.2V, fOSC=1.2MHz(PWM/PFM Automatic Switching Control)
L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃
VIN2=3.6V, EN3=VIN2
IOUT3 =1mA → 100mA
IOUT3=1mA → 300mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT3: 50mV/div
VOUT3: 50mV/div
50μs/div
50μs/div
IOUT3 =100mA → 1mA
IOUT3 =300mA → 1mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT3: 50mV/div
VOUT3: 50mV/div
200μs/div
26/43
200μs/div
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●DCDC Block (Continued)
(15) Load Transient Response (Continued)
VOUT3=1.2V, fOSC=1.2MHz(PWM Control)
L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃
VIN2=3.6V, EN3=VIN2
IOUT3=1mA → 100mA
IOUT3=1mA → 300mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT 3: 50mV/div
VOUT3: 50mV/div
50μs/div
50μs/div
IOUT3=100mA → 1mA
IOUT3=300mA → 1mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT3: 50mV/div
VOUT3: 50mV/div
200μs/div
200μs/div
27/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●DCDC Block (Continued)
(15) Load Transient Response (Continued)
VOUT3=1.8V, fOSC=3.0MHz (PWM/PFM Automatic Switching Control)
L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL3=10μF(ceramic),Topr=25℃
VIN2=3.6V, EN=VIN2
IOUT3=1mA → 100mA
IOUT3=1mA → 300mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT3: 50mV/div
VOUT3: 50mV/div
50μs/div
50μs/div
IOUT3=100mA → 1mA
IOUT3=300mA → 1mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT3: 50mV/div
VOUT3: 50mV/div
200μs/div
28/43
200μs/div
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●DCDC Block (Continued)
(15) Load Transient Response (Continued)
VOUT3=1.8V, fOSC=3.0MHz(PWM Control)
L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL3=10μF(ceramic), Topr=25℃
VIN2=3.6V, EN1=VIN2
IOUT3=1mA → 100mA
IOUT3=1mA → 300mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT3: 50mV/div
VOUT3: 50mV/div
50μs/div
50μs/div
IOUT3=100mA → 1mA
IOUT3=300mA → 1mA
1ch: IOUT3
1ch: IOUT3
2ch
2ch
VOUT3: 50mV/div
VOUT3: 50mV/div
200μs/div
200μs/div
29/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block
(1) Output Voltage vs. Output Current
VOUT=0.8V
VOUT=0.8V
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
1.0
1.0
0.8
0.8
Output Voltage: VOUT (V)
O utput V oltage: V O U T (V )
O utput
V oltage:
V O U(V)
(V )
Output
Voltage:
VOUT
T
VIN1=1.8V, CIN1=1μF(ceramic), CL=1μF(ceramic)
0.6
Topr= 85℃
= 25℃
=-40℃
0.4
0.2
0.0
0
50
100
150
200
250
300
VIN1 =
=
=
=
0.6
0.4
0.2
0.0
350
0
50
100
150
200
250
300
350
OOutput
utput CCurrent:
urrent: IIOOUT
(m A )
U T (mA)
VOUT=2.85V
VOUT=2.85V
VIN1=3.85V, CIN1=1μF(ceramic), CL=1μF(ceramic)
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
4.0
4.0
3.5
3.5
Output Voltage: VOUT (V)
O utput V oltage: V O U T (V )
Output
Voltage:
VOUT
O utput
V oltage:
V O(V)
(V )
UT
(m A )
OOutput
utput CCurrent:
urrent:IIOUT
O U T (mA)
3.0
2.5
Topr= 85℃
= 25℃
=-40℃
2.0
1.5
1.0
0.5
0.0
3.0
2.5
VIN1 = 6.0V
= 4.0V
=3.15V
2.0
1.5
1.0
0.5
0.0
0
50
100
150
200
250
300
350
0
50
OOutput
utput CCurrent:
urrent:IIOUT
(m A )
O U T (mA)
150
200
250
300
350
VOUT=3.0V
VOUT=3.0V
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
4.0
4.0
3.5
3.5
3.0
2.5
Topr= 85℃
= 25℃
=-40℃
2.0
1.5
1.0
0.5
0.0
3.0
VIN1 = 6.0V
= 4.0V
= 3.3V
2.5
2.0
1.5
1.0
0.5
0.0
0
50
100 150 200 250 300
Output
O ut
putCCurrent:
urrent:IIOUT (mA)
(m A )
OUT
30/43
100
(mA)
(m
A)
OOutput
utput CCurrent:
urrent:IIOUT
OUT
Output
Voltage:
VOUT
O utput
V oltage:
V O U(V)
(V )
T
Output
O utput
Voltage:
V oltage:
VOUT
V O U(V)
(V )
T
6.0V
3.8V
1.8V
1.5V
350
0
50
100
150
200
250
OOutput
utputCurrent:
C urrentI:OUT
IO U(mA)
T (m A )
300
350
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(1) Output Voltage vs. Output Current (Continued)
VOUT=5.0V
VOUT=5.0V
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
6.0
6.0
5.0
5.0
O utput
V oltage:
V O (V)
(V )
Output
Voltage:
VOUT
UT
O utput
V oltage:
V O(V)
(V )
Output
Voltage:
VOUT
UT
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)
4.0
Topr= 85℃
= 25℃
=-40℃
3.0
2.0
1.0
0.0
4.0
VIN1 = 6.0V
= 5.3V
3.0
2.0
1.0
0.0
0
50
100
150
200
250
300
350
0
50
OOutput
utput CCurrent:
urrent: IIOOUT
(m A )
U T (mA)
100
150
(2) Output Voltage vs. Input Voltage
VOUT=0.8V
300
350
VOUT=0.8V
0.90
1.2
Output
O utput
Voltage:
V oltage:
VOUT
V O(V)
(V )
UT
1.1
Output
Voltage:
VOUT
O utput
V oltage:
V O(V)
(V )
UT
250
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
1.0
0.9
0.8
IOUT = 0mA
= 30mA
=100mA
0.7
0.6
0.5
0.85
0.80
0.75
I OUT = 0mA
= 30mA
=100mA
0.70
0.65
0.5
1.0
1.5
2.0
2.5
1.5 2.0 2.5
VOUT=2.85V
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
2.95
2.85
2.90
O utput
V oltage:
(V )
Output
Voltage:
VOUTV O(V)
UT
3.05
2.65
2.45
2.05
2.35
5.0 5.5 6.0
VOUT=2.85V
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
IOUT = 0mA
= 30mA
=100mA
2.25
3.0 3.5 4.0 4.5
InputVVoltage:
(V(V)
)
Input
oltage: VVININ1
1
(V )
Input
oltage: VVININ1
InputVVoltage:
1 (V)
Output
Voltage:
VOUTV O(V)
O utput
V oltage:
(V )
UT
200
Output
O utputCurrent:
C urrent:IOUT
IO U T(mA)
(m A )
2.85
2.80
IOUT = 0mA
= 30mA
=100mA
2.75
2.70
2.85
Input
oltage: VVININ1
(V )
InputV Voltage:
1 (V)
3.35
3.0
3.5
4.0
4.5
5.0
5.5
6.0
InputVVoltage:
(V(V)
)
Input
oltage: VVININ1
1
31/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(2) Output Voltage vs. Input Voltage (Continued)
VOUT=3.0V
VOUT=3.0V
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
3.10
3.0
O utput
V oltage:
V O(V)
(V )
Output
Voltage:
VOUT
UT
O utput
V oltage:
V O(V)
(V )
UT
Output
Voltage:
VOUT
3.2
2.8
IOUT = 0mA
= 30mA
=100mA
2.6
2.4
2.2
3.05
3.00
IOUT = 0mA
= 30mA
=100mA
2.95
2.90
2.85
2.5
3.0
3.5
3.5
4.0
VOUT=5.0V
5.0
5.05
O utput
V oltage:
V O U(V)
(V )
Output
Voltage:
VOUT
T
O utput
V oltage:
V O U(V)
(V )
Output
Voltage:
VOUT
T
5.10
4.8
I OUT = 0mA
= 30mA
=100mA
4.5
5.00
4.95
IOUT = 0mA
= 30mA
=100mA
4.90
5.0
Input
Voltage:
IN1
(V (V)
)
Input V oltage: V IV
N1
5.5
5.5
6.0
InputVVoltage:
Input
oltage: VVININ1
(V(V)
)
1
(3) Dropout Voltage vs. Output Current
VOUT=0.8V
VOUT=2.85V
CIN1=1μF(ceramic), CL=1μF(ceramic)
CIN1=1μF(ceramic), CL=1μF(ceramic)
1.0
0.5
Topr = 85℃
= 25℃
= -40℃
0.8
D ropout
V oltage:
V di(mV)
f(m V )
Dropout
Voltage:
Vdif
D ropout
V oltage:
V di
f(m V )
Dropout
Voltage:
Vdif
(mV)
6.0
4.85
4.2
0.6
0.4
0.2
0.4
Topr = 85℃
= 25℃
= -40℃
0.3
0.2
0.1
0.0
0.0
0
50
100
150
(m A )
OOutput
utputCurrent:
C urrent:IOUT
I (mA)
OUT
32/43
5.5
VOUT=5.0V
5.2
4.4
5.0
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
Ta=25℃, CIN1=1μF(ceramic), CL=1μF(ceramic)
4.6
4.5
InputVVoltage:
Input
oltage: VVININ1
(V(V)
)
1
Input
Voltage:
Input
V ol
tage: V INV1IN1
(V )(V)
200
0
50
100
150
OOutput
utputCurrent:
C urrent:IIOUT
(m A )
O U T (mA)
200
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(3) Dropout Voltage vs. Output Current (Continued)
VOUT=3.0V
VOUT=5.0V
CIN1=1μF(ceramic), CL=1μF(ceramic)
CIN1=1μF(ceramic), CL=1μF(ceramic)
0.5
Dropout
Voltage:
VdifV di
(mV)
D ropout
V oltage:
f(m V )
Dropout Voltage: Vdif (mV)
D ropoutV oltage:V dif(m V )
0.5
0.4
Topr=-40℃
=25℃
=85℃
0.3
0.2
0.1
0.0
0.4
Topr=-40℃
=25℃
=85℃
0.3
0.2
0.1
0.0
0
50
100
150
200
0
50
Output
O utputCurrent:
C urrent:IOUT
IO U T(mA)
(m A )
100
100
100
80
80
Topr= 85℃
= 25℃
=-40℃
40
20
0
Topr= 85℃
= 25℃
=-40℃
60
40
20
0
0
1
2
3
4
5
6
0
1
(V )
InputVoltage:
V oltage:V
V IN1
Input
IN (V)
2
4
5
6
5
6
VOUT=5.0V
100
80
80
Supply
Current:
ISS:(μA)
S uppl
y C ullent
IS S (μ
A)
100
Topr= 85℃
= 25℃
=-40℃
60
3
IInput
nput VVoltage:
oltage: V
V IN1
(V )
IN (V)
VOUT=3.0V
Supply
Current:
ISS:I(μA)
S uppl
y C ullent
S S (μ
A)
200
VOUT=2.85V
Supply
Current:
ISS:(μA)
S uppl
y C ullent
IS S (μ
A)
Supply
Current:
ISS:(μA)
S uppl
y C ullent
IS S (μ
A)
(4) Supply Current vs. Input Voltage
VOUT=0.8V
60
150
OOutput
utput CCurrent:
urrent: I
(m A )
IOUT
O U T (mA)
40
20
0
60
40
Topr= 85℃
= 25℃
=-40℃
20
0
0
1
2
3
4
Input
oltage: VVININ1
(V (V)
)
InputVVoltage:
5
6
0
1
2
3
4
IInput
nput VVoltage:
oltage:V
V IN1
(V )
IN (V)
33/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(5) Output Voltage vs. Ambient Temperature
VOUT=0.8V
VOUT=2.85V
VIN1=1.8V, CIN1=1μF(ceramic), CL=1μF(ceramic)
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)
2.95
Output
VOUTV(V)(V )
O utVoltage:
putV oltage:
OUT
Output
VOUTV (V)(V )
O utVoltage:
putV oltage:
OUT
0.84
0.82
0.80
IOUT= 0mA
= 10mA
= 30mA
=100mA
0.78
-25
0
25
50
75
2.85
2.80
2.75
-50
0.76
-50
2.90
100
IOUT= 0mA
= 10mA
= 30mA
=100mA
-25
0
VIN1=4.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)
75
100
VIN1=6.0V, CIN1=1μF(ceramic), CL=1μF(ceramic)
5.20
Output
Voltage:
VOUT
O utput
V oltage:
V O(V)
(V )
UT
3.10
Output
Voltage:
VOUT
O utput
V oltage:
V O(V)
(V )
UT
50
VOUT=5.0V
VOUT=3.0V
3.05
3.00
IOUT=
0mA
= 10mA
= 30mA
=100mA
2.95
2.90
-50
25
AAmbient
m bient TTemperature:
em perature: TTaa(℃)
(℃)
A mAmbient
bient T em
perature: T a(℃)
Temperature:
Ta (℃)
-25
0
25
50
75
100
5.10
5.00
4.90
4.80
-50
IOUT = 0mA
= 10mA
= 30mA
=100mA
-25
0
25
50
75
100
A Ambient
m bient T Temperature:
em perature: TTa
a(℃)
(℃)
AAmbient
m bient TTemperature:
em perature: T
Taa(℃)
(℃)
(6) Supply Current vs. Ambient Temperature
VOUT=2.85V
VOUT=0.8V
VIN1=3.85V
30
30
28
28
Supply
Current:
SS (μA)
S uppl
y C ulIlent
:IS S (μ
A)
Supply
Current:
SS (μA)
S uppl
y C ulIlent
:IS S (μ
A)
VIN1=1.8V
26
24
22
20
-50
-25
0
25
50
75
AAmbient
m bient TTemperature:
em perature: TTa
a(℃)
(℃)
34/43
100
26
24
22
20
-50
-25
0
25
50
75
AAmbient
m bient TTemperature:
em perature: TTa
a(℃)
(℃)
100
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(6) Supply Current vs. Ambient Temperature (Continued)
VOUT=3.0V
VOUT=5.0V
VIN1=6.0V
30
30
28
28
SupplySCurrent:
ISS
(μA)
upply C ul
lent
:IS S (μA )
26
24
22
-25
0
25
50
75
24
22
20
-50
100
(7) Input Transient Response
VOUT=0.8V
25
50
75
100
VOUT=0.8V
tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA
4
1.00
4
0.95
3
0.95
3
0.90
Input
Voltage
Input
V oltage
0.85
2
1
0.80
0
O utput
V oltage
Output
Voltage
0.75
-1
0.70
O utput V oltage: V O U T (V )
Output Voltage: VOUT (V)
1.00
Input V oltage: V IN (V )
Input Voltage: VIN1 (V)
Output
Voltage:
VOUT
O utput
V oltage:
V O U(V)
(V )
T
0
AAmbient
m bient TTemperature:
em perature: TTaa(℃)
(℃)
AAmbient
m bient TTemperature:
em perature: T
Taa(℃)
(℃)
0.90
V oltage
InputInput
Voltage
2
0.85
1
0.80
0
O utput
V oltage
Output
Voltage
0.75
-1
0.70
-2
Time200μ
(200μs/div)
s/div
-2
Time
(40μs/div)
40μ
s/div
VOUT=0.8V
VOUT=2.85V
tr=tf=5μs, CL=1μF(ceramic),
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA
IOUT=100μA
4
3.05
6
0.95
3
3.00
5
0.90
Input
V oltage
Input
Voltage
0.85
2
1
0.80
0
O utput
V oltage
Output
Voltage
0.75
-1
0.70
-2
Time40μ
(40μs/div)
s/div
O utput V oltage: V O U T (V )
Output Voltage: VOUT (V)
1.00
Input V oltage: V IN (V )
Input Voltage: VIN1
(V)
Output
Voltage:
VOUT
O utput
V oltage:
V O U(V)
(V )
T
-25
IInput
nput VVoltage:
oltage: VVIN (V(V)
)
IN1
20
-50
26
2.95
Input
V oltage
Input
Voltage
2.90
4
3
2.85
2
Output
Voltage
O utput
V oltage
2.80
1
2.75
Input
Voltage:
VIN(V)
Input
Voltage:
VIN1 (V)
SupplySCurrent:
ISS
(μA)
upply C ul
lent
:IS S (μA )
VIN1=4.0V
0
Time
(200μs/div)
200μ
s/div
35/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(7) Input Transient Response (Continued)
VOUT=2.85V
VOUT=2.85V
6
3.05
6
3.00
5
3.00
5
2.90
4
3
2.85
2
O utVoltage
put V oltage
Output
2.80
1
2.75
0
2.95
2.90
2
O utput
V oltage
Output
Voltage
2.80
1
2.75
0
s/div
Time40μ
(40μs/div)
40μ
s/div
Time
(40μs/div)
VOUT=3.0V
VOUT=3.0V
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA
6
3.20
6
3.15
5
3.15
5
3.10
Input
V oltage
Input
Voltage
3.05
4
3
3.00
2
O utput
V oltage
Output
Voltage
2.95
1
2.90
O utput V oltage: V U T (V )
Output Voltage: VOUTO(V)
3.20
Input V oltage: V IN (V )
Input Voltage: VIN1 (V)
O utput
V oltage:
V O(V)
(V )
UT
Output
Voltage:
VOUT
4
3
2.85
tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA
0
3.10
Input
Voltage
Input
V oltage
3.05
4
3
3.00
2
Output
Voltage
O utput
V oltage
2.95
1
2.90
Time
(200μs/div)
200μ
s/div
0
Time
(40μs/div)
40μ
s/div
VOUT=5.0V
VOUT=3.0V
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA
tr=tf=5μs, CL=1μF(ceramic), IOUT=100μA
6
5.20
8
3.15
5
5.15
7
3.10
Input
V oltage
Input
Voltage
3.05
4
3
3.00
2
O utput
V oltage
Output
Voltage
2.95
1
2.90
0
40μ
s/div
Time
(40μs/div)
36/43
Output
Voltage:
VOUTV (V)(V )
O utput
V oltage:
OUT
3.20
Input V oltage: V IN (V )
Input Voltage: VIN1 (V)
Output
Voltage:
VOUTV (V)(V )
O utput
V oltage:
OUT
Input
Voltage
Input
V oltage
InputInput
Voltage:
VIN1 (V)
V oltage:
V IN (V )
Input
V oltage
Input
Voltage
5.10
Input
Input
Voltage
V oltage
5.05
6
5
5.00
4
OOutput
utputVoltage
V oltage
4.95
3
4.90
2
200μ
s/div
Time
(200μs/div)
Input
Voltage:
VIN1V (V)
Input
V oltage:
IN (V )
2.95
O utput V oltage: V T (V )
Output Voltage: VOUTO U(V)
3.05
V oltage:
V IN (V )
InputInput
Voltage:
VIN1 (V)
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA
Input
V oltage:
V IN(V)
(V )
Input
Voltage:
VIN1
O utput
V oltage:
(V )
UT
Output
Voltage:
VOUTV O(V)
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(7) Input Transient Response (Continued)
VOUT=5.0V
VOUT=5.0V
5.20
8
5.15
7
5.15
7
5
5.00
4
O utput
V oltage
Output
Voltage
4.95
3
4.90
2
Input
Voltage
Input
V oltage
5.10
5.05
5
5.00
4
O utput
V oltage
Output
Voltage
4.95
3
4.90
2
s/div
Time40μ
(40μs/div)
s/div
Time40μ
(40μs/div)
(8) Load Transient Response
VOUT=0.8V
VOUT=0.8V
VIN1=1.8V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
VIN1=1.8V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
250
200
OOutput
utputVoltage
V oltage
0.70
150
0.60
100
50mA
OOutput
utputCurrent
C urrent
0.50
50
10mA
0.40
O utput
V oltage:
V O U(V)
(V )
Output
Voltage:
VOUT
T
0.80
0.90
O utput
C urrent
:IO U(mA)
(m A )
Output
Current:
IOUT
T
O utput
V oltage:
V O U(V)
(V )
Output
Voltage:
VOUT
T
0.90
0
250
0.80
200
Output
OutputVoltage
Voltage
0.70
0.60
150
100mA
0.50
50
10mA
0.40
0
s/div
Time40μ
(40μs/div)
VOUT=2.85V
VOUT=2.85V
2.95
250
2.85
200
O utput
V oltage
Output
Voltage
150
100
O utCurrent
put C urrent
Output
2.55
50mA
50
10mA
2.45
0
Time40μ
(40μs/div)
s/div
O utput
V oltage:
V O(V)
(V )
Output
Voltage:
VOUT
UT
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
O utput
C urrent
(m A )
Output
Current:
IOUT: I(mA)
OUT
Output
VOUTV(V)
O utVoltage:
put V oltage:
(V )
OUT
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
2.65
100
Output
Current
Output
Current
s/div
Time40μ
(40μs/div)
2.75
6
O utput
C urrent
: I(mA)
(m A )
Output
Current:
IOUT
OUT
5.05
6
2.95
250
2.85
200
OutputVoltage
Voltage
Output
2.75
2.65
150
100mA
100
Output
Current
Output
Current
2.55
50
10mA
2.45
Output
Current:
IOUTIOUT
(mA)
Output
Current:
(mA)
Input
Voltage
Input
V oltage
5.10
Output
Voltage:
VOUT
O utput
V oltage:
V O(V)
(V )
UT
8
Input
V oltage:
(V )
IN
Input
Voltage:
VIN1V(V)
Output
Voltage:
VOUT
O utput
V oltage:
V O(V)
(V )
UT
5.20
Input
Voltage:
VIN(V)
Input
Voltage:
VIN1 (V)
tr=tf=5μs, CL=1μF(ceramic), IOUT=100mA
tr=tf=5μs, CL=1μF(ceramic), IOUT=30mA
0
Time
(40μs/div)
40μ
s/div
37/43
XCM520 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(8) Load Transient Response (Continued)
VOUT=3.0V
VOUT=3.0V
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
2.90
150
2.80
100
O utput
C urrent
Output
Current
50mA
50
10mA
2.60
250
3.00
200
O utput
V oltage
Output
Voltage
2.90
150
100mA
2.80
100
O utput
C urrent
Output
Current
2.70
50
10mA
2.60
0
0
40μ
s/div
Time
(40μs/div)
40μ
s/div
Time
(40μs/div)
VOUT=5.0V
VOUT=5.0V
5.00
200
OOutput
utput V
oltage
Voltage
4.90
150
4.80
100
OOutput
utputCurrent
C urrent
50mA
50
10mA
4.60
0
Output
VOUTV(V)
O utVoltage:
put V oltage:
(V )
OUT
250
O utput
C urrent
:IO (mA)
(m A )
UT
Output
Current:
IOUT
Output
Voltage:
VOUTV (V)(V )
O utput
V oltage:
OUT
5.10
5.10
250
5.00
200
Output
Voltage
O utput
V oltage
4.90
150
100mA
4.80
100
Output
Current
O utput
C urrent
4.70
50
10mA
4.60
0
Time40μ
(40μs/div)
s/div
Time
(40μs/div)
40μ
s/div
(9) Ripple Rejection Rate
VOUT=2.85V
VOUT=0.8V
VIN1=1.8VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)
VIN1=3.85VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)
80
Ripple Rejection Ratio: PSRR (dB)
R ipple R ejection R atio: P S R R (dB )
Ripple Rejection Ratio: PSRR (dB)
R ipple R ejection R atio:P S R R (dB )
80
60
40
20
0
0.01
0.1
1
10
RRipple
ipple FFrequency:
requency:f(kHz)
f(kH z)
38/43
100
60
40
20
0
0.01
0.1
1
10
RRipple
ipple FFrequency:
requency: ff(kHz)
(kH z)
100
O utput
C urrent
: IO(mA)
(m A )
Output
Current:
IOUT
UT
VIN1=6.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
VIN1=6.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
4.70
O utput
C urrent
: IO(mA)
(m A )
Output
Current:
IOUT
UT
200
O utput
V oltage
Output
Voltage
Output
VOUTV(V) (V )
O utVoltage:
put V oltage:
OUT
3.00
2.70
3.10
250
O utput
C urrent
(m A )
OUT
Output
Current:
IOUT: I(mA)
Output
Voltage:
VOUTV (V)(V )
O utput
V oltage:
OUT
3.10
VIN1=4.0V, tr=tf=5μs, CIN1=CL=1μF(ceramic)
XCM520
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●Regulator Block (Continued)
(9) Ripple Rejection Rate (Continued)
VOUT=3.0V
VOUT=5.0V
VIN1=5.75VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)
VIN1=4.0VDC+0.5Vp-pAC, IOUT=30mA, CL=1μF(ceramic)
80
Ripple
Rejection
PSRR
R ippl
e R ejectRatio:
ion R at
io: P S R(dB)
R (dB )
Ripple Rejection Ratio: PSRR (dB)
R ipple R ejection R atio:P S R R (dB )
80
60
40
20
0
0.01
0.1
1
10
100
R Ripple
ipple F Frequency:
requency: f(kH
z)
f(kHz)
60
40
20
0
0.01
0.1
1
10
100
RRipple
ipple FFrequency:
requency: ff(kHz)
(kH z)
(10) Cross Talk
VOUT1:3.0V & VOUT2:2.85V
VIN1=4.0V, CIN1=CL1=CL2=1μF(ceramic)
3.1
500
3.0
400
2.9
300
V R 2Output
O utput
V oltage(2.
VR2
Voltage
(2.85V)85V )
2.8
2.7
100mA
VVR1
R1
10mA
200
100
O utputCurrent:
C urrent:IOUT
IO U T(mA)
(m A )
Output
Output
Voltage:
VOUTV (V)(V )
O utput
V oltage:
OUT
V ROutput
1 O utVoltage
put V ol
tage(3.0V )
VR1
(3.0V)
Output Current
O utput C urrent
2.6
0
s/div
Time40μ
(40μs/div)
39/43
XCM520 Series
■PACKAGING INFORMATION
●USP-12B01
2.8±0.08
(0.4) (0.4) (0.4) (0.4) (0.4)
(0.15) (0.25)
0.25± 0.2± 0.2± 0.2± 0.2± 0.2±
0.05
0.05 0.05 0.05 0.05 0.05
1
2
3
4
12 11 10 9
1.2±0.1
5
6
8
7
1.2±0.1
UNIT: mm
0.7±0.05 0.7±0.05
●USP-12B01 Reference Pattern Layout
1 .35
1 .35
0 .90
0 .90
0 .45
0 .65
0 .65
0 .25 0 .25
0 .50
0 .20
1 .30
1 .30
0 .95
0 .95
0 .55
0 .55
0 .25 0 .25
0 .35
0 .60
1 .10
1 .55
0 .60
1 .10
1 .55
1 .05
0 .95
0 .65
0 .55
0 .25 0 .15
0 .05 0 .15 0 .05 0 .05 0 .20 0 .05
0 .10 0 .10
1 .30
1 .60
0 .20
40/43
0 .35
1 .30
1 .60
1 .05
0 .95
0 .65
0 .55
0 .25 0 .15
0 .25
0 .30
0 .025
0 .025 0 .025
0 .025
0 .45
●USP-12B01 Reference Metal Mask Design
0 .15
0 .40
0 .15
XCM520
Series
■PACKAGING INFORMATION (Continued)
●
USP-12B01 Power Dissipation
Power dissipation data for the USP-12B01 is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1.
Measurement Condition (Reference data)
Condition:
Mount on a board
Ambient:
Natural convection
Soldering:
Lead (Pb) free
Board:
Dimensions 40 x 40 mm (1600 mm in one side)
2
st
1 Layer: Land and a wiring pattern
nd
st
rd
nd
2 Layer: Connecting to approximate 50% of the 1 heat sink
3 Layer: Connecting to approximate 50% of the 2
heat sink
th
4 Layer: Noting
Material:
Glass Epoxy (FR-4)
Thickness:
1.6 mm
Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole)
2.
Evaluation Board (Unit: mm)
Power Dissipation vs. Operating temperature
●Only 1ch heating, Board Mount (Tj max = 125℃)
Ambient Temperature(℃)
Power Dissipation Pd(mW)
25
800
85
320
Thermal Resistance (℃/W)
125.00
Power Dissipation:
Pd (mW)
許容損失Pd(mW)
Pd-Ta特性グラフ
Pd vs. Ta
1000
800
600
400
200
0
25
45
65
85
105
125
周囲温度Ta(℃)
Ambient Temperature:
Ta (℃)
●Both 2ch heating same time, Board Mount (Tj max = 125℃)
Ambient Temperature(℃)
Power Dissipation Pd(mW)
25
600
85
240
Thermal Resistance (℃/W)
166.67
Power許容損失Pd(mW)
Dissipation: Pd (mW)
Pd-Ta特性グラフ
Pd
vs. Ta
1000
800
600
400
200
0
25
45
65
85
周囲温度Ta(℃)
Ambient Temperature: Ta (℃)
105
125
41/43
XCM520 Series
■MARKING RULE
●USP-12B01
① ② ③ ④
⑤ ⑥
1
2
3
4
5
6
① represents product series
12
11
10
9
8
7
MARK
PRODUCT SERIES
1
XCM520 Series
②③ represents combination of IC
MARK
USP-12B01
④
PRODUCT SERIES
②
③
A
A
XC6401FF**+XC9235A**D
A
B
XC6401FF**+XC9235A**C
A
C
XC6401FF**+XC9236A**D
A
D
XC6401FF**+XC9236A**C
A
E
XC6401FF**+XC9235B**D
A
F
XC6401FF**+XC9235B**C
A
G
XC6401FF**+XC9236B**D
A
H
XC6401FF**+XC9236B**C
represents combination of voltage for each IC (Sequence No.)
MARK
PRODUCT SERIES
1
XCM520**01**
2
XCM520**02**
3
XCM520**03**
4
XCM520**04**
⑤,⑥ represents production lot number
01∼09、0A∼0Z、11・・・9Z、
A1∼A9、AA・・・Z9、ZA∼ZZ repeated
(G, I, J, O, Q, W excluded)
* No character inversion used.
42/43
XCM520
Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
43/43