EXAR XRD64L44AIV

Preliminary
XRD64L44
Dual 10-Bit 50MSPS CMOS ADC
March 2000-1
APPLICATIONS
FEATURES
• 10-Bit Resolution
• Medical Ultrasound Imaging
•
•
•
•
•
•
•
•
•
•
• I & Q Modems
Two Monolithic Complete 10-Bit ADCs
50 MSPS Conversion Rate
BENEFITS
On-Chip Track-and-Hold
•
•
•
•
On-Chip Voltage Reference
Low 5 pF Input Capacitance
TTL/CMOS Outputs
Tri-State Output Buffers
Reduction of Components
Reduction of System Cost
High Performance @ Low Power Dissipation
Long Term Time and Temperature Stability
Single +3V or +5V Power Supply Operation
Low Power Dissipation: 250mW-typ @ 3.0V
-40°C to +85°C Operation Temperature Range
GENERAL DESCRIPTION
The XRD64L44 is two 10-bit, monolithic, 50 MSPS
ADCs. Manufactured using a standard CMOS process, the XRD64L44 offers low power, low cost and
excellent performance. The on-chip track-and-hold
amplifier(T/H) and voltage reference (VREF) eliminate
the need for external active components, requiring only
an external ADC conversion clock for the application.
The XRD64L44 analog input can be driven with ease
due to the high input impedance of RIN = 25KOhms
and CIN = 5pF.
ADC. This auto-calibration circuit is transparent to the
user after the initial 3.4ms calibration (168,000 initial
clock cycles).
The design architecture uses 17 time- interleaved 10bit SAR ADCs in each converter to achieve high
conversion rate of 50 MSPS minimum. In order to
insure and maintain accurate 10-bit operation with
respect to time and temperature, XRD64L44 incorporates an auto-calibration circuit which continuously
adjusts and matches the offset and linearity of each
The XRD64L44 internal reference provides cost savings and simplifies the design/development. The output voltage of the internal reference is set by two
external resistors. The internal reference can be disabled if an external reference is used for a power
savings of 50mW.
The power dissipation is only 250mW at 50 MSPS and
225mW at 40 MSPS with +3.0V power supply.
The digital output data is straight binary format, and
the tri-state disable function is provided for common
bus interface.
ORDERING INFORMATION
Part Number
Package Type
Temperature Range
XRD64L44AIV
64-Lead TQFP
-40°C to +85°C
Rev. P1.00
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 • (510) 668-7000 • FAX (510) 668-7017
XRD64L44
Preliminary
VCLMPA VINA+ VINA-
10 Bit A/D's
Bandgap
ADC A
A/D 1a
VBG
VFBK
+
-
11
DA9 - DA0,
OTRA
VRHF
TRI_A
A/D 17a
K
DIFF
SYNCO
PD
CKIN
CLAMP
CONTROL LOGIC
10 Bit A/D's
ADC B
A/D 1b
VRLF
11
VCMO
+
A/D 17b
VCLMPB VINB+ VINB-
Figure 1. XRD64L44 Simplified Block Diagram
Rev. P1.00
2
DB9 - DB0,
OTRB
TRI_B
OTRB
PD
DVDD
TRI_B
DIFF
CLAMP
32
DA0
16
31
DA1
15
30
DA2
14
29
DA3
13
28
DA4
12
DGND
VCLMPB
11
27
DOVDD
VCLMPA
3
10
DGND
VRLF
Rev. P1.00
9
26
DOGND
8
AGND
7
25
DVDD
6
DB3
DGND
24
DGND
5
DB4
DOVDD
23
DA5
4
DB5
DOGND
22
DA6
3
DB6
DB2
21
DA7
2
DB7
DB1
20
DA8
58
59
60
1
DB8
DB0
19
DA9
50
XRD64L44 64QFP
DB9
SYNCO
18
OTRA
33
49
34
VRLF
AGND
35
VRHF
AGND
36
VRHF
AVDD
37
61
AVDD
38
62
AGND
39
63
VINA-
40
64
VINA+
41
51
55
VINB+
AGND
42
57
VINB-
56
AGND
43
VFBK
AGND
44
VBG
AVDD
45
52
AGND
46
53
DGND
47
54
VCMO
48
CKIN
17
XRD64L44
Preliminary
TRI_A
XRD64L44
Preliminary
PIN DESCRIPTION
Pin #
1
2
Symbol
VBG
Description
Bandgap Voltage Output
VFBK
Analog Reference Feedback
3
4
VRHF
VRHF
Top Voltage Reference Force
Top Voltage Reference Force
5
VRLF
Bottom Voltage Reference Force
6
VRLF
Bottom Voltage Reference Force
7
8
VCLMPA
VCLMPB
9
AGND
Analog Ground
10
DGND
Digital Ground
11
DGND
Digital Ground
12
13
PD
DVDD
Power Down
Digital Supply Voltage
14
TRI_B
Tri-state for the B Channel Outputs
15
DIFF
16
17
CLAMP
TRI_A
Digital Clamp Control
Tri-state for the A Channel Outputs
18
19
CKIN
SYNCO
Clock Input
Data Valid Output
20
DB0
Digital Output Bit 0 (LSB) ADC B
21
22
DB1
DB2
Digital Output Bit 1 ADC B
Digital Output Bit 2 ADC B
23
24
DOGND
DOVDD
25
DGND
26
27
DB3
DB4
Digital Output Bit 3 ADC B
Digital Output Bit 4 ADC B
28
DB5
Digital Output Bit 5 ADC B
29
DB6
Digital Output Bit 6 ADC B
30
DB7
Digital Output Bit 7 ADC B
31
DB8
Digital Output Bit 8 ADC B
32
DB9
33
34
OTRB
DA0
35
DA1
Digital Output Bit 1 ADC A
36
37
DA2
DA3
Digital Output Bit 2 ADC A
Digital Output Bit 3 ADC A
Analog Input Clamp A
Analog Input Clamp B
Differential / Single-Ended Input Mode
Digital Output Ground
Digital Output Supply Voltage
Digital Ground
Digital Output Bit 9 (MSB) ADC B
Over Range Digital Output Bit ADC B
Digital Output Bit 0 (LSB) ADC A
38
DA4
39
DOVDD
Digital Output Bit 4 ADC A
40
DOGND
Digital Output Ground
41
DVDD
Digital Supply Voltage
Digital Output Supply Voltage
Rev. P1.00
4
Preliminary
PIN DESCRIPTION (CONT'D)
Pin #
42
Symbol
DGND
Description
Digital Ground
43
DA5
Digital Output Bit 5 ADC A
44
DA6
Digital Output Bit 6 ADC A
45
DA7
Digital Output Bit 7 ADC A
46
DA8
Digital Output Bit 8 ADC A
47
DA9
48
OTRA
Digital Output Bit 9 ADC A
49
VCMO
Differential Common Mode Voltage Output
50
DGND
Digital Ground
51
AGND
Analog Ground
52
AVDD
Analog Supply Voltage
53
AGND
Analog Ground
54
AGND
Analog Ground
55
VINB-
Analog Input B(-)
56
VINB+
Analog Input B(+)
57
AGND
Analog Ground
58
VINA+
Analog Input A(+)
Over Range Digital Output Bit ADC A
59
VINA-
Analog Input A(-)
60
AGND
Analog Ground
61
AVDD
Analog Supply Voltage
62
AVDD
Analog Supply Voltage
63
AGND
Analog Ground
64
AGND
Analog Ground
Rev. P1.00
5
XRD64L44
XRD64L44
Preliminary
ELECTRICAL CHARACTERISTICS TABLE (CONT'D)
Test Conditions (Unless Otherwise Specified)
TA = 25°C AVDD = DVDD = +3.3V, VIN = GND to +2.5V, VRLF = GND, VRHF = +2.5V and Fs = 50 MSPS, 50% Duty
Cycle, Differential Input Mode
Symbol
Parameter
Min.
Typ.
Max.
Unit
-1.0
+/-0.4
1.0
LSB
Conditions/Comments
DC ACCURACY
DNL
Differential Non-Linearity
INL
Integral Non-Linearity
+/-1.1
LSB
MON
Monotonicity
No Missing Codes
Guaranteed by Test
FSE
Full Scale Error
+10
mV
F.S. = (VRHF - VRLF)x0.97
ZSE
Zero Scale Error
5
mV
Single Ended Mode
ANALOG INPUT
INVR
Input Voltage Range
INRES
Input Resistance
INCAP
Input Capacitance
INBW
Input Bandwidth
VRHFx0.97 V
0
20
KOhms
5
pF
400
MHz
VRLF Grounded
-1dB Small Signal
REFERENCE INPUT, INTERNAL BANDGAP REFERENCE AND REFERENCE BUFFER
RLAD
RLADTCO
VBG
VBGTC
Ladder Resistance
100
125
150
Ohms
Ladder Resistance Tempco
+0.8
Ohms/°C
Bandgap Output Voltage Range
1.25
V
30
ppm/°C
Bandgap Reference Tempco
VRLF
0.0
2.0
VRHF
VRLF+1.0
AVdd-0.6
VRHF External Reference
AVdd
VRLF+1.0
VRHF PSRR Internal Reference Buffer
6
V
V Internal Reference Buffer
V External
mV/V
CONVERSION and TIMING CHARACTERISTICS (CL = 10pF)
MAXCON
Maximum Conversion Rate
MINCON
Minimum Conversion Rate
PDEL
50
60
MSPS
100
KSPS
Pipeline Delay(Latency)
17
tad
Aperture Delay Time
4
APJT
CLK
Aperture Jitter Time
12
ps
tr
Digital Output Rise Time
3
ns
tf
Digital Output Fall Time
3
tpd
Output Data Propagation Delay
6
14
tden
Output Data Enable Delay
6
14
tdis
Output Data Disable Delay
5
CLKDC
Clock Duty Cycle
40
50
Rev. P1.00
6
Clock Cycles Digital Data Delay
ns
Peak-to Peak
ns
ns
Guaranteed by Design
ns
Guaranteed by Design
ns
60
%
Guaranteed by Design
XRD64L44
Preliminary
ELECTRICAL CHARACTERISTICS TABLE (CONT'D)
Test Conditions (Unless Otherwise Specified)
TA = 25°C AVDD = DVDD = +3.3V, VIN = GND to +2.5V, VRLF = GND, VRHF = +2.5V, 50% Duty Cycle, Differential
Input Mode
SymbolParameter
Min.
Typ.
Max.
Unit
Conditions/Comments
DYNAMIC PERFORMANCE Fs = 40MHz
SNR
SINAD
Signal-to-Noise Ratio
Not Including Harmonics
Fin = 1.0 MHz
60
dB
fin = 4.0 MHz
60
dB
fin = 1.0 MHz
58
dB
fin = 4.0 MHz
58
dB
fin = 12.5 MHz
57
dB
fin = 1.0 MHz
9.5
Bit
fin = 4.0 MHz
9.5
Bit
fin = 12.5 MHz
9.3
Bit
Signal-to Noise and Distortion
ENOB Effective Number of Bits
SFDR Spurious Free Dynamic Range
SFDR
fin = 4.0 MHz
70
dB
Crosstalk
fin = 4.0 MHz
75
dB
Rev. P1.00
7
XRD64L44
Preliminary
ELECTRICAL CHARACTERISTICS TABLE (CONT'D)
Test Conditions (Unless Otherwise Specified)
TA = 25°C AVDD = DVDD = +3.3V, VIN = GND to +2.5V, VRLF = GND, VRHF = +2.5V, 50% Duty Cycle, Differential
Input Mode
SymbolParameter
Min.
Typ.
Max.
Unit
Conditions/Comments
DYNAMIC PERFORMANCE Fs = 50MHz
SNR
SINAD
Signal-to-Noise Ratio
Not Including Harmonics
Fin = 1.0 MHz
56
58
dB
fin = 4.0 MHz
56
58
dB
fin = 1.0 MHz
55
57
dB
fin = 4.0 MHz
54
57
dB
fin = 12.5 MHz
54
56
dB
fin = 1.0 MHz
9.0
9.3
Bit
fin = 4.0 MHz
9.0
9.3
Bit
fin = 12.5 MHz
8.8
9.1
Bit
Signal-to Noise and Distortion
ENOB Effective Number of Bits
SFDR Spurious Free Dynamic Range
SFDR
fin = 4.0 MHz
70
dB
Crosstalk
fin = 4.0 MHz
75
dB
Rev. P1.00
8
XRD64L44
Preliminary
ELECTRICAL CHARACTERISTICS TABLE (CONT'D)
Test Conditions (Unless Otherwise Specified)
TA = 25°C AVDD = DVDD = +3.3V, VIN = GND to +2.5V, VRLF = GND, VRHF = +2.5V and Fs = 50 MSPS, 50% Duty
Cycle, Differential Input Mode
SymbolParameter
Min.
Typ.
Max.
Unit
Conditions/Comments
DIGITAL INPUTS
DVINH
Digital Input High Voltage
DVINL
Digital Input Low Voltage
DIINH
2.5
V
0.5
V
Digital Input High Current (The DIFF input has an internal pull-up resistor, TRI_A and TRI_B have
internal pull-down resistors
CKIN
Clock Input
-5.0
0.05
5.0
nA
DIFF
Differential/Single-Ended Input
-1.0
-0.25
1.0
uA
-50.0
uA
TRI_A/TRI_B A/B Channel Tri-State
DIINL
-125.0 -90.0
Digital Input Low Current (The DIFF input has an internal pull-up resistor, TRI_A and TRI_B have
internal pull-down resistors
CKIN
Clock Input
-5.0
0.05
5.0
nA
DIFF
Differential/Single-Ended Input
50.0
90.0
125.0
uA
-1.0
0.25
1.0
uA
5
8
pF
TRI_A/TRI_B A/B Channel Tri-State
DINC
Digital Input Capacitance
DIGITAL OUTPUTS (CL = 10 pF)
DOHV
Digital Output High Voltage
DOLV
Digital Output Low Voltage
IOZ
DVdd -0.4VDVdd-0.3V
High-Z Leakage
V
IOH = 1.5 mA
IOL = 1.5 mA
0.3
0.4
V
-20
0.2
20
nA
3.0
3.3
3.6
V
POWER SUPPLIES
`
AVDD
Analog Power Supply Voltage
DVDD
Digital Power Supply Range
AV DD
V
DVDD = AVDD
Fs = 40 MHz, AVdd = DVdd = 3.0V, CL = 10pF, Fin = 10MHz
AIDD
Analog Supply Current
37
mA
DIDD
Digital Supply Current
15
mA
DOIDD
Output Driver Current
15
mA
VRHF
Top Voltage Ref Force Current
PDISS
Power Dissipation
8
mA
225
mW
VRHF/125, VRHF = 1.0V
Fs = 50 MHz, AVdd = DVdd = 3.0V, CL = 10pF, Fin = 10MHz
AIDD
Analog Supply Current
38
mA
DIDD
Digital Supply Current
19
mA
DOIDD
Output Driver Current
18
mA
VRHF
Top Voltage Ref Force Current
8
mA
PDISS
Power Dissipation
250
mW
Rev. P1.00
9
VRHF/125, VRHF = 1.0V
XRD64L44
Preliminary
ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)1, 2, 3
VDD to GND
○
○
○
○
○
VRT & VRB
VIN
All Inputs
All Outputs
Storage Temperature
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
+7.0V
Lead Temperature (Soldering 10 seconds)
300°C
Maximum Junction Temperature
150°C
Package Power Dissipation Ratings (TA= +70°C)
SSOP
θJA = 89.4°C/W
○
VDD +0.5 to GND -0.5V
VDD +0.5 to GND -0.5V
VDD +0.5 to GND -0.5V
VDD +0.5 to GND -0.5V
-65°C to 150°C
○
○
○
○
○
ESD
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
2000V min
○
○
○
Notes:
1 Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation at or above this specification is not implied.
Exposure to maximum rating conditions for extended periods may affect device reliability.
2 Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky
diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will
protect the device from short transients outside the supplies of less than 100mA for less than 100ms.
3
VDD refers to AVDD and DVDD. GND refers to AGND and DGND
Rev. P1.00
10
XRD64L44
Preliminary
65
60.00
SINAD in db
SINAD in db
55.00
60
50.00
45.00
55
40.00
3.0V
3.2V
3.4V
3.6V
50
2.8V
3.0V
2.90MHz
3.2V
3.4V
6.90MHz
9.90MHz
3.6V
Fclk = 53.3MHz
Fclk = 56.7MHz
Fclk = 60.0MHz
Figure 3 - SINAD vs. Fclock and Vdd DIFFERENTIAL INPUT MODE
Figure 2 - SINAD vs. Fin and Vdd @Fc =
40.0MHz, DIFFERENTIAL INPUT MODE
0.00
0.00
Single Tone 8192 Point FFT
SFDR
-72.66
SINAD
-57.97
-40.00
Single Tone 8192 Point FFT
SFDR
-69.77
SINAD
-57.11
-20.00
Relative Power in db
-20.00
Relative Power in db
Fclk = 50.0MHz
-60.00
-80.00
-100.00
-40.00
-60.00
-80.00
-100.00
-120.00
-120.00
DC
DC
4.0
8.1
12.1
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
16.1
Frequency in MHz
Frequency in MHz
Figure 4 - FFT Spectrum @Fclock = 40.0MHz,
Fin = 4.0MHz, DIFFERENTIAL INPUT MODE
Figure 5 - FFT Spectrum @Fclock = 40.0MHz,
Fin = 10.0MHz, DIFFERENTIAL INPUT MODE
60
0.00
Relative Power in db
SINAD in db
55
50
45
Single Tone 8192 Point FFT
SFDR
-62.57
SINAD
-55.25
-20.00
-40.00
-60.00
-80.00
-100.00
-120.00
40
2.8V
3.0V
3.2V
3.4V
DC
3.6V
4.0
8.1
12.1
16.1
Frequency in MHz
2.90MHz
6.90MHz
9.90MHz
Figure 6 - SINAD vs. Fin and Vdd @Fc =
40.0MHz, SINGLE-ENDED INPUT MODE
Figure 7 - FFT Spectrum @Fclock = 40.0MHz,
Fin = 4.0MHz, Single-ended INPUT MODE
Rev. P1.00
11
XRD64L44
Preliminary
60.00
Single Tone 8192 Point FFT
SFDR
-60.95
SINAD
-54.48
-20.00
-40.00
SINAD in db
Relative Power in db
0.00
-60.00
-80.00
55.00
50.00
-100.00
-120.00
45.00
DC
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
2.80V
3.00V
Frequency in MHz
6.90MHz
3.40V
3.60V
9.90MHz
Figure 9 - SINAD vs. Fin and Vdd @Fc =
50.0MHz, DIFFERENTIAL INPUT MODE
Figure 8 - FFT Spectrum @Fclock = 40.0MHz,
Fin = 10.0MHz, Single-ended INPUT MODE
0.00
0.00
Single Tone 8192 Point FFT
SFDR
-66.93
SINAD
-56.70
-20.00
Relative Power in db
-20.00
Relative Power in db
3.20V
2.90MHz
-40.00
-60.00
-80.00
Single Tone 8192 Point FFT
SFDR
-66.93
SINAD
-56.70
-40.00
-60.00
-80.00
-100.00
-100.00
-120.00
-120.00
DC
DC
4.0
8.0
12.0
16.0
20.0
2.5
5.0
7.5
24.1
10.0 12.5 15.0 17.5 20.0 22.5
Frequency in MHz
Frequency in MHz
Figure 10 - FFT Spectrum @Fclock = 50.0MHz,
Fin = 4.0MHz, DIFFERENTIAL INPUT MODE
Figure 11 - SINAD @Fclock = 50.0MHz, Fin =
12.5MHz, DIFFERENTIAL INPUT MODE
0.00
Single Tone 8192 Point FFT
SFDR
-64.15
SINAD
-50.91
-40.00
60.00
55.00
SINAD in db
Relative Power in db
-20.00
-60.00
-80.00
50.00
45.00
-100.00
40.00
24.1
22.6
21.1
19.6
18.1
16.6
15.1
13.6
12.1
9.0
10.5
7.5
6.0
4.5
3.0
1.5
DC
-120.00
2.80V
Frequency in MHz
Figure 12 - FFT Spectrum @Fclock = 50.0MHz,
Fin = 24.1MHz, DIFFERENTIAL INPUT MODE
3.00V
3.20V
3.40V
2.90MHz
6.90MHz
9.90MHz
Figure 13 - SINAD vs. Fin and Vdd @Fc =
50.0MHz, SINGLE-ENDED INPUT MODE
Rev. P1.00
12
3.60V
XRD64L44
Preliminary
0.00
0.00
Single Tone 8192 Point FFT
SFDR
-64.09
SINAD
-54.21
-20.00
Relative Power in db
Relative Power in db
-20.00
-40.00
-60.00
-80.00
DC
4.0
8.0
12.0
16.0
20.0
DC
24.0
Figure 14 - SINAD @Fclock = 50.0MHz, Fin =
4.0MHz, SINGLE-ENDED INPUT MODE
Single Tone 8192 Point FFT
SFDR
-53.43
SINAD
-47.36
Relative Power in db
-60.00
-80.00
-100.00
-120.00
6.0
9.0
12.1
15.1
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
Figure 15 - FFT SPECTRUM @Fclock = 50.0MHz,
Fin = 12.5MHz, SINGLE-ENDED INPUT MODE
0.00
3.0
2.5
Frequency in MHz
Fre quency in M Hz
DC
-80.00
-120.00
-120.00
-40.00
-60.00
-100.00
-100.00
-20.00
-40.00
Single Tone 8192 Point FFT
SFDR
-54.01
SINAD
-51.75
18.1
21.1
24.1
Frequency in MHz
Figure 16 - SINAD @Fclock = 50.0MHz, Fin =
24.1MHz, SINGLE-ENDED INPUT MODE
Rev. P1.00
13
XRD64L44
Preliminary
Notes
Rev. P1.00
14
Preliminary
XRD64L44
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve
design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described
herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of
patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending
upon a user’s specific application. While the information in this publication has been carefully checked; no
responsibility, however, is assumed for in accuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure
or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the
circumstances.
Copyright 1999 EXAR Corporation
Datasheet February 1999
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
Rev. P1.00
15