TI 5962-9466902QXA

 SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
D
D
D
D
D
D
D
D
D
D
D
D
D
SMJ: QML Processing to MIL–PRF–38535
SM: Standard Processing
TMP: Commercial Level Processing TAB
Operating Temperature Ranges:
– Military (M) –55°C to 125°C
– Special (S) –55°C to 100°C
– Commercial (C) –25°C to 85°C
– Commercial (L) 0°C to 70°C
Highest Performance Floating-Point Digital
Signal Processor (DSP)
– C40-60:
33-ns Instruction Cycle Time:
60 MFLOPS, 30 MIPS, 330 MOPS,
384 MBps
– C40-50:
40-ns Instruction Cycle Time:
50 MFLOPS, 25 MIPS, 275 MOPS,
320 MBps
– C40-40:
50-ns Instruction Cycle Time:
40 MFLOPS, 20 MIPS, 220 MOPS,
256 MBps
Six Communications Ports
6-Channel Direct Memory Access (DMA)
Coprocessor
Single-Cycle Conversion to and From
IEEE-745 Floating-Point Format
Single Cycle 1/x, 1/Ǹx
Source-Code Compatible With SMJ320C30
Validated Ada Compiler
Single-Cycle 40-Bit Floating-Point,
32-Bit Integer Multipliers
12 40-Bit Registers, 8 Auxiliary Registers,
14 Control Registers, and 2 Timers
D IEEE Standard 1149.1† Test-Access Port
(JTAG)
D Two Identical External Data and Address
D
D
D
D
Buses Supporting Shared Memory Systems
and High Data-Rate, Single-Cycle
Transfers:
– High Port-Data Rate of 100 MBytes/s
(Each Bus)
– 16G-Byte Continuous
Program/Data/Peripheral Address Space
– Memory-Access Request for Fast,
Intelligent Bus Arbitration
– Separate Address-, Data-, and
Control-Enable Pins
– Four Sets of Memory-Control Signals
Support Different Speed Memories in
Hardware
Packaging:
– 325-Pin Ceramic Grid Array (GF Suffix)
– 352-Lead Ceramic Quad Flatpack
(HFH Suffix)
– 324-Pad JEDEC-Standard TAB Frame
Fabricated Using Enhanced Performance
Implanted CMOS (EPIC) Technology by
Texas Instruments (TI)
Separate Internal Program, Data, and DMA
Coprocessor Buses for Support of Massive
Concurrent Input/Output (I/O) of Program
and Data Throughput, Maximizing
Sustained Central Processing Unit (CPU)
Performance
On-Chip Program Cache and
Dual-Access/Single-Cycle RAM for
Increased Memory-Access Performance
– 512-Byte Instruction Cache
– 8K Bytes of Single-Cycle Dual-Access
Program or Data RAM
– ROM-Based Bootloader Supports
Program Bootup Using 8-, 16-, or 32-Bit
Memories Over Any One of the
Communications Ports
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
†IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port and Boundary-Scan Architecture.
EPIC and TI are trademarks of Texas Instruments Incorporated.
Copyright  2001, Texas Instruments Incorporated
!" #!$% &"'
&! #" #" (" " ") !"
&& *+' &! # ", &" " "%+ %!&"
", %% #""'
POST OFFICE BOX 1443
#&! #% -.-/00 %% #"" " ""&
!%" ("*" "&' %% (" #&! #&! # ", &" " "%+ %!&" ", %% #""'
• HOUSTON, TEXAS 77251–1443
1
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
pinouts
352-LEAD HFH QUAD FLATPACK PACKAGE
(TOP VIEW)†
352
325-PIN GF GRID ARRAY PACKAGE
(BOTTOM VIEW)†
265
1
264
88
177
AR
AP
AN
AM
AL
AK
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
2
1
4
3
6
5
7
8 10 12 14 16 18 20 22 24 26 28 30 32 34
9 11 13 15 17 19 21 23 25 27 29 31 33 35
Pin A1
89
176
TAB 325-LEAD OLB/ILB
TAPE AUTOMATED BONDING (TAB) PACKAGE
(TOP VIEW)†
1
† See the pin assignments tables and the signal description table for location and description of all pins.
2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
description
The C40 digital signal processors (DSPs) are 32-bit, floating-point processors manufactured in 0.72-µm,
double-level metal CMOS technology. The 320C40 is a part of the fourth-generation DSPs from Texas
Instruments and is designed primarily for parallel processing.
For additional information when designing for cold temperature operation, please see Texas Instruments
application report 320C3x, 320C4x and 320MCM42x Power-up Sensitivity at Cold Temperature, literature
number SGUA001.
operation
The 320C40 has six on-chip communication ports for processor-to-processor communication with no external
hardware and simple communication software. This allows connectivity to other C4x processors with no
external-glue logic. The communication ports remove input/output bottlenecks, and the independent smart
DMA coprocessor is able to handle the CPU input/output burden.
central processing unit
The 320C40 CPU is configured for high-speed internal parallelism for the highest sustained performance. The
key features of the CPU are:
D Eight operations/cycle:
D
D
D
D
–
40/32-bit floating-point/integer multiply
–
40/32-bit floating-point/integer arithmetic logic unit (ALU) operation
–
Two data accesses
–
Two address-register updates
IEEE floating-point conversion
Divide and square-root support
C3x assembly language compatibility
Byte and halfword accessibility
DMA coprocessor
The DMA coprocessor allows concurrent I/O and CPU processing for the highest sustained CPU performance.
The key features of the DMA processor are:
D
D
D
D
Link pointers that allow DMA channels to autoinitialize without CPU intervention
Parallel CPU operation and DMA transfers
Six DMA channels that support memory-to-memory data transfers
Split-mode operation doubles the available DMA channels to 12 when data transfers to and from a
communication port are required.
communication ports
The C40 is the first DSP with on-chip communication ports for processor-to-processor communication with no
external hardware and simple communication software. The features of the communication ports are:
D Direct interprocessor communication and processor I/O
D Six communication ports for direct interprocessor communication and processor I/O
D 20M-byte/s bidirectional interface on each communication port for high-speed multiprocessor interface
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
3
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
communication ports (continued)
D Separate 8-word-deep input and output FIFO buffers for processor-to-processor communication and I/O
D Automatic arbitration and handshaking for direct processor-to-processor connection
communication-port software reset (C40 silicon revision ≥ 5.0)
The input and output FIFO levels for a communication port can be flushed by writing at least two back-to-back
values to its communication-port software-reset address as specified in Table 1. This feature is not present in
C40 silicon revision < 5.0. This software reset flushes any word or byte already present in the FIFOs but it does
not affect the status of the communication-port pins. Figure 1 shows an example of
communication-port-software reset.
Table 1. Communication-Port Software-Reset Address
0
0x0100043
1
0x0100053
2
0x0100063
3
0x0100073
4
0x0100083
5
0x0100093
; –––––––––––––––––––––––––––––––––––––––––––––-–––;
; RESET1:Flush’s FIFO data for communication port 1;
; –––––––––––––––––––––––––––––––––––––––––––––-–––;
RESET1 push
AR0
; Save registers
push
R0
;
push
RC
;
ldhi
010h,AR0
; Set AR0 to base address of COM 1
or
050h,AR0
;
flush: rpts
1
; Flush FIFO data with back-to-back write
sti
R0,*+AR0(3) ;
rpts
10
; Wait
nop
;
ldi
*+AR0(0),R0 ; Check for new data from other port
and
01FE0h,R0
;
bnz
flush
;
pop
RC
; Restore registers
pop
R0
;
pop
AR0
;
rets
; Return
Figure 1. Example of Communication-Port-Software Reset
4
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
NMI with bus-grant feature (C40 silicon revision ≥ 5.0)
The 320C40 devices have a software-configurable feature that forces the internal-peripheral bus to ready when
the NMI signal is asserted. This feature is not present in C40 silicon revision < 5.0. The NMI bus-grant feature
is enabled when bits 19–18 of the status register (ST) are set to 10b. When enabled, a peripheral bus-grant
signal is generated on the falling edge of NMI. When NMI is asserted and this feature is not enabled, the CPU
stalls on access to the peripheral bus if it is not ready. A stall condition occurs when writing to a full FIFO or
reading an empty FIFO. This feature is useful in correcting communication-port errors when used in conjunction
with the communication-port software-reset feature.
IDLE2 clock-stop power-down mode (C40 silicon revision ≥ 5.0)
The 320C40 has a clock-stop mode or power-down mode (IDLE2) to achieve extremely low power
consumption. When an IDLE2 instruction is executed, the clocks are halted with H1 being held high. To exit
IDLE2, assert one of the IIOF3–IIOF0 pins configured as an external interrupt instead of a general-purpose I/O.
A macro showing how to generate the IDLE2 opcode is given in Figure 2. During this power-down mode:
D No instructions are executed
D The CPU, peripherals, and internal memory retain their previous state.
D The external-bus outputs are idle. The address lines remain in their previous state, the data lines are in
the high-impedance state, and the output-control signals are inactive.
; ––––––––––––––––––––––––––––––––––––––––––––-–-–;
; IDLE2: Macro to generate idle2 opcode
;
; –––––––––––––––––––––––––––––––––––––––––––––-––;
IDLE2
.macro
.word
06000001h
.endm
Figure 2. Example of Software Subroutine Using IDLE2
IDLE2 is exited when one of the five external interrupts (NMI and IIOF3–IIOF0) is asserted low for at least four
input clocks (two H1 cycles). The clocks then start after a delay of two input clocks (one H1 cycle). The clocks
can start in the opposite phase; that is, H1 can be high when H3 was high before the clocks were stopped.
However, the H1 and H3 clocks remain 180° out of phase with each other.
During IDLE2 operation, an external interrupt can be recognized and serviced by the CPU if it is enabled before
entering IDLE2 and asserted for at least two H1 cycles. For the processor to recognize only one interrupt, the
interrupt pin must be configured for edge-trigger mode or asserted less than three cycles in level-trigger mode.
Any external interrupt pin can wake up the device from IDLE2, but for the CPU to recognize that interrupt, it must
also be enabled. If an interrupt is recognized and executed by the CPU, the instruction following the IDLE2
instruction is not executed until after execution of a return opcode.
When the device is in emulation mode, the CPU executes an IDLE2 instruction as if it were an IDLE instruction.
The clocks continue to run for correct operation of the emulator.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
5
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
development tools
The C40 is supported by a host of parallel-processing development tools for developing and simulating code
easily and for debugging parallel-processing systems. The code generation tools include:
D An ANSI C compiler optimized with a runtime support library that supports use of communication ports and
DMA.
D Third-party support for C, C++, and Ada compilers
D Several operating systems available for parallel-processing support, as well as DMA and communication
port drivers
D An assembler and linker with support for mapping program and data to parallel processors
The simulation tools include:
D Parallel DSP system-level simulation with LAI hardware verification (HV) model and full function (FF) model
D TI software simulator with high-level language debugger interface for simulating a single processor
The hardware development and verification tools include:
D Parallel processor in-circuit emulator and high-level language debugger: XDS510
D Parallel processor development system (PPDS) with four 320C40s, local and global memory, and
communication port connections
XDS510 is a trademark of Texas Instruments Incorporated.
6
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
block diagram
Cache
(512 Bytes)
32
RAM Block 1
(4K Bytes)
RAM Block 0
(4K Bytes)
32
32
32
32
ROM Block
(Reserved)
32
32
32
Continued on next page
PDATA Bus
D31–D0
A30–A0
DE
AE
STAT3–STAT0
LOCK
STRB0,STRB1
R/W0,RW1
PAGE0,PAGE1
RDY0,RDY1
CE0,CE1
PADDR Bus
DDATA Bus
M
U
X
DADDR 1 Bus
DADDR 2 Bus
DMADATA Bus
DMAADDR Bus
32
32
32
32
32
IR
PC
MUX
X1
X2/CLKIN
ROMEN
RESET
RESETLOC0,
RESETLOC1
NMI
IIOF3–IIOF0
IACK
H1
H3
CVSS
DVDD
DVSS
IVSS
LADVDD
LDDVDD
VDDL
VSSL
SUBS
CPU1
CPU2
REG 1
REG1
C
o
n
t
r
o
l
l
e
r
C
P
U
1
R
E
G
1
R
E
G
2
REG2
40
40
40
40
32-Bit Barrel
Shifter
Multiplier
ALU
40
40
40
Extended
Precision
Registers
(R0–R11)
40
32
40
40
DISP, IR0, IR1
ARAU0
ARAU1
BK
32
32
32
32
32
Auxiliary
Registers
(AR0–AR7)
32
32
POST OFFICE BOX 1443
Other
Registers
(14)
• HOUSTON, TEXAS 77251–1443
32
32
32
7
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Continued from previous page
block diagram (continued)
PDATA Bus
LD31–LD0
LA30–LA0
LDE
LAE
LSTAT3–LSTAT0
LLOCK
LSTRB0–LSTRB1
LR/W0–LR/W1
LPAGE0–LPAGE1
LRDY0–LRDY1
LCE0, LCE1
PADDR Bus
DDATA Bus
M
U
X
DADDR 1 Bus
DADDR 2 Bus
DMADATA Bus
DMAADDR Bus
32
32
32
DMA Coprocessor
DMA Channel 0
DMA Channel 1
DMA Channel 2
DMA Channel 3
DMA Channel 4
DMA Channel 5
Six DMA Channels
32
32
32
32
P
e
r
i
p
h
e
r
a
l
P
e
r
i
p
h
e
r
a
l
D
a
t
a
A
d
d
r
e
s
s
B
u
s
B
u
s
32
32
32
32
COM Port 0
Input
FIFO
PAU
Output
FIFO
Port Control Registers
COM Port 5
Input
FIFO
PAU
Output
FIFO
Port Control Registers
32
32
32
Timer 0
Global Control Register
Time Period Register
Timer Counter Register
TCLK0
Timer 1
Global Control Register
Time Period Register
Timer Counter Register
TCLK1
Port Control
Global
Local
32
POST OFFICE BOX 1443
CREQ5
CACK5
CSTRB5
CRDY5
C5D7–C5D0
32
32
8
CREQ0
CACK0
CSTRB0
CRDY0
C0D7–C0D0
• HOUSTON, TEXAS 77251–1443
Six Communication Ports
MUX
32
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
memory map
Figure 3 shows the memory map for the 320C40. See the TMS320C4x User’s Guide (literature number
SPRU063) for a detailed description of this memory mapping.
000000000h
Structure
Depends
Upon
ROMEN Bit
1M
Accessible Local Bus
(External)
000000FFFh
000001000h
Boot-Loader ROM
(Internal)
Reserved
Peripherals (Internal)
0000FFFFFh
000100000h
Peripherals (Internal)
0001000FFh
000100100h
1M
Reserved
Reserved
0001FFFFFh
000200000h
Reserved
Reserved
2G
1M
1K RAM BLK 0 (Internal)
1K RAM BLK 1 (Internal)
0002FF7FFh
0002FF800h
0002FFBFFh
0002FFC00h
1K RAM BLK 0 (Internal)
1K RAM BLK 1 (Internal)
0002FFFFFh
000300000h
2G–3M
Structure
Identical
Local Bus
(External)
Local Bus
(External)
07FFFFFFFh
080000000h
Global Bus (External)
Global Bus (External)
2G
0FFFFFFFFh
(a) Internal ROM Disabled
(ROMEN = 0)
Microprocessor Mode
(b) Internal ROM Enabled
(ROMEN = 1)
Microcomputer Mode
Figure 3. Memory Map for 320C40
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
9
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
signal descriptions
This section gives signal descriptions for the SMJ320C40 device. The SMJ320C40 signal descriptions table
lists each signal, the number of pins, operating mode(s) (that is, input, output, or high-impedance state as
indicated by I, O, or Z, respectively), and function. All pins labeled NC are not to be connected by the user. A
line over a signal name (for example, RESET) indicates that the signal is active low (true at a logic-0 level). The
signals are grouped according to functions.
SMJ320C40 Signal Descriptions
SIGNAL
NO. OF
PINS
TYPE†
D31–D0
32
I/O/Z
DE
1
I
A30–A0
31
O/Z
AE
1
I
Address-bus-enable signal for the global bus external interface
STAT3–STAT0
4
O
Status signals for the global bus external interface
LOCK
1
O
Lock signal for the global bus external interface
STRB0‡
R/W0‡
1
O/Z
Access strobe 0 for the global bus external interface
1
O/Z
Read/write signal for STRB0 accesses
PAGE0‡
RDY0‡
1
O/Z
Page signal for STRB0 accesses
1
I
Ready signal for STRB0 accesses
CE0‡
1
I
Control enable for the STRB0, PAGE0, and R/W0 signals
STRB1‡
R/W1‡
1
O/Z
Access strobe 1 for the global bus external interface
1
O/Z
Read/write signal for STRB1 accesses
PAGE1‡
RDY1‡
1
O/Z
Page signal for STRB1 accesses
1
I
Ready signal for STRB1 accesses
CE1‡
1
I
NAME
DESCRIPTION
GLOBAL BUS EXTERNAL INTERFACE (80 PINS)
32-bit data port of the global bus external interface
Data-bus-enable signal for the global bus external interface
31-bit address port of the global bus external interface
Control enable for the STRB1, PAGE1, and R/W1 signals
LOCAL BUS EXTERNAL INTERFACE (80 PINS)
LD31–LD0
32
I/O/Z
32-bit data port of the local bus external interface
LDE
1
I
LA30–LA0
31
O/Z
Data-bus-enable signal for the local bus external interface
LAE
1
I
Address-bus-enable signal for the local bus external interface
LSTAT3–LSTAT0
4
O
Status signals for the local bus external interface
LLOCK
1
O
Lock signal for the local bus external interface
LSTRB0‡
1
O/Z
Access strobe 0 for the local bus external interface
LR/W0
1
O/Z
Read/write signal for LSTRB0 accesses
LPAGE0
1
O/Z
Page signal for LSTRB0 accesses
LRDY0
1
I
Ready signal for LSTRB0 accesses
LCE0
1
I
Control enable for the LSTRB0, LPAGE0, and LR/W0 signals
LSTRB1‡
1
O/Z
31-bit address port of the local bus external interface
Access strobe 1 for the local bus external interface
LR/W1
1
O/Z
Read/write signal for LSTRB1 accesses
† I = input, O = output, Z = high impedance
‡ STRB0, STRB1 and associated signals (R/W1, R/W0, PAGE0, PAGE1, etc.) are effective over the address ranges defined by the
STRB ACTIVE bits.
§ HFH package has additional power and ground pins to reduce noise problems.
10
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
signal descriptions (continued)
SMJ320C40 Signal Descriptions (Continued)
SIGNAL
NAME
NO. OF
PINS
TYPE†
DESCRIPTION
LOCAL BUS EXTERNAL INTERFACE (80 PINS) (CONTINUED)
LPAGE1
1
O/Z
Page signal for LSTRB1 accesses
LRDY1
1
I
Ready signal for LSTRB1 accesses
LCE1
1
I
Control enable for the LSTRB1, LPAGE1, and LR/W1 signals
COMMUNICATION PORT 0 INTERFACE (12 PINS)
C0D7–C0D0
8
I/O
Communication port 0 data bus
CREQ0
1
I/O
Communication port 0 token-request signal
CACK0
1
I/O
Communication port 0 token-request-acknowledge signal
CSTRB0
1
I/O
Communication port 0 data-strobe signal
CRDY0
1
I/O
Communication port 0 data-ready signal
COMMUNICATION PORT 1 INTERFACE (12 PINS)
C1D7–C1D0
8
I/O
Communication port 1 data bus
CREQ1
1
I/O
Communication port 1 token-request signal
CACK1
1
I/O
Communication port 1 token-request-acknowledge signal
CSTRB1
1
I/O
Communication port 1 data-strobe signal
CRDY1
1
I/O
Communication port 1 data-ready signal
COMMUNICATION PORT 2 INTERFACE (12 PINS)
C2D7–C2D0
8
I/O
Communication port 2 data bus
CREQ2
1
I/O
Communication port 2 token-request signal
CACK2
1
I/O
Communication port 2 token-request-acknowledge signal
CSTRB2
1
I/O
Communication port 2 data-strobe signal
CRDY2
1
I/O
Communication port 2 data-ready signal
C3D7–C3D0
8
I/O
Communication port 3 data bus
CREQ3
1
I/O
Communication port 3 token-request signal
CACK3
1
I/O
Communication port 3 token-request-acknowledge signal
CSTRB3
1
I/O
Communication port 3 data-strobe signal
CRDY3
1
I/O
COMMUNICATION PORT 3 INTERFACE (12 PINS)
Communication port 3 data-ready signal
COMMUNICATION PORT 4 INTERFACE (12 PINS)
C4D7–C4D0
8
I/O
Communication port 4 data bus
CREQ4
1
I/O
Communication port 4 token-request signal
CACK4
1
I/O
Communication port 4 token-request-acknowledge signal
CSTRB4
1
I/O
Communication port 4 data-strobe signal
CRDY4
1
I/O
Communication port 4 data-ready signal
† I = input, O = output, Z = high impedance
‡ STRB0, STRB1 and associated signals (R/W1, R/W0, PAGE0, PAGE1, etc.) are effective over the address ranges defined by the
STRB ACTIVE bits.
§ HFH package has additional power and ground pins to reduce noise problems.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
11
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
signal descriptions (continued)
SMJ320C40 Signal Descriptions (Continued)
SIGNAL
NAME
NO. OF
PINS
TYPE†
DESCRIPTION
COMMUNICATION PORT 5 INTERFACE (12 PINS)
C5D7–C5D0
8
I/O
Communication port 5 data bus
CREQ5
1
I/O
Communication port 5 token-request signal
CACK5
1
I/O
Communication port 5 token-request-acknowledge signal
CSTRB5
1
I/O
Communication port 5 data-strobe signal
CRDY5
1
I/O
Communication port 5 data-ready signal
IIOF3–IIOF0
4
I/O
NMI
1
I
Nonmaskable interrupt. NMI is sensitive to a low-going edge.
IACK
1
O
Interrupt acknowledge
RESET
1
I
Reset signal
RESETLOC1–
RESETLOC0
2
I
Reset-vector location pins
ROMEN
1
I
On-chip ROM enable (0 = disable, 1 = enable)
TCLK0
1
I/O
Timer 0 pin
TCLK1
1
I/O
Timer 1 pin
X1
1
O
Crystal pin
X2/CLKIN
1
I
Crystal/oscillator pin
H1
1
O
H1 clock
H3
1
O
H3 clock
INTERRUPTS, I/O FLAGS, RESET, TIMER (12 PINS)
Interrupt and I/O flags
CLOCK (4 PINS)
POWER AND GROUND (70 PINS)§
15§
15§
I
Ground pins
I
Ground pins
6§
I
Ground pins
13
3§
I
5-VDC supply pins
5-VDC supply pins
3§
3§
I
3§
I
SUBS
1
I
VDDL
VSSL
4
I
4
I
CVSS
DVSS
IVSS
DVDD
GADVDD
GDDVDD
LADVDD
LDDVDD
I
I
5-VDC supply pins
5-VDC supply pins
5-VDC supply pins
Substrate pin (tie to ground)
5-VDC supply pins
Ground pins
† I = input, O = output, Z = high impedance
‡ STRB0, STRB1 and associated signals (R/W1, R/W0, PAGE0, PAGE1, etc.) are effective over the address ranges defined by the
STRB ACTIVE bits.
§ HFH package has additional power and ground pins to reduce noise problems.
12
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
signal descriptions (continued)
SMJ320C40 Signal Descriptions (Continued)
SIGNAL
NAME
NO. OF
PINS
TYPE†
DESCRIPTION
EMULATION (7 PINS)
TCK
1
I
TDO
1
O/Z
IEEE 1149.1 test port clock
TDI
1
I
IEEE 1149.1 test port data in
TMS
1
I
IEEE 1149.1 test port mode select
TRST
1
I
IEEE 1149.1 test port reset
EMU0
1
I/O
IEEE 1149.1 test port data out
Emulation pin 0
EMU1
1
I/O
Emulation pin 1
† I = input, O = output, Z = high impedance
‡ STRB0, STRB1 and associated signals (R/W1, R/W0, PAGE0, PAGE1, etc.) are effective over the address ranges defined by the
STRB ACTIVE bits.
§ HFH package has additional power and ground pins to reduce noise problems.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
13
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
GF package pin assignments — alphabetical listing
14
NAME
NO.
NAME
NO.
NAME
NO.
NAME
NO.
NAME
A0
D32
C0D6
AN7
C5D4
AM30
A1
B32
C0D7
AK8
C5D5
AP32
A2
D30
C1D0
AL7
C5D6
A3
C29
C1D1
AP8
A4
B30
C1D2
AM8
A5
F28
C1D3
AK12
A6
F24
C1D4
AK10
A7
E29
C1D5
A8
C27
A9
D28
A10
NO.
CVSS
E35
D31
F32
CVSS
AR25
DE
AA31
AM32
CVSS
AE1
DVDD
AR11
C5D7
AL31
CVSS
AR13
DVDD
AR29
CACK0
AN11
CVSS
A19
DVDD
A13
CACK1
AN13
CVSS
R35
DVDD
A7
CACK2
AM14
CVSS
AL1
DVDD
A17
AN9
CACK3
AM16
D0
U33
DVDD
L35
C1D6
AL9
CACK4
AK32
D1
V32
DVDD
AR23
C1D7
AP10
CACK5
AJ31
D2
T34
DVDD
A29
B28
C2D0
AM18
CE0
AA33
D3
U31
DVDD
L1
A11
F26
C2D1
AN19
CE1
V34
D4
R33
DVDD
AC1
A12
C25
C2D2
AL19
CRDY0
AP12
D5
P34
DVDD
AR17
A13
E27
C2D3
AP20
CRDY1
AP14
D6
T32
DVDD
A23
A14
B26
C2D4
AM20
CRDY2
AL15
D7
N33
DVDD
AJ1
A15
D26
C2D5
AN21
CRDY3
AL17
D8
R31
DVSS
AJ35
A16
C23
C2D6
AL21
CRDY4
AH30
D9
M34
DVSS
A21
A17
B24
C2D7
AP22
CRDY5
AH32
D10
P32
DVSS
A25
A18
E25
C3D0
AM22
CREQ0
AM10
D11
L33
DVSS
G35
A19
C21
C3D1
AN23
CREQ1
AM12
D12
N31
DVSS
A11
A20
D24
C3D2
AL23
CREQ2
AN15
D13
K34
DVSS
AG1
A21
B22
C3D3
AP24
CREQ3
AN17
D14
M32
DVSS
AM2
A22
E23
C3D4
AM24
CREQ4
AN33
D15
J33
DVSS
R1
A23
C19
C3D5
AN25
CREQ5
AL33
D16
L31
DVSS
AR21
A24
D22
C3D6
AL25
CSTRB0
AL11
D17
M30
DVSS
AR15
A25
B20
C3D7
AP26
CSTRB1
AL13
D18
K32
DVSS
A15
A26
E21
C4D0
AN27
CSTRB2
AP16
D19
H34
DVSS
AR27
A27
B18
C4D1
AM26
CSTRB3
AP18
D20
J31
DVSS
G1
A28
C17
C4D2
AK24
CSTRB4
AM34
D21
G33
DVSS
N35
A29
D20
C4D3
AL27
CSTRB5
AK34
D22
K30
A30
B16
C4D4
AP28
CVSS
AR19
D23
F34
DVSS
EMU0
AA35
AD34
AR9
AE
AG31
C4D5
AK26
CVSS
AR7
D24
H32
EMU1
C0D0
AP4
C4D6
AN29
CVSS
N1
D25
E33
GADVDD
B2
C0D1
AL5
C4D7
AM28
CVSS
AL35
D26
D34
GADVDD
AR1
C0D2
AN5
C5D0
AL29
CVSS
A27
D27
G31
AM4
C5D1
AP30
CVSS
A9
D28
C33
C0D4
AP6
C5D2
AK28
CVSS
E1
D29
H30
GADVDD
GDDVDD
GDDVDD
U35
C0D3
C0D5
AM6
C5D3
AN31
CVSS
J35
D30
E31
GDDVDD
A1
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
V2
A35
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
GF package pin assignments — alphabetical listing (continued)
NAME
NO.
NAME
NO.
NAME
NO.
NAME
NO.
H1
AC3
LA25
R5
LD26
B4
STAT0
AD32
H3
AC5
LA26
T2
LD27
F8
STAT1
AE33
IACK
W3
LA27
U3
LD28
D6
STAT2
AF34
IIOF0
AN3
LA28
T4
LD29
C3
STAT3
AE31
IIOF1
AL3
LA29
V4
LD30
E5
STRB0
AD30
IIOF2
AH6
LA30
U5
LD31
F6
STRB1
AC33
IIOF3
AK2
B34
SUBS
C31
AR5
LDDVDD
LDDVDD
AR35
IVSS
IVSS
LADVDD
LADVDD
AP2
TCK
Y34
IVSS
IVSS
AR31
AB2
LADVDD
LAE
AP34
TCLK0
AE3
AB4
LDDVDD
LDE
U1
AG35
AD4
TCLK1
AD2
A31
LCE0
AG5
LLOCK
AA5
TDO
AB34
IVSS
IVSS
J1
LCE1
AF2
LOCK
W33
TDI
AC35
A5
LD0
E19
LPAGE0
AH2
TMS
W35
LA0
D2
LD1
C15
LPAGE1
AG3
TRST
AE35
LA1
D4
LD2
D18
LRDY0
AF6
LA2
E3
LD3
B14
LRDY1
AE5
VDDL
VDDL
AN35
LA3
F4
LD4
E17
LR/W0
AH4
LA4
H6
LD5
D16
LR/W1
AF4
LA5
F2
LD6
C13
LSTAT0
AA3
LA6
G5
LD7
E15
LSTAT1
Y4
LA7
G3
LD8
B12
LSTAT2
Y2
LA8
H4
LD9
D14
LSTAT3
LA9
H2
LD10
C11
LSTRB0
C1
A3
AR3
AR33
W5
AJ3
X1
W1
X2/CLKIN
AA1
K6
LD11
E13
LSTRB1
AD6
LA11
M6
LD12
B10
NMI
AJ5
LA12
J5
LD13
D12
PAGE0
AG33
LA13
J3
LD14
C9
PAGE1
AB32
LA14
K4
LD15
E11
RDY0
Y32
LA15
K2
LD16
F12
RDY1
W31
LA16
L3
LD17
D10
RESETLOC0
AF30
LA17
L5
LD18
B8
RESETLOC1
AH34
LA18
M2
LD19
E9
RESET
AJ33
LA19
M4
LD20
C7
ROMEN
AK4
LA20
N3
LD21
F10
R/W0
AF32
LA21
N5
LD22
B6
R/W1
AC31
LA22
P2
LD23
D8
LA23
P4
LD24
C5
LA24
R3
LD25
E7
• HOUSTON, TEXAS 77251–1443
VSSL
VSSL
C35
VSSL
VSSL
LA10
POST OFFICE BOX 1443
VDDL
VDDL
AN1
A33
15
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
GF package pin assignments — numerical listing
NO.
NAME
NO.
NAME
NO.
NAME
NO.
NAME
A1
GDDVDD
AD30
STRB0
AK24
C4D2
AM30
C5D4
A3
AD32
STAT0
AK26
C4D5
AM32
C5D6
A5
VSSL
IVSS
AD34
EMU1
AK28
C5D2
AM34
CSTRB4
A7
DVDD
AE1
CACK4
AN1
AE3
AK34
CSTRB5
AN3
VDDL
IIOF0
A11
CVSS
DVSS
CVSS
TCLK0
AK32
A9
AE5
LRDY1
AL1
CVSS
AN5
C0D2
A13
DVDD
AE31
STAT3
AL3
IIOF1
AN7
C0D6
A15
DVSS
DVDD
AE33
STAT1
AL5
C0D1
AN9
C1D5
AE35
TRST
AL7
C1D0
AN11
CACK0
AF2
LCE1
AL9
C1D6
AN13
CACK1
A21
CVSS
DVSS
AF4
LR/W1
AL11
CSTRB0
AN15
CREQ2
A23
DVDD
AF6
LRDY0
AL13
CSTRB1
AN17
CREQ3
A25
AF30
RESETLOC0
AL15
CRDY2
AN19
C2D1
A27
DVSS
CVSS
AF32
R/W0
AL17
CRDY3
AN21
C2D5
A29
DVDD
AF34
STAT2
AL19
C2D2
AN23
C3D1
A31
AG1
DVSS
AL21
C2D6
AN25
C3D5
A33
IVSS
VSSL
AG3
LPAGE1
AL23
C3D2
AN27
C4D0
A35
GDDVDD
AG5
LCE0
AL25
C3D6
AN29
C4D6
AA1
X2/CLKIN
AG31
AE
AL27
C4D3
AN31
C5D3
AA3
LSTAT0
AG33
PAGE0
AL29
C5D0
AN33
CREQ4
AA5
LLOCK
AG35
AL31
C5D7
AN35
AA31
DE
AH2
IVSS
LPAGE0
AL33
CREQ5
AP2
VDDL
LDDVDD
AA33
CE0
AH4
LR/W0
AL35
CVSS
AP4
C0D0
A17
A19
16
AA35
EMU0
AH6
IIOF2
AM2
DVSS
AP6
C0D4
AB2
AH30
CRDY4
AM4
C0D3
AP8
C1D1
AB4
LADVDD
LAE
AH32
CRDY5
AM6
C0D5
AP10
C1D7
AB32
PAGE1
AH34
RESETLOC1
AM8
C1D2
AP12
CRDY0
AB34
TDO
AJ1
DVDD
AM10
CREQ0
AP14
CRDY1
AC1
DVDD
AJ3
LSTRB0
AM12
CREQ1
AP16
CSTRB2
AC3
H1
AJ5
NMI
AM14
CACK2
AP18
CSTRB3
AC5
H3
AJ31
CACK5
AM16
CACK3
AP20
C2D3
AC31
R/W1
AJ33
RESET
AM18
C2D0
AP22
C2D7
AC33
STRB1
AJ35
DVSS
AM20
C2D4
AP24
C3D3
AC35
TDI
AK2
IIOF3
AM22
C3D0
AP26
C3D7
AD2
TCLK1
AK4
ROMEN
AM24
C3D4
AP28
C4D4
AD4
LDE
AK8
C0D7
AM26
C4D1
AP30
C5D1
AD6
LSTRB1
AK10
C1D4
AM28
C4D7
AP32
C5D5
AK12
C1D3
AP34
LADVDD
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
GF package pin assignments — numerical listing (continued)
NO.
NAME
NO.
NAME
NO.
NAME
NO.
NAME
NO.
NAME
AR1
GADVDD
C1
CVSS
H2
LA9
P2
LA22
VSSL
IVSS
C3
VDDL
LD29
E1
AR3
E3
LA2
H4
LA8
P4
LA23
C5
LD24
E5
LD30
H6
LA4
P32
D10
CVSS
DVSS
C7
LD20
E7
LD25
H30
D29
P34
D5
C9
LD14
E9
LD19
H32
D24
R1
DVSS
AR5
AR7
AR9
AR11
C11
LD10
E11
LD15
H34
D19
R3
LA24
C13
LD6
E13
LD11
J1
R5
LA25
DVSS
DVDD
C15
LD1
E15
LD7
J3
IVSS
LA13
R31
D8
C17
A28
E17
LD4
J5
LA12
R33
D4
CVSS
DVSS
C19
A23
E19
LD0
J31
D20
R35
CVSS
C21
A19
E21
A26
J33
D15
T2
LA26
DVDD
CVSS
C23
A16
E23
A22
J35
CVSS
T4
LA28
C25
A12
E25
A18
K2
LA15
T32
D6
DVSS
DVDD
IVSS
C27
A8
E27
A13
K4
LA14
T34
D2
C29
A3
E29
A7
K6
LA10
U1
C31
SUBS
E31
D30
K30
D22
U3
LDDVDD
LA27
C33
D28
E33
D25
K32
D18
U5
LA30
C35
CVSS
K34
D13
U31
D3
D2
VDDL
LA0
E35
B2
VSSL
LDDVDD
GADVDD
F2
LA5
L1
DVDD
U33
D0
B4
LD26
D4
LA1
F4
LA3
L3
LA16
U35
GADVDD
B6
LD22
D6
LD28
F6
LD31
L5
LA17
V2
GDDVDD
AR13
AR15
AR17
AR19
AR21
AR23
AR25
AR27
AR29
AR31
AR33
AR35
DVDD
CVSS
B8
LD18
D8
LD23
F8
LD27
L31
D16
V4
LA29
B10
LD12
D10
LD17
F10
LD21
L33
D11
V32
D1
B12
LD8
D12
LD13
F12
LD16
L35
DVDD
V34
CE1
B14
LD3
D14
LD9
F24
A6
M2
LA18
W1
X1
B16
A30
D16
LD5
F26
A11
M4
LA19
W3
IACK
B18
A27
D18
LD2
F28
A5
M6
LA11
W5
LSTAT3
B20
A25
D20
A29
F32
D31
M30
D17
W31
RDY1
B22
A21
D22
A24
F34
D23
M32
D14
W33
LOCK
B24
A17
D24
A20
G1
DVSS
M34
D9
W35
TMS
B26
A14
D26
A15
G3
LA7
N1
CVSS
Y2
LSTAT2
B28
A10
D28
A9
G5
LA6
N3
LA20
Y4
LSTAT1
B30
A4
D30
A2
G31
D27
N5
LA21
Y32
RDY0
B32
A1
D32
A0
G33
D21
N31
D12
Y34
TCK
B34
LADVDD
D34
D26
G35
DVSS
N33
D7
N35
DVSS
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
17
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
HFH package pin assignments — alphabetical listing
NAME
NO.
NAME
NO.
NAME
NO.
A0
348
C1D0
168
CACK0
153
A1
347
C1D1
167
CACK1
149
A2
346
C1D2
166
CACK2
144
NO.
NAME
NO.
CVSS†
CVSS†
241
DE
53
263
63
282
DVDD‡
DVDD‡
CVSS†
CVSS†
306
DVDD‡
91
307
100
327
DVDD‡
DVDD‡
121
349
DVDD‡
DVDD‡
146
A3
345
C1D3
165
CACK3
138
A4
343
C1D4
164
CACK4
86
A5
342
C1D5
163
CACK5
82
A6
341
C1D6
162
CE0
51
CVSS†
CVSS†
A7
340
C1D7
161
CE1
42
CVSS†
328
77
112
135
A8
339
C2D0
131
CRDY0
151
D0
41
DVDD‡
A9
338
C2D1
130
CRDY1
147
D1
40
160
A10
337
C2D2
129
CRDY2
142
D2
39
DVDD‡
DVDD‡
179
169
A11
336
C2D3
128
CRDY3
136
D3
38
DVDD‡
A12
335
C2D4
127
CRDY4
84
D4
37
195
A13
334
C2D5
126
CRDY5
80
D5
35
DVDD‡
DVDD‡
A14
333
C2D6
125
CREQ0
154
D6
34
23
A15
332
C2D7
124
CREQ1
150
D7
33
DVSS§
DVSS§
DVSS§
DVSS§
44
DVSS§
DVSS§
DVSS§
61
A16
331
C3D0
120
CREQ2
145
D8
32
A17
324
C3D1
119
CREQ3
139
D9
31
A18
323
C3D2
118
CREQ4
87
D10
30
A19
322
C3D3
117
CREQ5
83
D11
29
A20
321
C3D4
116
CSTRB0
152
D12
28
A21
320
C3D5
115
CSTRB1
148
D13
27
A22
319
C3D6
114
CSTRB2
143
D14
26
A23
318
C3D7
113
CSTRB3
137
D15
25
A24
317
C4D0
108
CSTRB4
85
D16
17
A25
316
C4D1
107
81
D17
16
A26
315
C4D2
106
CSTRB5
CVSS†
18
D18
15
A27
314
C4D3
105
19
D19
14
A28
312
C4D4
104
CVSS†
CVSS†
46
D20
13
A29
311
C4D5
103
A30
310
C4D6
102
AE
75
C4D7
101
C0D0
177
C5D0
99
C0D1
176
C5D1
98
C0D2
175
C5D2
97
C0D3
174
C5D3
96
C0D4
173
C5D4
95
C0D5
172
C5D5
94
C0D6
171
C5D6
93
CVSS†
CVSS†
47
D21
12
88
D22
11
89
90
111
DVSS§
DVSS§
134
DVSS§
DVSS§
158
DVSS§
DVSS§
183
DVSS§
DVSS§
221
DVSS§
DVSS§
243
DVSS§
DVSS§
262
284
309
10
D24
9
CVSS†
CVSS†
155
D25
8
156
D26
6
CVSS†
CVSS†
178
D27
5
196
D28
4
CVSS†
CVSS†
217
D29
3
218
D30
2
DVSS§
DVSS§
1
DVSS§
• HOUSTON, TEXAS 77251–1443
62
133
D23
POST OFFICE BOX 1443
45
DVSS§
DVSS§
132
D31
24
110
109
C0D7
170
C5D7
92
240
† CVSS and IVSS pins are connected internally.
‡ DVDD, LADVDD, LDDVDD, GDDVDD, and GADVDD pins are connected internally.
§ DVSS pins are connected internally.
¶ VDDL pins are connected internally.
# VSSL pins are connected internally.
219
DVSS§
DVSS§
CVSS†
CVSS†
CVSS†
18
NAME
CVSS†
157
182
220
242
261
283
308
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
HFH package pin assignments — alphabetical listing (continued)
NAME
DVSS§
NO.
NAME
NO.
NAME
NO.
NAME
NO.
329
LA12
247
LD14
288
RDY0
52
DVSS§
DVSS§
330
LA13
246
LD15
287
RDY1
43
350
LA14
245
LD16
286
RESET
79
DVSS§
EMU0
351
LA15
244
LD17
279
RESETLOC0
78
59
LA16
237
LD18
278
RESETLOC1
76
EMU1
60
LA17
236
LD19
277
ROMEN
180
GADVDD‡
GADVDD‡
313
LA18
235
LD20
276
R/W0
73
325
LA19
234
LD21
275
R/W1
65
GADVDD‡
326
LA20
233
LD22
274
STAT0
67
GADVDD‡
GDDVDD‡
344
LA21
232
LD23
273
STAT1
68
7
LA22
231
LD24
272
STAT2
70
GDDVDD‡
21
LA23
230
LD25
271
STAT3
71
GDDVDD‡
GDDVDD‡
22
LA24
229
LD26
270
STRB0
74
36
LA25
228
LD27
269
STRB1
66
H1
204
LA26
227
LD28
267
SUBS
352
H3
203
LA27
225
LD29
266
TCK
54
IACK
212
LA28
224
LD30
265
TCLK0
201
IIOF0
181
LA29
223
LD31
264
TCLK1
202
LDDVDD‡
LDDVDD‡
268
TDO
55
280
TDI
56
281
TMS
57
IIOF1
184
LA30
222
IIOF2
185
226
IIOF3
IVSS†
186
LADVDD‡
LADVDD‡
239
298
TRST
58
IVSS†
IVSS†
69
LADVDD‡
LADVDD‡
LDDVDD‡
LDDVDD‡
256
LDE
200
49
122
LAE
205
LLOCK
207
VDDL¶
VDDL¶
123
LCE0
192
LOCK
48
159
LCE1
199
LPAGE0
190
IVSS†
IVSS†
20
238
IVSS†
IVSS†
206
LD0
303
LPAGE1
197
285
LD1
302
LRDY0
191
LA0
260
LD2
301
LRDY1
198
LA1
259
LD3
300
LR/W0
LA2
258
LD4
299
LR/W1
LA3
257
LD5
297
LA4
255
LD6
296
LA5
254
LD7
295
LA6
253
LD8
294
LSTAT3
211
LA7
252
LD9
293
LSTRB0
188
LA8
251
LD10
292
LSTRB1
193
LA9
250
LD11
291
NMI
187
LA10
249
LD12
290
PAGE0
72
VDDL¶
VDDL¶
VSSL#
VSSL#
140
213
304
50
141
214
189
VSSL#
VSSL#
194
X1
215
LSTAT0
208
X2/CLKIN
216
LSTAT1
209
LSTAT2
210
305
LA11
248
LD13
289
PAGE1
64
† CVSS and IVSS pins are connected internally.
‡ DVDD, LADVDD, LDDVDD, GDDVDD, and GADVDD pins are connected internally.
§ DVSS pins are connected internally.
¶ VDDL pins are connected internally.
# VSSL pins are connected internally.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
19
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
HFH package pin assignments — numerical listing
NO.
NAME
NO.
NAME
NO.
NAME
NO.
1
D31
2
D30
3
NAME
DVDD‡
NO.
NAME
41
D0
81
CSTRB5
121
42
CE1
82
CACK5
122
161
C1D7
162
C1D6
123
IVSS†
IVSS†
D29
43
83
CREQ5
4
D28
44
RDY1
DVSS§
163
C1D5
84
5
D27
45
85
6
D26
46
DVSS§
CVSS†
CRDY4
124
C2D7
164
C1D4
CSTRB4
125
C2D6
165
C1D3
86
7
GDDVDD‡
47
87
8
D25
48
CVSS†
LOCK
VDDL¶
CACK4
126
C2D5
166
C1D2
CREQ4
CVSS†
127
C2D4
167
C1D1
128
C2D3
168
129
C2D2
169
C1D0
DVDD‡
90
DVSS§
DVSS§
130
C2D1
170
C0D7
91
DVDD‡
131
C2D0
CVSS†
171
C0D6
172
C0D5
173
C0D4
88
9
D24
49
10
D23
50
11
D22
51
VSSL#
CE0
12
D21
52
RDY0
92
C5D7
132
13
D20
53
DE
93
C5D6
133
14
D19
54
TCK
94
C5D5
134
DVSS§
DVSS§
174
C0D3
15
D18
55
TDO
95
C5D4
135
DVDD‡
175
C0D2
16
D17
56
TDI
96
C5D3
136
CRDY3
176
C0D1
17
D16
CVSS†
CVSS†
57
TMS
97
C5D2
137
CSTRB3
177
58
TRST
98
C5D1
138
CACK3
178
59
EMU0
99
C5D0
139
179
IVSS†
GDDVDD‡
GDDVDD‡
60
EMU1
DVSS§
100
DVDD‡
140
CREQ3
VDDL¶
C0D0
CVSS†
DVDD‡
180
ROMEN
101
C4D7
141
181
102
C4D6
142
182
IIOF0
DVSS§
63
103
C4D5
143
CSTRB2
183
DVSS§
24
DVSS§
DVSS§
DVSS§
DVDD‡
VSSL#
CRDY2
64
PAGE1
104
C4D4
144
CACK2
184
IIOF1
25
D15
65
R/W1
105
C4D3
145
185
IIOF2
26
D14
66
STRB1
106
C4D2
146
CREQ2
DVDD‡
186
IIOF3
27
D13
67
STAT0
107
C4D1
147
CRDY1
187
NMI
28
D12
68
108
CSTRB1
188
LSTRB0
D11
69
C4D0
CVSS†
148
29
STAT1
IVSS†
149
CACK1
189
LR/W0
150
CREQ1
190
LPAGE0
151
CRDY0
191
LRDY0
18
19
20
21
22
23
61
62
89
109
30
D10
70
STAT2
110
31
D9
71
STAT3
111
DVSS§
DVSS§
32
D8
72
PAGE0
112
DVDD‡
152
CSTRB0
192
LCE0
33
D7
73
R/W0
113
C3D7
153
CACK0
193
LSTRB1
34
D6
74
STRB0
114
C3D6
154
194
35
D5
75
AE
115
C3D5
155
CREQ0
CVSS†
195
LR/W1
DVDD‡
36
GDDVDD‡
76
116
C3D4
156
CVSS†
D4
77
117
C3D3
157
CVSS†
DVSS§
196
37
RESETLOC1
DVDD‡
197
LPAGE1
38
D3
78
RESETLOC0
118
C3D2
158
198
LRDY1
39
D2
79
RESET
119
C3D1
159
DVSS§
IVSS†
199
LCE1
160
DVDD‡
200
LDE
40
D1
80
CRDY5
120
C3D0
† CVSS and IVSS pins are connected internally.
‡ DVDD, LADVDD, LDDVDD, GDDVDD, and GADVDD pins are connected internally.
§ DVSS pins are connected internally.
¶ VDDL pins are connected internally.
# VSSL pins are connected internally.
20
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
HFH package pin assignments — numerical listing (continued)
NO.
NAME
NO.
NAME
CVSS†
NO.
NAME
NO.
NAME
281
321
A20
282
LDDVDD‡
CVSS†
322
A19
DVSS§
DVSS§
323
A18
324
A17
325
GADVDD‡
GADVDD‡
201
TCLK0
241
202
TCLK1
242
203
H3
243
DVSS§
DVSS§
204
H1
244
LA15
284
205
245
LA14
285
206
LAE
IVSS†
246
LA13
286
IVSS†
LD16
207
LLOCK
247
LA12
287
LD15
327
208
LSTAT0
248
LA11
288
LD14
328
209
LSTAT1
249
LA10
289
LD13
329
210
LSTAT2
250
LA9
290
LD12
330
DVSS§
DVSS§
211
LSTAT3
251
LA8
291
LD11
331
A16
212
IACK
252
LA7
292
LD10
332
A15
213
253
LA6
293
LD9
333
A14
214
VDDL¶
VSSL#
254
LA5
294
LD8
334
A13
215
X1
255
LA4
295
LD7
335
A12
216
X2/CLKIN
CVSS†
256
296
LD6
336
A11
257
LADVDD‡
LA3
297
LD5
337
A10
CVSS†
DVDD‡
DVSS§
258
LA2
298
338
A9
259
LA1
299
LDDVDD‡
LD4
339
A8
260
LA0
300
LD3
340
A7
261
DVSS§
DVSS§
301
LD2
341
A6
222
DVSS§
LA30
302
LD1
342
A5
223
LA29
263
303
LD0
343
A4
304
VDDL¶
VSSL#
CVSS†
344
GADVDD‡
345
A3
346
A2
347
A1
348
217
218
219
220
221
262
283
326
CVSS†
CVSS†
LA28
264
CVSS†
LD31
225
LA27
265
LD30
305
226
266
LD29
306
227
LADVDD‡
LA26
267
LD28
307
228
LA25
268
308
229
LA24
269
LDDVDD‡
LD27
CVSS†
DVSS§
309
DVSS§
349
230
LA23
270
LD26
310
A30
350
A0
CVSS†
DVSS§
231
LA22
271
LD25
311
A29
351
DVSS§
232
LA21
272
LD24
312
A28
352
SUBS
233
LA20
273
LD23
313
GADVDD‡
234
LA19
274
LD22
314
A27
235
LA18
275
LD21
315
A26
236
LA17
276
LD20
316
A25
237
LA16
277
LD19
317
A24
238
LADVDD‡
LADVDD‡
278
LD18
318
A23
279
LD17
319
224
239
A22
†
‡
240
CVSS
280
LDDVDD
320
A21
† CVSS and IVSS pins are connected internally.
‡ DVDD, LADVDD, LDDVDD, GDDVDD, and GADVDD pins are connected internally.
§ DVSS pins are connected internally.
¶ VDDL pins are connected internally.
# VSSL pins are connected internally.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
21
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Pad Number One
SMJ320C40 (Rev. 5) Inner Lead Bond (ILB) Information for TAB
325
Die Side Number 4
244
243
1
XXXXX
Die Side Number 3
Die Side Number 1
Zero-Zero
(Origin)
Die Designator
81
163
82
Die Side Number 2
162
Figure 4. SMJ320C40 Die Numbering Format
(See Table 2)
The inner lead bond (ILB) pitch for the tape automated bonding (TAB) leadframe is the same as the die bond
pad pitch. Table 2 provides a reference for the following:
A.
The TAB lead numbers. The TAB lead numbers are the same as the die bond pad numbers.
B.
The C40 signal identities in relation to the pad numbers
C.
There are 325 bond pad locations, 325 TAB leads, and 324 test pad locations.
D.
The C40 X-,Y-coordinates, where bond pad 82 serves as the origin, (0,0)
E.
The inner lead bond pitch (ILB) is the same as the die bond pitch.
F.
The outer lead pitch is 0.25 ± 0.01 mm.
G.
The test pad pitch is 0.40 ± 0.01 mm.
H.
The tape width is 48 mm.
I.
Outer lead bond (OLB) 18, 19 connect to test pad 18.
In addition, the following notes are significant:
22
J.
X,Y coordinate data is in microns.
K.
Average pitch is 126 µm (4.96 mils).
L.
Smallest pitch value is 126 µm (4.96 mils).
M.
The active silicon dimensions are 12424.86 µm × 12035.52 µm (489.16 mils × 473.83 mils).
N.
The die size is approximately 12598.40 µm × 12192.00 µm (496.00 mils × 480.00 mils).
O.
Distance from diced silicon to polyimide support ring is 889 µm (35.0 mils).
P.
Bond pad dimensions are 108.00 µm × 108.00 µm (4.25 mils × 4.25 mils).
Q.
Center of bond pad to edge of die minimum (without scribe) = 107.80 µm (4.24 mils).
R.
The nominal die thickness is 381 ± 50.8 µm (15 ± 2 mils).
S.
The polyimide encapsulant thickness is approximately 304.8 µm (12 mils).
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm)
DIE SIDE #1
DIE/TAB BOND
PAD IDENTITY
1
D31
11368.44
126.00 (1, 2)
2
D30
11242.44
126.00 (2, 3)
3
D29
11116.44
126.00 (3, 4)
4
D28
10990.44
126.00 (4, 5)
5
D27
10864.44
126.00 (5, 6)
6
D26
10738.44
126.00 (6, 7)
7
GDDVDD
10612.44
126.00 (7, 8)
8
D25
10486.44
126.00 (8, 9)
9
D24
10360.44
126.00 (9, 10)
10
D23
10234.44
126.00 (10, 11)
11
D22
10108.44
126.00 (11, 12)
12
D21
9982.44
126.00 (12, 13)
13
D20
9856.44
126.00 (13, 14)
14
D19
9730.44
126.00 (14, 15)
15
D18
9604.44
126.00 (15, 16)
16
D17
9478.44
126.00 (16, 17)
17
D16
9352.44
126.00 (17, 18)
18
9226.44
126.00 (18, 19)
19
CVSS
IVSS
9100.44
126.00 (19, 20)
20
GDDVDD
8974.44
126.00 (20, 21)
21
DVSS
8848.44
126.00 (21, 22)
22
D15
8722.44
126.00 (22, 23)
23
D14
8596.44
126.00 (23, 24)
24
D13
8470.44
126.00 (24, 25)
25
D12
8344.44
126.00 (25, 26)
26
D11
8218.44
126.00 (26, 27)
27
D10
8092.44
126.00 (27, 28)
28
D9
7966.44
126.00 (28, 29)
29
D8
7840.44
126.00 (29, 30)
30
D7
7714.44
126.00 (30, 31)
31
D6
7588.44
126.00 (31, 32)
32
D5
7462.44
126.00 (32, 33)
33
GDDVDD
7336.44
126.00 (33, 34)
34
D4
7210.44
126.00 (34, 35)
35
D3
7084.44
126.00 (35, 36)
36
D2
6958.44
126.00 (36, 37)
37
D1
6832.44
126.00 (37, 38)
38
D0
6706.44
156.42 (38, 39)
39
CE1
6550.02
172.80 (39, 40)
40
RDY1
6377.22
152.10 (40, 41)
41
DVSS
CVSS
6225.12
126.00 (41, 42)
6099.12
126.00 (42, 43)
42
X-COORDINATE OF THE
DIE BOND PAD (µm)
48
– 429
429.48
POST OFFICE BOX 1443
Y-COORDINATE OF THE
DIE BOND PAD (µm)
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
C40 DIE BOND
PAD LOCATIONS
• HOUSTON, TEXAS 77251–1443
23
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm) (Continued)
DIE SIDE #1 (CONTINUED)
DIE/TAB BOND
PAD IDENTITY
43
LOCK
5973.12
126.00 (43, 44)
44
VDDL
VSSL
5847.12
126.00 (44, 45)
45
5721.12
156.42 (45, 46)
46
CE0
5564.70
172.80 (46, 47)
47
RDY0
5391.90
172.80 (47, 48)
48
DE
5219.10
172.80 (48, 49)
49
TCK
5046.30
152.10 (49, 50)
50
TDO
4894.20
156.42 (50, 51)
51
TDI
4737.78
172.80 (51, 52)
52
TMS
4564.98
172.80 (52, 53)
53
TRST
4392.18
151.10 (53, 54)
54
EMU0
4240.08
126.00 (54, 55)
55
EMU1
4114.08
126.00 (55, 56)
56
3988.08
126.00 (56, 57)
57
DVSS
DVDD
3962.08
126.00 (57, 58)
58
PAGE1
3736.08
126.00 (58, 59)
59
R/W1
3610.08
126.00 (59, 60)
60
STRB1
3484.08
126.00 (60, 61)
61
STAT0
3358.08
126.00 (61, 62)
62
STAT1
3232.08
126.00 (62, 63)
63
3106.08
126.00 (63, 64)
64
IVSS
STAT2
2980.08
126.00 (64, 65)
65
STAT3
2854.08
127.44 (65, 66)
66
PAGE0
2726.64
126.00 (66, 67)
67
R/W0
2600.64
126.00 (67, 68)
68
STRB0
2474.64
156.42 (68, 69)
69
AE
2318.22
174.24 (69, 70)
70
RESETLOC 1
2143.98
152.10 (70, 71)
71
1991.88
156.42 (71, 72)
72
DVDD
RESETLOC 0
1835.46
172.80 (72, 73)
73
RESET
1662.66
172.80 (73, 74)
74
CRDY5
1510.56
126.00 (74, 75)
75
CSTRB5
1384.56
126.00 (75, 76)
76
CACK5
1258.56
126.00 (76, 77)
77
CREQ5
1132.56
126.00 (77, 78)
78
CRDY4
1006.56
126.00 (78, 79)
79
CSTRB4
880.56
126.00 (79, 80)
80
CACK4
754.56
126.00 (80, 81)
81
CREQ4
628.56
24
X-COORDINATE OF THE
DIE BOND PAD
– 429.48
POST OFFICE BOX 1443
Y-COORDINATE OF THE
DIE BOND PAD
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
C40 DIE BOND
PAD LOCATIONS
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm) (Continued)
DIE SIDE #2
DIE/TAB BOND
PAD IDENTITY
X-COORDINATE OF THE
DIE BOND PAD
82
CVSS
DVSS
0.00
1062.00 (82, 83)
1062.00
126.00 (83, 84)
83
84
Y-COORDINATE OF THE
DIE BOND PAD
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
C40 DIE BOND
PAD LOCATIONS
1188.00
126.00 (84, 85)
85
DVDD
C5D7
1314.00
126.00 (85, 86)
86
C5D6
1440.00
126.00 (86, 87)
87
C5D5
1566.00
126.00 (87, 88)
88
C5D4
1692.00
126.00 (88, 89)
89
C5D3
1818.00
126.00 (89, 90)
90
C5D2
1944.00
126.00 (90, 91)
91
C5D1
2070.00
126.00 (91, 92)
92
C5D0
2196.00
126.00 (92, 93)
93
2322.00
126.00 (93, 94)
94
DVDD
C4D7
2448.00
126.00 (94, 95)
95
C4D6
2574.00
126.00 (95, 96)
96
C4D5
2700.00
126.00 (96, 97)
97
C4D4
2813.40
126.00 (97, 98)
98
C4D3
2952.00
126.00 (98, 99)
99
C4D2
3078.00
126.00 (99, 100)
100
C4D1
3204.00
126.00 (100, 101)
101
C4D0
3330.00
126.00 (101, 102)
102
CVSS
DVSS
3456.00
3708.00
126.00 (104, 105)
105
DVDD
C3D7
3834.00
126.00 (105, 106)
106
C3D6
3960.00
126.00 (106, 107)
107
C3D5
4086.00
126.00 (107, 108)
108
C3D4
4212.00
126.00 (108, 109)
109
C3D3
4338.00
126.00 (109, 110)
110
C3D2
4464.00
126.00 (110, 111)
103
104
3582.00
0 00
0.00
126.00 (102, 103)
126.00 (103, 104)
111
C3D1
4590.00
126.00 (111, 112)
112
C3D0
4716.00
126.00 (112, 113)
113
4842.00
126.00 (113, 114)
114
DVDD
IVSS
4968.00
126.00 (114, 115)
115
C2D7
5094.00
126.00 (115, 116)
116
C2D6
5220.00
126.00 (116, 117)
117
C2D5
5346.00
126.00 (117, 118)
118
C2D4
5472.00
126.00 (118, 119)
119
C2D3
5598.00
126.00 (119, 120)
120
C2D2
5724.00
126.00 (120, 121)
121
C2D1
5850.00
126.00 (121, 122)
122
C2D0
5976.00
126.00 (122, 123)
123
CVSS
6102.00
126.00 (123, 124)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
25
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm) (Continued)
DIE SIDE #2 (CONTINUED)
DIE/TAB BOND
PAD IDENTITY
X-COORDINATE OF THE
DIE BOND PAD
124
6228.00
126.00 (124, 125)
125
DVSS
DVDD
6354.00
126.00 (125, 126)
126
CRDY3
6480.00
126.00 (126, 127)
127
CSTRB3
6606.00
126.00 (127, 128)
128
CACK3
6732.00
126.00 (128, 129)
129
CREQ3
6858.00
126.00 (129, 130)
130
6984.00
126.00 (130, 131)
131
VDDL
VSSL
7110.00
126.00 (131, 132)
132
CRDY2
7236.00
126.00 (132, 133)
133
CSTRB2
7362.00
126.00 (133, 134)
134
CACK2
7488.00
126.00 (134, 135)
135
CREQ2
7614.00
126.00 (135, 136)
136
DVDD
CRDY1
7740.00
126.00 (136, 137)
137
7866.00
126.00 (137, 138)
138
CSTRB1
7992.00
126.00 (138, 139)
139
CACK1
8118.00
126.00 (139, 140)
140
CREQ1
8244.00
126.00 (140, 141)
141
CRDY0
8370.00
126.00 (141, 142)
142
CSTRB0
8496.00
143
CACK0
8622.00
144
CREQ0
8748.00
126.00 (144, 145)
145
CVSS
DVSS
8874.00
126.00 (145, 146)
9000.00
126.00 (146, 147)
9126.00
126.00 (147, 148)
9252.00
126.00 (148, 149)
149
IVSS
DVDD
C1D7
9378.00
126.00 (149, 150)
150
C1D6
9504.00
126.00 (150, 151)
151
C1D5
9630.00
126.00 (151, 152)
152
C1D4
9756.00
126.00 (152, 153)
153
C1D3
9882.00
126.00 (153, 154)
154
C1D2
10008.00
126.00 (154, 155)
155
C1D1
10134.00
126.00 (155, 156)
156
C1D0
10260.00
126.00 (156, 157)
157
10386.00
126.00 (157, 158)
158
DVDD
C0D7
10512.00
126.00 (158, 159)
159
C0D6
10638.00
126.00 (159, 160)
160
C0D5
10764.00
126.00 (160, 161)
161
C0D4
10890.00
126.00 (161, 162)
162
C0D3
11016.00
146
147
148
26
Y-COORDINATE OF THE
DIE BOND PAD
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
C40 DIE BOND
PAD LOCATIONS
POST OFFICE BOX 1443
126.00 (142, 143)
0.00
• HOUSTON, TEXAS 77251–1443
126.00 (143, 144)
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm) (Continued)
DIE SIDE #3
C40 DIE BOND
PAD LOCATIONS
DIE/TAB BOND
PAD IDENTITY
163
C0D2
164
165
166
X-COORDINATE OF THE
DIE BOND PAD
Y-COORDINATE OF THE
DIE BOND PAD
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
810.00
126.00 (163, 164)
C0D1
936.00
126.00 (164, 165)
C0D0
1062.00
126.00 (165, 166)
1188.00
126.00 (166, 167)
167
CVSS
DVDD
1314.00
156.42 (167, 168)
168
ROMEN
1470.42
152.46 (168, 169)
169
IIOF0
1622.88
126.00 (169, 170)
170
DVSS
IIOF1
1748.88
126.00 (170, 171)
171
1874.88
126.00 (171, 172)
172
IIOF2
2000.88
126.00 (172, 173)
173
IIOF3
2126.88
156.42 (173, 174)
174
NMI
2283.30
152.10 (174, 175)
175
LSTRB0
2435.40
126.00 (175, 176)
176
LR/W0
2561.40
126.00 (176, 177)
177
LPAGE0
2687.40
156.42 (177, 178)
178
LRDY0
2843.82
172.80 (178, 179)
179
LCE0
3016.62
152.10 (179, 180)
180
LSTRB1
3168.72
126.00 (180, 181)
181
LR/W1
3294.72
126.00 (181, 182)
182
3420.72
126.00 (182, 183)
183
DVDD
CVSS
3546.72
126.00 (183, 184)
184
LPAGE1
3672.72
156.42 (184, 185)
185
LRDY1
3829.14
172.80 (185, 186)
186
LCE1
4001.94
172.80 (186, 187)
187
LDE
4174.74
152.10 (187, 188)
188
TCLK0
4326.84
126.00 (188, 189)
189
TCLK1
4452.84
126.00 (189, 190)
190
H3
4578.84
126.00 (190, 191)
191
H1
4704.84
156.42 (191, 192)
192
LAE
4861.26
152.10 (192, 193)
193
5013.36
126.00 (193, 194)
194
IVSS
LLOCK
5139.36
126.00 (194, 195)
195
LSTAT0
5265.36
126.00 (195, 196)
196
LSTAT1
5391.36
126.00 (196, 197)
197
LSTAT2
5517.36
126.00 (197, 198)
198
LSTAT3
5643.36
127.44 (198, 199)
199
IACK
5770.80
126.00 (199, 200)
200
VDDL
VSSL
5896.80
126.00 (200, 201)
201
6022.80
131.94 (201, 202)
202
X1
6154.74
171.58 (202, 203)
203
X2/CLKIN
6326.28
168.12 (203, 204)
204
CVSS
6494.40
126.00 (204, 205)
11779 74
11779.74
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
27
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm) (Continued)
DIE SIDE #3 (CONTINUED)
DIE/TAB BOND
PAD IDENTITY
205
6620.40
126.00 (205, 206)
206
DVDD
DVSS
6746.40
127.44 (206, 207)
207
LA30
6873.84
126.00 (207, 208)
208
LA29
6999.84
126.00 (208, 209)
209
LA28
7125.84
126.00 (209, 210)
210
LA27
7251.84
126.00 (210, 211)
211
7377.84
126.00 (211, 212)
212
LADVDD
LA26
7503.84
126.00 (212, 213)
213
LA25
7629.84
126.00 (213, 214)
214
LA24
7755.84
126.00 (214, 215)
215
LA23
7881.84
126.00 (215, 216)
216
LA22
8007.84
126.00 (216, 217)
217
LA21
8133.84
126.00 (217, 218)
218
LA20
8259.84
126.00 (218, 219)
219
LA19
8385.84
126.00 (219, 220)
220
LA18
8511.84
126.00 (220, 221)
221
LA17
8637.84
126.00 (221, 222)
222
LA16
8763.84
126.00 (222, 223)
223
LADVDD
CVSS
8889.84
126.00 (223, 224)
9015.84
126.00 (224, 225)
9141.84
126.00 (225, 226)
226
DVSS
LA15
9267.84
126.00 (226, 227)
227
LA14
9393.84
126.00 (227, 228)
228
LA13
9519.84
126.00 (228, 229)
229
LA12
9645.84
126.00 (229, 230)
230
LA11
9771.84
126.00 (230, 231)
231
LA10
9897.84
126.00 (231, 232)
232
LA9
10023.84
126.00 (232, 233)
233
LA8
10149.84
126.00 (233, 234)
234
LA7
10275.84
126.00 (234, 235)
235
LA6
10401.84
126.00 (235, 236)
236
LA5
10527.84
126.00 (236, 237)
237
LA4
10653.84
126.00 (237, 238)
238
10779.84
126.00 (238, 239)
239
LADVDD
LA3
10905.84
126.00 (239, 240)
240
LA2
11031.84
126.00 (240, 241)
241
LA1
11157.84
126.00 (241, 242)
242
LA0
11283.84
205.92 (242, 243)
243
DVSS
11489.76
224
225
28
X-COORDINATE OF THE
DIE BOND PAD
11779.74
POST OFFICE BOX 1443
Y-COORDINATE OF THE
DIE BOND PAD
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
C40 DIE BOND
PAD LOCATIONS
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm) (Continued)
DIE SIDE #4
DIE/TAB BOND
PAD IDENTITY
X-COORDINATE OF THE
DIE BOND PAD
244
10953.72
126.00 (244, 245)
245
CVSS
LD31
10827.72
126.00 (245, 246)
246
LD30
10701.72
126.00 (246, 247)
247
LD29
10575.72
126.00 (247, 248)
248
LD28
10449.72
126.00 (248, 249)
249
10323.72
126.00 (249, 250)
250
LDDVDD
LD27
10197.72
126.00 (250, 251)
251
LD26
10071.72
126.00 (251, 252)
252
LD25
9945.72
126.00 (252, 253)
253
LD24
9819.72
126.00 (253, 254)
254
LD23
9693.72
126.00 (254, 255)
255
LD22
9567.72
126.00 (255, 256)
256
LD21
9441.72
126.00 (256, 257)
257
LD20
9315.72
126.00 (257, 258)
258
LD19
9189.72
126.00 (258, 259)
259
LD18
9063.72
126.00 (259, 260)
260
LD17
8937.72
126.00 (260, 261)
261
LDDVDD
CVSS
8811.72
126.00 (261, 262)
262
Y-COORDINATE OF THE
DIE BOND PAD
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
C40 DIE BOND
PAD LOCATIONS
8685.72
126.00 (262, 263)
DVSS
IVSS
8559.72
126.00 (263, 264)
265
LD16
8307.72
266
LD15
8181.72
126.00 (266, 267)
267
LD14
8055.72
126.00 (267, 268)
268
LD13
7929.72
126.00 (268, 269)
269
LD12
7803.72
126.00 (269, 270)
270
LD11
7677.72
126.00 (270, 271)
271
LD10
7551.72
126.00 (271, 272)
272
LD9
7425.72
126.00 (272, 273)
273
LD8
7299.72
126.00 (273, 274)
274
LD7
7173.72
126.00 (274, 275)
275
LD6
7047.72
126.00 (275, 276)
276
LD5
6921.72
126.00 (276, 277)
277
6795.72
126.00 (277, 278)
278
LDDVDD
LD4
6669.72
126.00 (278, 279)
279
LD3
6543.72
126.00 (279, 280)
280
LD2
6417.72
126.00 (280, 281)
281
LD1
6291.72
126.00 (281, 282)
282
LD0
6165.72
127.62 (282, 283)
283
6038.10
126.00 (283, 284)
284
VDDL
VSSL
5912.10
126.00 (284, 285)
285
CVSS
5786.10
126.00 (285, 286)
263
264
8433.72
POST OFFICE BOX 1443
126.00 (264, 265)
11819 88
11819.88
• HOUSTON, TEXAS 77251–1443
126.00 (265, 266)
29
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
Table 2. SMJ320C40 Die Pad/TAB Lead Information : Rev. 5 (0,72 µm) (Continued)
DIE SIDE #4 (CONTINUED)
DIE/TAB BOND
PAD IDENTITY
X-COORDINATE OF THE
DIE BOND PAD
286
5660.10
126.00 (286, 287)
287
DVSS
A30
5534.10
126.00 (287, 288)
288
A29
5408.10
126.00 (288, 289)
289
A28
5282.10
126.00 (289, 290)
290
GADVDD
5156.10
126.00 (290, 291)
291
A27
5030.10
126.00 (291, 292)
292
A26
4904.10
126.00 (292, 293)
293
A25
4778.10
126.00 (293, 294)
294
A24
4652.10
126.00 (294, 295)
295
A23
4526.10
126.00 (295, 296)
296
A22
4400.10
126.00 (296, 297)
297
A21
4274.10
126.00 (297, 298)
298
A20
4148.10
126.00 (298, 299)
299
A19
4022.10
126.00 (299, 300)
300
A18
3896.10
126.00 (300, 301)
301
A17
3770.10
126.00 (301, 302)
302
GADVDD
3644.10
126.00 (302, 303)
303
3518.10
126.00 (303, 304)
304
CVSS
DVSS
3392.10
126.00 (304, 305)
305
A16
3266.10
306
A15
3140.10
307
A14
3014.10
126.00 (307, 308)
308
A13
2888.10
126.00 (308, 309)
309
A12
2762.10
126.00 (309, 310)
310
A11
2636.10
126.00 (310, 311)
311
A10
2510.10
126.00 (311, 312)
312
A9
2384.10
126.00 (312, 313)
313
A8
2258.10
126.00 (313, 314)
314
A7
2132.10
126.00 (314, 315)
315
A6
2006.10
126.00 (315, 316)
316
A5
1880.10
126.00 (316, 317)
317
A4
1754.10
126.00 (317, 318)
318
GADVDD
1628.10
126.00 (318, 319)
319
A3
1502.10
126.00 (319, 320)
320
A2
1376.10
126.00 (320, 321)
321
A1
1250.10
126.00 (321, 322)
322
A0
1124.10
126.00 (322, 323)
323
CVSS
DVSS
998.10
558.00 (323, 324)
324
440.10
630.00 (324, 325)
325
SUBS
– 189.90
30
POST OFFICE BOX 1443
Y-COORDINATE OF THE
DIE BOND PAD
PITCH OF LEAD
(#, #) REFERENCES WHICH DIE
BOND PADS
C40 DIE BOND
PAD LOCATIONS
126.00 (305, 306)
11819 88
11819.88
• HOUSTON, TEXAS 77251–1443
126.00 (306, 307)
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
SMJ320C40 device nomenclature
SMJ
320
C
40
HFH
M
40
PREFIX:
SMJ = MIL-PRF-38535
SM = Standard Processing
SPEED RANGE:
40 = 40 MHz
50 = 50 MHz
60 = 60 MHz
DEVICE FAMILY:
320 = SMJ320 DSP Family
TEMPERATURE RANGE:
M = –55°C to 125°C
S = –55°C to 100°C
TECHNOLOGY:
C = CMOS
PACKAGE TYPE:
GF = 325-Pin Ceramic Staggered PGA
HFH = 352-Lead Ceramic Quad Flat Pack
(nonconductive tie-bar)
DEVICE:
40 = 320C40
SMJ
320
C
40
TAB
M
40
/10
SOLDER DIP LEAD
FINISH
PREFIX:
SMJ = MIL-PRF-38535
SM = Standard Processing
TMP = Commercial Level
SPEED RANGE:
40 = 40 MHz
50 = 50 MHz
60 = 60 MHz
DEVICE FAMILY:
320 = SMJ320 DSP Family
TEMPERATURE RANGE:
M = –55°C to 125°C
S = –55°C to 100°C
L = 0°C to 70°C
TECHNOLOGY:
C = CMOS
PACKAGE TYPE:
TAB = 324-Pad JEDEC Standard TAB Tape
With Polyimide Overcoat
DEVICE:
40 = 320C40
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
31
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
absolute maximum ratings over operating case temperature range (unless otherwise noted)†
Supply voltage range, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Operating case temperature range, TC (M version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
(S version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 100°C
(C version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 25°C to 85°C
(L version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
recommended operating conditions (see Note 2)
VDD
VSS
VIH
Supply
Su
ly voltages (DVDD, etc.)
MIN
NOM‡
MAX
SMJ320C40-40
4.75
5
5.25
SMJ320C40-50
4.75
5
5.25
SMJ320C40-60
4.75
5
5.25
Supply voltages (CVSS, etc.)
0
High-level
High
level in
input
ut voltage
X2/CLKIN
2.6
CSTRBx, CRDYx§, CREQx, CACKx
2.2
All other pins
2
V
V
VDD + 0.3*
VDD + 0.3*
V
VDD + 0.3*
0.8
V
VIL
IOH
Low-level input voltage
High-level output current
– 300
µA
IOL
Low-level output current
2
mA
TC
– 0.3*
UNIT
Operating case temperature (see Note 3)
M version
–55
125
S version
–55
100
C version
–25
85
L version
0
‡ All nominal values are at VDD = 5 V, TA (ambient-air temperature)= 25°C.
§ CRDYx is 2.6 V minimum for TAB package only.
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTES: 2. All input and output voltage levels are TTL-compatible.
3. TC MAX at maximum rated operating conditions at any point on case. TC MIN at initial (time zero) power-up.
32
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
70
°C
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
electrical characteristics over specified case temperature range (see Note 2)
PARAMETER
TEST CONDITIONS
VOH
High-level output voltage
VDD = MIN, IOH = MAX
VOL
Low-level output voltage
VDD = MIN, IOL = MAX
IZ
Three-state current
VDD = MAX
II
Input current
VI = VSS to VDD
IIPU
Input current (TDI, TCK, and TMS)
IIPD
MIN
TYP†
2.4
3
UNIT
V
0.6
V
–20
20
µA
–10
10
µA
VI = VSS to VDD (See Note 4)
–400
20
µA
Input current (TRST)
VI = VSS to VDD (See Note 4)
– 20
400
µA
IIC
Input current, X2/CLKIN only
VI = VSS to VDD
– 50
50
µA
ICC
Supply
Su
ly current
VDD = MAX, TA = 25°C,
fx = MAX (See Note 5)
CI
0.3
MAX
320C40-40
320C40-50
350
850
320C40-60
350
950
mA
Input capacitance
15*
pF
CO
Output capacitance
15*
pF
† All nominal values are at VDD = 5 V, TA = 25°C.
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTES: 2. All input and output voltage levels are TTL-compatible.
4. Pins with internal pullup devices: TDI, TCK, TMS. Pin with internal pulldown device: TRST.
5. fx is the input clock frequency. The maximum value (MAX) for the 320C40-40, 320C40-50, and 320C40-60 is 40, 50, and 60 MHz,
respectively.
PARAMETER MEASUREMENT INFORMATION
IOL
Tester Pin
Electronics
VLoad
CT
Output
Under
Test
IOH
Where: IOL
IOH
VLoad
CT
=
=
=
=
2 mA (all outputs)
300 µA (all outputs)
2.15 V
80 pF typical load circuit capacitance.
Figure 5. Test Load Circuit
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
33
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
PARAMETER MEASUREMENT INFORMATION
signal transition levels
TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V.
Output transition times are specified as follows:
For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be no
longer high is 2 V, and the level at which the output is said to be low is 1 V. For a low-to-high transition, the level
at which the output is said to be no longer low is 1 V, and the level at which the output is said to be high is 2 V.
See Figure 6.
2.4 V
2V
1V
0.6 V
Figure 6. TTL-Level Outputs
Transition times for TTL-compatible inputs are specified as follows:
For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is 2 V, and
the level at which the input is said to be low is 0.8 V. For a low-to-high transition on an input signal, the level at
which the input is said to be no longer low is 0.8 V, and the level at which the input is said to be high is 2 V. See
Figure 7.
2.4 V†
2V
0.8 V
0.4 V
† Exceptions:
X2 V = 3.12 V and CSTRBx, CRDYx, CREQx and CACKx V = 2.64 V.
IH
CLKIN IH
Figure 7. TTL-Level Inputs
Timing measurements, excluding TR, TF, and T disable (output going to high impedance or an I/O output
becoming an input), are referenced from an input trip point of 1.5 V to an output trip point of 2 V. Timing
measurements from H1 and H3 are referenced from 2 V on the rising or falling edges. TR and TF times are
referenced from 20% below VOH minimum to 20% above VOL maximum. T disable times are referenced from
an input trip point of 1.5 V to 0.1 V below VOH (TPHZ) or above VOL (TPLZ). The IOL and IOH load current can
be increased to reduce the RC time constant during TPHZ and TPLZ testing.
34
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameter symbology
Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A.To shorten
the symbols, pin names that have both global and local applications generally are represented with (L)
immediately preceding the basic signal name [for example, (L)RDY represents both the global term RDY and
the local term LRDY]. Other pin names and related terminology have been abbreviated as follows, unless
otherwise noted:
A
(L)A30–(L)A0 or (L)Ax
H
H1/H3
AE
LAE, AE, or (L)AE
IACK
IACK
ASYNCH
asynchronous reset signals
IIOF
IIOF(3–0) or IIOFx
BYTE
byte transfer
LOCK
LLOCK, LOCK, or (L)LOCK
CA
CACK(0–5) or CACKx
(L)RDY
(L)RDY0, (L)RDY1, or (L)RDYx
CD
C(0–5)D7–C(0–5)D0 or CxDx
P
CE
(L)CE0, (L)CE1, or (L)CEx
PAGE
tc(H)
(L)PAGE0, (L)PAGE1, or (L)PAGEx
CI
X2/CLKIN
RESET
RESET
COMM
asynchronous reset signals
RW
(L)R/W0, (L)R/W1, or (L)R/Wx
CONTROL
control signals
S
(L)STRB0, (L)STRB1, or (L)STRBx
CRDY
CRDY(0–5) or CRDYx
ST
(L)STAT3–(L)STAT0 or (L)STATx
CRQ
CREQ(0–5) or CREQx
TCK
TCK
CS
CSTRB(0–5) or CSTRBx
TDO
TDO
D
(L)D31–(L)D0 or (L)Dx
TMS
TMS/TDI
DE
LDE, DE, or (L)DE
WORD
word transfer
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
35
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for X2/CLKIN, H1, H3 (see Figure 8 and Figure 9)
NO
NO.
1
320C40-40
320C40-50
320C40-60
MIN
MIN
MIN
tf(CI)
tw(CIL)
Fall time, CLKIN
Pulse duration, CLKIN low, tc(CI) = min
8.5
tw(CIH)
tr(CI)
Pulse duration, CLKIN high, tc(CI) = min
8.5
tc(CI)
tf(H)
Cycle time, CLKIN
Pulse duration, H1/H3 low
8
tw(HL)
tw(HH)
9
tr(H)
Rise time, H1/H3
td(HL-HH)
Delay time, from H1 low to H3 high or
from H3 low to H1 high
2
3
4
5
6
7
9.1
MAX
MAX
5*
5*
7
242.5
tc(Cl) –6
tc(Cl) –6
tc(Cl) +6
tc(Cl) +6
Fall time, H1/H3
5*
20
242.5
tc(Cl) –6
tc(Cl) –6
tc(Cl) +6
tc(Cl) +6
3*
Pulse duration, H1/H3 high
–1
ns
ns
5*
ns
16.67
242.5
ns
3*
ns
tc(Cl) –6
tc(Cl) –6
tc(Cl) +6
tc(Cl) +6
ns
4*
ns
3*
4*
UNIT
ns
5
5*
25
5*
5
7
Rise time, CLKIN
MAX
4*
ns
4
–1
4
–1
4
ns
tc(H)
Cycle time, H1/H3
50
485
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
40
485
33.3
485
ns
10
5
4
1
X2/CLKIN
3
2
Figure 8. X2/CLKIN Timing
10
6
9
H1
8
7
9.1
9.1
H3
8
9
7
10
Figure 9. H1/H3 Timings
36
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
6
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for a memory read/write [(L)STRBx = 0] (see Note 6, Figure 10, and Figure 11)
320C40-40
320C40-50
320C40-60
MIN
MAX
MIN
MAX
MIN
MAX
NO
NO.
1
2
3
4
5
6
7
8
8.1
9
10
11
12
UNIT
td(H1L-SL)
td(H1L-SH)
Delay time, H1 low to (L)STRBx low
0*
10
0*
10
0*
8
ns
Delay time, H1 low to (L)STRBx high
0*
10
0*
10
0*
8
ns
td(H1H-RWL)
td(H1L-A)
Delay time, H1 high to (L)R/Wx low
0*
9
0*
9
0*
8
ns
Delay time, H1 low to (L)Ax valid
0*
10
0*
9
0*
8
ns
tsu(D-H1L)R
th(H1L-D)R
Setup time, (L)Dx valid before H1 low (read)
15
tsu[(L)RDY-H1L]
th[H1L-(L)RDY]
Setup time, (L)RDYx valid before H1 low
td(H1L-ST)
td(H1H-RWH)W
Delay time, H1 low to (L)STAT3–(L)STAT0 valid
tv(H1L-D)W
th(H1H-D)W
Valid time, (L)Dx after H1 low (write)
td(H1H-A)
Hold time, (L)Dx after H1 low (read)
Hold time, (L)RDYx after H1 low
10
ns
0
0
0
ns
25
20
18*
ns
0
0
0
10
10
9
9
Delay time, H1 high to (L)R/Wx high (write)
16
Hold time, (L)Dx after H1 high (write)
9
0
16
0
Delay time, H1 high to address valid on back-to-back
write cycles
0*
13
ns
8
ns
8
ns
13
ns
0
13
ns
8
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTE 6: For consecutive reads, (L)R/Wx stays high and (L)STRBx stays low.
H3
H1
1
2
(L)STRBx
(L)R/Wx
4
5
3
(L)Ax
6
(L)Dx
8
7
(L)RDYx
8.1
(L)STAT3–(L)STAT0
Figure 10. Memory-Read-Cycle Timing [(L)STRBx = 0]
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
37
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
PARAMETER MEASUREMENT INFORMATION
H3
H1
1
2
(L)STRBx
3
9
(L)R/Wx
12
4
(L)Ax
11
10
(L)Dx
8
(L)RDYx
7
(L)STAT3–(L)STAT0
Figure 11. Memory-Write-Cycle Timing [(L)STRBx = 0]
38
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
(L)DE, (L)AE, and (L)CEx enable timings (see Figure 12)
NO.
1
320C40-40
320C40-50
320C40-60
MIN*
MAX
MIN*
MAX
UNIT
td(DEH-DZ)
td(DEL-DV)
Delay time, (L)DE high to (L)D0–(L)D31 in the high-impedance state
0
15*
0
15*
ns
Delay time, (L)DE low to (L)D0–(L)D31 valid
0
22
0
16
ns
td(AEH-AZ)
td(AEL-AV)
Delay time, (L)AE high to (L)A0–(L)A30 in the high-impedance state
0
15*
0
15*
ns
Delay time, (L)AE low to (L)A0–(L)A30 valid
0
21
0
16
ns
Delay time, (L)CEx high to (L)R/W0, (L)R/W1 in the high-impedance state
0
15*
0
15*
ns
6
td(CEH-RWZ)
td(CEL-RWV)
Delay time, (L)CEx low to (L)R/W0, (L)R/W1 valid
0
21
0
16
ns
7
td(CEH-SZ)
Delay time, (L)CEx high to (L)STRB0, (L)STRB1 in the high-impedance
state
0
15*
0
15*
ns
8
td(CEL-SV)
Delay time, (L)CEx low to (L)STRB0, (L)STRB1 valid
0
21
0
16
ns
td(CEH-PAGEZ)
Delay time, (L)CEx high to (L)PAGE0, (L)PAGE1 in the high-impedance
state
0
15*
0
15*
ns
0
21
0
16
ns
2
3
4
5
9
10
td(CEL-PAGEV) Delay time, (L)CEx low to (L)PAGE0, (L)PAGE1 valid
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
(L)DE
2
1
Hi-Z
(L)D31–(L)D0
(L)AE
4
3
(L)A30–(L)A0
Hi-Z
(L)CE0, (L)CE1
6
5
Hi-Z
(L)R/W0, (L)R/W1
7
8
Hi-Z
(L)STRB0, (L)STRB1
9
(L)PAGE0, (L)PAGE1
10
Hi-Z
Figure 12. (L)DE, (L)AE, and (L)CEx Enable Timings
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
39
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for (L)LOCK when executing LDFI or LDII (see Figure 13)
NO
NO.
1
td(H1L-LOCKL)
320C40-40
320C40-50
320C40-60
MIN
MIN
MIN
MAX
Delay time, H1 low to (L)LOCK low
MAX
11
LDFI or LDII
External Access
H3
H1
(L)STRBx
(L)R/Wx
(L)Ax
(L)Dx
(L)RDYx
1
(L)LOCK
Figure 13. Timing for (L)LOCK When Executing LDFI or LDII
40
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
9
MAX
8
UNIT
ns
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for (L)LOCK when executing STFI or STII (see Figure 14)
NO
NO.
1
PARAMETER
td(H1L-LOCKH)
320C40-40
320C40-50
320C40-60
MIN
MIN
MIN
MAX
Delay time, H1 low to (L)LOCK high
MAX
11
9
MAX
8
UNIT
ns
STFI or STII
External Access
H3
H1
(L)STRBx
(L)R/Wx
(L)Ax
(L)Dx
(L)RDYx
1
(L)LOCK
Figure 14. Timing for (L)LOCK When Executing STFI or STII
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
41
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for (L)LOCK when executing SIGI (see Figure 15)
NO
NO.
1
2
td(H1L-LOCKL)
td(H1L-LOCKH)
320C40-40
320C40-50
320C40-60
MIN
MIN
MIN
MAX
MAX
UNIT
Delay time, H1 low to (L)LOCK low
11
9
8
ns
Delay time, H1 low to (L)LOCK high
11
9
8
ns
H3
H1
1
2
(L)LOCK
(L)R/Wx
(L)Ax
(L)Dx
(L)RDYx
(L)STAT3–(L)STAT0
Figure 15. Timing for (L)LOCK When Executing SIGI
42
MAX
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for (L)PAGE0, (L)PAGE1 during memory access to a different page
(see Figure 16)
320C40-40
320C40-50
320C40-60
MIN
MAX
MIN
MAX
Delay time, H1 low to (L)PAGEx high for access to different page
0
10
0
8
ns
Delay time, H1 low to (L)PAGEx low for access to different page
0
10
0
8
ns
NO.
1
2
td(H1L-PAGEH)
td(H1L-PAGEL)
UNIT
H1
(L)R/Wx
(L)STRBx
(L)RDYx
1
2
1
2
(L)PAGEx
(L)Dx
(L)Ax
(L)STAT3–(L)STAT0
(L)STRB1 write to a different page
(L)STRB1 read from a different page
Figure 16. (L)PAGE0, (L)PAGE1 Timing Cycle, Memory Access to a Different Page
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
43
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for loading IIF register (IIOFx pins) when configured as an output pin
(see Figure 17)
NO
NO.
1
tv(H1L-IIOF)
320C40-40
320C40-50
320C40-60
MIN
MIN
MIN
MAX
Valid time, IIOFx after H1 low
Fetch Load
Instruction
18
Decode
Read
MAX
MAX
16
14
Execute
H3
H1
1 or 0
FLAG Bit
1
IIOFx pins
Figure 17. Timing for Loading IIF Register (IIOFx Pins) When Configured as an Output Pin
44
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
UNIT
ns
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters of IIOFx changing from output to input mode (see Figure 18)
320C40-40
320C40-50
320C40-60
NO.
MIN
1
2
th(H1L-IIOF)
tsu(IIOF)
MAX
Hold time, IIOFx after H1 low
14*
Setup time, IIOFx before H1 low
3
th(IIOF)
Hold time, IIOFx after H1 low
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
Buffers Go
from Output
to Input
Execute
Load of IIOF
Synchronizer
Delay
UNIT
ns
11
ns
0
ns
Value on Pin
Seen In IIOF
H3
H1
2
3
TYPE Bit
1
IIOFx pins
Output
FLAG Bit
Data
Sampled
Data
Seen
Figure 18. Change of IIOFx From Output to Input Mode
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
45
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters of IIOFx changing from input to output mode (see Figure 19)
NO.
1
td(H1L-IFIO)
320C40-40
320C40-50
320C40-60
MIN
MIN
Delay time, H1 low to IIOFx switching from input to output
MAX
16
UNIT
MAX
14
ns
Execution of
Load of IIOF
H3
H1
TYPE Bit
1
IIOFx pins
Figure 19. Change of IIOFx From Input to Output Mode
timing parameters for RESET (see Figure 20)
320C40-40
NO
NO.
1
320C40-50
320C40-60
MIN
MAX
MIN
MAX
MIN
MAX
11
UNIT
tsu(RESET-CIL)
td(CIH-H1H)
Setup time, RESET before CLKIN low
2
2
tc(Cl)*
10
ns
2
tc(Cl)*
10
11
Delay time, CLKIN high to H1 high
tc(CI)
12
11
2.1
2.2
td(CIH-H1L)
Delay time, CLKIN high to H1 low
2
12
2
10
2
10
ns
tsu(RESETH-H1L)
Setup time, RESET high before H1 low and
after ten H1 clock cycles
3
4.1
4.2
td(CIH-H3L)
td(CIH-H3H)
13
13
ns
Delay time, CLKIN high to H3 low
2
12
2
10
2
10
ns
Delay time, CLKIN high to H3 high
2
12
2
10
2
11
ns
5
tdis(H1H-DZ)
Disable time, H1 high to (L)Dx in
high-impedance state
6
tdis(H3H-AZ)
Disable time, H3 high to (L)Ax in
high-impedance state
9*
9*
9*
ns
7
td(H3H-CONTROLH)
Delay time, H3 high to control signals high
[low for (L)PAGEx]
9*
9*
9*
ns
8
td(H1H-IACKH)
Delay time, H1 high to IACK high
9*
9*
9*
ns
9
tdis(RESETL-ASYNCHZ)
Disable time, RESET low to asynchronous
reset signals in the high-impedance state
21*
21*
21*
ns
10
td(RESETH-COMMH)
Delay time, RESET high to asynchronous reset
signals high
15*
15*
15*
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
46
13
ns
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
13*
13*
13*
ns
PARAMETER MEASUREMENT INFORMATION
X2/CLKIN
1
RESET
(see Notes E and F)
2.2
2.1
3
H1
5
4.1
H3
Ten H1 Clock Cycles
(L)Dx
(see Note A)
Hi-Z
4.2
Hi-Z
7
Control Signals
(see Note C)
7
(L)PAGE0–(L)PAGE1
(see Note C)
8
IACK
Asynchronous Reset
Signals (see Note D)
Asynchronous Reset
Signals (see Note E)
9
Hi-Z
10
9
Hi-Z
In this figure, (L)Dx includes D31–D0, LD31–D0, and CxD7–CxD0.
(L)Ax includes A30–A0 and LA30–LA0.
Control signals LSTRB0, LSTRB1, STRB0, STRB1, (L)STAT3–(L)STAT0, (L)LOCK, (L)R/W0, and (L)R/W1 go high while (L)PAGE0 and (L)PAGE1 go low.
Asynchronous reset signals that go into high impedance after RESET goes low include TCLK0, TCLK1, IIOF3–IIOF0, and the communication-port control signals
CREQx, CACKy, CSTRBy, and CRDYx (where x = 0, 1, or 2, and y = 3, 4, or 5). (At reset, ports 0, 1, and 2 become outputs, and ports 3, 4, and 5 become inputs.)
E. Asynchronous reset signals that go to a high-logic level after RESET goes low include CREQy, CACKx, CSTRBx, and CRDYy (where x = 0, 1, or 2, and y = 3,
4, or 5).
F. RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact sequence shown will occur;
otherwise, an additional delay of one clock cycle can occur.
Figure 20. RESET Timing
47
1
11
NOTES: A.
B.
C.
D.
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
Control Signals
(L)Ax
(see Note B)
6
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for IIOF3–IIOF0 interrupt response [P = tc(H)] (see Figure 21, Note 7, and
Note 8)
’320C40-40
’320C40-50
NO.
MIN
1
tsu(IIOF-H1L)
Setup time, IIOF3–IIOF0 before H1 low
2
tw(IIOF)
Interrupt pulse duration to ensure one interrupt seen
(see Note 9)
TYP
’320C40-60
MAX
MIN
11
P
UNIT
TYP
MAX
11*
1.5P
< 2P*
P
ns
1.5P
< 2P*
ns
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTES: 7. IIOFx is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact
sequence shown occurs; otherwise, an additional delay of one clock cycle can occur.
8. Edge-triggered interrupts require a setup of time (1) and a minimum duration of P. No maximum duration limit exists.
9. Level-triggered interrupts require interrupt pulse duration of at least 1P wide (P = one H1 period) to ensure that the interrupt is seen.
It must be less than 2P wide to ensure that it is responded to only once. Recommended pulse duration is 1.5P.
Reset or
Interrupt
Vector Read
Fetch First
Instruction of
Service
Routine
H3
H1
1 (See Note A)
IIOF3–IIOF0
Pins
First
Instruction
Address
2
IIOF3–IIOF0
Flag
ADDRESS
Vector
Address
Data
NOTE A: The ’C40 can accept an interrupt from the same source every two H1 clock cycles.
Figure 21. IIOF3–IIOF0 Interrupt Response Timing [P=tc(H)]
48
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for IACK (see Note 10 and Figure 22)
NO.
1
2
’320C40-40
’320C40-50
’320C40-60
MIN
MIN
MAX
UNIT
MAX
td(H1H-IACKL)
Delay time, H1 high to IACK low
9
7
ns
td(H1L-IACKH)
Delay time, H1 low to IACK high during first cycle of IACK instruction
data read
9
7
ns
NOTE 10: The IACK output is active for the entire duration of the bus cycle and, therefore, is extended if the bus cycle utilizes wait states.
Fetch IACK
Instruction
Decode IACK
Instruction
IACK Data
Read
Execute IACK
Instruction
H3
H1
1
2
IACK
ADDRESS
DATA
Figure 22. IACK Timing
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
49
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
communication-port word-transfer cycle timing [P=tc(H)] (see Note 11 and Figure 23)
’320C40-40†
’320C40-50†
’320C40-60†
NO.
MIN
1
2
tc(WORD)‡
td(CRDYL-CSL)W*
UNIT
MAX
Cycle time, word transfer (4 bytes = 1 word)
1.5P+7
2.5P+17
Delay time, CRDYx low to CSTRBx low between back-to-back write cycles
1.5P+7
2.5P+28
ns
ns
† For these timing values, it is assumed that the SMJ320C40 that is to receive data is ready to receive data.
‡ tc(WORD) max = 2.5P + 28 ns + 4() + 3( + + ), where boxed numbers refer to the max values for corresponding parameters in the
communication-port byte timing table on the next page (for example, means the value under max for parameter 6 in the table –– a value of
10 ns). This timing assumes that two ’C40s are connected.
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTE 11: These timings apply only to two communicating ’C4xs. When a non-’C4x device communicates with a ’C40, timings can be longer. No
restriction exists in this case on how slow the transfer could be except when using early silicon (’C40 P6 1.x or 2.x). See the CSTRB
width restriction in Section 8.9.1 of the TMS320C4x User’s Guide (literature number SPRU063).
CREQx
CACKx
1
CSTRBx
CxD7–CxD0
B0
B1
B2
B3
Undef.
B0 (see Note B)
2
CRDYx
= when signal is an input (clear = when signal is an output)
NOTES: A. For correct operation during token exchange, the two communicating SMJ320C40s must have CLKIN frequencies within a factor
of 2 of each other (in other words, at most, one of the SMJ320C40s can be twice as fast as the other).
B. Begins byte 0 of the next word
Figure 23. Communication-Port Word-Transfer-Cycle Timing [P=tc(H)]
50
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
communication-port byte timing parameters (write and read) (see Note 12 and Figure 24)
’320C40-40
’320C40-50
’320C40-60
NO.
MIN
1
2
3
4
5
6
7
8
9
tsu(CD-CSL)W
td(CRDYL-CSH)W
Setup time, CxDx data valid before CSTRBx low (write)
th(CRDYL-CD)W
td(CRDYH-CSL)W
tc(BYTE)†
Hold time, CxDx after CRDYx low (write)
td(CSL-CRDYL)R
tsu(CSH-CD)R
Delay time, CSTRBx low to CRDYx low (read)
th(CRDYL-CD)R
td(CSH-CRDYH)R
Hold time, CxDx valid after CRDYx low (read)
MAX
2
Delay time, CRDYx low to CSTRBx high (write)
0*
ns
12
1
Delay time, CRDYx high to CSTRBx low for subsequent bytes (write)
0*
Cycle time, byte transfer
0*
Setup time, CxDx valid after CSTRBx high (read)
ns
ns
44
ns
10
ns
ns
2
0*
ns
12
0
Delay time, CSTRBx high to CRDYx high (read)
UNIT
ns
10
ns
† tc(BYTE) max = ( + + + ) where boxed numbers refer to the max values for corresponding parameters in the above table (for example,
means the value under max for parameter 6 in the table — a value of 10 ns). This assumes that two ’C40s are connected.
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTE 12: Communication port timing does not include line length delay.
CREQx
CACKx
5
5
7
CSTRBx
1
CxDx
2
9
Valid Data
Valid
8
3
6
CRDYx
4
(a) WRITE TIMING
(b) READ TIMING
= when signal is an input (clear = when signal is an output)
Figure 24. Communication-Port Byte Timing (Write and Read)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
51
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for communication-token transfer sequence, input to an output port [P = tc(H)]†
(see Figure 25)
’320C40-40*
’320C40-50*
’320C40-60*
NO.
UNIT
MIN
MAX
0.5P+ 6
1.5P+ 22
ns
Delay time, CACKx low to start of CREQx going high for token-request
acknowledge
P+5
2P + 26
ns
td(CRQH-CRQ)T
Delay time, start of CREQx going high to CREQx change from output to an input
0.5P – 5
0.5P+ 13
ns
4
td(CRQH-CA)T
Delay time, start of CREQx going high to CACKx change from an input to an
output level high
0.5P – 5
0.5P+13
ns
4.1
td(CRQH-CD)T
Delay time, start of CREQx going high to CxD7–CxD0 change from inputs driven
to outputs driven
0.5P – 5
0.5P+13
ns
4.2
td(CRQH-CRDY)T
Delay time, start of CREQx going high to CRDYx change from an output to an
input
0.5P – 5
0.5P+13
ns
td(CRQH-CSL)T
Delay time, start of CREQx going high to CSTRBx low for start of word transfer
out
1.5P – 8
1.5P+ 9
ns
1†
td(CAL-CS)T
Delay time, CACKx low to CSTRBx change from input to a high-level output
2†
td(CAL-CRQH)T
3
5
6
td(CRDYL-CSL)T
Delay time, CRDYx low at end of word input to CSTRBx low for word output
3.5P+12 5.5P+ 48
ns
† These timing parameters result from synchronizer delays and are referenced from the falling edge of H1. The inputs (that cause the output-signal
pins to change values) are sampled on H1 falling. The minimum delay occurs when the input condition occurs just before H1 falling, and the
maximum delay occurs when the input condition occurs just after H1 falling.
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
3
CREQx
2
4
CACKx
5
1
CSTRBx
4.1
Valid Data Out
CxD7–CxD0
6
CRDYx
4.2
= when signal is an input (clear = when signal is an output)
NOTE A: Before the token exchange, CREQx and CRDYx are output signals asserted by the SMJ320C40 that is receiving data. CACKx,
CSTRBx, and CxD7–CxD0 are input signals asserted by the device sending data to the ’C40; these are asynchronous with respect to
the H1 clock of the receiving SMJ320C40. After token exchange, CACKx, CSTRBx, and CxD7–CxD0 become output signals, and
CREQx and CRDYx become inputs.
Figure 25. Communication-Token Transfer Sequence, Input to an Output Port [P=tc(H)]
52
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for communication-token transfer sequence, output to an input port [P = tc(H)]†
(see Figure 26)
’320C40-40*
’320C40-50*
NO.
’320C40-60*
UNIT
MIN
MAX
MIN
MAX
1†
td(CRQL-CAL)T
Delay time, CREQx low to start of CACKx going low for
token-request acknowledge
P+5
2P+26
P+5
2P+22
ns
2†
td(CRDYL-CAL)T
Delay time, start of CRDYx low at end of word transfer out to
start of CACKx going low
P+6
2P+27
P+6
2P+27
ns
3
td(CAL-CD)I
Delay time, start of CACKx going low to CxD7–CxD0 change
from outputs to inputs
0.5P–8
0.5P+8
0.5P–8
0.5P+8
ns
4
td(CAL-CRDY)T
Delay time, start of CACKx going low to CRDYx change from
an input to output, high level
0.5P–8
0.5P+8
0.5P–8
0.5P+8
ns
5†
td(CRQH-CRQ)T
Delay time, CREQx high to CREQx change from an input to
output, high level
4
22
4
22
ns
6†
td(CRQH-CA)T
Delay time, start of CREQx high to CACKx change from
output to an input
4
22
4
22
ns
7†
td(CRQH-CS)T
Delay time, start of CREQx high to CSTRBx change from
output to an input
4
22
4
22
ns
8†
td(CRQH-CRQL)T
Delay time, CREQx high to CREQx low for the next token
request
P–4
2P+8
P–4
2P+8
ns
† These timing parameters result from synchronizer delays and are referenced from the falling edge of H1. The inputs (that cause the output-signal
pins to change values) are sampled on H1 falling. The minimum delay occurs when the input condition occurs just before H1 falling, and the
maximum delay occurs when the input condition occurs just after H1 falling.
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
53
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
PARAMETER MEASUREMENT INFORMATION
8
CREQx
1
5
CACKx
6
CSTRBx
3
CxD7–CxD0
Valid data
7
Valid data
4
CRDYx
2
= when signal is an input (clear = when signal is an output)
NOTE A: Before the token exchange, CACKx, CSTRBx, and CxD7–CxD0 are asserted by the ’C40 sending data. CREQx and CRDYx are input
signals asserted by the ’C40 receiving data and are asynchronous with respect to the H1 clock of the sending ’C40. After token
exchange, CREQx and CRDYx become outputs, and CSTRBx, CACKx, and CxD7–CxD0 become inputs.
Figure 26. Communication-Token Transfer Sequence, Output to an Input Port [P=tc(H)]
54
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
timing parameters for timer pin (see Note 13 and Figure 27)
’320C40-40
’320C40-50
’320C40-60
NO.
MIN
1
2
tsu(TCLK-H1L)
th(H1L-TCLK)
Setup time, TCLK before H1 low
Hold time, TCLK after H1 low
UNIT
MAX
10
ns
0
ns
3
td(H1H-TCLK) Delay time, TCLK valid after H1 high
NOTE 13: Period and polarity of valid logic level are specified by contents of internal control registers.
13
ns
H3
H1
3
2
1
3
Peripheral Pin
(TCLK)
Figure 27. Timer Pin Timing Cycle
timing for IEEE 1149.1 test-access port (see Figure 28)
’320C40-40
’320C40-50
’320C40-60
NO.
MIN
1
Setup time, TMS/TDI before TCK high
2
tsu(TMS-TCKH)
th(TCKH-TMS)
Hold time, TMS/TDI after TCK high
5
3
td(TCKL-TDOV)
Delay time, TCK low to TDO valid
0
UNIT
MAX
10
ns
ns
15
ns
TCK
1
TMS/TDI
3
2
TDO
Figure 28. JTAG Emulation Timings
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
55
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
PRODUCT ORDERING INFORMATION
SMJ320C40 standard package ordering information
TEMPERATURE
RANGE
OPERATING
FREQUENCY
SMJ320C40GFM40
– 55°C to 125°C
40 MHz
Ceramic 325-pin staggered PGA (GF)
QML
SM320C40GFM40
– 55°C to 125°C
40 MHz
Ceramic 325-pin staggered PGA (GF)
Standard
SMJ320C40GFM50
– 55°C to 125°C
50 MHz
Ceramic 325-pin staggered PGA
QML
SM320C40GFM50
– 55°C to 125°C
50 MHz
Ceramic 325-pin staggered PGA
Standard
SMJ320C40HFHM40
– 55°C to 125°C
40 MHz
Ceramic 352-pin quad flatpack (HFH)
QML
SM320C40HFHM40
– 55°C to 125°C
40 MHz
Ceramic 352-pin quad flatpack (HFH)
Standard
SMJ320C40HFHM50
– 55°C to 125°C
50 MHz
Ceramic 352-pin quad flatpack
QML
SM320C40HFHM50
– 55°C to 125°C
50 MHz
Ceramic 352-pin quad flatpack
Standard
SMJ320C40GFS60
– 55°C to 100°C
60 MHz
Ceramic 325-pin staggered PGA
QML
SM320C40GFS60
– 55°C to 100°C
60 MHz
Ceramic 325-pin staggered PGA
Standard
SMJ320C40HFHS60
– 55°C to 100°C
60 MHz
Ceramic 352-pin quad flatpack
QML
SM320C40HFHS60
– 55°C to 100°C
60 MHz
Ceramic 352-pin quad flatpack
Standard
DEVICE
PACKAGE TYPE
PROCESSING
LEVEL
SMJ320C40 TAB ordering information†
DEVICE
TEMPERATURE
RANGE
OPERATING
FREQUENCY
SMJ320C40TABM40/10
– 55°C to 125°C
40 MHz
325 ILB/OLB TAB tape (encapsulated)
QML
SM320C40TABM40/10
– 55°C to 125°C
40 MHz
325 ILB/OLB TAB tape (encapsulated)
Standard
SMJ320C40TABM50/10
– 55°C to 125°C
50 MHz
325 ILB/OLB TAB tape (encapsulated)
QML
SM320C40TABM50/10
– 55°C to 125°C
50 MHz
325 ILB/OLB TAB tape (encapsulated)
Standard
SM320C40TABS50/10
– 55°C to 100°C
50 MHz
325 ILB/OLB TAB tape (encapsulated)
Standard
TMP320C40TABL50/10
0°C to 70°C
50 MHz
325 ILB/OLB TAB tape (encapsulated)
Commercial
(No Burn-In)
SM320C40TABC50/10
– 25°C to 85°C
50 MHz
325 ILB/OLB TAB tape (encapsulated)
Commercial
(No Burn-In)
SMJ320C40TABS60/10
– 55°C to 100°C
60 MHz
325 ILB/OLB TAB tape (encapsulated)
QML
SM320C40TABS60/10
– 55°C to 100°C
60 MHz
325 ILB/OLB TAB tape (encapsulated)
Standard
TMP320C40TABL60/10
0°C to 70°C
60 MHz
325 ILB/OLB TAB tape (encapsulated)
Commercial
(No Burn-In)
PACKAGE TYPE
† /10 indicates solder-dip TAB lead frame.
56
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
PROCESSING
LEVEL
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
MECHANICAL DATA
GF (S-CPGA-P325)
CERAMIC PIN GRID ARRAY
1.717 (43,61)
TYP
1.683 (42,75)
1.879 (47,73)
SQ
1.841 (46,76)
0.100 (2,54)
AR
AN
AL
AJ
AG
AE
AC
AA
W
U
R
N
L
J
G
E
C
A
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
0.050 (1,27)
0.060 (1,52)
0.040 (1,02)
0.048 (1,22) DIA 4 Places
0.020 (0,51)
0.016 (0,41)
0.080 (2,03) TYP
0.050 (1,27) TYP
0.190 (4,83)
0.170 (4,32)
0.150 (3,81)
TYP
0.026 (0,660)
0.165 (4,19)
0.200 (5,08)
0.006 (0,152)
0.120 (3,05)
0.145 (3,68)
DETAIL A
4040035-2/E 03/97
NOTES: A.
B.
C.
D.
E.
F.
G.
H.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Index mark can appear on top or bottom, depending on package vendor.
Pins are located within 0.010 (0,25) diameter of true position relative to
each other at maximum material condition and within
0.030 (0,76) diameter relative to the edge of the ceramic.
This package can be hermetically sealed with metal lids
or with ceramic lids using glass frit.
The pins can be gold-plated or solder-dipped.
Package thickness of 0.165 (4,19) / 0.120 (3,05) includes
package body and lid.
Falls within JEDEC MO-128AK
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
Thermal Resistance
Characteristics
Parameter
°C/W
Air Flow
LFPM
RΘJC
1.7
N/A
RΘJA
RΘJA
10.9
0
9.8
200
RΘJA
RΘJA
7.0
400
6.4
600
RΘJA
RΘJA
5.6
800
5.5
1000
57
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
MECHANICAL DATA
HFH (R-CQFP-F352)
CERAMIC QUAD FLATPACK WITH NCTB
76,40
74,85
75,40
74,60
57,00
55,60
48,48
SQ
47,52
1,55
Dia
1,45
4 Places
5,50
Tie Bar Width
4,50
43,50
BSC
352
1
265
264
DETAIL ”C”
70,00 BSC
3,60
3,50
177
176
88
89
DETAIL ”B”
2,60
2,50
DETAIL ”A”
352 X
2,60
Dia 2 Places
2,50
0,50 MAX
0,25
0,18
3,34 MAX
2,79 MAX
0,20
0,10
0,35
0,05
0,50
DETAIL ”A”
NOTES: A.
B.
C.
D.
E.
F.
58
1,05
0,75
DETAIL ”C”
DETAIL ”B”
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
This package is hermetically sealed with a metal lid.
The terminals are gold-plated.
Leads not shown for clarity purposes
Falls within JEDEC MO-134AE
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
4040232-5/F 12/98
THERMAL RESISTANCE
CHARACTERISTICS
Parameter
RΘJC
RΘJA
° C/W
1.28
28.70
SGUS017H – OCTOBER 1993 – REVISED OCTOBER 2001
MECHANICAL DATA
TAB (48 mm WITH PROTECTIVE FILM)
SMJ320C40 324-PIN TAB FRAME SOCKET (PG 5.x)
325 OLB/ILB 0.25 mm OLB PITCH
0,26
20,025
× 81 =
0,24
19,075
325
244
243
1
0,26
20,025
× 80 =
0,24
19,075
0,26
20,025
× 80 =
0,24
19,075
Tab Leads Up
Die Face Up
81
163
162
82
2,25
(4 Places)
NOTES: A.
B.
C.
D.
E.
F.
0,26
20,025
× 80 =
0,24
19,075
24,00
(2 Places)
4073433
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
The OLB lead width is 0,10 ± 0,02 mm.
The ILB lead width is 0,05 ± 0,01 mm.
The tape width is 48 mm.
The TAB is encapsulated die with polyimide overcoat.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
59
PACKAGE OPTION ADDENDUM
www.ti.com
25-Feb-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
5962-9466902QXA
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
5962-9466902QXC
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
5962-9466902QYC
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
5962-9466903QXA
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
5962-9466903QXC
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
5962-9466903QYC
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
5962-9466904QXA
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
5962-9466904QYC
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
SM320C40GFM40
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
SM320C40GFM50
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
SM320C40GFS60
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
SM320C40HFHM40
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
SM320C40HFHM50
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
SM320C40HFHS60
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
SM320C40KGDS50D
ACTIVE
XCEPT
KGD
0
1
None
Call TI
Level-NC-NC-NC
SMJ320C40GFM40
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
SMJ320C40GFM50
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
SMJ320C40GFS60
ACTIVE
CPGA
GF
325
1
None
Call TI
Level-NC-NC-NC
SMJ320C40HFHM40
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
SMJ320C40HFHM50
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
SMJ320C40HFHS60
ACTIVE
CFP
HFH
352
1
None
Call TI
Level-NC-NC-NC
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional
product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
25-Feb-2005
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated