XCM524 Series ETR2428-003 600mA Synchronous Step-Down DC/DC Converter + 500mA LDO with Delay Function Voltage Detector ■GENERAL DESCRIPTION The XCM524 series is a multi combination module IC which comprises of a 600mA driver transistor built-in synchronous step–down DC/DC converter and a high speed, high current LDO regulator with voltage detector function. The device is housed in small USP-12B01 package which is ideally suited for space conscious applications. The DC/DC converter and the LDO blocks are isolated in the package so that noise interference from the DC/DC to the LDO regulator is minimal. The DC/DC converter block with a built-in 0.42ΩP-channel MOS driver transistor and 0.52ΩN-channel MOS switching transistor, designed to allow the use of ceramic capacitors. The DC/DC enables a high efficiency, stable power supply with an output current of 600mA to be configured using only a coil and two capacitors connected externally. The LDO regulator block is precise, low noise, high ripple rejection, low dropout positive voltage regulators with built-in voltage detector. The LDO is also compatible with low ESR ceramic output capacitors. Good output stability is maintained during load fluctuations due to its excellent transient response. The current limiter's fold back circuit also operates as a short circuit protection for the output current. The voltage detector block of the contains delay circuit. The delay time can be controlled by an external capacitor. The detector monitors the input voltage of the voltage regulator. ■APPLICATIONS ●BD, DVD drives ●HDD drives ●Cameras, Video recorders ●Mobile phones, Smart phones ●Various general-purpose power supplies ■FEATURES <DC/DC Convertor Block> Input Voltage Range : 2.7V ~ 6.0V Output Voltage Options : 0.8V ~ 4.0V (±2%) High Efficiency : 92% (TYP.) Output Current : 600mA (MAX.) Oscillation Frequency : 1.2MHz, 3.0MHz (+15%) Current Limiter Circuit Built-In : Constant Current & Latching Control Methods : PWM PWM/PFM Auto *Performance depends on external components and wiring on PCB wiring. <Regulator Block> Maximum Output Current ■ TYPICAL APPLICATION CIRCUIT : 500mA (Limiter 600mA TYP.) (2.5V≦VROUT≦4.9V) Dropout Voltage : 200mV@IROUT=100mA (TYP.) Operating Voltage Range : 2.0V ~ 6.0V Output Voltage Options : 0.9V ~ 5.1V (0.1V increments, ±2%) Detect Voltage Options : 2.0V ~ 5.5V (0.1V increments, ±2%) VR.VD Temperature Stability :±100ppm/℃ (TYP.) High Ripple Rejection : 65dB (@10kHz) Low ESR Capacitor : Ceramic Capacitor Operating Temperature Range : -40℃ ~ +85℃ Package : USP-12B01 Environmentally Friendly : EU RoHS Compliant, Pb Free (TOP VIEW) 1/52 XCM524 Series ■PIN CONFIGURATIOIN PIN No XCM524 VDR DC/DC 1 VDOUT VDOUT - 2 VSS VSS - 3 Cd Cd - 4 VIN2 - VIN 5 PGND - PGND 6 Lx - Lx 7 DCOUT - VOUT 8 AGND - AGND 9 EN2 - CE 10 VIN1 VIN1 - 11 NC - - 12 VROUT VROUT - (TOP VIEW) (BOTTOM VIEW) *DC/DC Ground pin (No.5 and 8) should be short before using the IC. * A dissipation pad on the reverse side of the package should be electrically isolated. *1: Voltage level of the VDR’s dissipation pad should be VSS level. *2: Voltage level of the DC/DC’s dissipation pad should be VSS level. Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release when the pad needs to be connected to the circuit. ■PIN ASSIGNMENT PIN No XCM524 FUNCTIONS 1 VDOUT VDR Block: VD Output Voltage 2 VSS VDR Block: Ground 3 Cd VDR Block: Delay Capacitor connection 2/52 4 VIN2 DC/DC Block: Power Input 5 PGND DC/DC Block: Power Ground 6 Lx DC/DC Block: Switching Connection 7 DCOUT DC/DC Block: Output Voltage 8 AGND DC/DC Block: Analog Ground 9 EN2 DC/DC Block: ON/OFF Control 10 VIN1 VDR Block: Power Input 11 NC No Connection 12 VROUT VDR Block: LDO Output XCM524 Series ■PRODUCT CLASSIFICATION ●Ordering Information XCM524A①②③④⑤-⑥ (*1) DC/DC Block: PWM fixed control XCM524B①②③④⑤-⑥ (*1) DC/DC Block: PWM/PFM automatic switching control DESIGNATOR DESCRIPTION SYMBOL ① Oscillation Frequency and Options - See the chart below ②③ Output Voltage - See the chart below ④⑤-⑥ Packages Taping Type (*2) DR-G (*1) (*2) DESCRIPTION USP-12B01 The XCM524 series is Halogen and Antimony free as well as being fully RoHS compliant. The device orientation is fixed in its embossed tape pocket. ●DESIGNATOR① DC/DC BLOCK VDR BLOCK ① OSCILLATION FREQUENCY CL DISCHARGE SOFT START VD DELAY FUNCTION VD SENSE PIN VD OUTPUT LOGIC A B C D 1.2M 3.0M 1.2M 3.0M Not Available Not Available Available Available Standard Standard High Speed High Speed Available Available Available Available VIN VIN VIN VIN Active Low Detect Active Low Detect Active Low Detect Active Low Detect ●DESIGNATOR②③ VDCOUT ②③ 01 02 03 04 05 06 1.0 1.2 1.5 1.8 3.3 1.8 VROUT VDF 3.3 3.3 3.3 3.3 1.8 2.5 3.7 3.7 3.7 4.2 2.8 2.8 *This series are semi-custom products. For other combinations of output voltages please consult with your Torex sales contact. 3/52 XCM524 Series ■BLOCK DIAGRAMS Step-Down DC/DC Step-Down DC/DC Phase Compensation VOUT R2 Error Amp. Current Feedback Current Limit R1 R2 Lx Error Amp. UVLO CE/MODE Control Logic CE Lx PWM/PFM Selector CE/ UVLO Cmp VSS Synch Buffer Drive VSHORT Vref with Soft Start, CE R3 R4 PWM Comparator Logic PWM/PFM Selector Ramp Wave Generator OSC Current Feedback Current Limit R1 VIN UVLO Cmp VSS Synch Buffer Drive VSHORT Vref with Soft Start, CE Phase Compensation VOUT PWM Comparator Logic VIN Available with CL Discharge, High Speed Soft-Start UVLO Ramp Wave Generator OSC R3 CE/MODE Control Logic R4 CE * A fixed PWM control scheme because that the “CE Control Logic” outputs a low level signal to the “PWM/PFM Selector”. * An auto PWM/PFM switching control scheme because the “CE Control Logic” outputs a high level signal to the “PWM/PFM Selector”. *Diodes inside the circuit are an ESD protection diode and a parasitic diode. ■ABSOLUTE MAXIMUM RATINGS Ta=25℃ PARAMETER SYMBOL RATINGS UNITS VIN1Voltage VROUT Current VROUT Voltage VDOUT Current VDOUT Voltage Cd Voltage VIN2 Current Lx Voltage VIN1 IROUT VROUT IDOUT VDOUT VCd VIN2 VLx DCOUT Voltage EN2 Voltage Lx Current USP-12B01 Power USP-12B01 Dissipation (*2) (PCB mounted ) VDCOUT VEN2 ILx 7.0 700(*1) VSS - 0.3 ∼ VIN1 + 0.3 50 VSS -0.3 ∼ 7.0 VSS - 0.3 ∼ VIN1 + 0.3 -0.3 ∼ 6.5 -0.3 ∼ VIN2 + 0.3 ≦ 6.5 -0.3 ∼ 6.5 -0.3 ∼ 6.5 ±1500 150 800 (Only 1ch operation) V mA V mA V V V V V V mA Junction Temperature Tj 125 ℃ Operating Temperature Range Storage Temperature Range Topr Tstg - 40 ∼ + 85 - 55 ∼ + 125 ℃ ℃ Pd mW 600 (Both 2ch operation) *1 IROUT= Less than Pd /(VIN1-VROUT) *2 The power dissipation figure shown is PCB mounted. for each channel. 4/52 Please refer to page 50 for details. Please also note that the power dissipation is XCM524 Series ■ELECTRICAL CHARACTERISTICS ●XCM524xx 1ch (VDR Block) PARAMETER (*2, 3) VOLTAGE REGULATOR Output Voltage Maximum Output Current (0.9 ~ 2.4V) Maximum Output Current (2.5 ~ 4.9V) Load Regulation SYMBOL CONDITIONS VROUT(E) IROUT=30mA IROUTMAX VIN1=VROUT(T)+2.0V MIN. TYP. MAX. UNITS CIRCUIT ×0.98 VROUT(T) ×1.02 V ① 400 - - mA ① VIN1=VROUT(T)+2.0V IROUTMAX Higher than VROUT(T)= 4.0V, VIN1=6.0V 500 △VROUT 1mA≦IROUT≦100mA Vdif1 (*4) I ROUT=30mA Dropout Voltage Vdif2 IROUT=100mA Supply Current VIN1=VROUT(T)+1.0V I DD (FV / FX / FY / FZ series) VROUT(T)≦0.9V, VIN1=2.0V VROUT(T)+1.0V≦VIN1≦6.0V △VROUT/ VROUT(T)≦0.9V, 2.0V≦VIN1≦6.0V Line Regulation (VIN1・VROUT) IROUT=30mA VROUT(T)≦1.75V, IROUT=10mA Input Voltage VIN1 2.0 Output Voltage △VROUT/ IROUT=30mA Temperature Characteristics (△Topr・VROUT) -40℃≦Topr≦85℃ - - mA ① 15 E-1 E-2 50 mV mV mV ① ① ① 90 145 μA ② 0.01 0.20 %/V ① - 6.0 V - ±100 - ppm /℃ ① Ripple Rejection Rate PSRR VIN1=[VROUT(T)+1.0]V+0.5Vp-pAC When VROUT(T)≦1.25V, VIN1=2.25V+0.5Vp-pAC When VROUT(T)≧4.75V, VIN1=5.75V+0.5Vp-pAC IROUT=50mA, f=10kHz Current Limiter (2.4V or less) Current Limiter (2.5V or more) IRLIMl VIN1=VROUT(T)+2.0V Short-Circuit Current IRSHORT Detect Voltage VOLTAGE DETECTOR Ta=25℃ Hysteresis Range VDF(E) (*8) 65 - dB ③ - 600 - mA ① 600 - mA ① 50 - mA ① VDF(T) VDF(T) ×0.05 6.0 8.0 10.0 12.0 15.0 ×1.02 VDF(T) ×0.08 - V ④ V ④ mA ⑤ VIN1=VROUT(T)+2.0V Higher than VROUT(T)= 4.0V, VIN1=6.0V 500 VIN1=VROUT(T)+2.0V Higher than VROUT(T)= 4.0V, VIN1=6.0V ×0.98 VDF(T) ×0.02 VIN1 = 2.0V 3.0 VIN1 = 3.0V 4.0 VDOUT = 0.5V VIN1 = 4.0V 5.0 VIN1 = 5.0V 7.0 VIN1 = 6.0V 10.0 IRLIM (*7, 8) - VHYS Supply Current (*9) IDOUT Detect Voltage Temperature Stability △VDF/ (Topr・VDF) -40℃≦Topr≦85℃ - ±100 - ppm /℃ ④ Delay Resistance Rdelay VIN1=6.0V, Cd=0V Delay Resistance =6.0V/Delay Current 300 500 700 kΩ ⑥ NOTE: *1 : Unless otherwise stated, (VIN1=VROUT(T)+1.0V) *2 : VROUT(T):Specified VR output voltage *3 : VROUT(E):Effective VR output voltage. Refer to the E-0 chart for values less than VDF(T)≦1.5V. (i.e. the VR output voltage when "VROUT(T)+1.0V" is provided at the VIN pin while maintaining a certain IROUT value). *4 : Vdif={VIN1 (*6) -VROUT1 (*5) } *5 : A voltage equal to 98% of the VR output voltage whenever a stabilized VROUT1=IROUT{VROUT(T)+1.0V} is input. *6 : VIN1:The input voltage when VOUT1, which appears as input voltage is gradually decreased. *7 : VDF(T):Specified detect voltage value *8 : VDF(E):Effective detect voltage value. *9 : VD output current is sink current at detect. * The electrical characteristics above are when the other channel is in stop. 5/52 XCM524 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●Dropout Voltage SYMBOL PARAMETER NOMINAL DETECT VOLTAGE OUTPUT VOLTAGE E-0 E-1 E-1 OUTPUT VOLTAGE DETECT VOLTAGE DROPOUT VOLTAGE 1 (mV) (IOUT=30mA) DROPOUT VOLTAGE 2 (mV) (IOUT=100mA) (V) Ta=25℃ Ta=25℃ VROUT(E) / VDF(E) VROUT(T) 6/52 Vdif1 Vdif1 Vdif2 Vdif2 MAX. VDF(T) MIN. MAX. TYP. MAX. TYP. 0.90 0.870 0.930 1050 1100 1150 1200 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 5.50 0.970 1.070 1.170 1.270 1.370 1.470 1.568 1.666 1.764 1.862 1.960 2.058 2.156 2.254 2.352 2.450 2.548 2.646 2.744 2.842 2.940 3.038 3.136 3.234 3.332 3.430 3.528 3.626 3.724 3.822 3.920 4.018 4.116 4.214 4.312 4.410 4.508 4.606 4.704 4.802 4.900 4.998 5.096 5.194 5.292 5.390 1.030 1.130 1.230 1.330 1.430 1.530 1.632 1.734 1.836 1.938 2.040 2.142 2.244 2.346 2.448 2.550 2.652 2.754 2.856 2.958 3.060 3.162 3.264 3.366 3.468 3.570 3.672 3.774 3.876 3.978 4.080 4.182 4.284 4.386 4.488 4.590 4.692 4.794 4.896 4.998 5.100 5.202 5.304 5.406 5.508 5.610 1000 900 800 700 600 500 400 300 200 120 80 80 80 80 80 70 70 70 70 70 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 50 50 1100 1000 900 800 700 600 500 400 300 150 120 120 120 120 120 100 100 100 100 100 90 90 90 90 90 90 90 90 90 90 80 80 80 80 80 80 80 80 80 80 70 70 1050 950 850 750 650 550 500 400 300 280 240 240 240 240 240 220 220 220 220 220 200 200 200 200 200 200 200 200 200 200 180 180 180 180 180 180 180 180 180 180 160 160 1200 1100 1000 900 800 700 600 500 400 380 350 330 330 310 310 290 290 290 270 270 270 250 250 250 250 250 250 250 250 250 230 230 230 230 230 230 230 230 230 230 210 210 XCM524 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM524xA 2ch (DC/DC Block) PARAMETER VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃ SYMBOL Output Voltage VDCOUT Operating Voltage Range VIN2 CONDITIONS When connected to external components, VIN2=VEN2=5.0V,IOUT2=30mA MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ⑦ 2.7 - 6.0 V ⑦ 600 - - mA ⑦ 1.00 1.40 1.78 V ⑨ (XCM524AA) - 22 50 (XCM524BA) - 15 33 μA ⑧ Maximum Output Current IOUT2MAX When connected to external components, (*8) VIN2=VDCOUT(T)+2.0V,VEN2=1.0V UVLO Voltage VUVLO VEN2=VIN2,VDCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level Supply Current IDD Stand-by Current ISTB VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V - 0 1.0 μA ⑧ Oscillation Frequency fOSC When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT1=100mA 1020 1200 1380 kHz ⑦ PFM Switching Current IPFM When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA 120 160 200 mA ⑦ PFM Duty Limit DTYLIMIT_PFM Maximum Duty Cycle DMAX Minimum Duty Cycle DMIN VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V VEN2=VIN2=(C-1) IOUT2=1mA (*11) % ⑦ VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V 100 200 - - % ⑨ VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V - - 0 % ⑨ - 92 - % ⑦ - 0.35 0.55 Ω ⑩ - 0.42 0.67 Ω ⑩ Lx SW "H" ON Resistance 1 RLXH1 When connected to external components, (*7) VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA Lx SW "H" ON Resistance 2 RLXH2 VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA Lx SW "L" ON Resistance 1 RLXL1 VIN2=VEN2=5.0V (*4) - 0.45 0.66 Ω − Lx SW "L" ON Resistance 2 RLXL2 VIN2=VEN2=3.6V (*4) - 0.52 0.77 Ω − Lx SW "H" Leak Current (*5) ILEAKH VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V - 0.01 1.0 μA ⑪ Lx SW "L" Leak Current (*5) ILEAKL VIN2=VDCOUT=5.0V,VEN2=0V,LX=5.0V - 0.01 1.0 μA ⑪ 900 1050 1350 mA ⑫ - ±100 - ppm/℃ ⑦ 0.65 - 6.0 V ⑨ VSS - 0.25 V ⑨ - 0.1 - 0.1 μA ⑪ Efficiency (*2) (*9) Current Limit Output Voltage Temperature Characteristics EFFI ILIM △ VDCOUT/ (VDCOUT・△T opr) EN "H" Voltage VENH EN "L" Voltage VENL EN "H" Current IENH EN "L" Current IENL VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V IOUT2=30mA -40℃≦Topr≦85℃ VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to “H” level VDCOUT=0V, Applied voltage to VEN2 (*10) Voltage changes Lx to “L” level VIN2=VEN2=5.0V,VDCOUT=0V (*3) VIN2=5.0V,VEN2=0V,VDCOUT=0V - 0.1 0.1 μA When connected to external components, 0.5 1.0 2.5 ms Soft Start Time tSS VEN2=0V→VIN2,IOUT1=1mA VIN2=VEN2=5.0V, VDCOUT=0.8×VDCOUT(T) Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1Ω resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at Short Protection VSHORT 1Ω resistance, DCOUT voltage which Lx becomes 0.675 0.900 1.125 V Threshold Voltage “ Lx=L ” within 1ms Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions. ⑪ ⑦ ⑬ ⑬ * The electrical characteristics above are when the other channel is in stop. 7/52 XCM524 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM524xB 2ch (DC/DC BLOCK) PARAMETER VDCOUT=1.8V, fOSC=3.0MHz, Ta=25℃ SYMBOL CONDITIONS When connected to external components, VIN2=VEN2=5.0V,IOUT2=30mA MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ⑦ 2.7 - 6.0 V ⑦ Output Voltage VDCOUT Operating Voltage Range VIN2 Maximum Output Current IOUT2MAX When connected to external components, (*8) VIN2= VDCOUT(T)+2.0V,VEN1=1.0V 600 - - mA ⑦ UVLO Voltage VUVLO VEN2=VIN2,VDCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level 1.00 1.40 1.78 V ⑨ Supply Current IDD VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V (XCM524AB) - 46 65 (XCM524BB) - 21 35 μA ⑧ Stand-by Current ISTB VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V - 0 1.0 μA ⑧ Oscillation Frequency fOSC When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA 2550 3000 3450 kHz ⑦ PFM Switching Current IPFM When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA 170 220 270 mA ⑦ PFM Duty Limit DTYLIMIT_PFM 200 300 % ⑦ Maximum Duty Cycle DMAX VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V 100 - - % ⑧ Minimum Duty Cycle DMIN VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V - - 0 % ⑧ - 86 - % ⑦ - 0.35 0.55 Ω ⑩ - 0.42 0.67 Ω ⑩ - 0.45 0.66 Ω − VEN2=VIN2=(C-1) IOUT2=1mA (*11) Lx SW "H" ON Resistance 1 RLXH1 When connected to external components, (*7) VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA Lx SW "H" ON Resistance 2 RLXH2 VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA Lx SW "L" ON Resistance 1 RLXL1 VIN2=VEN1=5.0V (*4) (*4) Efficiency (*2) EFFI (*3) Lx SW "L" ON Resistance 2 RLXL2 VIN2=VEN1=3.6V - 0.52 0.77 Ω − Lx SW "H" Leak Current (*5) ILEAKH VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V - 0.01 1.0 μA ⑪ Lx SW "L" Leak Current (*5) ILEAKL VIN2=VDCOUT=5.0V,VEN2=0V,LX=5.0V - 0.01 1.0 μA ⑪ 900 1050 1350 mA ⑫ - ±100 - ppm/℃ ⑦ 0.65 - 6.0 V ⑨ VSS - 0.25 V ⑨ - 0.1 - 0.1 μA ⑪ (*9) Current Limit Output Voltage Temperature Characteristics △VDCOUT/ (VDCOUT・△topr) ILIM EN "H" Voltage VENH EN "L" Voltage VENL EN "H" Current IENH EN "L" Current IENL VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V IOUT2=30mA -40℃≦Topr≦85℃ VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to “H” level VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to “L” level VIN2=VEN2=5.0V, VDCOUT=0V VIN2=5.0V, VEN2=0V, VDCOUT=0V - 0.1 0.1 μA When connected to external components, 0.5 0.9 2.5 ms Soft Start Time tSS VEN2=0V→VIN2,IOUT2=1mA VIN2=VEN2=5.0V,VDCOUT=0.8×VDCOUT(T) Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1Ω resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at Short Protection VSHORT 1Ω resistance, DCOUT voltage which Lx becomes 0.675 0.900 1.125 V Threshold Voltage “ Lx=L ” within 1ms Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions. * The electrical characteristics above are when the other channel is in stop. 8/52 ⑪ ⑦ ⑬ ⑬ XCM524 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM524xC 2ch (DC/DC BLOCK) PARAMETER SYMBOL Output Voltage VDCOUT Operating Voltage Range VIN2 VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃ CONDITIONS When connected to external components, VIN2=VEN2=5.0V,IOUT1=30mA MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ⑦ 2.7 - 6.0 V ⑦ 600 - - mA ⑦ 1.00 1.40 1.78 V ⑨ (XCM524AC) - 22 50 (XCM524BC) - 15 33 μA ⑧ Maximum Output Current IOUT2MAX When connected to external components, (*8) VIN2=VDCOUT(T)+2.0V,VEN2=1.0V UVLO Voltage VUVLO VEN2=VIN2,VDCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level Supply Current IDD Stand-by Current ISTB VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V - 0 1.0 μA ⑧ Oscillation Frequency fOSC When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA 1020 1200 1380 kHz ⑦ PFM Switching Current IPFM When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA 120 160 200 mA ⑦ - 200 % ⑦ VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×0.9V 100 - - % ⑨ VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×1.1V - - 0 % ⑨ - 92 - % ⑦ - 0.35 0.55 Ω ⑩ PFM Duty Limit DTYLIMIT_PFM Maximum Duty Cycle DMAX Minimum Duty Cycle DMIN Efficiency EFFI Lx SW "H" ON Resistance 1 RLXH1 VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V VEN2=VIN2=(C-1)IOUT2=1mA (*11) When connected to external components, (*7) VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA (*3) Lx SW "H" ON Resistance 2 RLXH2 VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA - 0.42 0.67 Ω ⑩ Lx SW "L" ON Resistance 1 RLXL1 VIN2=VEN2=5.0V (*4) - 0.45 0.66 Ω − Lx SW "L" ON Resistance 2 RLXL2 VIN2=VEN2=3.6V (*4) - 0.52 0.77 Ω − (*5) ILEAKH VIN1=VDCOUT=5.0V,VEN1=0V,LX=0V - 0.01 1.0 μA ⑮ 900 1050 1350 mA ⑫ - ±100 - ppm/℃ ⑦ 0.65 - 6.0 V ⑨ VSS - 0.25 V ⑨ - 0.1 - 0.1 μA ⑪ - 0.1 - 0.1 μA ⑪ - 0.25 0.40 ms ⑦ 1.0 - 20 ms ⑬ 0.675 0.900 1.150 V ⑬ 200 300 450 Ω ⑭ Lx SW "H" Leak Current (*9) Current Limit Output Voltage Temperature Characteristics △ VDCOUT/ (VDCOUT・△topr) ILIM EN "H" Voltage VENH EN "L" Voltage VENL EN "H" Current IENH EN "L" Current IENL Soft Start Time tSS Latch Time tLAT Short Protection Threshold Voltage VSHORT CL Discharge RDCHG VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V IOUT2=30mA -40℃≦Topr≦85℃ VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to “H” level VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to “L” level VIN2=VEN2=5.0V,VDCOUT=0V VIN2=5.0V,VEN2=0V,VDCOUT=0V When connected to external components, VEN2=0V→VIN2, IOUT2=1mA VIN2=VEN2=5.0V,VDCOUT=0.8×VDCOUT(T) (*6) Short Lx at 1Ω resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at 1Ω resistance, DCOUT voltage which Lx becomes “ Lx=L ” within 1ms VIN2=5.0V,LX=5.0V,VEN2=0V,VDCOUT=open Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions. * The electrical characteristics above are when the other channel is in stop. 9/52 XCM524 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM524xD 2ch (DC/DC BLOCK) VDCOUT=1.8V, fOSC=3.0MHz, Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. Output Voltage VDCOUT 1.764 1.800 1.836 V ⑦ Operating Voltage Range VIN2 2.7 - 6.0 V ⑦ Maximum Output Current IOUT2MAX When connected to external components, (*8) VIN2=VDCOUT(T)+2.0V,VEN2=1.0V 600 - - mA ⑦ UVLO Voltage VUVLO VEN2=VIN2,VDCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level 1.00 1.40 1.78 V ⑨ Supply Current IDD VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V (XCM524AD) - 46 65 (XCM524BD) - 21 35 μA ⑧ Stand-by Current ISTB VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V - 0 1.0 μA ⑧ Oscillation Frequency fOSC When connected to external components, VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA 2550 3000 3450 kHz ⑦ PFM Switching Current IPFM When connected to external components, (*11) VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA 170 220 270 mA ⑦ PFM Duty Limit DTYLIMIT_PFM - 200 300 % ⑦ Maximum Duty Cycle DMAX Minimum Duty Cycle DMIN VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×0.9V 100 - - % ⑨ VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×1.1V - - 0 % ⑨ Efficiency EFFI Lx SW "H" ON Resistance 1 RLXH1 When connected to external components, (*7) VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA (*3) VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA - 86 - % ⑦ Lx SW "H" ON Resistance 2 RLXH2 VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA - 0.35 0.55 Ω ⑩ - 0.42 0.67 Ω ⑩ - 0.45 0.66 Ω − - 0.52 0.77 Ω − - 0.01 1.0 μA ⑮ 900 1050 1350 mA ⑫ - ±100 - ppm/℃ ⑦ 0.65 - 6.0 V ⑨ VSS - 0.25 V ⑨ When connected to external components, VIN2=VEN2=5.0V,IOUT2=30mA VEN2=VIN2=(C-1)IOUT2=1mA Lx SW "L" ON Resistance 1 RLXL1 VIN2=VEN2=5.0V (*4) Lx SW "L" ON Resistance 2 RLXL2 VIN2=VEN2=3.6V (*4) Lx SW "H" Leak Current (*9) (*5) ILeakH Current Limit Output Voltage Temperature Characteristics △ VDCOUT/ (VDCOUT ・△topr) ILIM EN "H" Voltage VENH EN "L" Voltage VENL EN "H" Current IENH EN "L" Current IENL Soft Start Time tSS Latch Time tLAT Short Protection Threshold Voltage VSHORT CL Discharge RDCHG (*11) (*3) VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V IOUT2=30mA -40℃≦Topr≦85℃ VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to “H” level VDCOUT=0V, Applied voltage to VEN2, (*10) Voltage changes Lx to “L” level VIN2=VEN2=5.0V,VDCOUT=0V VIN2=5.0V,VEN2=0V,VDCOUT=0V When connected to external components, VEN2=0V→VIN2, IOUT2=1mA VIN2=VEN2=5.0V,VDCOUT=0.8×VDCOUT(T) (*6) Short Lx at 1Ω resistance Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at 1Ω resistance, DCOUT voltage which Lx becomes “ Lx=L ” within 1ms VIN2=5.0V,LX=5.0V,VEN2=0V,VDCOUT=open UNITS CIRCUIT - 0.1 - 0.1 μA ⑪ - 0.1 - 0.1 μA ⑪ - 0.32 0.50 ms ⑦ 1.0 - 20 ms ⑬ 0.675 0.900 1.150 V ⑬ 200 300 450 Ω ⑭ Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions. * The electrical characteristics above are when the other channel is in stop. 10/52 XCM524 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage 1.2MHz (mA) SETTING VOLTAGE MIN. TYP. MAX. VDCOUT(T)≦1.2V 140 180 240 1.2V<VDCOUT(T)≦1.75V 130 170 220 1.8V≦VDCOUT(T) 120 160 200 SETTING VOLTAGE MIN. TYP. MAX. 3.0MHz (mA) VDCOUT(T)≦1.2V 190 260 350 1.2V<VDCOUT(T)≦1.75V 180 240 300 1.8V≦VDCOUT(T) 170 220 270 ●Measuring Maximum IPFM Limit, VIN2 Voltage fOSC 1.2MHz 3.0MHz (C-1) VDCOUT(T)+0.5V VDCOUT(T)+1.0V Minimum operating voltage is 2.7V Although when VDCOUT(T)=1.2V, fOSC=1.2MHz, (C-1)=1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V. ●Soft-Start Time Chart (XCM524xC/ XCM524xD Series Only) PRODUCT SERIES XCM524AC XCM524BC XCM524xD fOSC OUTPUT VOLTAGE MIN. TYP. MAX. 1.2MHz 0.8V≦VDCOUT(T)<1.5V - 250μs 400μs 1.2MHz 1.5V≦VDCOUT(T)<1.8V - 320μs 500μs 1.2MHz 1.8V≦VDCOUT(T)<2.5V - 250μs 400μs 1.2MHz 2.5V≦VDCOUT(T)≦4.0V - 320μs 500μs 1.2MHz 0.8V≦VDCOUT(T)<2.5V - 250μs 400μs 1.2MHz 2.5V≦VDCOUT(T)≦4.0V - 320μs 500μs 3.0MHz 0.8V≦VDCOUT(T)<1.8V - 250μs 400μs 3.0MHz 1.8V≦VDCOUT(T)≦4.0V - 320μs 500μs ■TYPICAL APPLICATION CIRCUIT ● DC/DC BLOCK Rpull-up VDOUT VROUT Cd VIN CIN2 1 VDOUT 2 VSS VROUT 12 NC 11 3 Cd VIN1 10 4 VIN2 EN2 9 5 PGND AGND 8 DCOUT 7 6 Lx CL1 CIN1 CL2 CIN1 : 1μF (Ceramic) CL1 : 1μF (Ceramic) L : 1.5μH (NR3015 TAIIYO YUDEN) CIN2 : 4.7μF (Ceramic) CL2 : 10μF (Ceramic) EN2 ● DC/DC BLOCK VDCOUT L fOSC=3.0MHz fOSC =1.2MHz CIN1 : 1μF (Ceramic) CL1 : 1μF (Ceramic) L : 4.7μH (NR4018 TAIIYO YUDEN) CIN2 : 4.7μF (Ceramic) CL2 : 10μF (Ceramic) 11/52 XCM524 Series ■OPERATIONAL EXPLANATION ●Voltage Regulator BLOCK The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET which is connected to the VROUT pin is then driven by the subsequent output signal. The output voltage at the VROUT pin is controlled & stabilized by a system of negative feedback. ●Detector Function with the XC524 Series The series' detector function monitors the voltage divided by resistors R3 & R4, which are connected to the VROUT pin or the VIN1 pin or the VSEN pin, as well as monitoring the voltage of the internal reference voltage source via the comparator. The VDSEN pin has options. A 'High' or 'Low' signal level can be output from the VDOUT pin when the VD pin voltage level goes below the detect voltage. The VD output logic has options. As VDOUT is an open-drain N-channel output, a pull-up resistor of about 220kΩis needed to achieve a voltage output. Because of hysteresis at the detector function, output at the VDOUT pin will invert when the detect voltage level increases above the release voltage (105% of the detect voltage). By connecting the Cd pin to a capacitor, the XCM524 series can apply a delay time to VDOUT voltage when releasing voltage. The delay time can be calculated from the internal resistance, Rdelay (500kΩ fixed) and the value of Cd as per the following equation. Delay Time = Cd x Rdelay x 0.7 …(1) Delay Time Rdelay standard : 300 ~ 700kΩ TYP : 500kΩ Cd DELAY TIME (TYP.) DELAY TIME (MIN.~MAX.) 0.01μF 3.5 ms 2.1 ~ 4.9 ms 0.022μF 7.7 ms 4.62 ~ 10.8 ms 0.047μF 16.5 ms 9.87 ~ 23.0 ms 0.1μF 35 ms 21.0 ~ 49.0 ms 0.22μF 77 ms 46.2 ~ 108.0 ms 0.47μF 165 ms 98.7 ~ 230.0 ms 1μF 350 ms 210.0 ~ 490.0 ms * The release delay time values above are calculated by using the formula (1). *1: The release delay time is influenced by the delay capacitance Cd. <Low ESR Capacitor> With the XCM524 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation circuit is built-in. The output capacitor (CL1) should be connected as close to VROUT pin and VSS pin to obtain stable phase compensation. Also, please connect an input capacitor (CIN1) of 1.0μF between the VIN1 pin and the VSS pin. Output Capacitor Chart VROUT 0.9 ~1.2V 1.3 ~ 1.7V 1.8 ~ 5.1V CL1 ≧4.7μF ≧2.2μF ≧1.0μF <Current Limit, Short-Circuit Protection> The XCM524 series’ fold-back circuit operates as an output current limiter and a short protection of the output pin. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output pin is shorted to the VSS level, current flows about 50mA. 12/52 XCM524 Series ■OPERATIONAL EXPLANATION (Continued) ●DC/DC BLOCK The DC/DC block of the XCM524 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switch transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage from the DCOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage. <Reference Voltage Source> The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. <Ramp Wave Circuit> The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or 3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits. <Error Amplifier> The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer. <Current Limit> The current limiter circuit of the XCM524series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode. ① When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing. ② When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state. ③ At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over current state. ④ When the over current state is eliminated, the IC resumes its normal operation. The IC waits for the over current state to end by repeating the steps ① through ③. If an over current state continues for a few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the P-channel driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the VIN2 pin. The suspension mode does not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the XCM524 series can be set at 1050mA at typical. Besides, care must be taken when laying out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. Limit<#ms Limit<数ms Limit>#ms Limit>数ms Current Limit LEVEL ILx 0mA VDCOUT VSS Lx VEN2 Restart VIN2 13/52 XCM524 Series ■OPERATIONAL EXPLANATION (Continued) <Short-Circuit Protection> The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the DCOUT pin. In case where output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch the P-channel MOS driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN2 pin, or by restoring power supply to the VIN2 pin. When sharp load transient happens, a voltage drop at the DCOUT pin is propagated to FB point through CFB, as a result, short circuit protection may operate in the voltage higher than 1/2 VOUT voltage. <UVLO Circuit> When the VIN2 pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN2 pin voltage becomes 1.8V or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation. <PFM Switch Current> In the PFM control operation, until coil current reaches to a specified level (IPFM) , the IC keeps the P-ch MOSFET on. In this case, on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula. tON = L×IPFM/(VIN2-VDCOUT) →IPFM① <PFM duty Limit> In the PFM control operation, the PFM duty limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even when coil current doesn’t reach to IPFM. →IPFM② PFM Duty Limit IPFM① 14/52 IPFM② XCM524 Series ■OPERATIONAL EXPLANATION (Continued) <CL High Speed Discharge> XCM524 series can quickly discharge the electric charge at the output capacitor (CL2) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel MOS switch located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL2) as τ(τ=C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following formula. V = VDCOUT(T)×e -t /τor t = τLn ( VDCOUT(T)/V) V : Output voltage after discharge, VDCOUT(T) : Output voltage after discharge t: Discharge time τ: C×R C = Capacitance of Output capacitor(CL2) R = CL auto-discharge resistance Output Voltage ( Relative Value) 100 = Setting Voltage Value 100 90 CL=10uF 80 CL=20uF 70 CL=50uF 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 ■NOTE ON USE When the DC/DC converter and the VR are connected as VDCOUT=VIN1, the following points should be noted. 1. When larger value is used in DC/DC output capacitor CL2, the larger value is also used in CL1 as in proportional. Please be noted that when CL2 capacitance of the VR is getting large, an inrush current increases at VR start-up, DC/DC short circuit protection starts to operate, as a result, the IC may happen to stop. * VR inrush current IIN1 makes DC/DC short-circuit protection to DCOUT(1V/div) start, as a result, the IC may happen to stop. short-circuit protection to start 短絡保護動作 IIN2(500mA/div) The left waver forms are taken at CL1=10μ, CL2=10μF(in VROUT(1V/div) contrast to the recommended 1.0μF). EN2(5V/div) 50us/div 15/52 XCM524 Series ■NOTE ON USE (Continued) <VDR BLOCK> 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Especially, VIN1 and VSS wiring should be taken into consideration for reinforcement. 3. Please wire the input capacitor (CIN1) and the output capacitor (CL1) as close to the IC as possible. Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence. <DC/DC BLOCK> 1. The XCM524 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance. 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done. 3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple may increase. 4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty cycle may continue in several periods. 5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods. 6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula: Ipk =(VIN2-VDCOUT)×OnDuty/(2×L×fOSC) + IOUT2 L:Coil Inductance Value fOSC:Oscillation Frequency 7. When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver transistor turns off. During the time until it detects limit current and before the P-channel built-in transistor can be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components such as a coil. 8. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. 9. Use of the IC at voltages below the recommended voltage range may lead to instability. 10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device. 11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the P-channel MOS driver transistor. 16/52 XCM524 Series ■NOTE ON USE (Continued) 12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the current limit functions while the DCOUT pin is shorted to the GND pin, when P-channel MOSFET is ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when N- channel MOSFET switch is ON, there is almost no potential difference at both ends of the coil since the DCOUT pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to the device. ①Current flows into P-channel MOS driver transistor to reach the current limit (ILIM). ②The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-channel MOS driver transistor. ③Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. ④Lx oscillates very narrow pulses by the current limit for several ms. ⑤The circuit is latched, stopping its operation. # ms 13. In order to stabilize VIN1’s voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN2) be connected as close as possible to the VIN2 & VSS pins. 14. High step-down ratio and very light load may lead an intermittent oscillation. 15. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode. Please verify with actual parts. <External Components> 17/52 XCM524 Series ■NOTE ON USE (Continued) 16. Please note the L value of the coil. The IC may enter unstable operation if the combination of ambient temperature, setting voltage, oscillation frequency, and L value are not adequate. <External Components> ●The Range of L Value fOSC VDCOUT L Value 3.0MHz 0.8V≦VDCOUT≦4.0V 1.0μH∼2.2μH VDCOUT≦2.5V 3.3μH∼6.8μH 2.5V<VDCOUT 4.7μH∼6.8μH 1.2MHz *When a coil less value of 4.7μH is used at when a coil less value of 1.5μH is used at fOSC=3.0MHz, peak coil current more easily reach the current limit ILMI. In this case, it may happen that the IC can not provide 600mA output current. 17. Under input-output voltage differential is large, operating may become unstable at transition to continuous mode. Please verify with actual parts. <External Components> ●Instructions of pattern layouts 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. In order to stabilize VIN1・VIN2・DCOUT・VROUT voltage level, we recommend that a by-pass capacitor (CIN1・CIN2・CL1・ CL2) be connected as close as possible to the VIN1・VIN2・DCOUT・VROUT and GND・VSS pins. 3. Please mount each external component as close to the IC as possible. 4. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 5. VSS(AGND・PGND・VSS)ground wiring is recommended to get large area. The IC may goes into unstable operation as a result of VSS voltage level fluctuation during the switching. 6. This series’ internal driver transistors bring on heat because of the output current (IOUT) and ON resistance of driver transistors. ●Recommended Pattern Layout Front 18/52 Back XCM524 Series ■TEST CIRCUITS Outpur Capacitor VROUT 0.9 ~1.2V 1.3 ~ 1.7V 1.8V ~ 5.1V CL ≧4.7μF ≧2.2μF ≧1.0μF 19/52 XCM524 Series ■TEST CIRCUITS (Continued) 20/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS ●1ch:VDR Block (1)VR Output Voltage vs. VR Output Current XC6405 Series (VR:1.8V) VROUT=1.8V XC6405 Series (VR:1.8V) VROUT=1.8V VVIN=3.8V, IN1=3.8V CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 2.0 Topr= 25℃ Topr= - 40℃ Topr= 85℃ 1.5 1.0 0.5 CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 2.5 (V) Output OutputVoltage: Voltage V VROUT ROUT (V) Output Voltage VROUT Output Voltage: VROUT (V)(V) 2.5 0.0 2.0 1.5 1.0 VIN= 3.8V VIN= 2.1V VIN= 6.0V 0.5 0.0 0 100 200 300 400 500 600 700 0 100 OutputCurrent: Current IIROUT(mA) Output ROUT (mA) 200 300 400 500 600 700 Output Current IIROUT(mA) Output Current: ROUT (mA) XC6405VSeries (VR:2.5V) ROUT=2.5V XC6405 V Series (VR:2.5V) ROUT=2.5V V VIN=4.5V, IN1=4.5V CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 2.5 Topr= 25℃ Topr= - 40℃ Topr= 85℃ 2.0 1.5 1.0 0.5 CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 3.0 Output VROUT (V) (V) OutputVoltage: Voltage VROUT (V) Output Voltage VVROUT Output Voltage: ROUT (V) 3.0 0.0 2.5 2.0 VIN= 4.5V VIN= 2.8V VIN= 6.0V 1.5 1.0 0.5 0.0 0 100 200 300 400 500 600 700 0 Output Current: ROUT (mA) Output Current IIROUT(mA) 100 200 300 400 500 600 700 Output Current: Output Current IIROUT(mA) ROUT (mA) XC6405 V Series (VR:3.0V) ROUT=3.0V XC6405 V Series (VR:3.0V) ROUT=3.0V VIN=5.0V, V IN1=5.0V CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 4.0 3.5 3.5 Output Voltage: (V) ROUT (V) Output VoltageVVROUT (V) Output VoltageVVROUT Output Voltage: ROUT (V) CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 4.0 3.0 Topr= 25℃ Topr= - 40℃ Topr= 85℃ 2.5 2.0 1.5 1.0 0.5 0.0 3.0 2.5 2.0 1.5 VIN= 5.0V VIN= 6.0V 1.0 0.5 0.0 0 100 200 300 400 500 Output OutputCurrent: Current IIROUT(mA) ROUT (mA) 600 700 0 100 200 300 400 500 600 700 Output Current IIROUT(mA) Output Current: ROUT (mA) 21/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (1)VR Output Voltage vs. VR Output Current (Continued) XC6405 V Series (VR:5.0V) ROUT=5.0V 6.0 5.0 Topr= 25℃ Topr= - 40℃ Topr= 85℃ 4.0 3.0 2.0 1.0 0.0 100 200 300 400 500 600 4.0 VIN= 6.0V 3.0 2.0 1.0 700 0 100 200 300 400 OutputCurrent: Current IROUT (mA) Output IROUT (mA) XC6405 (VR:0.9V) VSeries ROUT=0.9V XC6405 Series (VR:0.9V) VROUT =0.9V 0.9 0.6 0.3 100 200 300 400 500 Output CurrentIROUT IROUT(mA) Output Current: (mA) 600 700 700 1.2 0.9 0.6 VIN= 2.0V VIN= 2.9V VIN= 6.0V 0.3 0.0 0.0 600 CIN=1.0 μ F (ceramic), CL=4.7 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) 1.5 (V) Output Voltage: Output Voltage V VROUT ROUT (V) Topr= 25℃ Topr= - 40℃ Topr= 85℃ 1.2 0 500 Output Current IIROUT(mA) Output Current: ROUT (mA) VIN=2.9V, VIN1=2.9V CIN=1.0 μ F (ceramic), CL=4.7 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) 1.5 Output VROUT (V) (V) OutputVoltage: Voltage VROUT 5.0 0.0 0 22/52 CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 6.0 Output VROUT (V) (V) OutputVoltage: Voltage VROUT (V) Output VoltageVVROUT Output Voltage: ROUT (V) ROUT=5.0V XC6405 V Series (VR:5.0V) VIN=6.0V, V IN1=6.0V CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 0 100 200 300 400 500 OutputCurrent: Current IIROUT(mA) Output (mA) ROUT 600 700 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2)VR Output Voltage vs. Input Voltage VROUT =0.9V XC6405 Series (VR:0.9V) Topr=25 Ta=25℃ ℃ CIN=1.0 CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) μ F (ceramic), CL=4.7 μ F (ceramic) IOUT=0mA 1mA 30mA 100mA 1.3 1.1 1.00 (V) Output VoltageVVROUT Output Voltage: ROUT (V) Output VoltageVVROUT Output Voltage: ROUT (V)(V) 1.5 0.9 0.7 0.5 0.5 1.0 1.5 2.0 InputVoltage: Voltage VIN Input V (V) (V) ROUT=0.9V XC6405VSeries (VR:0.9V) Topr=25Ta=25℃ ℃ CIN=1.0Cμ (ceramic), CL=4.7Cμ F (ceramic) =1.0μF(ceramic), IN1F L1=4.7μF(ceramic) IOUT=0mA 1mA 30mA 100mA 0.80 0.60 2.0 2.5 3.0 IN1 Topr=25 ℃ Ta=25℃ CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 1.6 IOUT=0mA 1mA 30mA 100mA 1.2 1.0 1.85 1.80 1.75 IOUT=0mA 1mA 30mA 100mA 1.70 1.65 1.3 1.8 InputVoltage: Voltage VIN Input VIN1(V) (V) 2.3 3.0 2.3 IOUT=0mA 1mA 30mA 100mA 1.9 4.5 5.0 5.5 6.0 Topr=25 Ta=25℃ ℃ CIN=1.0 F (ceramic), CL=1.0 CIN1μ =1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic) 2.60 Output (V) OutputVoltage: Voltage V VROUT ROUT (V) 2.5 2.1 4.0 ROUT=2.5V XC6405VSeries (VR:2.5V) Topr=25 Ta=25℃ ℃ CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 2.7 3.5 Input Voltage: Voltage VIN Input VIN1(V) (V) XC6405VSeries (VR:2.5V) ROUT=2.5V Output (V) ROUT (V) OutputVoltage: Voltage V VROUT 6.0 Topr=25 Ta=25℃ ℃ CIN=1.0 F (ceramic), CL=1.0 μ F (ceramic) CIN1μ =1.0μF(ceramic), CL1=1.0μF(ceramic) 1.90 Output Voltage VROUT Output Voltage: VROUT (V) (V) Output Voltage: (V) Output Voltage V VROUT ROUT (V) 1.8 1.4 5.0 VROUT=1.8V XC6405 Series (VR:1.8V) XC6405VSeries (VR:1.8V) ROUT=1.8V 2.0 4.0 Input Voltage VIN (V) Input Voltage: VIN1 (V) 2.55 2.50 IOUT=0mA 1mA 30mA 100mA 2.45 2.40 1.7 2.0 2.5 Input Voltage: Voltage VIN Input VIN1(V) (V) 3.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Input Voltage: Voltage VIN Input VIN1(V) (V) 23/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2)VR Output Voltage vs. Input Voltage (Continued) VROUT =3.0V XC6405 Series (VR:3.0V) Topr=25 Ta=25℃ ℃ CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 3.0 2.8 IOUT=0mA 1mA 30mA 100mA 2.6 3.10 Output VoltageVVROUT Output Voltage: ROUT (V)(V) OutputVoltage: VoltageVVROUT Output ROUT (V) (V) 3.2 XC6405 Series (VR:3.0V) VROUT =3.0V 2.4 2.2 2.5 3.0 Input Voltage: Voltage VIN Input VIN1(V) (V) 3.05 3.00 2.90 2.85 4.0 3.5 IOUT=0mA 1mA 30mA 100mA 4.6 4.4 4.2 4.5 24/52 5.0 Input (V) Input Voltage: Voltage V VIN IN1 (V) 5.10 Output VoltageVVROUT Output Voltage: ROUT (V)(V) Output Voltage: (V) (V) Output VoltageVROUT VROUT 4.8 5.5 4.5 5.0 5.5 6.0 InputVoltage: Voltage VIN Input VIN1(V) (V) VROUT =5.0V XC6405 Series (VR:5.0V) Topr=25 ℃ Ta=25℃ CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 5.0 IOUT=0mA 1mA 30mA 100mA 2.95 ROUT=5.0V XC6405 V Series (VR:5.0V) 5.2 Topr=25 ℃ Ta=25℃ CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) Topr=25 Ta=25℃ ℃ CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 5.05 5.00 IOUT=0mA 1mA 30mA 100mA 4.95 4.90 4.85 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Input VIN1(V) (V) Input Voltage: Voltage VIN 5.9 6.0 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3)Dropout Voltage vs. VR Output Current XC6405 V Series=1.8V (VR:1.8V) XC6405VSeries (VR:0.9V) ROUT=0.9V 1.4 Topr= 85℃ 25℃ - 40℃ 1.2 1 0.8 0.8 0.4 0.2 0 0 50 100 150 0 200 CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 150 200 Topr= 85℃ 25℃ - 40℃ 0.4 0.2 0 CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 1 Dropout voltage: Voltage Vdif Dropout Vdif(V) (V) (V) Dropout Voltage Dropout voltage:Vdif Vdif (V) 100 XC6405VSeries (VR:3.0V) ROUT=3.0V XC6405 Series (VR:2.5V) VROUT =2.5V 0.6 50 VR Output CurrentIROUT IROUT (mA) Output Current: (mA) Output Current: (mA) VR Output CurrentIROUT IROUT (mA) 0.8 Topr= 85℃ 25℃ --40℃ 40℃ 0.6 0.6 1 CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 1 Dropout voltage: Voltage Vdif Dropout Vdif(V) (V) 1.6 Dropout voltage: Voltage Vdif Dropout Vdif(V) (V) ROUT CIN=1.0 μ F (ceramic), CL=4.7 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) 0.8 Topr= 85℃ 25℃ - 40℃ 0.6 0.4 0.2 0 0 50 100 150 200 Output Current: IROUT (mA) VR Output Current IROUT (mA) 0 50 100 150 200 Output Current: IROUT (mA) VR Output Current IROUT (mA) XC6405VSeries (VR:5.0V) ROUT=5.0V CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) Dropout Vdif(V) (V) Dropout voltage: Voltage Vdif 1 0.8 0.6 Topr= 85℃ 25℃ - 40℃ 0.4 0.2 0 0 50 100 150 200 VR Output Current IROUT (mA) Output Current: IROUT (mA) 25/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4)Supply Current vs. Input Voltage VROUT =0.9V XC6405 Series (VR:0.9) 120 VROUT=1.8V XC6403 Series (VR:1.8V) CIN=1.0 μ F (ceramic), CL=4.7 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) 80 60 Topr= 85℃ 25℃ - 40℃ 40 20 0 0.0 1.0 2.0 3.0 4.0 120 SupplyCurrent: Current ISS Supply IDD (μA) (μA) SupplyCurrent: Current ISS Supply IDD (μA) (μA) 100 5.0 100 80 60 Topr= 85℃ 25℃ - 40℃ 40 20 0 0.0 6.0 Input VIN1(V) (V) InputVoltage: Voltage VIN V CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) 1.0 =2.5V CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) CIN=1.0 μ F (ceramic), CL=1.0 μ F (ceramic) 120 Supply DD (μA) SupplyCurrent: Current IISS (μA) 消費電流 Iss (μA) Supply Current ISS Supply Current: I(μA) DD (μA) CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 100 80 60 Topr= 85℃ 25℃ - 40℃ 40 20 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Input VIN1(V) (V) Input Voltage: Voltage VIN 120 CIN=1.0 CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) μ F (ceramic), CL=1.0 μ F (ceramic) 100 80 60 Topr= 85℃ 25℃ - 40℃ 40 20 0 0.0 1.0 2.0 3.0 4.0 InputVoltage: Voltage V VIN Input IN1 (V) 80 60 Topr= 85℃ 25℃ - 40℃ 40 20 0 0.0 1.0 2.0 3.0 4.0 Input VIN1 (V) (V) InputVoltage: Voltage VIN XC6405VSeries (VR:5.0V) ROUT=5.0V Supply IDD (μA) SupplyCurrent: Current ISS (μA) 6.0 XC6405VSeries (VR:3.0V) ROUT=3.0V 100 26/52 5.0 IN1 ROUT XC6405 Series (VR:2.5V) 120 2.0 3.0 4.0 Input Voltage VIN Input Voltage: V (V) (V) 5.0 6.0 5.0 6.0 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (5)VR Output Voltage vs. Ambient Temperature VROUT=1.8V XC6403 Series (VR:1.8V) VROUT=0.9V XC6405 Series (VR:0.9) VIN=2.0V V IN1=2.0V CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) CIN=1.0 μF (ceramic), CL=4.7 μF (ceramic) 2.00 1.95 1.00 (V) OutputVoltage: Voltage VROUT Output VROUT (V) (V) OutputVoltage: Voltage VROUT Output VROUT (V) 1.10 0.90 0.80 IOUT=0mA =30mA =100mA 0.70 0.60 1.90 1.85 1.80 1.75 IOUT=0mA =30mA =100mA 1.70 1.65 1.60 -50 -25 0 25 50 75 100 Operating TemperatureTa Topr (℃) Ambient Temperature: (℃) -50 -25 0 25 50 75 Operating Temperature Topr ( ℃) Ambient Temperature: Ta (℃) XC6405 Series (VR:2.5V) VROUT=2.5V XC6405 V Series (VR:3.0V) ROUT=3.0V VIN=3.5V VIN1=3.5V CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) CIN=1.0 μF (ceramic), CL=1.0 μF (ceramic) 2.70 100 VIN=4.0V V IN1=4.0V CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) CIN=1.0 μF (ceramic), CL=1.0 μF (ceramic) 3.20 2.65 3.15 IOUT=0mA =30mA =100mA 2.60 2.55 (V) OutputVoltage: Voltage VROUT Output VROUT (V) (V) OutputVoltage: Voltage VROUT Output VROUT (V) VVIN=2.8V IN1=2.8V CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) CIN=1.0 μF(ceramic), CL=1.0 μF (ceramic) 2.50 2.45 2.40 2.35 IOUT=0mA =30mA =100mA 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.30 -50 -25 0 25 50 75 Operating Temperature Ambient Temperature: TaTopr (℃)(℃) 100 -50 -25 0 25 50 75 100 Operating Temperature Ta Topr (℃) Ambient Temperature: (℃) XC6405 Series (VR:5.0V) VROUT=5.0V VIN=6.0V VIN1=6.0V CIN1=1.0μF(ceramic), CL1=1.0μF(ceramic) CIN=1.0 μF (ceramic), CL=1.0 μF (ceramic) 5.20 (V) Output Voltage: Voltage VROUT Output VROUT (V) 5.15 IOUT=0mA =30mA =100mA 5.10 5.05 5.00 4.95 4.90 4.85 4.80 -50 -25 0 25 50 75 100 Operating TemperatureTa Topr ( ℃) Ambient Temperature: (℃) 27/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (6)Supply Current vs. Ambient Temperature VROUT=0.9V VROUT=1.8V VIN1=2.8V Supply Current: IDD (μA) Supply Current: IDD (μA) VIN1=2.0V Ambient Temperature: Ta (℃) Ambient Temperature: Ta (℃) VROUT=2.5V VROUT=3.0V VIN1=4.0V Supply Current: IDD (μA) Supply Current: IDD (μA) VIN1=3.5V Ambient Temperature: Ta (℃) VROUT=5.0V Supply Current: IDD (μA) VIN1=6.0V Ambient Temperature: Ta (℃) 28/52 Ambient Temperature: Ta (℃) XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (7)Rdelay vs. Ambient Temperature (8)Output Noise Density Output Noise Density (μV/RootHz) 800 700 Rdelay (kΩ) 600 500 400 300 200 100 0 -50 -25 0 25 50 75 VIN1=4.0V VIN=4.0V CIN1=1.0μF(セラミック), CL1=1.0μF(ceramic) IOUT=10mA CL=10uF(セラミック) 10 1 0.1 0.01 100 0.1 1 Ambient Temperature: Ta(℃) 10 100 Frequency: (kHz) (9)Detect Voltage, Release Voltage vs. Ambient Temperature XC6405 Series (VD:2.7V) VDF=2.7V 2.20 2.15 2.10 2.05 VDR 2.00 1.95 VDF 1.90 -50 -25 0 25 50 75 OperatingTemperature: Temperature Topr ( O℃ C)) Ambient Ta (℃) 100 Detect Voltage, VDF,VDR (V) (V) Detect Voltage,Release ReleaseVoltage: Voltage VDF,VDR Detect Voltage, Release VDF,VDR (V) Detect Voltage, ReleaseVoltage: Voltage VDF,VDR (V) VDF=2.0V XC6405 Series (VD:2.0V) 2.90 2.85 2.80 VDR 2.75 2.70 VDF 2.65 2.60 -50 -25 3.75 VDR 3.70 3.65 3.60 VDF 3.50 -25 0 25 50 75 Ambient Temperature: Operating Temperature Ta Topr(℃) ( ℃) 100 Detect Voltage, VDF,VDR (V) (V) Detect Voltage,Release Release Voltage: Voltage VDF,VDR Detect Voltage, Release VDF,VDR (V) (V) Detect Voltage, ReleaseVoltage: Voltage VDF,VDR 3.80 -50 25 50 75 100 XC6405 V Series (VD:5.0V) DF=5.0V XC6405 Series (VD:3.6V) VDF=3.6V 3.55 0 Operating TemperatureTa Topr ( ℃) Ambient Temperature: (℃) 5.40 5.30 5.20 VDR 5.10 5.00 VDF 4.90 -50 -25 0 25 50 75 100 Ambient Temperature: Operating Temperature Ta Topr(℃) ( ℃) 29/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (10)VD N-channel Driver Transistor Output Current vs. VDS VDF=2.0V XC6405 Series (VD:2.0V) VDF=2.7V XC6405 Series (VD:2.7V) Ta=25℃ Topr=25 ℃ 8 14 Output IDOUT(mA) (mA) OutputCurrent: Current IOUT Output Current IOUT(mA) Output Current: IDOUT (mA) 7 VIN=2.0V 6 5 4 3 2 1 0 0.5 1 VIN=2.5V 10 8 VIN=2.0V 6 4 VIN=1.5V 2 VIN=1.0V 1.5 2 2.5 0 0.5 1 1.5 2 2.5 VDS VDS (V) (V) VDS VDS (V) XC6405VSeries (VD:3.6V) DF=3.6V XC6405 Series (VD:5.0V) VDF=5.0V Ta=25℃ Topr=25 ℃ 24 3 Ta=25℃ Topr=25 ℃ 32 28 18 Output IDOUT(mA) (mA) Output Current: Current IOUT 21 Output IDOUT(mA) (mA) Output Current: Current IOUT 12 0 0 VIN=3.0V 15 VIN=2.5V 12 9 VIN=2.0V 6 VIN=1.5V 3 VIN=4.5V 24 20 VIN=3.5V 16 VIN=2.5V 12 8 VIN=2.0V 4 VIN=1.5V 0 0 0 30/52 Ta=25℃ 16 1 2 VDS (V) VDS (V) 3 4 0 1 2 VDS VDS (V) (V) 3 4 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (11)VD N-channel Driver Transistor Output Current vs. Input Voltage XC6405 Series (VD:2.0V) XC6405 Series (VD:2.7V) VDF=2.7V VDF=2.0V 15 -40℃ VDS=0.5V Output Voltage Output Current:IOUT IDOUT(mA) (mA) Output IDOUT(mA) (mA) OutputCurrent: Current IOUT 8 6 25℃ 4 2 85℃ VDS=0.5V 12 -40℃ 25℃ 9 6 3 85℃ 0 0 0 0.5 1 1.5 2 0 2.5 1 3 4 Input Voltage: Voltage VIN Input VIN1(V) (V) InputVoltage: Voltage VIN Input VIN1(V) (V) XC6405 Series (VD:5.0V) XC6405 Series (VD:3.6V) VDF=3.6V VDF=5.0V 20 25 VDS=0.5V 16 OutputCurrent: Current IOUT Output IDOUT(mA) (mA) Output Current: Current IOUT Output IDOUT(mA) (mA) 2 -40℃ 12 25℃ 8 4 85℃ 0 VDS=0.5V 20 -40℃ 25℃ 15 10 5 85℃ 0 0 1 2 3 Input Voltage: Voltage VIN Input VIN1(V) (V) 4 0 1 2 3 4 5 6 InputVoltage: Voltage VIN Input VIN1(V) (V) 31/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (12)Input Transient Response VROUT=0.9V VROUT=0.9V IROUT=30mA, tr=tf=5.0μs CL1=4.7μF(ceramic), Ta=25℃ IROUT=1mA, tr=tf=5.0μs CL1=4.7μF(ceramic), Ta=25℃ Output Voltage Time (40μs /div) Time (40μs/div) VROUT=0.9V VROUT=1.8V Input Voltage: VIN1 (V) Output Voltage: VROUT (V) Output Voltage Time (40μs /div) Time (40μs /div) VROUT=1.8V VROUT=1.8V 出力電圧 Output Voltage Time (40μs /div) 32/52 Input Voltage: VIN1 (V) IROUT=100mA, tr=tf=5.0μs CL1=1.0μF(ceramic), Ta=25℃ Output 出力電圧 Voltage:VOUT(V) VROUT (V) Input Voltage: VIN1 (V) IROUT=30mA, tr=tf=5.0μs CL1=1.0μF(ceramic), Ta=25℃ Input入力電圧 Voltage Input Voltage 入力電圧 Input Voltage Output Voltage Time (40μs /div) Output Voltage: VROUT (V) Input Voltage: VIN1 (V) Input Voltage Output Voltage: VROUT (V) IROUT=1mA, tr=tf=5.0μs CL1=1.0μF(ceramic), Ta=25℃ IROUT=100mA, tr=tf=5.0μs CL1=4.7μF(ceramic), Ta=25℃ Output Voltage Output Voltage: VROUT (V) Input Voltage: VIN1 (V) Output Voltage Input Voltage Output Voltage: VROUT (V) Input Voltage: VIN1 (V) Input Voltage XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (12)Input Transient Response (Continued) 2.56 5 2.56 2.54 3 2.52 2 2.50 1 Output Voltage Output Voltage 0 2.48 4 2.52 2 2.50 6 2.56 5 2.54 入力電圧 Voltage InputInput Voltage 3 2 2.52 Output Voltage Output Voltage 2.50 1 2.48 0 2.46 Input VIN1(V) (V) InputVoltage: Voltage VIN 2.58 (V) Output VoltageVOUT(V) VOUT 出力電圧 出力電圧 VOUT(V) Output Voltage: V ROUT (V) Input VIN1 (V) (V) Input Voltage: Voltage VIN 4 4 Voltage InputInput Voltage 3.02 2 3.00 1 3.06 5 3.04 2 3.00 0 2.98 2.96 Time (40 μ sec/div) 時間(40μsec/div) Time (40μs /div) 3.04 3 6 3.02 OutputVoltage Voltage Output 3.06 Voltage InputInput Voltage 3.08 3 1 3.08 Output Voltage Output Voltage 2.98 2.96 Time μ sec/div) Time(40 (40μs /div) InputVoltage: Voltage VIN Input VIN1(V) (V) Input Voltage: VIN1(V) (V) Input Voltage VIN 5 VROUT =3.0V XC6405 Series (VR:3.0V) IOUT=1mA, tr=tf=5.0 IROUT=1mA, tr=tf=5.0μs μ sec, CL=1.0 μ F (ceramic), Topr=25 ℃ Ta=25℃ CL1=1.0μF(ceramic), 0 (V) Output Voltage V VOUT Output Voltage: ROUT (V) 6 2.46 4 Time μ sec/div) Time(40 (40μs /div) VROUT =3.0V XC6405 Series (VR:3.0V) IOUT=30mA, tr=tf=5.0 IROUT=30mA, tr=tf=5.0μs μ sec, CL=1.0 μ F (ceramic), Topr=25 ℃ CL1=1.0μF(ceramic), Ta=25℃ 2.48 Time (40 μsec/div) Time (40μs /div) VROUT =2.5V XC6405 Series (VR:2.5V) 5 Output Voltage Output Voltage 0 Time(40μsec/div) (40μs /div) Time 6 2.54 3 1 2.46 IOUT=100mA, tr=tf=5.0 μ sec, IROUT=100mA, tr=tf=5.0μs CL=1.0 μ F (ceramic), Topr=25 ℃ CL1=1.0μF(ceramic), Ta=25℃ Voltage InputInput Voltage Output Voltage VOUT Output Voltage: VROUT(V) (V) Input Voltage Input Voltage 6 VSeries ROUT=3.0V XC6405 (VR:3.0V) IROUT=100mA, tr=tf=5.0μs IOUT=100mA, tr=tf=5.0 μ sec, Ta=25℃ CL1=1.0μF(ceramic), CL=1.0 μ F (ceramic), Topr=25 ℃ 3.08 3.06 4 3.04 Voltage InputInput Voltage 3 2 3.02 Output Voltage Output Voltage 1 3.00 2.98 0 Output Voltage V VOUT (V) Output Voltage: ROUT (V) 4 2.58 IOUT=30mA, tr=tf=5.0 IROUT=30mA, tr=tf=5.0μs μ sec, CL=1.0 μ F (ceramic), Topr=25 ℃ 2.58 Ta=25℃ CL1=1.0μF(ceramic), Input VIN1 (V(V) ) Input Voltage: Voltage VIN 5 VROUTSeries =2.5V (VR:2.5V) XC6405 OutputVoltage: Voltage VVOUT (V) Output ROUT (V) Input (V) IN1 (V) InputVoltage: Voltage V VIN 6 IOUT=1mA, tr=tf=5.0 IROUT=1mA, tr=tf=5.0μs μ sec, CL=1.0 μ F (ceramic), Topr=25 ℃ Ta=25℃ CL1=1.0μF(ceramic), (V ) Output Voltage V VOUT Output Voltage: ROUT (V) VROUT =2.5V XC6405 Series (VR:2.5V) 2.96 Time (40 μ sec/div) Time (40μs /div) 33/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (12)Input Transient Response (Continued) ROUT=5.0V XC6405VSeries (VR:5.0V) 5.06 6 5.04 5 5.02 4 3 5.00 OutputVoltage Voltage Output 2 4.98 8 4.96 InputInput Voltage Voltage 5.06 6 5.04 5 5.02 4 OutputVoltage Voltage Output 3 5.00 4.98 2 4.96 Time(40 (40μs /div) Time μsec/div) 34/52 5.08 (V) Output Voltage VOUT 出力電圧 出力電圧 VOUT(V) VOUT(V) Output Voltage: V ROUT (V) Input VIN1(V) (V) InputVoltage: Voltage VIN 7 6 5 4 5.08 5.06 5.04 5.02 Output Voltage Voltage Output 3 5.00 4.98 4.96 時間(40μsec/div) Time (40μs /div) Time (40 μsec/div) VROUT =5.0V XC6405 Series (VR:5.0V) 8 Input Voltage Input Voltage 2 時間(40μsec/div) Time (40 μsec/div) Time (40μs /div) IOUT=100mA, tr=tf=5.0 IROUT=100mA, tr=tf=5.0μs μsec, CL=1.0 CL1=1.0μF(ceramic), Ta=25℃ μF (ceramic), Topr=25 ℃ 7 IOUT=30mA, tr=tf=5.0 IROUT=30mA, tr=tf=5.0μs μsec, CL=1.0 Ta=25℃ CL1=1.0μF(ceramic), μF (ceramic), Topr=25 ℃ Output Voltage VOUT (V) Output Voltage: VROUT (V) Input Voltage Input Voltage 5.08 Input Voltage: VIN1(V) (V) 入力電圧 VIN(V) Input Voltage VIN 7 XC6405 (VR:5.0V) VSeries ROUT=5.0V Output Voltage VOUT Output Voltage: VROUT(V) (V) 出力電圧 VOUT(V) Input VIN1 (V) (V) Input Voltage: Voltage VIN 8 IOUT=1mA, tr=tf=5.0 IROUT=1mA, tr=tf=5.0μs μsec, CL=1.0 Ta=25℃ CL1=1.0μF(ceramic), μF (ceramic), Topr=25 ℃ XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (13)Load Transient Response VROUT=0.9V VROUT=0.9V VIN1=2.0V, tr=tf=5.0μs, Ta=25℃ CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) Time (20μs /div) VROUT=0.9V VROUT=1.8V Output Current 時間(20μsec/div) 時間(40μsec/div) Time (20μs /div) Time (20μs /div) VROUT=1.8V VROUT=1.8V VIN1=2.8V, tr=tf=5.0μs CIN1=CL1=1.0μF(ceramic), Ta=25℃ Output Voltage Output Voltage Output Current Time (20μs /div) Output Voltage: VROUT (V) VIN1=2.8V, tr=tf=5.0μs CIN1=CL1=1.0μF(ceramic), Ta=25℃ Output Current Output Current: IROUT (mA) Output Voltage Output Voltage: VROUT (V) Output Current 出力電圧 VOUT (V)(mA) Output Current: IROUT 入力電圧 Output Voltage Output Current: IROUT (mA) VIN1=2.8V, tr=tf=5.0μs CIN1=CL1=1.0μF(ceramic), Ta=25℃ Output Current: IROUT (mA) VIN(V) Output入力電圧 Voltage: VROUT (V) Output Current Time (20μs /div) VIN1=2.0V, tr=tf=5.0μsec, Ta=25℃ CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) Output Voltage: VROUT (V) Output Voltage Output Current: IROUT (mA) Output Voltage: VROUT (V) 入力電圧 VIN(V) Output Current Output Current: IROUT (mA) Output Voltage: VROUT (V) Output Voltage VIN1=2.0V, tr=tf=5.0μs, Ta=25℃ CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic) Time (20μs /div) 35/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (13)Load Transient Response (Continued) 2.45 150 100 Output Current Output Current 2.35 50 2.30 250 2.50 200 2.45 150 2.40 100 2.35 OutputCurrent Current Output 50 OutputCurrent: Current IOUT Output IROUT(mA) (mA) 200 VROUT(VR:2.5V) =2.5V XC6405 Series VIN1=3.5V, tr=tf=5.0μs VIN=2.5V, tr=tf=5.0 μ sec Ta=25℃ CIN1=CL1=1.0μF(ceramic), CIN=CL=1.0 μ F (ceramic), Topr=25 ℃ Output Voltage Output Voltage Output VROUT(V) (V) Output Voltage: Voltage VOUT Output Voltage Output Voltage 2.50 2.40 2.55 250 (mA) Output Current IIOUT Output Current: ROUT (mA) Output VROUT(V) (V) OutputVoltage: Voltage VOUT 2.55 VROUT =2.5V XC6405 Series (VR:2.5V) VIN1=3.5V, tr=tf=5.0μs VIN=2.5V, tr=tf=5.0 μ sec Ta=25℃ CIN1=CL1=1.0μF(ceramic), CIN=CL=1.0 μ F (ceramic), Topr=25 ℃ 0 Time(20 (20μs /div) Time μ sec/div) 2.30 0 Time (20μ sec/div) Time (20μs /div) XC6405VSeries (VR:2.5V) ROUT=2.5V 250 3.05 2.50 200 3.00 200 2.45 150 2.95 150 2.40 100 OutputCurrent Current Output 2.30 50 Output VROUT(V) (V) OutputVoltage: Voltage VOUT 2.35 Output OutputVoltage Voltage Output CurrentIIOUT (mA) Output Current: ROUT (mA) Output Voltage: ROUT (V) Output VoltageVVOUT (V) Output Voltage Output Voltage 2.90 2.85 XC6405VSeries (VR:3.0V) ROUT=3.0V 2.95 150 2.90 100 2.80 50 0 Time (20μs /div) Time (20μsec/div) Output VROUT(V) (V) OutputVoltage: Voltage VOUT 200 Output IROUT (mA) (mA) OutputCurrent: Current IOUT Output Voltage: ROUT (V) Output VoltageVVOUT (V) Output Voltage Output Voltage OutputCurrent Current Output 3.05 250 3.00 2.85 100 50 0 Time (20 μ sec/div) Time (20μs /div) Time (20μsec/div) Time (20μs /div) 3.05 Output Current Current Output 2.80 0 VIN=4.0V, tr=tf=5.0 VIN1=4.0V, tr=tf=5.0μs μ sec Ta=25℃ CIN1=CL1=1.0μF(ceramic), CIN=CL=1.0 μ F (ceramic), Topr=25 ℃ 250 (mA) Output Current IOUT Output Current: IROUT (mA) 2.55 36/52 XC6405VSeries (VR:3.0V) ROUT=3.0V VIN=4.0V, tr=tf=5.0 VIN1=4.0V, tr=tf=5.0μs μ sec Ta=25℃ CIN1=CL1=1.0μF(ceramic), CIN=CL=1.0 μ F (ceramic), Topr=25 ℃ 3.00 VROUT(VR:3.0V) =3.0V XC6405 Series VIN1=4.0V, tr=tf=5.0μs VIN=4.0V, tr=tf=5.0 μ sec Ta=25℃ CIN1=CL1=1.0μF(ceramic), CIN=CL=1.0 μ F (ceramic), Topr=25 ℃ OutputVoltage Voltage Output 250 200 2.95 150 2.90 100 2.85 OutputCurrent Current Output 2.80 50 0 Time(20 (20μs /div) Time μ sec/div) Output Current: (mA) Output Current IIOUT ROUT (mA) VIN1=3.5V, tr=tf=5.0μs VIN=2.5V, tr=tf=5.0 μ sec Ta=25℃ CIN1=CL1=1.0μF(ceramic), CIN=CL=1.0 μ F (ceramic), Topr=25 ℃ XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (13)Load Transient Response (Continued) Output Voltage Output Voltage Output Current Time (20μs /div) Output Voltage: VROUT (V) VIN1=6.0V, tr=tf=5.0μs CIN1=CL1=1.0μF(ceramic), Ta=25℃ Output Current Output Current: IROUT (mA) VROUT=5.0V VIN1=6.0V, tr=tf=5.0μs CIN1=CL1=1.0μF(ceramic), Ta=25℃ Output Current: IROUT (mA) Output Voltage: VROUT (V) VROUT=5.0V Time (20μs /div) VROUT=5.0V Output Voltage: VROUT (V) Output Voltage Output Current Output Current: IROUT (mA) VIN1=6.0V, tr=tf=5.0μs CIN1=CL1=1.0μF(ceramic), Ta=25℃ Time (20μs /div) 37/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (14)Ripple Rejection Rate VROUT=0.9V VROUT=1.8V VIN1VIN=2.5V =2.25VDC+0.5Vp-pAC DC+0.5Vp-PAC IROUT=50mA, CL1=1.0μF(ceramic) IOUT=50mA CL=4.7μF(セラミック) 90 ripple rejection ratio: リップル除 去率RR RR(dB) ( 80 リップル除去 率RR RR(dB) ( ripple rejection ratio: VIN1=2.8VDC+1.0Vp-pAC VIN=2.8V DC+0.5Vp-PAC CL1 =1.0μF(ceramic) IROUT=50mA, IOUT=50mA CL=1.0μF(セラミック) 90 70 60 50 40 30 20 10 0 0.01 0.1 1 10 リップル周波数 f (kHz) リップル周 波数 ff (kHz) Ripple Frequency: (kHz) 100 80 70 60 50 40 30 20 10 0 0.01 VROUT=2.5V IOUT=50mA CL=1.0μF(セラミック) 90 ripple リップル除 rejection ratio: 去率RR RR ((dB) ripple rejection ratio: リップル除 去率RR RR(dB) ( 80 70 60 50 40 30 20 10 0 0.01 リップル周波数 f (kHz) 0.1 1 10 リップル 周 波数 f (kHz) Ripple Frequency: f (kHz) 100 VIN1=5.75VDC+0.5Vp-pAC VIN=5.75V DC+0.5Vp-PAC =50mA, C IROUT L1=1.0μF(ceramic) IOUT=50mA CL=1.0μF(セラミック) ripple rejection RRRR (dB) リップルratio: 除去率 ( 80 70 60 50 40 30 20 10 0 0.01 38/52 リップル周波数 f (kHz) 0.1 1 10 リップル周波数 f (kHz) Ripple Frequency: f (kHz) V IN1=4.0VDC+1.0Vp-pAC VIN=4.0V DC+0.5Vp-PAC CL1CL=1.0μF(セラミック) =1.0μF(ceramic) IROUT=50mA, IOUT=50mA 80 70 60 50 40 30 20 10 0 0.01 リップル周波数 f (kHz) 0.1 1 10 リップル周 波数 ff (kHz) Ripple Frequency: (kHz) VROUT=5.0V 90 100 VROUT=3.0V VIN1=3.5VDC+1.0Vp-pAC VIN=3.5V DC+0.5Vp-PAC IROUT=50mA, CL1=1.0μF(ceramic) 90 0.1 1 10 リップル周波数 f (kHz) リップル周 波数 f (kHz) Ripple Frequency: f (kHz) 100 100 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15)Input Voltage Rising Response Time VROUT=0.9V 5 4 Inpit Voltage 0 3 -2 2 1 -6 0 2 -2 -4 -4 -6 4 5 3 2 Output Voltage 1 0 3 -2 2 -4 Output Voltage VROUT=1.8V VROUT=1.8V IROUT=100mA, tr= 5.0μs VIN1=0→2.8V, CL1=1.0μF(ceramic) 5 4 0 3 -2 2 Output Voltage 1 0 -6 Time (20μs/div) 4 Input Voltage: VIN1 (V) Inpit Voltage 1 0 Time (20μs/div) Output Voltage: VROUT (V) Input Voltage: VIN1 (V) 4 -6 0 5 Inpit Voltage Time (20μs/div) 4 -4 IROUT=1mA, tr= 5.0μs VIN1=0→2.8V, CL1=1.0μF(ceramic) 2 IROUT=30mA, tr= 5.0μs VIN1=0→2.8V, CL1=1.0μF(ceramic) 2 0 Output Voltage: VROUT (V) -2 1 VROUT=1.8V Input Voltage: VIN1 (V) 0 2 Output Voltage Time (20μs/div) 4 Inpit Voltage 3 -6 Output Voltage: VROUT (V) Input Voltage: VIN1 (V) 2 4 0 VROUT=0.9V 4 5 Inpit Voltage Time (20μs/div) IROUT=100mA, tr= 5.0μs VIN1=0→2.0V, CL1=4.7μF(ceramic) IROUT=30mA, tr= 5.0μs VIN1=0→2.0V, CL1=4.7μF(ceramic) 5 2 4 Inpit Voltage 0 3 -2 2 -4 Output Voltage -6 1 Output Voltage: VROUT (V) -4 Output Voltage Input Voltage: VIN1 (V) 2 4 Output Voltage: VROUT (V) Input Voltage: VIN1 (V) 4 IROUT=1mA, tr= 5.0μs VIN1=0→2.0V, CL1=4.7μF(ceramic) Output Voltage: VROUT (V) VROUT=0.9V 0 Time (20μs/div) 39/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15)Input Voltage Rising Response Time (Continued) XC6405 Series (VR:2.5V) XC6405 Series (VR:2.5V) VROUT=2.5V 4 Input Voltage Inpit Voltage 3 -3 2 Output Voltage Output Voltage -5 1 0 3 1 -3 -5 1 -5 3 3 InputVoltage Voltage Inpit 1 -1 OutputVoltage Voltage Output -3 Input Voltage Inpit Voltage 2 -5 0 ROUT 5 5 4 3 OutputVoltage Voltage Output 4 1 XC6405VSeries=3.0V (VR:3.0V) IOUT=30mA, μ sec IROUT=30mA,tr=5.0 tr= 5.0μs → 4.0V, CL=1.0μ F (ceramic) VVIN=0 IN1=0→4.0V, CL1=1.0μF(ceramic) 5 3 XC6405 V Series (VR:3.0V) ROUT=3.0V 2 -3 1 -5 0 Time (20(20μs/div) μ sec/div) Time 40/52 IROUT=1mA, tr= μ 5.0μs IOUT=1mA, tr=5.0 sec VIN=0 VIN1=0→4.0V, CL1=1.0μF(ceramic) → 4.0V, CL=1.0 μ F (ceramic) Time (20(20μs/div) μ sec/div) Time 1 -1 0 Time (20(20μs/div) μ sec/div) Time InputVoltage: Voltage VIN Input VIN1(V) (V) Input Voltage VIN Input Voltage: VIN1(V) (V) 5 0 Input Voltage VIN Input Voltage: VIN1(V) (V) 2 Output Voltage Output Voltage Output Voltage: VROUT(V) (V) Output Voltage VOUT 3 -3 5 5 4 -1 1 XC6405 Series (VR:3.0V) VROUT =3.0V Input Voltage Inpit Voltage 1 2 OutputVoltage Voltage Output Time (20(20μs/div) μ sec/div) Time Output Voltage: (V) ROUT (V) Output VoltageV VOUT VoltageVVIN(V) (V) InputInput Voltage: IN1 3 3 -1 XC6405 Series (VR:2.5V) VROUT =2.5V 5 4 InputVoltage Voltage Inpit Time μ sec/div) Time(20 (20μs/div) IOUT=100mA, μ sec IROUT=100mA,tr=5.0 tr= 5.0μs → 3.5V, CL=4.7μ F (ceramic) VVIN=0 IN1=0→3.5V, CL1=1.0μF(ceramic) 5 Output Voltage: (V) ROUT (V) Output Voltage V VOUT -1 IOUT=30mA, μ sec IROUT=30mA,tr=5.0 tr= 5.0μs → 3.5V,CCL=4.7 μ F (ceramic) VVIN=0 IN1=0→3.5V, L1=1.0μF(ceramic) 3 IOUT=100mA, μ sec IROUT=100mA,tr=5.0 tr= 5.0μs → 4.0V,CCL=1.0 μ F (ceramic) VVIN=0 IN1=0→4.0V, L1=1.0μF(ceramic) Input Voltage Inpit Voltage 1 5 4 3 -1 2 OutputVoltage Voltage Output -3 1 -5 0 Time (20(20μs/div) Time μ sec/div) Output Voltage: ROUT (V) (V) Output VoltageVVOUT 1 Input VoltageVVIN (V) Input Voltage: IN1 (V) 3 5 5 (V) Output VoltageV VOUT (V) Output Voltage: ROUT Input VIN1(V) (V) InputVoltage: Voltage VIN 5 IOUT=1mA, tr=5.0 IROUT=1mA, tr= 5.0μs μ sec CL=4.7 ceramic) VVIN=0 → 3.5V, C μ F ((ceramic) IN1=0→3.5V, L1=1.0μF OutputVoltage: Voltage VOUT Output VROUT(V) (V) VROUT=2.5V XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15)Input Voltage Rising Response Time (Continued) XC6405 Series (VR:5.0V) VROUT =5.0V 8 3 6 1 4 -1 Output Voltage -3 2 7 0 5 IOUT=30mA, tr=5.0 IROUT=30mA, tr= 5.0μs μ sec CL=1.0 VVIN=0 → 6.0V, C μ F (ceramic) IN1=0→6.0V, L1=1.0μF(ceramic) Input Inpit Voltage 8 3 6 1 4 -1 2 Output Voltage Output Voltage -3 Time (20(20μs/div) Time μ sec/div) 10 Output VROUT(V) (V) OutputVoltage: Voltage VOUT InputVoltage Voltage Inpit 10 Input Voltage VIN Input Voltage: VIN1(V) (V) 5 XC6405 Series (VR:5.0V) VROUT =5.0V OutputVoltage: Voltage VOUT Output VROUT(V) (V) Input VIN1(V) (V) InputVoltage: Voltage VIN 7 IOUT=1mA, tr=5.0 sec IROUT=1mA, tr= μ 5.0μs VIN=0 CL1=1.0μF(ceramic) VIN1=0→6.0V, → 6.0V, CL=1.0 μ F (ceramic) 0 Time (20(20μs/div) μ sec/div) Time XC6405 Series VROUT(VR:5.0V) =5.0V 5 Input Inpit Voltage Voltage 3 1 10 8 6 Output Voltage Voltage Output -1 4 2 -3 OutputVoltage: Voltage VOUT Output VROUT(V) (V) Input VIN1(V) (V) InputVoltage: Voltage VIN 7 IOUT=100mA, tr=5.0 sec IROUT=100mA, tr= μ 5.0μs VIN=0 VIN1=0→6.0V, CL1=1.0μF(ceramic) → 6.0V, CL=1.0 μ F (ceramic) 0 Time (20(20μs/div) μ sec/div) Time 41/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●2ch:DC/DC Convertor Block (1) Efficiency vs. Output Current VDCOUT=1.8V, fOSC=1.2MHz VDCOUT=1.8V, fOSC=3.0MHz L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF 80 70 60 100 90 Efficency: EFFI (%) Efficency:EFFI (%) 100 PWM/PFM Automatic Sw itching Control 90 V IN2= 4.2V 3.6V 50 40 30 20 PWM Control V IN2= 4.2V 3.6V 10 0 L=1.5μH(NR3015) CIN2=4.7μF CL2 =10μF PWM/PFM Automatic Sw itching Control 80 70 60 V IN2= 4.2V 3.6V 50 40 30 20 PWM Control V IN2= 4.2V 3.6V 10 0 0.1 1 10 100 1000 0.1 Output Current: IOUT2 (mA) 1 10 100 1000 Output Current: IOUT 2 (mA) (2) Output Voltage vs. Output Current VDCOUT=1.8V, fOSC=1.2MHz 2.0 PWM/PFM Automatic Sw itching Control V IN2=4.2V,3.6V 1.9 1.8 1.7 PWM Control 1.6 L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF 2.1 Output Voltage: V DCOUT (V) 2.1 Output Voltage: V DCOUT (V) VDCOUT=1.8V, fOSC=3.0MHz L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF 1.5 2.0 PWM/PFM Automatic Sw itching Control V IN2=4.2V,3.6V 1.9 1.8 1.7 PWM Control 1.6 1.5 0.1 1 10 100 1000 0.1 Output Current: IOUT2 (mA) 1 10 100 1000 Output Current: IOUT2 (mA) (3) Ripple Voltage vs. Output Current VDCOUT=1.8V, fOSC=1.2MHz 80 60 PWM Control V IN2=4.2V,3.6V 40 PWM/PFM Automatic Sw itching Control V IN2=4.2V 3.6V 20 0 80 PWM/PFM Automatic PWM Control V IN2=4.2V,3.6V Sw itching Control V IN2=4.2V 3.6V 60 40 20 0 0.1 1 10 100 Output Current: IOUT2 (mA) 42/52 L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF 100 Ripple Voltage: Vr (mV) 100 Ripple Voltage: Vr (mV) VDCOUT=1.8V, fOSC=3.0MHz L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF 1000 0.1 1 10 100 Output Current: IOUT 2 (mA) 1000 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4) Oscillation Frequency vs. Ambient Temperature VDCOUT=1.8V, fOSC=3.0MHz L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF 1.5 1.4 1.3 V IN2=3.6V 1.2 1.1 1.0 0.9 0.8 -50 -25 0 25 50 75 Oscillation Frequency: fOSC (MHz) Oscillation Frequency: fOSC (MHz) VDCOUT=1.8V, fOSC=1.2MHz L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 V IN2=3.6V 2.7 2.6 2.5 -50 100 -25 0 25 50 75 100 Ambient Temperature: Ta ( ℃) Ambient Temperature: Ta ( ℃) (5) Supply Current vs. Ambient Temperature VDCOUT=1.8V, fOSC=1.2MHz VDCOUT=1.8V, fOSC=3.0MHz 40 40 35 V IN2=6.0V Supply Current: IDD (μA) Supply Current: IDD (μA) 35 30 V IN2=4.0V 25 20 15 10 5 0 -50 -25 0 25 50 75 V IN2=4.0V 30 25 20 15 10 5 0 -50 100 Ambient Temperature: Ta (℃) 0 25 50 75 100 (7) UVLO Voltage vs. Ambient Temperature VDCOUT=1.8V, fOSC=3.0MHz VDCOUT=1.8V, fOSC=3.0MHz 2.1 1.8 2.0 1.5 UVLO Voltage: UVLO (V) Output Voltage: V DCOUT (V) -25 Ambient Temperature: Ta (℃) (6) Output Voltage vs. Ambient Temperature 1.9 V IN2=6.0V V IN2=3.6V 1.8 1.7 1.6 1.5 EN2=V IN2 1.2 0.9 0.6 0.3 0.0 -50 -25 0 25 50 75 Ambient Temperature: Ta ( ℃) 100 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) 43/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (8) EN "H" Voltage vs. Ambient Temperature (9) EN" L" Voltage vs. Ambient Temperature VDCOUT=1.8V, fOSC=3.0MHz 1.0 0.9 1.0 0.9 0.8 0.7 0.6 EN "L" Voltage: VENL (V) EN "H" Voltage: VENH (V) VDCOUT=1.8V, fOSC=3.0MHz V IN2=5.0V 0.5 0.4 0.3 0.2 V IN2=3.6V 0.1 0.0 0.8 0.7 V IN2=5.0V 0.6 0.5 0.4 0.3 0.2 V IN2=3.6V 0.1 0.0 -50 -25 0 25 50 75 100 -50 Ambient Temperature: Ta (℃) -25 0 25 50 75 100 Ambient Temperature: Ta (℃) (10) Soft Start Time vs. Ambient Temperature VDCOUT=1.8V, fOSC=3.0MHz VDCOUT=1.8V, fOSC=1.2MHz L=4.7μH(NR4018) CIN2 =4.7μF CL2=10μF 4 3 2 V IN2=3.6V 1 0 -50 -25 0 25 50 75 100 (11) "P-channel/N-channel" Driver on Resistance vs. Input Voltage Lx SW ON Resistance: RLxH,RLxL (Ω) VDCOUT=1.8V, fOSC=3.0MHz 1.0 Nch on Resistance 0.7 0.6 0.5 0.4 0.3 0.2 Pch on Resistance 0.1 0.0 0 1 2 3 4 Input Voltage: V IN2 (V) 44/52 5 4 3 2 V IN2=3.6V 1 0 -50 -25 0 25 50 75 Ambient Temperature: Ta (℃) Ambient Temperature: Ta (℃) 0.9 0.8 L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF 5 Soft Start Time: tSS (ms) Soft Start Time: tSS (ms) 5 6 100 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (12) XCM524xC/ XCM524xD Series Rise Wave Form VDCOUT=1.2V, fOSC=1.2MHz VDCOUT=3.3V, fOSC=3.0MHz L=4.7μH(NR4018) CIN2=4.7μF CL2=10μF L=1.5μH(NR3015) CIN2=4.7μF CL2=10μF VIN2=5.0V IOUT2=1.0mA VIN2=5.0V IOUT2=1.0mA VDCOUT:1.0V/div VDCOUT:0.5V/div EN2:0.0V⇒1.0V EN2:0.0V⇒1.0V 100μs/div 100μs/div (13) XCM524xC/ XCM524xD Series Soft-Start Time vs. Ambient Temperature VDCOUT=1.2V, fOSC=1.2MHz 500 400 300 200 100 0 -50 V IN2=5.0V IOUT 2=1.0mA -25 0 25 50 75 100 400 300 200 100 0 -50 V IN2=5.0V IOUT2=1.0mA -25 0 25 50 75 100 Ambient Temperature: Ta (℃) Ambient Temperature: Ta (℃) (14) XCM524xC/ XCM524xD Series L=1.5μH(NR3015) CIN2=4.7μF CL2 =10μF 500 Soft Start Time: tSS (μs) Soft Start Time: tSS (μs) VDCOUT=3.3V, fOSC=3.0MHz L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF CL Discharge Resistance vs. Ambient Temperature CL Discharge Resistance: Rdischg(Ω) VDCOUT=3.3V, fOSC=3.0MHz 600 VIN2=6.0V 500 VIN2=4.0V 400 300 200 100 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ( ℃) 45/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response VDCOUT=1.2V, fOSC=1.2MHz(PWM/PFM Automatic Switching Control) L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃ VIN2=3.6V, EN2=VIN2 IOUT2=1mA → 100mA IOUT2=1mA → 300mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 50μs/div 50μs/div IOUT2=100mA → 1mA IOUT2=300mA → 1mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 200μs/div 46/52 200μs/div XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response (Continued) VDCOUT=1.2V, fOSC=1.2MHz (PWM Control) L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃ VIN2=3.6V, EN2=VIN2 IOUT2=1mA → 100mA IOUT2=1mA → 300mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 50μs/div 50μs/div IOUT2=100mA → 1mA IOUT2=300mA → 1mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 200μs/div 200μs/div 47/52 XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response (Continued) VDCOUT=1.8V, fOSC=3.0MHz (PWM/PFM Automatic Switching Control) L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL2=10μF(ceramic),Ta=25℃ VIN2=3.6V, EN=VIN2 IOUT2=1mA → 100mA IOUT2=1mA → 300mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 50μs/div 50μs/div IOUT2=100mA → 1mA IOUT2=300mA → 1mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 200μs/div 48/52 200μs/div XCM524 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response (Continued) VDCOUT=1.8V, fOSC=3.0MHz (PWM Control) L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃ VIN2=3.6V, EN2=VIN2 IOUT2=1mA → 100mA IOUT2=1mA → 300mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 50μs/div 50μs/div IOUT2=100mA → 1mA IOUT2=300mA → 1mA 1ch : IOUT2 1ch : IOUT2 2ch: 2ch: VDCOUT (50mV/div) VDCOUT (50mV/div) 200μs/div 200μs/div 49/52 XCM524 Series ■PACKAGING INFORMATION ●USP-12B01 MAX0.6 2.3±0.08 2.8±0.08 (0.4) (0.4) (0.4) (0.4) (0.4) (0.15) (0.25) 2 3 4 5 6 8 7 0.4±0.1 1 0.25±0.1 1.3±0.1 0.25±0.1 0.25± 0.2± 0.2± 0.2± 0.2± 0.2± 0.05 0.05 0.05 0.05 0.05 0.05 12 11 10 9 1.2±0.1 1.2±0.1 0.7±0.05 0.7±0.05 ●USP-12B01 Reference Pattern Layout 1 .35 1 .35 0 .90 0 .90 0 .45 0 .65 0 .65 0 .25 0 .25 0 .50 0 .20 1 .30 1 .30 0 .95 0 .95 0 .55 0 .55 0 .25 0 .25 0 .35 0 .60 1 .10 1 .55 0 .60 1 .10 1 .55 1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .05 0 .15 0 .05 0 .05 0 .20 0 .05 0 .10 0 .10 1 .30 1 .60 0 .20 50/52 0 .35 1 .30 1 .60 1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .25 0 .30 0 .025 0 .025 0 .025 0 .025 0 .45 ●USP-12B01 Reference Metal Mask Design 0 .15 0 .40 0 .15 XCM524 Series ■PACKAGING INFORMATION (Continued) ● USP-12B01 Power Dissipation Power dissipation data for the USP-12B01 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition. 1. Measurement Condition (Reference data) Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free Board: Dimensions 40 x 40 mm (1600 mm in one side) 2 st 1 Layer: Land and a wiring pattern nd st rd nd 2 Layer: Connecting to approximate 50% of the 1 heat sink 3 Layer: Connecting to approximate 50% of the 2 heat sink th 4 Layer: Noting Material: Glass Epoxy (FR-4) Thickness: 1.6 mm Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole) 2. Evaluation Board (Unit: mm) Power Dissipation vs. Ambient Temperature ●Only 1ch heating, Board Mount (Tj max = 125℃) Ambient Temperature(℃) Power Dissipation Pd(mW) 25 800 85 320 Thermal Resistance (℃/W) 125.00 Power Dissipation: Pd (mW) 許容損失Pd(mW) Pd-Ta特性グラフ Pd vs. Ta 1000 800 600 400 200 0 25 45 65 85 105 125 周囲温度Ta(℃) Ambient Temperature: Ta (℃) ●Both 2ch heating same time, Board Mount (Tj max = 125℃) Ambient Temperature(℃) Power Dissipation Pd(mW) 25 600 85 240 Thermal Resistance (℃/W) 166.67 Power許容損失Pd(mW) Dissipation: Pd (mW) Pd-Ta特性グラフ Pd vs. Ta 1000 800 600 400 200 0 25 45 65 85 周囲温度Ta(℃) Ambient Temperature: Ta (℃) 105 125 51/52 XCM524 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 52/52