INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: • The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications • The IC06 74HC/HCT/HCU/HCMOS Logic Package Information • The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines 74HCU04 Hex inverter Product specification File under Integrated Circuits, IC06 September 1993 Philips Semiconductors Product specification Hex inverter 74HCU04 FEATURES • Output capability: standard • ICC category: SSI GENERAL DESCRIPTION The 74HCU04 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A. The 74HCU04 is a general purpose hex inverter. Each of the six inverters is a single stage QUICK REFERENCE DATA GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns SYMBOL PARAMETER CONDITIONS tPHL/ tPLH propagation delay nA to nY CL = 15 pF; VCC = 5 V CI input capacitance CPD power dissipation capacitance per inverter note 1 Note 1. CPD is used to determine the dynamic power dissipation (PD in µW): PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fO) where: fi = input frequency in MHz fo = output frequency in MHz CL = output load capacitance in pF VCC = supply voltage in V ∑ (CL × VCC2 × fo) = sum of outputs ORDERING INFORMATION See “74HC/HCT/HCU/HCMOS Logic Package Information”. FUNCTION TABLE INPUT OUTPUT nA nY L H H L Note 1. H = HIGH voltage level L = LOW voltage level September 1993 2 TYP. UNIT 5 ns 3.5 pF 10 pF Philips Semiconductors Product specification Hex inverter 74HCU04 PIN DESCRIPTION PIN NO. SYMBOL NAME AND FUNCTION 1, 3, 5, 9, 11, 13 1A to 6A data inputs 2, 4, 6, 8, 10, 12 1Y to 6Y data outputs 7 GND ground (0 V) 14 VCC positive supply voltage Fig.1 Pin configuration. Fig.4 Functional diagram. September 1993 Fig.2 Logic symbol. Fig.5 Schematic diagram (one inverter). 3 Fig.3 IEC logic symbol. Philips Semiconductors Product specification Hex inverter 74HCU04 DC CHARACTERISTICS FOR 74HCU Voltages are referenced to GND (ground = 0 V) Tamb(°C) TEST CONDITIONS 74HCU SYMBOL PARAMETER +25 min. typ. -40 to +85 UNIT V CC (V) VI OTHER max. min. max. min. max. VIH HIGH level input voltage 1.7 3.6 4.8 1.4 2.6 3.4 VIL LOW level input voltage 0.6 1.9 2.6 VOH HIGH level output voltage 1.8 4.0 5.5 VOH HIGH level output voltage 3.98 4.32 5.48 5.81 VOL LOW level output voltage 0 0 0 VOL LOW level output voltage 0.15 0.26 0.16 0.26 ±II input leakage current ICC quiescent supply current September 1993 −40 to +125 1.7 3.6 4.8 0.3 0.9 1.2 2.0 4.5 6.0 1.7 3.6 4.8 0.3 0.9 1.2 0.3 0.9 1.2 V 2.0 4.5 6.0 V 2.0 4.5 6.0 −IO = 20 µA −IO = 20 µA −IO = 20 µA 1.8 4.0 5.5 1.8 4.0 5.5 V 2.0 4.5 6.0 VIH or VIL 3.84 5.34 3.7 5.2 V 4.5 6.0 VCC −IO = 4.0 mA or −IO = 5.2 mA GND 0.2 0.5 0.5 IO = 20 µA IO = 20 µA IO = 20 µA 0.2 0.5 0.5 0.2 0.5 0.5 V 2.0 4.5 6.0 VIH or VIL 0.33 0.33 0.4 0.4 V 4.5 6.0 VCC IO = 4.0 mA or IO = 5.2 mA GND 0.1 1.0 1.0 µA 6.0 VCC or GND 2.0 20.0 40.0 µA 6.0 VCC IO = 0 or GND 4 Philips Semiconductors Product specification Hex inverter 74HCU04 AC CHARACTERISTICS FOR 74HCU GND = 0 V; tr = tf = 6 ns; CL = 50 pF Tamb (°C) TEST CONDITIONS 74HCU SYMBOL PARAMETER +25 min. typ. -40 to +85 max. min. max. −40 to +125 min. UNIT VCC (V) WAVEFORMS max. tPHL/ tPLH propagation delay nA to nY 19 7 6 70 14 12 90 18 15 105 21 18 ns 2.0 4.5 6.0 Fig.6 tTHL/ tTLH output transition time 19 7 6 75 15 13 95 19 16 110 22 19 ns 2.0 4.5 6.0 Fig.6 AC WAVEFORMS (1) VM = 50%; VI = GND to VCC. Fig.6 Waveforms showing the data input (nA) to data output (nY) propagation delays and the output transition times. TYPICAL TRANSFER CHARACTERISTICS Fig.7 _____ VO; _ _ _ _ ID (drain current); IO = 0; VCC = 6.0 V. September 1993 Fig.8 ______ VO; _ _ _ _ ID (drain current); IO = 0; VCC = 4.5 V. 5 Fig.9 _____ VO; _ _ _ _ ID (drain current); IO = 0; VCC = 2.0 V. Philips Semiconductors Product specification Hex inverter 74HCU04 Fig.10 Test set-up for measuring forward transconductance gfs = dio/dvi at vo is constant (see also graph Fig.11). Fig.11 Typical forward transconductance gfs as a function of the supply voltage VCC at Tamb = 25°C. APPLICATION INFORMATION Some applications for the “HCU04” are: • Linear amplifier (see Fig.12) • In crystal oscillator designs (see Fig.13) • Astable multivibrator (see Fig.14) ZL > 10 kΩ; AOL = 20 (typ.) A OL A u = – ---------------------------------------------; R1 1 + -------- ( 1 + A OL ) R2 VO max (p-p) ≈ VCC −2 V centered at 1⁄2VCC 3 kΩ ≤ R1, R2 ≤ 1 MΩ Typical unity gain bandwidth product is 5 MHz. CI (see Fig.15) AOL = open loop amplification Au = voltage amplification Fig.12 HCU04 used as a linear amplifier. September 1993 6 Philips Semiconductors Product specification Hex inverter 74HCU04 1 1 f = --- ≈ -----------------T 2.2 RC C1 = 47 pF (typ.) C2 = 33 pF (typ.) R1 = 1 to 10 MΩ (typ.) R2 optimum value depends on the frequency and required stability against changes in VCC or average minimum ICC (ICC is typically 5 mA at VCC = 5 V and f = 10 MHz). RS ≈ 2 × R. The average ICC (mA) is approximately 3.5 + 0.05 × f (MHz) × C (pF) at VCC = 5.0 V (for more information refer to “DESIGNERS GUIDE”). Fig.14 HCU04 used as an astable multivibrator Fig.13 Crystal oscillator configuration. OPTIMUM VALUE FOR R2 FREQUENCY (MHz) R2 (kΩ) OPTIMUM FOR 2 8 minimum required ICC minimum influence due to change in VCC 6 1 4.7 minimum ICC minimum influence by VCC 10 0.5 2 minimum ICC minimum influence by VCC 14 0.5 1 minimum ICC minimum influence by VCC 3 > 14 replace R2 by C3 with a typical value of 35 pF EXTERNAL COMPONENTS FOR RESONATOR (f < 1 MHz) FREQUENCY (kHz) R1 (MΩ) R2 (kΩ) C1 (pF) C2 (pF) 10 to 15.9 22 220 56 20 16 to 24.9 22 220 56 10 25 to 54.9 22 100 56 10 55 to 129.9 22 100 47 5 130 to 199.9 22 47 47 5 200 to 349.9 10 47 47 5 350 to 600 10 47 47 5 (1) (2) (3) (4) VCC = 2.0 V. VCC = 3.0 V. VCC = 4.0 V. VCC = 5.0 V. (5) VCC = 6.0 V. Fig.15 Typical input capacitance as a function of input voltage. Note to Application information All values given are typical unless otherwise specified. Note 1. All values given are typical and must be used as an initial set-up. PACKAGE OUTLINES See “74HC/HCT/HCU/HCMOS Logic Package Outlines”. September 1993 7