PHILIPS 74HCU04D

INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
• The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HCU04
Hex inverter
Product specification
File under Integrated Circuits, IC06
September 1993
Philips Semiconductors
Product specification
Hex inverter
74HCU04
FEATURES
• Output capability: standard
• ICC category: SSI
GENERAL DESCRIPTION
The 74HCU04 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL).
It is specified in compliance with JEDEC standard no. 7A.
The 74HCU04 is a general purpose hex inverter. Each of the six inverters is a single stage
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns
SYMBOL
PARAMETER
CONDITIONS
tPHL/ tPLH
propagation delay nA to nY
CL = 15 pF; VCC = 5 V
CI
input capacitance
CPD
power dissipation capacitance per inverter
note 1
Note
1. CPD is used to determine the dynamic power dissipation (PD in µW):
PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fO) where:
fi = input frequency in MHz
fo = output frequency in MHz
CL = output load capacitance in pF
VCC = supply voltage in V
∑ (CL × VCC2 × fo) = sum of outputs
ORDERING INFORMATION
See “74HC/HCT/HCU/HCMOS Logic Package Information”.
FUNCTION TABLE
INPUT
OUTPUT
nA
nY
L
H
H
L
Note
1. H = HIGH voltage level
L = LOW voltage level
September 1993
2
TYP.
UNIT
5
ns
3.5
pF
10
pF
Philips Semiconductors
Product specification
Hex inverter
74HCU04
PIN DESCRIPTION
PIN NO.
SYMBOL
NAME AND FUNCTION
1, 3, 5, 9, 11, 13
1A to 6A
data inputs
2, 4, 6, 8, 10, 12
1Y to 6Y
data outputs
7
GND
ground (0 V)
14
VCC
positive supply voltage
Fig.1 Pin configuration.
Fig.4 Functional diagram.
September 1993
Fig.2 Logic symbol.
Fig.5
Schematic diagram
(one inverter).
3
Fig.3 IEC logic symbol.
Philips Semiconductors
Product specification
Hex inverter
74HCU04
DC CHARACTERISTICS FOR 74HCU
Voltages are referenced to GND (ground = 0 V)
Tamb(°C)
TEST CONDITIONS
74HCU
SYMBOL
PARAMETER
+25
min. typ.
-40 to +85
UNIT V
CC
(V)
VI
OTHER
max. min. max. min. max.
VIH
HIGH level input voltage 1.7
3.6
4.8
1.4
2.6
3.4
VIL
LOW level input voltage
0.6
1.9
2.6
VOH
HIGH level output
voltage
1.8
4.0
5.5
VOH
HIGH level output
voltage
3.98 4.32
5.48 5.81
VOL
LOW level output
voltage
0
0
0
VOL
LOW level output
voltage
0.15 0.26
0.16 0.26
±II
input leakage current
ICC
quiescent supply
current
September 1993
−40 to
+125
1.7
3.6
4.8
0.3
0.9
1.2
2.0
4.5
6.0
1.7
3.6
4.8
0.3
0.9
1.2
0.3
0.9
1.2
V
2.0
4.5
6.0
V
2.0
4.5
6.0
−IO = 20 µA
−IO = 20 µA
−IO = 20 µA
1.8
4.0
5.5
1.8
4.0
5.5
V
2.0
4.5
6.0
VIH
or
VIL
3.84
5.34
3.7
5.2
V
4.5
6.0
VCC −IO = 4.0 mA
or
−IO = 5.2 mA
GND
0.2
0.5
0.5
IO = 20 µA
IO = 20 µA
IO = 20 µA
0.2
0.5
0.5
0.2
0.5
0.5
V
2.0
4.5
6.0
VIH
or
VIL
0.33
0.33
0.4
0.4
V
4.5
6.0
VCC IO = 4.0 mA
or
IO = 5.2 mA
GND
0.1
1.0
1.0
µA
6.0
VCC
or
GND
2.0
20.0
40.0
µA
6.0
VCC IO = 0
or
GND
4
Philips Semiconductors
Product specification
Hex inverter
74HCU04
AC CHARACTERISTICS FOR 74HCU
GND = 0 V; tr = tf = 6 ns; CL = 50 pF
Tamb (°C)
TEST CONDITIONS
74HCU
SYMBOL
PARAMETER
+25
min.
typ.
-40 to +85
max. min. max.
−40 to +125
min.
UNIT
VCC
(V)
WAVEFORMS
max.
tPHL/ tPLH
propagation delay
nA to nY
19
7
6
70
14
12
90
18
15
105
21
18
ns
2.0
4.5
6.0
Fig.6
tTHL/ tTLH
output transition time
19
7
6
75
15
13
95
19
16
110
22
19
ns
2.0
4.5
6.0
Fig.6
AC WAVEFORMS
(1) VM = 50%; VI = GND to VCC.
Fig.6 Waveforms showing the data input (nA) to data output (nY) propagation delays and the output transition times.
TYPICAL TRANSFER
CHARACTERISTICS
Fig.7
_____ VO;
_ _ _ _ ID (drain current);
IO = 0; VCC = 6.0 V.
September 1993
Fig.8
______ VO;
_ _ _ _ ID (drain current);
IO = 0; VCC = 4.5 V.
5
Fig.9
_____ VO;
_ _ _ _ ID (drain current);
IO = 0; VCC = 2.0 V.
Philips Semiconductors
Product specification
Hex inverter
74HCU04
Fig.10 Test set-up for measuring forward
transconductance gfs = dio/dvi at vo is constant
(see also graph Fig.11).
Fig.11 Typical forward transconductance gfs as a
function of the supply voltage VCC at
Tamb = 25°C.
APPLICATION INFORMATION
Some applications for the “HCU04” are:
• Linear amplifier (see Fig.12)
• In crystal oscillator designs (see Fig.13)
• Astable multivibrator (see Fig.14)
ZL > 10 kΩ; AOL = 20 (typ.)
A OL
A u = – ---------------------------------------------;
R1
1 + -------- ( 1 + A OL )
R2
VO max (p-p) ≈ VCC −2 V centered at 1⁄2VCC
3 kΩ ≤ R1, R2 ≤ 1 MΩ
Typical unity gain bandwidth product is 5 MHz.
CI (see Fig.15)
AOL = open loop amplification
Au = voltage amplification
Fig.12 HCU04 used as a linear amplifier.
September 1993
6
Philips Semiconductors
Product specification
Hex inverter
74HCU04
1
1
f = --- ≈ -----------------T 2.2 RC
C1 = 47 pF (typ.)
C2 = 33 pF (typ.)
R1 = 1 to 10 MΩ (typ.)
R2 optimum value depends on the frequency and required
stability against changes in VCC or average minimum ICC
(ICC is typically 5 mA at VCC = 5 V and f = 10 MHz).
RS ≈ 2 × R.
The average ICC (mA) is approximately
3.5 + 0.05 × f (MHz) × C (pF) at VCC = 5.0 V
(for more information refer to “DESIGNERS GUIDE”).
Fig.14 HCU04 used as an astable multivibrator
Fig.13 Crystal oscillator configuration.
OPTIMUM VALUE FOR R2
FREQUENCY
(MHz)
R2
(kΩ)
OPTIMUM FOR
2
8
minimum required ICC
minimum influence due to
change in VCC
6
1
4.7
minimum ICC
minimum influence by VCC
10
0.5
2
minimum ICC
minimum influence by VCC
14
0.5
1
minimum ICC
minimum influence by VCC
3
> 14
replace R2 by C3 with a typical
value of 35 pF
EXTERNAL COMPONENTS FOR RESONATOR
(f < 1 MHz)
FREQUENCY
(kHz)
R1
(MΩ)
R2
(kΩ)
C1
(pF)
C2
(pF)
10 to 15.9
22
220
56
20
16 to 24.9
22
220
56
10
25 to 54.9
22
100
56
10
55 to 129.9
22
100
47
5
130 to 199.9
22
47
47
5
200 to 349.9
10
47
47
5
350 to 600
10
47
47
5
(1)
(2)
(3)
(4)
VCC = 2.0 V.
VCC = 3.0 V.
VCC = 4.0 V.
VCC = 5.0 V.
(5) VCC = 6.0 V.
Fig.15 Typical input capacitance as a function of
input voltage.
Note to Application information
All values given are typical unless otherwise specified.
Note
1. All values given are typical and must be used as an
initial set-up.
PACKAGE OUTLINES
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.
September 1993
7