ETC XE88LC01

Data Sheet XE88LC01
Data Acquisition Microcontroller
XE88LC01 Sensing Machine
16 + 10 bit Data Acquisition
Ultra Low-Power Microcontroller
General Description
Key product Features
The XE88LC01 is an ultra low-power microcontroller unit
(MCU) associated with a versatile analog-to-digital converter (ADC) including a programmable offset and gain
pre-amplifier (PGA) .
•
•
•
•
•
XE88LC01 is available with on chip Multiple-Time-Programmable (MTP) Flash program memory and ROM.
Applications
•
•
•
•
•
Internet connected appliances
Portable, battery operated instruments
Piezoresistive bridge sensors
HVAC control
Motor control
Low-power, high resolution ZoomingADC
Low-voltage low-power controller operation
•
•
•
•
•
•
0.5 to 1000 gain with offset cancellation
up to 16 bits ADC
up to 13 input multiplexer
2 MIPS at 2.4 V to 5.5 V supply voltage
300 µA at 1 MIPS, 2.4 V to 5.5 V supply
22 kByte (8 kInstruction) MTP, 520 Byte RAM
RC and crystal oscillators
5 reset, 18 interrupt, 8 event sources
100 years MTP Flash retention at 55°C
Ordering Information
Reference
XE88LC01MI000
XE88LC01MI027
XE88LC01MI032
XE88LC01RI000
XE88LC01RI027
Memory type Temperature
MTP Flash
MTP Flash
MTP Flash
ROM
ROM
Cool Solutions for Wireless Connectivity
XEMICS SA, email: [email protected] web: www.xemics.com
-40°C to 85°C
-40°C to 85°C
-40°C to 85°C
-40°C to 125°C
-40°C to 125°C
Package
die
LQFP44
PLL-44L
die
LQFP44
Cool Solutions for Wireless Connectivity
XEMICS SA, email: [email protected] web: www.xemics.com
Data Sheet XE88LC01
Data Acquisition Microcontroller
1 Detailed Pin Description
1
4
5
production
lot identification
6
7
40
8
38
36
34
32
XEMICS
3
42
XE88LC01MI
2
N9K1444
9920
packaging date
31
30
29
28
27
26
9
24
10
12
Figure 1.1:
device type
25
14
16
18
22
20
Pinout of the XE88LC01 in LQFP44 package
Pin
Table 1.1:
3
Position
in
TQFP44
Function
name
1
2
3
4
5
6
7
8
9
10
11
PA(5)
PA(6)
PA(7)
PC(0)
PC(1)
PC(2)
PC(3)
PC(4)
PC(5)
PC(6)
PC(7)
12
PB(0)
Second function
name
Type
Input
Input
Input
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
testout
Input/Output/Analog
13
PB(1)
Input/Output/Analog
14
PB(2)
Input/Output/Analog
15
PB(3)
SOU
Input/Output/Analog
16
PB(4)
SCL
Input/Output/Analog
17
PB(5)
SIN
Input/Output/Analog
18
PB(6)
Tx
Input/Output/Analog
19
PB(7)
Rx
Input/Output/Analog
20
VPP/TEST
Vhigh
Special
21
AC_R(3)
Analog
22
23
24
25
26
AC_R(2)
AC_A(7)
AC_A(6)
AC_A(5)
AC_A(4)
Analog
Analog
Analog
Analog
Analog
Description
Input of Port A
Input of Port A
Input of Port A
Input-Output of Port C
Input-Output of Port C
Input-Output of Port C
Input-Output of Port C
Input-Output of Port C
Input-Output of Port C
Input-Output of Port C
Input-Output of Port C
Input-Output-Analog of Port B/
Data output for test and MTP programing/
PWM output
Input-Output-Analog of Port B/
PWM output
Input-Output-Analog of Port B
Input-Output-Analog of Port B,
Output pin of USRT
Input-Output-Analog of Port B/
Clock pin of USRT
Input-Output-Analog of Port B/
Data input or input-output pin of USRT
Input-Output-Analog of Port B/
Emission pin of UART
Input-Output-Analog of Port B/
Reception pin of UART
Test mode/High voltage for MTP programing
Highest potential node for 2nd reference of
ADC
Lowest potential node for 2nd reference of ADC
ADC input node
ADC input node
ADC input node
ADC input node
Pin-out of the XE88LC01 in LQFP44
(see Table “IO pins performances” on page 18 for drive capabilities of the pins)
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
Pin
Table 1.1:
4
Position
in
TQFP44
Function
name
27
28
29
30
31
32
33
34
35
36
37
AC_A(3)
AC_A(2)
AC_A(1)
AC_A(0)
AC_R(1)
AC_R(0)
VSS
Vbat
Vreg
RESET
Vmult
38
OscIn
ck_cr
Analog/Input
39
OscOut
ptck
Analog/Input
40
PA(0)
testin
Input
41
PA(1)
testck
Input
42
PA(2)
Input
43
PA(3)
Input
44
PA(4)
Input
Second function
name
Type
Analog
Analog
Analog
Analog
Analog
Analog
Power
Power
Analog
Input
Analog
Description
ADC input node
ADC input node
ADC input node
ADC input node
Highest potential node for 1st reference of ADC
Lowest potential node for 1st reference of ADC
Negative power supply, connected to substrate
Positive power supply
Regulated supply
Reset pin (active high)
Pad for optional voltage multiplier capacitor
Connection to Xtal/
CoolRISC clock for test and MTP programing
Connection to Xtal/
Peripheral clock for test and MTP programing
Input of Port A/
Data input for test and MTP programing/
Counter A input
Input of Port A/
Data clock for test and MTP programing/
Counter B input
Input of Port A/
Counter C input/ Counter capture input
Input of Port A/
Counter D input/ Counter capture input
Input of Port A
Pin-out of the XE88LC01 in LQFP44
(see Table “IO pins performances” on page 18 for drive capabilities of the pins)
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
2 Absolute maximum ratings
Stresses beyond these listed in this chapter may cause permanent damage to the device. No
functional operation is implied at or beyond these conditions. Exposure to these conditions for
an extended period may affect the device reliability.
Table 2.1:
Parameter
Valéue
VBAT with respect to VSS
Input voltage on any input pin
Storage temperature
Storage temperature for programmed MTP devices
-0.3V to 6.0V
VSS-0.3V to VBAT+0.3V
-55°C to 125°C
-40°C to 85°C
Absolute maximum ratings
These devices are ESD sensitive. Although these devices feature proprietary ESD protection
structures, permanent damage may occur on devices subjected to high energy electrostatic
discharges. Proper ESD precautions have to be taken to avoid performance degradation or
loss of functionality.
5
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
3 Electrical Characteristics
All specification are -40°C to 85°C unless otherwise noted. ROM operates up to 125°C.
Operation conditions
Power supply
Operating speed
Instruction cycle
Current requirement
Current requirement
MTP Flash
memory
ROM version
MTP version
2.4 V to 5.5 V
any instruction
CPU running
at 1 MIPS
CPU running
at 32 kHz
on Xtal,
RC off
CPU halt,
timer on Xtal,
RC off
CPU halt,
timer on Xtal,
RC ready
CPU halt,
Xtal off
timer on RC
at 100 kHz
CPU halt,
ADC 16 bits
at 4 kHz
CPU halt,
ADC 12 bits
at 4 kHz,
PGA gain 100
CPU at 1 MIPS,
ADC 12 bits
at 4 kHz
CPU at 1 MIPS,
ADC 12 bits at 4 kHz,
PGA gain 10
CPU at 1 MIPS,
ADC 12 bits at 4 kHz,
PGA gain 100
CPU at 1 MIPS,
ADC 12 bits at 4 kHz,
PGA gain 1000
Voltage level detection
Prog. voltage
Erase time
Write/Erase cycles
Data retention
min
typ
max
Unit
Remarks
5.5
5.5
2
V
V
MHz
ns
7
310
uA
1
10
uA
1
1
uA
1
1.7
uA
1
1.4
uA
1
190
uA
4,6
460
uA
4,6
670
uA
3,4,6
790
uA
3,4,6
940
uA
3,4,6
1100
uA
3,4,6
2.4
2.4
0.032
500
10.3
0.2
10
10
100
15
10.8
1
uA
V
s
100
years
years
8
5
85°C, 2
55°C, 2
Table 3.1:
Specifications and current requirement of the XE88LC01
Note:
1) Power supply: 2.4 V - 5.5 V, temperature is 27°C.
2) < 10 erase cycles.
3) Output not loaded.
4) Current requirement can be divided by a factor of 2 or 4 by reducing the speed accordingly.
5) More cycles possible during development, with restraint retention
6) Power supply: 3.0V, at 27°C; see chapter Power Consumption on page 30 for variation of current
with voltage and clock speed variation
7) With 2 MHz clock, all instructions are using exactly 1 clock cycle
8) Longer erase time may degrade retention
6
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
4 CPU
The XE88LC01 CPU is a low power RISC core. It has 16 internal registers for efficient implementation of the C compiler. Its instruction set is made of 35 generic instructions, all coded on
22 bits, with 8 addressing modes. All instructions are executed in one clock cycle, including
conditional jumps and 8x8 multiplication.
A complete tool suite for development is available from XEMICS, including programmer, Ccompiler, assembler, simulator, linker, all integrated in a modern and efficient graphical user
interface.
7
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
5 Memory organisation
The CPU uses a Harvard architecture, so that memory is organised in two separated fields:
program memory and data memory. As both memory are separated, the central processing
unit can read/write data at the same time it loads an instruction. Peripherals and system control
registers are mapped on data memory space.
Program memory is fitted onto one page. Data is made of several 256 bytes pages.
Program
memory
8k instructions MTP
or
6k instructions ROM
Data address bus
Program address bus
0h1FFF / 01hBFF
RAM
512 Bytes
0h0080
CPU
Peripherals
Instruction
pipeline
0h0000
CPU
registers
22 bits wide
Figure 5.1:
0h027F
0h0010
LP RAM
0h0000
8 bits wide
Memory organization
5.1 Program memory
The program memory is implemented as Multiple Time Programmable (MTP) Flash memory.
The power consumption of MTP memory is linear with the access frequency (no significant
static current).
Size of the MTP Flash memory is 8192 x 22 bits (= 22 kBytes)
Size of the ROM memory is 6144 x 22 bits (= 17 kBytes)
Table 5.1:
8
block
size
address
MTP
ROM
8192 x 22
6144 x 22
H0000 - H1FFF
H0000 - H1BFF
Program addresses for MTP or ROM memory
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
5.2 Data memory
The data memory is implemented as static Random-Access Memory (RAM). The RAM size is
512 x 8 bits plus 8 low power RAM bytes that require very low current when addressed. Programs using the low-power RAM instead of RAM will use even less current.
Table 5.2:
6
block
size
address
LP RAM
RAM
8x8
512 x 8
H0000 - H0007
H0080 - H027F
RAM addresses
Registers list
Left column include register name and address.
Right columns include bit name, access (r: read, r0: always 0 when read, w: write, c: cleared
by writing any value, c1: cleared by writing 1), and reset status (0 or 1) and signal. Empty bits
are reserved for future use and should not be written, neither should their read value be used
for any purpose as it may change without notice.
6.1 Peripherals mapping
Table 6.1:
9
block
size
address
LP RAM
System control
Port A
Port B
Port C
Reserved
MTP
Event
Interrupts control
reserved
UART
Counters
Zooming ADC
Reserved
Reserved
Other
(VLD)
RAM1
RAM2
RAM3
8x8
16x8
8x8
8x8
4x8
4x8
4x8
4x8
8x8
8x8
8x8
8x8
8x8
12x8
8x8
H0000-H0007
H0010-H001F
H0020-H0027
H0028-H002F
H0030-H0033
H0034-H0037
H0038-H003B
H003C-H003F
H0040-H0047
H0048-H004F
H0050-H0057
H0058-H005F
H0060-H0067
H0068-H0073
H0074-H007B
4x8
H007C-H007F
128x8
256x8
128x8
H0080 - H00FF
H0100 - H01FF
H0200 - H027F
Page
Page 0
Page 1
Page 2
Peripherals addresses
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
6.2
Resets
The reset source name is simplified in the following registers description. Name mapping is in
the next table.
reset source
name in this
document
resetsystem
resetSynch
resetPOR
resetCold
resetPad
resetPconf
resetSleep
Table 6.2:
6.3
global
cold
pconf
sleep
Reset signal name mapping
Low power RAM
Low power RAM is a small additionnal RAM area with extremely low power requirement.
Name
Address
7
6
5
4
3
2
1
0
h0000
rw
rw
rw
rw
rw
rw
rw
rw
h0001
rw
rw
rw
rw
rw
rw
rw
rw
h0002
rw
rw
rw
rw
rw
rw
rw
rw
h0003
rw
rw
rw
rw
rw
rw
rw
rw
h0004
rw
rw
rw
rw
rw
rw
rw
rw
h0005
rw
rw
rw
rw
rw
rw
rw
rw
h0006
rw
rw
rw
rw
rw
rw
rw
rw
h0007
rw
rw
rw
rw
rw
rw
rw
rw
Table 6.3:
10
Low power RAM
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
6.4
System, oscillators, prescaler and watchdog
Name
Address
RegSysCtrl
h0010, type 1
RegSysReset
h0011, type 1
RegSysClock
h0012, type 1
7
SleepEn
6
5
EnRes-PConf EnBus-Error
4
3
2
1
ResPad-Deb
rc, 0 cold
ResPad
rc, 0 cold
EnResWD
rw, 0 por
rw, 0 cold
rw, 0 cold
rw, 0 cold
Sleep
w, 0 cold
ResPor
r, 0
ResBus-Error
rc, 0 cold
ResWD
rc, 0 cold
ResPortA
rc, 0 cold
CpuSel
ExtClk
EnExtClk
BiasRC
ColdXtal
ColdRC
EnableXtal
EnableRC
rw, 0 sleep
r, 0 cold
rw, 0 cold
rw, 1 cold
r, 1 sleep
r, 1 sleep
rw, 0 sleep
rw, 1 sleep
RCOnPA0
DebFast
OutputCkXtal
OutputCkCPU
rw, 0 sleep
rw, 0 sleep
rw, 0 sleep
rw, 0 sleep
RegSysMisc
h0013, type 1
RegSysWD
WatchDog(3) WatchDog(2) WatchDog(1) WatchDog(0)
special
special
special
special
h0014
ResPre
ClearLowPrescal (*)
w, 0 cold
RegSysPre0
h0015
RegSysRCTrim1
h001B
RegSysRCTrim2
h001C
Table 6.4:
6.5
0
RCFreqRange
RCFreqCoarse(3)
RCFreqCoarse(2)
RCFreqCoarse(1)
RCFreqCoarse(0)
rw, 0 cold
rw, 0 cold
rw, 0 cold
rw, 0 cold
rw, 0 cold
RCFreqFine(5)
RCFreqFine(4)
RCFreqFine(3)
RCFreqFine(2)
RCFreqFine(1)
RCFreqFine(0)
rw, 1 cold
rw, 0 cold
rw, 0 cold
rw, 0 cold
rw, 0 cold
rw, 0 cold
System control registers
PortA
Name
Address
7
6
5
4
3
2
1
0
RegPAIn
PAIn(7)
RegPAIn(6)
PAIn(5)
PAIn(4)
PAIn(3)
PAIn(2)
PAIn(1)
PAIn(0)
RegPADebounce
r
PADeb(7)
r
PADeb(6)
r
PADeb(5)
r
PADeb(4)
r
PADeb(3)
r
PADeb(2)
r
PADeb(1)
r
PADeb(0)
rw, 0 pconf
PAEdge(7)
rw, 0 pconf
PAEdge(6)
rw, 0 pconf
PAEdge(5)
rw, 0 pconf
PAEdge(4)
rw, 0 pconf
PAEdge(3)
rw, 0 pconf
PAEdge(2)
rw, 0 pconf
PAEdge(1)
rw, 0 pconf
PAEdge(0)
h0020
h0021
RegPAEdge
h0022
RegPAPullup
h0023, type 1
RegPARes0
h0024
RegPARes1
h0025
Table 6.5:
11
rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global
PAPullUp(7) PAPullUp(6) PAPullUp(5) PAPullUp(4) PAPullUp(3) PAPullUp(2) PAPullUp(1) PAPullUp(0)
rw, 0 pconf
PARes0(7)
rw, 0 pconf
PARes0(6)
rw, 0 pconf
PARes0(5)
rw, 0 pconf
PARes0(4)
rw, 0 pconf
PARes0(3)
rw, 0 pconf
PARes0(2)
rw, 0 pconf
PARes0(1)
rw, 0 pconf
PARes0(0)
rw, 0 global
PARes1(7)
rw, 0 global
PARes1(6)
rw, 0 global
PARes1(5)
rw, 0 global
PARes1(4)
rw, 0 global
PARes1(3)
rw, 0 global
PARes1(2)
rw, 0 global
PARes1(1)
rw, 0 global
PARes1(0)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
Port A registers
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
6.6
PortB
Name
Address
RegPBOut
h0028
RegPBIn
h0029
RegPBDir
h002A
RegPBOpen
h002B
RegPBPullup
h002C
7
6
5
4
1
0
PBOut(7)
PBOut(6)
PBOut(5)
PBOut(4)
PBOut(3)
PBOut(2)
PBOut(1)
PBOut(0)
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
PBIn(7)
PBIn(6)
PBIn(5)
PBIn(4)
PBIn(3)
PBIn(2)
PBIn(1)
PBIn(0)
r
r
r
r
r
r
r
r
PBDir(7)
PBDir(6)
PBDir(5)
PBDir(4)
PBDir(3)
PBDir(2)
PBDir(1)
PBDir(0)
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
PBOpen(7)
PBOpen(6)
PBOpen(5)
PBOpen(4)
PBOpen(3)
PBOpen(2)
PBOpen(1)
PBOpen(0)
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
PBPullUp(7) PBPullUp(6) PBPullUp(5) PBPullUp(4) PBPullUp(3) PBPullUp(2) PBPullUp(1) PBPullUp(0)
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
h002D
6.7
2
rw, 0 pconf
RegPBAna
Table 6.6:
3
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
PBAna(3)
PBAna(2)
PBAna(1)
rw, 0 pconf
PBAna(0)
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
Port B registers
PortC
Name
Address
RegPCOut
h0030
RegPCIn
h0031
RegPCDir
h0032
Table 6.7:
6.8
7
6
5
4
3
2
1
0
PCOut(7)
rw, 0 pconf
PCOut(6)
rw, 0 pconf
PCOut(5)
rw, 0 pconf
PCOut(4)
rw, 0 pconf
PCOut(3)
rw, 0 pconf
PCOut(2)
rw, 0 pconf
PCOut(1)
rw, 0 pconf
PCOut(0)
rw, 0 pconf
PCIn(7)
PCIn(6)
PCIn(5)
PCIn(4)
PCIn(3)
PCIn(2)
PCIn(1)
PCIn(0)
r
r
r
r
r
r
r
r
PCDir(7)
PCDir(6)
PCDir)
PCDir(4)
PCDir(3)
PCDir(2)
PCDir(1)
PCDir(0)
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
rw, 0 pconf
Port C registers
MTP
Name
Address
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
special
special
special
special
special
special
special
special
special
special
special
special
special
special
special
special
RegEEP
h0038
RegEEP1
h0039
RegEEP2
h003A
RegEEP3
h003B
Table 6.8:
12
MTP control registers
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
6.9
Events
Name
Address
RegEvn
h003C
RegEvnEn
h003D
RegEvnPriority
h003E
7
6
5
4
3
2
EvnCntA
EvnCntC
EvnPre1
EvnPA(1)
EvnCntB
EvnCntD
EvnPre2
EvnPA(0)
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
EvnEnCntA
rw, 0 global
EvnEnCntC
rw, 0 global
EvnEnPre1
rw, 0 global
EvnEnPA(1)
rw, 0 global
EvnEnCntB
rw, 0 global
EvnEnCntD
rw, 0 global
EvnEnPre2
rw, 0 global
EvnEnPA(0)
rw, 0 global
EvnPriority(7) EvnPriority(6) EvnPriority(5) EvnPriority(4) EvnPriority(3) EvnPriority(2) EvnPriority(1) EvnPriority(0)
r,1 global
r,1 global
r,1 global
r,1 global
r,1 global
r,1 global
h003F
6.10
r,1 global
r,1 global
EvnHigh
r, 0 global
EvnLow
r, 0 global
1
0
IrqUartTx
rc1, 0 global
IrqUartRx
rc1, 0 global
Events control registers
Interrupts
Name
Address
RegIrqHig
h0040
7
6
IrqAc
rc1, 0 global
IrqPre1
rc1, 0 global
RegIrqMid
h0041
RegIrqLow
h0042
RegIrqEnHig
h0043
RegIrqEnLow
RegIrqPriority
h0046
4
3
IrqCntA
rc1, 0 global
IrqCntC
rc1, 0 global
IrqPA(5)
IrqPA(4)
IrqPre2
IrqVld
IrqPA(1)
IrqPA(0)
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
IrqPA(6)
IrqCntB
IrqCntD
IrqPA(3)
IrqPA(2)
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
rc1, 0 global
IrqEnAc
IrqEnPre1
IrqEnCntA
IrqEnCntC
IrqEnUartTx
IrqEnUartRx
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
IrqEnPA(5)
IrqEnPA(4)
IrqEnPre2
IrqEnVld
IrqEnPA(1)
IrqEnPA(0)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
IrqEnPA(7)
IrqEnPA(6)
IrqEnCntB
IrqEnCntD
IrqEnPA(3)
IrqEnPA(2)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
IrqPriority(7)
IrqPriority(6)
IrqPriority(5)
IrqPriority(4)
IrqPriority(3)
IrqPriority(2)
IrqPriority(1)
IrqPriority(0)
r, 1 global
r, 1 global
r, 1 global
r, 1 global
r, 1 global
r, 1 global
r, 1 global
r, 1 global
IrqHig
IrqMid
IrqLow
r, 0 global
r, 0 global
r, 0 global
2
1
0
RegIrqIrq
h0047
Table 6.10:
6.11
2
IrqPA(7)
h0044
h0045
5
rc1, 0 global
RegIrqEnMid
Interrupts control registers
USRT
Name
Address
7
6
5
4
3
RegUsrtSin
UsrtSin
h0048
rw, 1 global
UsrtScl
RegUsrtScl
h0049
rw, 1 global
RegUsrtCtrl
UsrtWaitS0
h004A
r, 0 global
RegUsrtData
UsrtEnWaitS0
UsrtEnable
rw, 0 global
rw, 0 global
r
RegUsrtEdgeScl
UsrtEdgeScl
h004E
Table 6.11:
UsrtEnWaitCond1
rw, 0 global
UsrtData
h004D
13
0
rc1, 0 global
RegEvnEvn
Table 6.9:
1
r, 0 global
USRT control registers
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
6.12
UART
Name
Address
RegUartCtrl
h0050
7
RegUartTx
h0052
5
4
3
2
UartEnRx
UartEnTx
UartXRx
UartXTx
UartBR(2)
UartBR(1)
UartBR(0)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 1 global
rw, 0 global
rw, 1 global
SelXtal
UartWakeup
UartRCSel(2)
UartRCSel(1)
UartRCSel(0)
UartPM
UartPE
UartWL
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 1 global
UartTx(7)
UartTx(6)
UartTx(5)
UartTx(4)
UartTx(3)
UartTx(2)
UartTx(1)
UartTx(0)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
UartTxBusy
UartTxFull
RegUartTxSta
UartRx(7)
UartRx(6)
r
r
h0054
RegUartRxSta
UartRx(5)
Table 6.12:
UartRx(3)
UartRx(2)
r, 0 global
UartRx(1)
UartRx(0)
r
r
r
r
r
r
UartRxPErr
UartRxFErr
UartRxOErr
UartRxBusy
UartRxFull
r
r
r
c
r
r
UART control registers
Counters
Name
Address
7
6
5
4
3
2
1
0
RegCntA
CounterA(7)
rw
CounterA(6)
rw
CounterA(5)
rw
CounterA(4)
rw
CounterA(3)
rw
CounterA(2)
rw
CounterA(1)
rw
CounterA(0)
rw
RegCntB
CounterB(7)
CounterB(6)
CounterB(5)
CounterB(4)
CounterB(3)
CounterB(2)
CounterB(1)
CounterB(0)
rw
rw
rw
rw
rw
rw
rw
rw
RegCntC
CounterC(7)
CounterC(6)
CounterC(5)
CounterC(4)
CounterC(3)
CounterC(2)
CounterC(1)
CounterC(0)
rw
rw
rw
rw
rw
rw
rw
rw
RegCntD
CounterD(7)
CounterD(6)
CounterD(5)
CounterD(4)
CounterD(3)
CounterD(2)
CounterD(1)
CounterD(0)
rw
rw
rw
rw
rw
rw
rw
rw
RegCntCtrlCk
CntDSel(1)
CntDSel(0)
CntCSel(1)
CntCSel(0)
CntBSel(1)
CntBSel(0)
CntASel(1)
CntASel(0)
rw
rw
rw
rw
h0058
h0059
h005A
h005B
h005C
RegCntConfig1
h005D
RegCntConfig2
h005E
CntDDownUp CntCDownUp CntBDownUp CntADownUp
rw
rw
rw
rw
CapSel(1)
CapSel(0)
CapFunc(1)
CapFunc(0)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
RegCntOn
h005F
Table 6.13:
14
UartRx(4)
r, 0 global
UartRxSErr
h0055
6.13
0
UartEcho
h0053
RegUartRx
1
rw, 0 global
RegUartCmd
h0051
6
rw
rw
rw
rw
CascadeCD
CascadeAB
CntPWM1
CntPWM0
rw
rw
rw, 0 global
rw, 0 global
PWM1Size(1) PWM1Size(0) PWM0Size(1) PWM0Size(0)
rw
rw
rw
rw
CntDEnable
CntCEnable
CntBEnable
CntAEnable
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
Counters control registers
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
6.14
Acquisition chain
Name
Address
RegAcOutLsb
h0060
RegAcOutMsb
h0061
RegAcCfg0
h0062
RegAcCfg1
h0063
7
6
5
4
3
2
1
0
AdcOutL(7)
AdcOutL(6)
AdcOutL(5)
AdcOutL(4)
AdcOutL(3)
AdcOutL(2)
AdcOutL(1)
AdcOutL(0)
r
r
r
r
r
r
r
r
AdcOutM(7)
AdcOutM(6)
AdcOutM(5)
AdcOutM(4)
AdcOutM(3)
AdcOutM(2)
AdcOutM(1)
AdcOutM(0)
r
r
r
r
r
r
r
r
Start
NelConv(1)
NelConv(0)
OSR(2)
OSR(1)
OSR(0)
Cont
r0w, 0 global
rw, 0 global
rw, 0 global
rw, 1 global
RegAcCfg2
h0064
RegAcCfg3
h0065
Table 6.14:
6.15
rw, 1 global
rw, 0 global
Enable(3)
Enable(2)
Enable(1)
Enable(0)
rw, 1 global
rw, 1 global
rw, 1 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 1 global
Fin(1)
Fin(0)
Pga2Gain(1)
Pga2Gain(0)
Pga2Off(3)
Pga2Off(2)
Pga2Off(1)
Pga2Off(0)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
Pga1Gain
rw, 0 global
Pga3Gain(6)
rw, 0 global
Pga3Gain(5)
rw, 0 global
Pga3Gain(4)
rw, 0 global
Pga3Gain(3)
rw, 1 global
Pga3Gain(2)
rw, 1 global
Pga3Gain(1)
rw, 0 global
Pga3Gain(0)
rw, 0 global
RegAcCfg4
RegAcCfg5
rw, 0 global
IbAmpPga(0)
rw, 0 global
h0066
h0067
rw, 1 global
IbAmpPga(1)
IbAmpADC(1) IbAmpAdc(0)
Pga3Off(6)
Pga3Off(5)
Pga3Off(4)
Pga3Off(3)
Pga3Off(2)
Pga3Off(1)
Pga3Off(0)
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
Busy
Def
AMux(4)
AMux(3)
AMux(2)
AMux(1)
AMux(0)
VMux
r, 0 global
wr0
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
rw, 0 global
4
3
2
1
0
Enable
Fin(1)
Fin(0)
VldMult
rw, 0 global
VldTune(2)
rw, 0 global
VldTune(1)
rw, 0 global
VldTune(0)
rw, 0 cold
VldIrq
rw, 0 cold
VldValid
rw, 0 cold
VldEn
r, 0 global
r, 0 global
rw, 0 global
Acquisition chain control registers
Vmult and Vld registers
Name
Address
7
6
5
RegVmultCfg0
h007C
RegVldCtrl
h007E
rw, 0 cold
RegVldStat
h007F
Table 6.15:
15
Vmult and Vld control registers
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
7 Peripherals
The XE88LC01 includes usual microcontroller peripherals and some other blocks more specific to low-voltage or mixed-signal operation. They are 3 parallel ports, one input port (A), one
IO and analog port (B) with analog switching capabilities and one general purpose IO port (C).
A watchdog is available, connected to a prescaler. Four 8-bit counters, with capture, PWM and
chaining capabilities are available. The UART can handle transmission speeds as high as
115kbaud.
Low-power low-voltage blocks include a voltage level detector, two oscillators (one internal
0.1-2 MHz RC oscillator and a 32 kHz crystal oscillator) and a specific regulation scheme that
largely uncouples current requirement from external power supply (usual CMOS ASICs require much more current at 5.5 V than they need at 2.4 V. This is not the case for the
XE88LC01).
Analog blocks (ZoomingADC (acquisition path)) are defined below. All these blocks operate
on 2.4 - 5.5 V power supply range.
7.1 Counters
•
•
•
•
•
4 8-bit counters
Daisy chain on 16 bits
PWM on 8-16 bits
Capture - compare on 16 bits
Events and interrupts generation
•
Interrupt generated with 1 second period for ultra low power hibernation mode
•
2 seconds watchdog
•
•
•
•
•
•
•
•
•
•
full duplex operation with buffered receiver and transmitter.
Internal baudrate generator with programmable baudrate (300 - 115000 bauds).
7 or 8 bits word length.
even, odd, or no-parity bit generation and detection
1 stop bit
error receive detection : Start, Parity, Frame and Overrun
receiver echo mode
2 interrupts (receive full and transmit empty)
enable receive and/or transmit
invert pad Rx and/or Tx
7.2 Prescaler
7.3 Watchdog
7.4 UART
16
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
7.5 Xtal clock
The Xtal Oscillator operates with an external crystal of 32’768 Hz.
symbol
description
f_clk32k
st_x32k
duty_clk32k
nominal frequency
oscillator start-up time
duty cycle on the digital output
relative frequency deviation from
nominal, for a crystal with CL=8.2 pF
and temperature between -40° and
+85°C
fstab_1
min
typ
30
32768
1
50
-100
max
unit
comments
2
70
Hz
s
%
for full precision
+300
ppm
not included:
crystal frequency tolerance and aging
crystal frequency - temperature dependence
Table 7.1:
Xtal oscillator specifications.
Note:
Board layout recommendations for safer crystal oscillation and lower current consumption:
Keep lines xtal_in and xtal_out short and insert a VSS line between them.
Connect package of the crystal to VSS.
No noisy or digital lines near xtal_in and xtal_out.
Insert guards at VSS where needed.
7.6 RC oscillator
The RC Oscillator is always turned on at power-on reset and can be turned off after the optional Xtal oscillator has been started. The RC oscillator has two frequency ranges: sub-MHz
(100KHz to 1MHz) and above-MHz (1MHz to max MCU frequency). Inside a range, the frequency can be tuned by software for coarse and fine adjustment.
Note:
No external component is required for the RC oscillator.
The RC oscillator can be in 3 modes. In mode 1(RC on), the RC oscillator and its bias are on.
In mode 2 (RC ready), the RC oscillator is off and the bias is on. In mode 3 (RC off), the RC
oscillator and the bias are off. RC ready mode is a compromise between power consumption
and start-up time.
Figure 7.1:
17
RC frequencies programming example for low range (typical values)
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
symbol
description
min
typ
max
unit
Fst
frequency at start-up
50
80
110
kHz
range
range selection
1
10
multiplies Fst
mult[3:0]
coarse tuning range
1
16
4 bits, multiplies Fst * range
fine tuning range
0.65
tune[5:0]
1.4
Tst
start-up time
30
Ost
overshoot at start-up
Twu
wakeup time
overshoot at wakeup
jit
jitter rms
Table 7.2:
6 bits, multiplies Fst * range * mult
1.5
fine tuning step
Owu
comments
3
2
%
50
µs
bias current is off (RC off)
50
%
bias current is off (RC off)
5
µs
bias current is on (RC ready)
50
%
bias current is on (RC ready)
o
2
/oo
RC specifications
7.7 Parallel IO ports
•
•
•
sym
8 bit input port A with interrupt, reset and event generation.
8 bit input-output-analog port B with analog switching capabilities.
8 bit input-output port C.
description
condition
Port A: low threshold limit
Port A: high threshold limit
output drop when sinking 1 mA
output drop when sourcing 1 mA
Port A: low threshold limit
Port A: high threshold limit
output drop when sinking 1 mA
output drop when sinking 8 mA
output drop when sourcing 1 mA
output drop when sourcing 8 mA
Port A: low threshold limit
Port A: high threshold limit
output drop when sinking 1 mA
output drop when sinking 8 mA
output drop when sourcing 1 mA
output drop when sourcing 8 mA
pull-up, pull-down resistor
Table 7.3:
18
min
typ
Vbat =
1.2 V
max
0.4
0.4
1
1.5
Vbat =
2.4 V
0.4
0.4
2
3
Vbat =
5.0 V
0.4
50
0.4
150
unit
Comments
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
kohm
IO pins performances
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
7.8 Voltage level detector
•
•
Can be switched off, on or simultaneously with CPU activities
Generates an interrupt if power supply is below a pre-determined level
The Voltage Level Detector monitors the state of the system battery. It returns a logical high
value (an interrupt) in the status register if the supplied voltage drops below the user defined
level.
symbol
description
min
typ
max
unit
Note 1
Vth
Threshold voltage
comments
trimming values:
1.53
1.44
1.36
1.29
1.22
1.16
1.11
1.06
3.06
2.88
2.72
2.57
2.44
2.33
2.22
2.13
V
VldRange
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VldTune
000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111
TEOM
duration of measurement
2.0
2.5
ms
Note 2
TPW
Minimum pulse width detected
875
1350
us
Note 2
Table 7.4:
Voltage level detector operation
Note:
1) Absolute precision of the threshold voltage is ±10%.
2) This timing is respected in case the internal RC or crystal oscillators are selected. Refer to the clock
block documentation in case the external clock is used.
19
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
8 ZoomingADC
The fully differential acquisition chain is formed of a programmable gain (0.5 - 1000) and offset
amplifier and a programmable speed and resolution ADC (example: 12 bits at 4 kHz, 16 bits
at 1 kHz). It can handle inputs with very low full scale signal and large offsets.
reference selection
AC_R(0)
AC_R(1)
AC_R(2)
AC_R(3)
AC_A(0)
AC_A(1)
AC_A(2)
AC_A(3)
AC_A(4)
AC_A(5)
AC_A(6)
AC_A(7)
ADC
gain1
gain2
offset2
mode
gain3
offset3
output
code
input selection
Figure 8.1:
Acquisition channel block diagram
Input selection is made from 1 of 4 differential pairs or 1 of seven single signal versus AC_A(0).
Reference is chosen from the 2 differential references. Acquisition path offset can be suppressed by inverting input polarity.
The gain of each amplifier is programmed individually. Each amplifier is powered on and off on
command to minimize the total current requirement. All blocks can be set to low frequency operation and lower their current requirement by a factor 2 or 4.
The ADC can run continuously (end of conversion signalled by an interrupt, event or by pooling
the ready bit), or it can be started on request.
8.1 PGA 1
symbol
description
min
GD1
GD_preci
GD_TC
fs
Zin1
Zin1p
PGA1 Signal Gain
Precision on gain settings
Temperature dependency of gain settings
input sampling frequency
Input impedance
Input impedance for gain 1
1
-5
-5
VN1
Input referred noise
typ
150
1500
28.6
max
unit
Comments
10
+5
+5
512
%
ppm/°C
kHz
kΩ
kΩ
nV/
sqrt(Hz)
GD1 = 1 or 10
1
1
2
Table 8.1:
PGA1 Performances
Note:
1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs
= 128 kHz.
2) Input referred rms noise is 205 uV per input sample with gain = 1, 20.5 uV with gain = 10. This corresponds to 28.6 nV/sqrt(Hz) for fs = 512 kHz and gain = 10.
20
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
8.2 PGA2
sym
description
min
GD2
GDoff2
GDoff2_step
GD_preci
GD_TC
fs
Zin2
PGA2 Signal Gain
PGA2 Offset Gain
GDoff2(code+1) – GDoff2(code)
Precision on gain settings
Temperature dependency of gain settings
Input sampling frequency
Input impedance
1
-1
0.18
-5
-5
VN2
Input referred noise
typ
0.2
max
unit
Comments
10
1
0.22
+5
+5
512
FS
%
ppm/°C
kHz
kΩ
nV/
sqrt(Hz)
GD2 = 1, 2, 5 or 10
150
47.5
valid for GD2 and GDoff2
1
2
Table 8.2:
PGA2 Performances
Note:
1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs
= 128 kHz.
2) Input referred rms noise is 340 uV per input sample with gain = 1, 34 uV with gain = 10.This corresponds to 47.5 nV/sqrt(Hz) for fs = 512 kHz and gain = 10.
8.3 PGA3
sym
description
min
GD3
GDoff3
GD3_step
GDoff3_step
GD_preci
GD_TC
fs
PGA3 Signal Gain
PGA3 Offset Gain
GD3(code+1) - GD3(code)
GDoff2(code+1) – GDoff2(code)
Precision on gain settings
Temperature dependency of gain settings
Input sampling frequency
0
-5
0.075
0.075
-5
-5
Zin3
Input impedance
150
VN3
Input referred noise
typ
0.08
0.08
51.0
max
unit
10
5
0.085
0.085
+5
+5
512
FS
%
ppm/°C
kHz
Comments
valid for GD3 and GDoff3
kΩ
1
nV/
sqrt(Hz)
2
Table 8.3:
PGA3 Performances
Note:
1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs
= 128 kHz.
2) Input referred rms noise is 365 uV per imput sample with gain = 1, 36.5 uV with gain = 10. This corresponds to 51.0 nV/sqrt(Hz) for fs = 512 kHz.
21
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
8.4 Analog to digital converter (ADC)
The whole analog to digital conversion sequence is basically made of an initialisation, a set of
Nelconv elementary incremental conversions and finally a termination phase(NumCONV is set
by 2 bits on RegACCfg0). The result is a mean of the results of the elementary conversions.
1 2
input
sample
smax 1 2
smax
START
1st elementary
conversion
2nd elementary
conversion
conversion
index
1
2
Figure 8.2:
1 2
elementary
conversion
smax
elementary
conversion
NumConv-1
END
NumConv
Conversion sequence. smax is the oversampling rate.
Note: NumCONV elementary conversions are performed, each elementary conversion being made of
smax input samples.
NumCONV = 2NELCONV
smax = 8*2OSR
During the elementary conversions, the operation of the converter is the same as in a sigma
delta modulator. During one conversion sequence, the elementary conversions are alternatively performed with direct and crossed PGA-ADC differential inputs, so that when two elementary conversions or more are performed, the offset of the converter is cancelled.
Some additional clock cycles (NINIT+NEND) clock cycles are used to initiate and terminate the
conversion properly.
8.5 ADC performances
sym
description
min
VINR
Resol
NResol
DNL
INL
fs
smax
Input range
Resolution
Numerical resolution
Differential non-linearity
Integral non-linearity
sampling frequency
Oversampling Ratio
Number of elementary conversions in
incremental mode
Number of periods for incremental conversion
initialization
Number of periods for incremental conversion
termination
-0.5
6
NUMCONV
Ninit
Nend
typ
max
unit
Comments
-0.1
-3
10
8
0.5
16
16
0.1
2
512
1024
Vref
bits
bits
LSB
LSB
kHz
-
3
LSB at 16 bits
2, LSB at 16 bits
1
8
-
1
5
-
5
-
1
Table 8.4:
ADC Performances
Note:
Note:
1) Only powers of 2
2) INL is defined as the deviation of the DC transfer curve from the best fit straight line. This specifi-
22
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
cation holds over 100% of the full scale.
3) NResol is the maximal readable resolution of the digital filter.
8.6
resolution
conditions
input frequency. convertion time. output frequency.
oversampling per convertion = 8
1 conversion (no offset rejection)
oversampling per convertion = 16
1 conversion (no offset rejection)
oversampling per convertion = 64
1 conversion (no offset rejection)
oversampling per convertion = 64
2 convertions (offset rejection)
oversampling per convertion = 256
1 convertion (no offset rejection)
oversampling per convertion = 256
2 convertions (offset rejection)
oversampling per convertion = 1024
8 convertions (offset rejection)
6
8
12
13
16
16
16
Table 8.5:
512 kHz
40 us
25 kHz
512 kHz
50 us
20 kHz
512 kHz
150 us
6.7 kHz
512 kHz
275 us
3.6 kHz
512 kHz
500 us
2 kHz
512 kHz
1 ms
1 kHz
512 kHz
16.5 ms
60 Hz
ADC performances examples
8.7 Linearity
To quantify linearity errors, Integral Non-Linearity (INL) and Differential Non-Linearity (DNL)
were measured for the ADC alone and for gains of 1, 5, 10, 20, 100, 1000, and a resolution of
12 bits and 16 bits.
INL is defined as the deviation (in LSB) of the DC transfer curve of each individual code from
the best-fit straight line. This specification holds over the full scale.
DNL is defined as the difference (in LSB) between the ideal (1 LSB) and measured code transitions for successive codes. INL and DNL are specified after gain and offset errors have been
removed.
8.8 Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) for 12-bit resolution
12 bits - ADC converter (No PGA; ADC only) (version v5a)
12 bits - ADC converter (No PGA; ADC only) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.50
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
0
500
1000
1500
2000
2500
VIN [mV]
23
0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
-1.0
Figure 8.3:
0.40
0
500
1000
1500
2000
2500
VIN [mV]
NO GAIN (ONLY ADC), 12 bit ADC setting
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
12 bits - ADC converter (GDtot = 1) (version v5a)
12 bits - ADC converter (GDtot = 1) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.50
1.5
1.0
0.5
INL
0.0
-0.5
-1.0
-1.5
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
2.0
-2.0
0.40
0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
0
500
1000
1500
2000
2500
0
500
1000
VIN [mV]
Figure 8.4:
12 bits - ADC converter (GDtot = 5) (version v5a)
12 bits - ADC c onve rte r (GDtot = 5) (ve rsion v5a )
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
0.5
0.0
-0.5
-1.0
0.40
0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
0
100
200
300
400
0
500
100
200
Figure 8.5:
300
400
500
VIN [mV]
VIN [mV]
GAIN=5, 12 bit ADC setting
12 bits - ADC converter (GDtot = 10) (version v5a)
12 bits - ADC converter (GDtot = 10) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.50
Differential Non-Linearity
(DNL) [LSB]
2.0
Integral Non-Linearity
(INL) [LSB]
2500
0.50
-1.5
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
0.40
0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
-0.40
-0.50
-2.0
0
50
100
150
200
250
VIN [mV]
24
2000
GAIN=1, 12 bit ADC setting
1.0
Figure 8.6:
1500
VIN [mV]
0
50
100
150
200
250
VIN [mV]
GAIN=10, 12 bit ADC setting
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
12 bits - ADC converter (GDtot = 20) (version v5a)
12 bits - ADC converter (GDtot = 20) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.60
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
0.40
0.20
0.00
-0.20
-0.40
-0.60
-0.80
-0.8
0
20
40
60
80
100
0
120
20
40
60
Figure 8.7:
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
1.00
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
0.50
0.00
-0.50
-1.00
-1.50
0
5
10
15
20
25
0
5
10
VIN [mV]
Figure 8.8:
15
20
25
VIN [mV]
GAIN=100, 12 bit ADC setting
12 bits - ADC converter (GDtot = 1000) (version v5a)
12 bits - ADC converter (GDtot = 1000) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
6.0
2.0
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
120
12 bits - ADC converter (GDtot = 100) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
4.0
2.0
0.0
-2.0
-4.0
-6.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
0
5
10
15
20
25
10*VIN [mV]
25
100
GAIN=20, 12 bit ADC setting
12 bits - ADC converter (GDtot = 100) (version v5a)
Figure 8.9:
80
VIN [mV]
VIN [mV]
0
5
10
15
20
25
10*V IN [mV]
GAIN=1000, 12 bit ADC setting
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
8.9 Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) for 16-bit resolution
16 bits - ADC converter (No PGA; ADC only) (ve rsion v5a )
16 bits - ADC c onve rter (No PGA; ADC only) (ve rsion v5a )
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.10
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
3
2
1
0
-1
-2
-3
0.05
0.00
-0.05
-0.10
-0.15
0
500
1000
1500
2000
2500
0
500
VIN [mV]
16 bits - ADC converter (GDtot = 1) (version v5a)
16 bits - ADC converter (GDtot = 1) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.10
20.0
0.08
15.0
10.0
5.0
0.0
-5.0
-10.0
-15.0
-20.0
-25.0
0.06
0.04
0.02
0.00
-0.02
-0.04
-0.06
500
1000
1500
2000
-0.08
2500
0
500
1000
VIN [mV]
Figure 8.11:
1500
2000
2500
VIN [mV]
GAIN=1, 16 bit ADC setting
16 bits - ADC converter (GDtot = 5) (version v5a)
16 bits - ADC converter (GDtot = 5) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.15
Differential Non-Linearity
(DNL) [LSB]
10.0
Integral Non-Linearity
(INL) [LSB]
2500
-0.10
0
5.0
0.0
-5.0
-10.0
-15.0
-20.0
0.10
0.05
0.00
-0.05
-0.10
-0.15
0
100
200
300
400
500
VIN [mV]
26
2000
NO GAIN (ONLY ADC), 16 bit ADC setting
25.0
Figure 8.12:
1500
VIN [mV]
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
Figure 8.10:
1000
0
100
200
300
400
500
VIN [mV]
GAIN=5, 16 bit ADC setting
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
16 bits - ADC converter (GDtot = 10) (version v5a)
16 bits - ADC converter (GDtot = 10) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.25
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
30
20
10
0
-10
-20
-30
0
50
100
150
200
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20
-0.25
250
0
VIN [mV]
Figure 8.13:
250
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
0.6
Differential Non-Linearity
(DNL) [LSB]
8
6
4
2
0
-2
-4
-6
-8
0.4
0.2
0.0
-0.2
-0.4
-0.6
-10
0
20
40
60
80
100
0
120
20
40
Figure 8.14:
60
80
100
120
VIN [mV]
VIN [mV]
GAIN=20, 16 bit ADC setting
16 bits - ADC converter (GDtot = 100) (version v5a)
16 bits - ADC converter (GDtot = 100) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
40
0.8
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
200
16 bits - ADC converter (GDtot = 20) (version v5a)
10
30
20
10
0
-10
-20
-30
-40
0
5
10
15
20
25
VIN [mV]
27
150
GAIN=10, 16 bit ADC setting
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Figure 8.15:
100
VIN [mV]
16 bits - ADC converter (GDtot = 20) (version v5a)
Integral Non-Linearity
(INL) [LSB]
50
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
0
5
10
15
20
25
VIN [mV]
GAIN=100, 16 bit ADC setting
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
16 bits - ADC converter (GDtot = 1000) (version v5a)
16 bits - ADC converter (GDtot = 1000) (version v5a)
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2
fRC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V
N sweep = 1201; average on 4 samples
2.0
Differential Non-Linearity
(DNL) [LSB]
Integral Non-Linearity
(INL) [LSB]
80
60
40
20
0
-20
-40
-60
-80
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
0
5
10
15
20
25
0
10*VIN [mV]
Figure 8.16:
5
10
15
20
25
10*VIN [mV]
GAIN=1000, 16 bit ADC setting
The gain settings of each PGA stage for the plots of above figure are those of the table below.
Table 8.6:
Table 8.7:
PGA Gain
GDTOT
(V/V)
PGA1 Gain
GD1
(V/V)
PGA2 Gain
GD2
(V/V)
PGA3 Gain
GD3
(V/V)
1
5
10
20
100
1000
1
1
10
10
10
10
bypassed
5
bypassed
2
10
10
bypassed
bypassed
bypassed
bypassed
bypassed
10
Individual PGA gains for INL & DNL measurements
8.10 Noise
Ideally, a constant input voltage VIN should result in a constant output code. However, because
of circuit noise, the output code may vary for a fixed input voltage. The figure shows the distribution for the ADC alone (PGA1, 2, and 3 bypassed) and of several configurations of the
PGAs. Quantization noise is dominant in this case of ADC only, and, thus, the ADC thermal
noise is negligible.
One has to considere two points when computing final noise of the acquisition chain:
•
this is a type of amplifier (switched-cap with constant capacitive load) that maintains its output
noise when changing the gain. Therefore input refered noise is lowered when the gain of an
amplifier is increased.
•
the ADC is oversampled, and the number of samples taken lowers the thermal noise
Total input refered noise can be computed using the following equation:
2
2
2
V n, out1
Vn, out2 
V n, out3
 ---------------- -------------------------------- -----------------------------------------------------
 gain1  +  gain1 ⋅ gain2 +  gain1 ⋅ gain2 ⋅ gain3
2
----------------------------------------------------------------------------------------------------------------------------------------------V n, in =
numconv ⋅ smax
28
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
Where Vn,outx is the rms output noise of amplifier x.
Amplifier
Symbol
Typical output noise per
over-sample
Unit
PGA1
Vn,out1
205
uVrms
PGA2
Vn,out2
340
uVrms
PGA3
Vn,out3
365
uVrms
Typical output noise of ZoomingADC preamplifiers
ADC only
Figure 8.17:
PGA1: 1
PGA2: 10
PGA3: off
PGA1: off
PGA2: 1
PGA3: 10
PGA1: 10
PGA2: 10
PGA3: off
PGA1: 1
PGA2: 10
PGA3: 10
Noise measured at the output of the ZoomingADC
As one can see on the figures above, increase the gain of the first amplifier lowers the output
noise for constant global gain. It also lowers sensitivity to temperature drift as offset is better
compensated on first amplifier.
8.11 Gain Error and Offset Error
Gain error is defined as the amount of deviation between the ideal transfer function and the
measured transfer function (with the offset error removed). The left figure shows gain error vs.
temperature for different PGA gains. The curves are expressed in % of Full-Scale Range
(FSR) normalized to 25°C.
29
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
Offset error is defined as the output code error for a zero volt input (ideally, output code = 0).
The measured offset errors vs. temperature curves for different PGA gains are depicted in the
right figure below. The output offset error, expressed in (LSB), is normalized to 25°C.
Output Offset Error [LSB]
Gain Error [% of FSR]
0.2
0.1
0.0
-0.1
1
5
20
100
-0.2
-0.3
-0.4
100
1
5
20
100
80
60
40
20
0
-20
-40
-50
-25
0
25
50
75
100
-50
-25
Temperature [°C]
Figure 8.18:
0
25
50
75
100
Temperature [°C]
Gain and offset error vs temperature for several gains, normalized to 25°C, offset cancellation
disabled. When the offset cancellation is enabled, the offset remains below the LSB in all
temperature situations.
8.12 Power Consumption
Left figure below plots the variation of quiescent current consumption with supply voltage VDD,
as well as the distribution between the 3 PGA stages and the ADC. As shown in the right figure,
quiescent current consumption is not greatly affected by sampling frequency. It can be seen
that the quiescent current varies by about 20% between 100kHz and 2MHz. Quiescent current
consumption vs. temperature is shown in the second set of figures, showing a relative increase
of nearly 40% between -45 and +85°C.
800
800
Quiescent Current - IQ [µ A]
Quiescent Current - IQ [µ A]
700
PGA1, 2 & 3
600
500
PGA1 & 2 only
400
PGA1 only
300
200
750
Sampling Frequency fS : 500kHz
700
250kHz
62.5kHz
650
600
550
No PGAs, ADC only
500
100
2.5
3.0
3.5
4.0
4.5
5.0
2.5
5.5
Supply Voltage - VDDA [V]
Figure 8.19:
30
3.5
4.0
4.5
5.0
5.5
Supply Voltage - VDDA [V]
Quiescent current versus supply voltage for different gains and clock speed (not using the PGA and
ADC low power modes)
Supply
ADC
PGA1
PGA2
PGA3
TOTAL
Unit
VDD = 5V
250
165
130
175
720
µA
VDD = 3V
190
150
120
160
620
µA
Table 8.8:
3.0
Typical quiescent current distributions in acquisition chain (n = 16 bits, fS = 500kHz)
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
20
Relative Quiescent Current Change
IQ / IQ,25°C [%]
Quiescent Current - IQ [µ A]
900
850
800
750
700
650
600
550
500
15
10
5
0
-5
-10
-15
-20
-25
-50
-25
0
25
50
75
100
125
-50
-25
0
25
Temperature [°C]
Figure 8.20:
75
100
125
3000
3500
Absolute and (b) relative change in quiescent current consumption vs. temperature
Relative Quiescent Current Change
∆ IQ / IQ,2MHz [%]
850
Quiescent Current - IQ [µ A]
50
Temperature [°C]
800
750
700
650
600
550
500
15
10
5
0
-5
-10
-15
-20
0
500
1000
1500
2000
2500
3000
Frequency - fRC [kHz]
Figure 8.21:
3500
0
500
1000
1500
2000
2500
Frequency - fRC [kHz]
Absolute and (b) relative change in quiescent current consumption vs. clock speed
8.13 Power Supply Rejection Ratio
Figure below shows power supply rejection ratio (PSRR) at 3V and 5V supply voltage, and for
various PGA gains. PSRR is defined as the ratio (in dB) of voltage supply change (in V) to the
change in the converter output (in V). PSRR depends on both PGA gain and supply voltage
VDD.
31
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
105
100
VDD=3V
VDD=5V
PSRR [dB]
95
90
85
80
75
70
65
60
1
5
10
20
100
PGA Gain [V/V]
Figure 8.22:
Power supply rejection ratio (PSRR)
Supply
VDD = 5V
GAIN = 1
GAIN =5
GAIN = 10
GAIN = 20
GAIN =100
Unit
79
78
100
99
97
dB
VDD = 3V
72
79
90
90
86
dB
Table 8.9:
PSRR (n = 16 bits, VIN = VREF = 2.5V, fS = 500kHz)
8.14 Frequency Response
The incremental ADC of the XE88LC01 is an over-sampled converter with two main blocks:
an analog modulator and a low-pass digital filter. The main function of the digital filter is to remove the quantization noise introduced by the modulator. As shown below, this filter determines the frequency response of the transfer function between the output of the ADC and the
analog input VIN. Notice that the frequency axes are normalized to one elementary conversion
period OSR/fS. The plots below also show that the frequency response changes with the
number of elementary conversions NELCONV performed. In particular, notches appear for
NELCONV ≥ 2. These notches occur at:
f NOTCH (i ) =
i ⋅ fS
OSR ⋅ N ELCONV (Hz)for i = 1,2,..., ( N ELCONV − 1)
and are repeated every fS/OSR.
Information on the location of these notches is particularly useful when specific frequencies
must be filtered out by the acquisition system. For example, consider a 5Hz-bandwidth, 16-bit
sensing system where 50Hz line rejection is needed. Using the above equation and the plots
below, we set the 4th notch for NELCONV = 4 to 50Hz, i.e. 1.25⋅fS/OSR = 50Hz. The sampling
frequency is then calculated as fS = 20.48kHz for OSR = 512. Notice that this choice yields
also good attenuation of 50Hz harmonics.
32
D0202-60
1.2
1
Normalized Magnitude [-]
Normalized Magnitude [-]
Data Sheet XE88LC01
Data Acquisition Microcontroller
NELCONV = 1
0.8
0.6
0.4
0.2
0
1.2
1
NELCONV = 2
0.8
0.6
0.4
0.2
0
0
1
2
3
4
0
1.2
1
NELCONV = 4
0.8
0.6
0.4
0.2
0
0
1
2
3
Normalized Frequency - f *(OSR/fS) [-]
Figure 8.23:
33
1
2
3
4
Normalized Frequency - f *(OSR/fS) [-]
Normalized Magnitude [-]
Normalized Magnitude [-]
Normalized Frequency - f *(OSR/fS) [-]
4
1.2
NELCONV = 8
1
0.8
0.6
0.4
0.2
0
0
1
2
3
4
Normalized Frequency - f *(OSR/fS) [-]
Frequency response: normalized magnitude vs. frequency for different NELCONV
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
9 Physical description
9.1 LQFP44 package
Figure 9.1:
LQFP44 package, size in mm.
9.2 PLL-44L package
Figure 9.2:
34
PLL-44L package,
D0202-60
Data Sheet XE88LC01
Data Acquisition Microcontroller
9.3 Die form
pin 1
XE88LC01 in die: 4.1 x 4.6 mm2
Figure 9.3:
9.3.1 Bonding pads location
Coordinates start with a point near to the bottom left border (with respect to above picture). X
is horizontal, Y is vertical.
Pad size is 85 x 85 um.
Symbol
Pad
X
um
Y
um
Symbol
Pad
X
um
Y
um
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
PA(4)
PA(5)
NC
PA(6)
PA(7)
PC(0)
PC(1)
PC(2)
PC(3)
NC
PC(4)
PC(5)
PC(6)
PC(7)
PB(0)
PB(1)
PB(2)
PB(3)
PB(4)
NC
PB(5)
PB(6)
PB(7)
TEST
NC
AC_R(3)
52.6
52.6
52.6
52.6
52.6
52.6
52.6
52.6
52.6
52.6
52.6
52.6
52.6
52.6
398.5
533.5
668.5
798.5
933.5
1063.5
1198.5
1328.5
1463.5
1934.1
2394.1
2854.1
4075.5
3795.5
3515.5
3235.5
2955.5
2675.5
2395.5
2115.5
1835.5
1555.5
1275.5
995.5
715.5
435.5
47.6
47.6
47.6
47.6
47.6
47.6
47.6
47.6
47.6
47.6
47.6
47.6
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
AC_R(2)
AC_A(7)
NC
AC_A(6)
AC_A(5)
AC_A(4)
AC_A(3)
AC_A(2)
NC
AC_A(1)
AC_A(0)
AC_R(1)
AC_R(0)
Vss
Vbat
NC
Vreg
RESET
Vmult
OscIn
NC
OscOut
PA(0)
PA(1)
PA(2)
PA(3)
3314.1
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3958.4
3597.6
3332.6
3067.6
2802.6
2537.0
2007.6
1742.6
1477.6
1212.6
947.6
682.6
417.6
47.6
522.4
807.4
1092.4
1377.4
1662.4
1947.4
2232.4
2517.4
2802.4
3087.4
3372.4
3657.4
3942.4
4453.4
4453.4
4453.4
4453.4
4453.4
4453.4
4453.4
4453.4
4453.4
4453.4
4453.4
4453.4
Table 9.1:
35
Bonding pads location. Do not connect pads named NC. Connect Vss pad and substrate to Vss.
D0202-60
WWW.ALLDATASHEET.COM
Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.
This datasheet has been download from :
www.AllDataSheet.com
100% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com