v3.0.1 54SX Family FPGAs Lead ing E dge P er f or m ance Feat ur es • 320 MHz Internal Performance • 66 MHz PCI • 3.7 ns Clock-to-Out (Pin-to-Pin) • CPLD and FPGA Integration • 0.1 ns Input Set-Up • Single Chip Solution • 0.25 ns Clock Skew • 100% Resource Utilization with 100% Pin Locking S peci fica ti ons • 3.3V Operation with 5.0V Input Tolerance • 12,000 to 48,000 System Gates • Very Low Power Consumption • Up to 249 User-Programmable I/O Pins • Deterministic, User-Controllable Timing • Up to 1080 Flip-Flops • Unique In-System Diagnostic and Debug capability with Silicon Explorer II • 0.35µ CMOS • Boundary Scan Testing in Compliance with IEEE Standard 1149.1 (JTAG) • Secure Programming Technology Prevents Reverse Engineering and Design Theft SX P r o du ct Pr of i l e A54SX08 A54SX16 A54SX16P A54SX32 8,000 12,000 16,000 24,000 16,000 24,000 32,000 48,000 Logic Modules Combinatorial Cells 768 512 1,452 924 1,452 924 2,880 1800 Register Cells (Dedicated Flip-Flops) 256 528 528 1,080 Maximum User I/Os 130 175 175 249 3 3 3 3 JTAG Yes Yes Yes Yes PCI — — Yes — Clock-to-Out 3.7 ns 3.9 ns 4.4 ns 4.6 ns Input Set-Up (External) 0.8 ns 0.5 ns 0.5 ns 0.1 ns Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3 C, I, M C, I, M C, I, M C, I, M 84 208 100 144, 176 — 144 — 208 100 176 — — — 208 100 144, 176 — — — 208 — 144, 176 313, 329 — Capacity Typical Gates System Gates Clocks Speed Grades Temperature Grades Packages (by pin count) PLCC PQFP VQFP TQFP PBGA FBGA M a y 20 0 0 © 2000 Actel Corporation 1 G en er al D e sc r i p t i on machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three antifuses). The unique local and general routing structure featured in SX devices gives fast and predictable performance, allows 100 percent pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort. Actel’s SX family of FPGAs features a sea-of-modules architecture that delivers device performance and integration levels not currently achieved by any other FPGA architecture. SX devices greatly simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time to market for performance-intensive applications. Actel’s SX architecture features two types of logic modules, the combinatorial cell (C-cell) and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or “sea-of-modules”), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state Further complementing SX’s flexible routing structure is a hard-wired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clock-to-out or fast input set-up times. SX devices have easy-to-use I/O cells that do not require HDL instantiation, facilitating design re-use and reducing design and verification time. O r d e r i n g I nf o r m a t i o n A54SX16 P – 2 PQ 208 Application (Temperature Range) Blank = Commercial (0 to +70°C) I = Industrial (–40 to +85°C) M = Military (–55 to +125°C) PP = Pre-production Package Lead Count Package Type BG = Ball Grid Array PL = Plastic Leaded Chip Carrier PQ = Plastic Quad Flat Pack TQ = Thin (1.4 mm) Quad Flat Pack VQ = Very Thin (1.0 mm) Quad Flat Pack FG = Fine Pitch Ball Grid Array (1.0 mm) Speed Grade Blank = Standard Speed –1 = Approximately 15% Faster than Standard –2 = Approximately 25% Faster than Standard –3 = Approximately 35% Faster than Standard Blank = Not PCI Compliant P = PCI Compliant Part Number A54SX08 A54SX16 A54SX16P A54SX32 2 = = = = 12,000 System Gates 24,000 System Gates 24,000 System Gates 48,000 System Gates 5 4 SX F a m i ly F PG A s Pr od uc t P l a n Speed Grade* Application Std –1 –2 –3 C I† M• 84-Pin Plastic Leaded Chip Carrier (PLCC) ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 144-Pin Thin Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 144-Pin Fine Pitch Ball Grid Array (FBGA) ✔ ✔ ✔ ✔ ✔ ✔ — 176-Pin Thin Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔ ✔ ✔ ✔ ✔ ✔ P 176-Pin Thin Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ P 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ P 100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 144-Pin Thin Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 176-Pin Thin Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ — 144-Pin Thin Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ P 176-Pin Thin Quad Flat Pack (TQFP) ✔ ✔ ✔ ✔ ✔ ✔ P 208-Pin Plastic Quad Flat Pack (PQFP) ✔ ✔ ✔ ✔ ✔ ✔ P 313-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ ✔ ✔ ✔ ✔ — 329-Pin Plastic Ball Grid Array (PBGA) ✔ ✔ ✔ ✔ ✔ ✔ — A54SX08 Device A54SX16 Device A54SX16P Device A54SX32 Device Contact your Actel sales representative for product availability. Applications: C = Commercial Availability: ✔ = Available I = Industrial P = Planned M = Military — = Not Planned *Speed Grade: –1 = Approx. 15% faster than Standard –2 = Approx. 25% faster than Standard –3 = Approx. 35% faster than Standard † Only Std, –1, –2 Speed Grade • Only Std, –1 Speed Grade Pl a s t i c D e vi c e Re so u r ce s User I/Os (including clock buffers) PLCC 84-Pin VQFP 100-Pin PQFP 208-Pin TQFP 144-Pin TQFP 176-Pin PBGA 313-Pin PBGA 329-Pin FBGA 144-Pin A54SX08 69 81 130 113 128 — — 111 A54SX16 — 81 175 — 147 — — — A54SX16P — 81 175 113 147 — — — A54SX32 — — 174 113 147 249 249 — Device Package Definitions (Consult your local Actel sales representative for product availability.) PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch (1.0 mm) Ball Grid Array 3 SX F am i l y A r c hi t e c t ur e The SX family architecture was designed to satisfy next-generation performance and integration requirements for production-volume designs in a broad range of applications. antifuse interconnect elements, which are embedded between the M2 and M3 layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. P rog ra m ma ble Int er con nect E l em ent The extremely small size of these interconnect elements gives the SX family abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and there is no configuration bitstream to intercept. The SX family provides efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (Figure 1). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using Actel’s patented metal-to-metal programmable Additionally, the interconnect (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry. Routing Tracks Metal 3 Amorphous Silicon/ Dielectric Antifuse Tungsten Plug Via Tungsten Plug Via Metal 2 Metal 1 Tungsten Plug Contact Silicon Substrate Figure 1 • SX Family Interconnect Elements Logi c Modul e Des ign The SX family architecture is described as a “sea-of-modules” architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Actel’s SX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell). 4 The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 2 on page 5). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX FPGA. The clock source for the R-cell can be chosen from either the hard-wired clock or the routed clock. 5 4 SX F a m i ly F PG A s The C-cell implements a range of combinatorial functions up to 5-inputs (Figure 3). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the SX architecture. An example of the improved flexibility S0 enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 2 ns propagation delays. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time. Routed Data Input S1 PSETB Direct Connect Input D Q Y HCLK CLRB CLKA, CLKB, Internal Logic CKS CKP Figure 2 • R-Cell D0 D1 Y D2 D3 Sa Sb DB A0 B0 A1 B1 Figure 3 • C-Cell Chi p Ar chi tec tu re The SX family’s chip architecture provides a unique approach to module organization and chip routing that delivers the best register/logic mix for a wide variety of new and emerging applications. Modu le Or gani zat ion Actel has arranged all C-cell and R-cell logic modules into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells. To increase design efficiency and device performance, Actel has further organized these modules into SuperClusters (Figure 4 on page 6). SuperCluster 1 is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-wide group containing one Type 1 cluster and one Type 2 cluster. SX devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops. 5 R-Cell S0 C-Cell D0 Routed Data Input S1 D1 PSETB Y D2 Direct Connect Input D Q Y D3 Sa Sb HCLK CLRB CLKA, CLKB, Internal Logic DB CKS Cluster 1 CKP A0 Cluster 1 Type 1 SuperCluster Cluster 2 B0 A1 B1 Cluster 1 Type 2 SuperCluster Figure 4 • Cluster Organization Rou ti ng Res our ces Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 5 and Figure 6 on page 7). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance. DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hard-wired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns. FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns. In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. Actel’s segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent 6 automatic place and route software to minimize signal propagation delays. Actel’s high-drive routing structure provides three clock networks. The first clock, called HCLK, is hard wired from the HCLK buffer to the clock select MUX in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hard-wired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device. 5 4 SX F a m i ly F PG A s O t he r A r c hi t ec tu ral Fe atu r e s T echno log y Actel’s SX family is implemented on a high-voltage twin-well CMOS process using 0.35µ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed (“on” state) resistance of 25Ω with capacitance of 1.0 fF for low signal impedance. Direct Connect • No antifuses • 0.1 ns routing delay Fast Connect • One antifuse • 0.4 ns routing delay Routing Segments • Typically 2 antifuses • Max. 5 antifuses Type 1 SuperClusters Figure 5 • DirectConnect and FastConnect for Type 1 SuperClusters Direct Connect • No antifuses • 0.1 ns routing delay Fast Connect • One antifuse • 0.4 ns routing delay Routing Segments • Typically 2 antifuses • Max. 5 antifuses Type 2 SuperClusters Figure 6 • DirectConnect and FastConnect for Type 2 SuperClusters 7 P erf orm a nce B ounda ry S ca n T es t ing (BS T ) The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timing-driven place and route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance. All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 2.In the dedicated test mode, TCK, TDI and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of 10kΩ. TMS can be pulled LOW to initiate the test sequence. I/O Modules Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin. Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. P ower R equ ir em ent s The SX family supports 3.3V operation and is designed to tolerate 5.0V inputs. (Table 1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest-power architecture on the market. Table 1 • Supply Voltages A54SX08 A54SX16 A54SX32 A54SX16P 8 VCCA VCCI Input Output VCCR Tolerance Drive 3.3V 3.3V 5.0V 3.3V 3.3V 3.3V 3.3V 5.0V 5.0V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 5.0V 5.0V 3.3V 3.3V 5.0V 5.0V 5.0V 5.0V The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode. . Table 2 • Boundary Scan Pin Functionality Program Fuse Blown (Dedicated Test Mode) Program Fuse Not Blown (Flexible Mode) TCK, TDI, TDO are dedicated BST pins TCK, TDI, TDO are flexible and may be used as I/Os No need for pull-up resistor for TMS Use a pull-up resistor of 10k Ω on TMS D eve lopm e nt T ool S upp or t The SX devices are fully supported by Actel’s line of FPGA development tools, including the Actel DeskTOP series and Designer Advantage tools. The Actel DeskTOP series is an integrated design environment for PCs that includes design entry, simulation, synthesis, and place and route tools. Designer Advantage, Actel’s suite of FPGA development point tools for PCs and Workstations, includes the ACTgen Macro Builder, Designer with DirectTime timing driven place and route and analysis tools, and device programming software. In addition, the SX devices contain ActionProbe circuitry that provides built-in access to every node in a design, enabling 100-percent real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy-to-use integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC’s standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to only a few seconds. S X P ro be C ir cui t C ont ro l P i ns The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 7 illustrates the 5 4 SX F a m i ly F PG A s De si gn C ons id era ti ons The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry. Channels 18 interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification. The TRST pin is equipped with a pull-up resistor. To remove the boundary scan state machine from the reset state during probing, it is recommended that the TRST pin be left floating. SX FPGA TDI TCK TMS Serial Connection Silicon Explorer II TDO PRA PRB Figure 7 • Probe Setup 9 3. 3 V / 5V O p era t i n g C o nd i t i o ns A bs ol u t e M ax i m u m Ra t i n gs 1 Symbol VCCR2 VCCA 2 Parameter R ec o m m en d ed O pe r a t i ng C on d i t i o ns Limits Units DC Supply Voltage3 –0.3 to +6.0 V DC Supply Voltage –0.3 to +4.0 V DC Supply Voltage (A54SX08, A54SX16, A54SX32) –0.3 to +4.0 V VCCI2 DC Supply Voltage (A54SX16P) –0.3 to +6.0 V VI Input Voltage –0.5 to +5.5 V VO Output Voltage –0.5 to +3.6 V –30 to +5.0 mA –40 to +125 °C VCCI 2 IIO TSTG I/O Source Sink Current3 Storage Temperature Parameter Commercial Industrial Military Units Temperature Range1 0 to+70 –40 to +85 –55 to +125 °C 3.3V Power Supply Tolerance ±10 ±10 ±10 %VCC 5.0V Power Supply Tolerance ±5 ±10 ±10 %VCC Note: 1. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military. Notes: 1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions. 2. VCCR in the A54SX16P must be greater than or equal to VCCI during power-up and power-down sequences and during normal operation. 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5V or less than GND – 0.5V, the internal protection diodes will forward-bias and can draw excessive current. E l ec t r i c a l Sp e ci f i c a t i on s Commercial Symbol Parameter (IOH = -20uA) (CMOS) VOH (IOH = -8mA) (TTL) Min. Max. Min. Max. (VCCI – 0.1) VCCI (VCCI – 0.1) VCCI 2.4 VCCI 2.4 VCCI (IOH = -6mA) (TTL) VOL Industrial (IOL= 20uA) (CMOS) 0.10 (IOL = 12mA) (TTL) 0.50 V V (IOL = 8mA) (TTL) 0.50 VIL 0.8 VIH Units 2.0 0.8 V 2.0 V tR, tF Input Transition Time tR, tF 50 50 ns CIO CIO I/O Capacitance 10 10 pF ICC Standby Current, ICC 4.0 4.0 mA ICC(D) ICC(D) IDynamic VCC Supply Current 10 See “Evaluating Power in 54SX Devices” on page 18. 5 4 SX F a m i ly F PG A s PC I C o m pl i a n ce f o r t h e 5 4 SX F am i l y The 54SX family supports 3.3V and 5V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1. A54SX16P DC Specifications (5.0V PCI Operation) Symbol Parameter VCCA Condition Min. Max. Units Supply Voltage for Array 3.0 3.6 V VCCR Supply Voltage required for Internal Biasing 4.75 5.25 V VCCI Supply Voltage for IOs 4.75 5.25 V VIH 1 Input High Voltage 2.0 VCC + 0.5 V VIL 1 Input Low Voltage –0.5 0.8 V IIH Input High Leakage Current VIN = 2.7 70 µA IIL Input Low Leakage Current VIN = 0.5 –70 µA VOH Output High Voltage IOUT = –2 mA VOL 2 Output Low Voltage IOUT = 3 mA, 6 mA 3 CIN Input Pin Capacitance CCLK CLK Pin Capacitance CIDSEL 2.4 5 4 IDSEL Pin Capacitance V 0.55 V 10 pF 12 pF 8 pF Notes: 1. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs. 2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have 6 mA; the latter include, FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#. 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx]. 11 A54SX16P AC Specifications for (PCI Operation) Symbol Parameter Condition Min. 0 < VOUT ≤ 1.41 IOH(AC) Switching Current High 1.4 ≤ VOUT < 2.4 1, 2 3.1 < VOUT < VCC (Test Point) VOUT = 3.1 mA –44 + (VOUT – 1.4)/0.024 mA 1, 3 Equation A: on page 13 3 –142 VOUT ≥ 2.2 Switching Current High 95 1 2.2 > VOUT > 0.55 0.71 > VOUT > 0 ICL slewR slewF VOUT = 0.71 Low Clamp Current –5 < VIN ≤ –1 Output Rise Slew Rate Output Fall Slew Rate mA mA VOUT/0.023 1, 3 3 (Test Point) Units –44 1 IOL(AC) Max. Equation B: on page 13 mA 206 mA –25 + (VIN + 1)/0.015 mA 0.4V to 2.4V load 4 1 5 V/ns 2.4V to 0.4V load 4 1 5 V/ns Notes: 1. Refer to the V/I curves in Figure 8. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. “Switching Current High” specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs. 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up. 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 8. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs. pin 1/2 in. max. output buffer VCC 10 pF 1kΩ 12 1kΩ 5 4 SX F a m i ly F PG A s Figure 8 shows the 5.0V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P family. 0.50 0.45 0.40 PCI IOL Maximum 0.35 Current (A) 0.30 0.25 SX PCI IOL 0.20 0.15 0.10 PCI IOL Minimum 0.05 0 1 2 3 4 5 6 –0.05 –0.10 PCI IOH Minimum SX PCI IOH –0.15 PCI IOH Maximum –0.20 Voltage Out Figure 8 • 5.0V PCI Curve for A54SX16P Family Equation A: IOH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45) for VCC > VOUT > 3.1V Equation B: IOL = 78.5 * VOUT * (4.4 – VOUT) for 0V < VOUT < 0.71V 13 A54 SX 16P DC S peci fic at ions ( 3.3V P C I Ope ra ti on) Symbol Parameter VCCA Min. Max. Units Supply Voltage for Array 3.0 3.6 V VCCR Supply Voltage required for Internal Biasing 3.0 3.6 V VCCI Supply Voltage for IOs 3.0 3.6 V VIH Input High Voltage 0.5VCC VCC + 0.5 V VIL Input Low Voltage –0.5 0.3VCC V IIPU Condition 1 Input Pull-up Voltage 0.7VCC 2 IIL Input Leakage Current 0 < VIN < VCC VOH Output High Voltage IOUT = –500 µA VOL Output Low Voltage 0.9VCC IOUT = 1500 µA Input Pin Capacitance CCLK CLK Pin Capacitance CIDSEL ±10 3 CIN 5 4 IDSEL Pin Capacitance V µA V 0.1VCC V 10 pF 12 pF 8 pF Notes: 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this input voltage. 2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs. 3. Absolute maximum pin capacitance for a PCI input is 10pF (except for CLK). 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx]. 14 5 4 SX F a m i ly F PG A s A 54SX16P AC Specifications (3.3V PCI Operation) Symbol Parameter Condition Min. Max. 0 < VOUT ≤ 0.3VCC1 Switching Current High IOH(AC) mA 0.3VCC ≤ VOUT < 0.9VCC 0.7VCC < VOUT < VCC (Test Point) VOUT = 0.7VCC –12VCC 1, 2 –17.1 + (VCC – VOUT) mA Equation C: on page 16 –32VCC 1 mA mA 0.6VCC > VOUT > 0.1VCC 0.18VCC > VOUT > 0 IOL(AC) 1 2 VCC > VOUT ≥ 0.6VCC Switching Current High Units 1 16VCC 1, 2 26.7VOUT 2 mA on page 16 mA (Test Point) VOUT = 0.18VCC ICL Low Clamp Current –3 < VIN ≤ –1 –25 + (VIN + 1)/0.015 mA ICH High Clamp Current –3 < VIN ≤ –1 25 + (VIN – VOUT – 1)/0.015 mA 3 slewR Output Rise Slew Rate slewF 3 Output Fall Slew Rate 38VCC 0.2VCC to 0.6VCC load 1 4 V/ns 0.6VCC to 0.2VCC load 1 4 V/ns Notes: 1. Refer to the V/I curves in Figure 9. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. “Switching Current High” specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs. 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 9. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs. pin 1/2 in. max. output buffer VCC 10 pF 1kΩ 1kΩ 15 Figure 9 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P family. 0.50 0.45 0.40 PCI IOL Maximum 0.35 Current (A) 0.30 0.25 0.20 SX PCI IOL 0.15 0.10 PCI IOL Minimum 0.05 0 –0.05 SX PCI IOH 1 2 PCI IOH Minimum –0.10 3 4 5 6 PCI IOH Maximum –0.15 –0.20 Voltage Out Figure 9 • 3.3V PCI Curve for A54SX16P Family Equation C: IOH = (98.0/VCC) * (VOUT – VCC) * (VOUT + 0.4VCC) for VCC > VOUT > 0.7 VCC 16 Equation D: IOL = (256/VCC) * VOUT * (VCC – VOUT) for 0V < VOUT < 0.18 VCC 5 4 SX F a m i ly F PG A s Po w e r- U p S e qu en ci ng VCCA VCCR VCCI Power-Up Sequence Comments A54SX08, A54SX16, A54SX32 3.3V 5.0V 3.3V 5.0V First 3.3V Second No possible damage to device. 3.3V First 5.0V Second Possible damage to device. A54SX16P 3.3V 3.3V 3.3V 3.3V 5.0V 5.0V 3.3V 3.3V 5.0V 3.3V Only No possible damage to device. 5.0V First 3.3V Second No possible damage to device. 3.3V First 5.0V Second Possible damage to device. 5.0V First 3.3V Second No possible damage to device. 3.3V First 5.0V Second No possible damage to device. Power-Down Sequence Comments Po w e r - D ow n Se q ue nc i n g VCCA VCCR VCCI A54SX08, A54SX16, A54SX32 3.3V 5.0V 3.3V 5.0V First 3.3V Second Possible damage to device. 3.3V First 5.0V Second No possible damage to device. A54SX16P 3.3V 3.3V 3.3V 3.3V 5.0V 5.0V 3.3V 3.3V 5.0V 3.3V Only No possible damage to device. 5.0V First 3.3V Second Possible damage to device. 3.3V First 5.0V Second No possible damage to device. 5.0V First 3.3V Second No possible damage to device. 3.3V First 5.0V Second No possible damage to device. 17 Ev al ua t i n g P ow e r i n 5 4S X De vi c e s A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system’s ability to dissipate heat. (0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA + (0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB + (0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK] D efin it ion of T er ms U sed in Fo rm ul a m n p q1 = = = = q2 = • Estimate the power consumption of the application. x y r1 r2 = = = = • Calculate the maximum power allowed for the device and package. s1 = CEQM CEQI CEQO CEQCR = = = = CEQHV CEQHF CL fm fn fp fq1 fq2 fs1 = = = = = = = = = You should complete a power evaluation early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device’s maximum allowed junction temperature. The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps: • Compare the estimated power and maximum power values. Es t i m a t i n g P o w er C o n s u m p t i o n The total power dissipation for the 54SX family is the sum of the DC power dissipation and the AC power dissipation. Use Equation 1 to calculate the estimated power consumption of your application. PTotal = PDC + PAC (1) DC P owe r Di ss ip ati on The power due to standby current is typically a small component of the overall power. The Standby power is shown below for commercial, worst case conditions (70°C). Table 3 • ICC VCC Power 4mA 3.6V 14.4mW The DC power dissipation is defined in Equation 2 as follows: PDC = (Istandby)*VCCA + (Istandby)*VCCR + (Istandby)*VCCI + x*VOL*IOL + y*(VCCI – VOH)*VOH (2) AC P owe r Di ss ip ati on The power dissipation of the 54SX Family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance and power supply voltage. The AC power dissipation is defined as follows: PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net + POutput Buffer + PInput Buffer (3) PAC = VCCA2 * [(m * CEQM * fm)Module + (n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output Buffer+ 18 (4) Number of logic modules switching at fm Number of input buffers switching at fn Number of output buffers switching at fp Number of clock loads on the first routed array clock Number of clock loads on the second routed array clock Number of I/Os at logic low Number of I/Os at logic high Fixed capacitance due to first routed array clock Fixed capacitance due to second routed array clock Number of clock loads on the dedicated array clock Equivalent capacitance of logic modules in pF Equivalent capacitance of input buffers in pF Equivalent capacitance of output buffers in pF Equivalent capacitance of routed array clock in pF Variable capacitance of dedicated array clock Fixed capacitance of dedicated array clock Output lead capacitance in pF Average logic module switching rate in MHz Average input buffer switching rate in MHz Average output buffer switching rate in MHz Average first routed array clock rate in MHz Average second routed array clock rate in MHz Average dedicated array clock rate in MHz A54SX08 CEQM (pF) 4.0 CEQI (pF) 3.4 CEQO (pF) 4.7 CEQCR (pF) 1.6 CEQHV 0.615 CEQHF 60 r1 (pF) 87 r2 (pF) 87 A54SX16 4.0 3.4 4.7 1.6 0.615 96 138 138 A54SX16P 4.0 3.4 4.7 1.6 0.615 96 138 138 A54SX32 4.0 3.4 4.7 1.6 0.615 140 171 171 5 4 SX F a m i ly F PG A s Guid eli nes fo r Cal cul at ing P ower Con sum p ti on The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follow: Logic Modules (m) Inputs Switching (n) Outputs Switching (p) First Routed Array Clock Loads (q1) = = = = 20% of modules # inputs/4 # output/4 20% of register cells Second Routed Array Clock Loads (q2) = 20% of register cells Load Capacitance (CL) = 35 pF Average Logic Module Switching Rate = f/10 (fm) Average Input Switching Rate (fn) = f/5 Average Output Switching Rate (fp) = f/10 Average First Routed Array Clock Rate = f/2 (fq1) Average Second Routed Array Clock = f/2 Rate (fq2) = f Average Dedicated Array Clock Rate (fs1) Dedicated Clock Array clock loads (s1) = 20% of regular modules Sa m p l e P o w er C a l cu l a t i on One of the designs used to characterize the A54SX family was a 528 bit serial in serial out shift register. The design utilized 100% of the dedicated flip-flops of an A54SX16P device. A pattern of 0101… was clocked into the device at frequencies ranging from 1 MHz to 200 MHz. Shifting in a series of 0101… caused 50% of the flip-flops to toggle from low to high at every clock cycle. Follow the steps below to estimate power consumption. The values provided for the sample calculation below are for the shift register design above. This method for estimating power consumption is conservative and the actual power consumption of your design may be less than the estimated power consumption. The total power dissipation for the 54SX family is the sum of the AC power dissipation and the DC power dissipation. PTotal = PAC (dynamic power) + PDC (static power) Buffer+ (0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA + (0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB + (0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK] (7) Step #1: Define Terms Used in Formula VCCA Module Number of logic modules switching at fm (Used 50%) Average logic modules switching rate fm (MHz) (Guidelines: f/10) Module capacitance CEQM (pF) Input Buffer Number of input buffers switching at fn Average input switching rate fn (MHz) (Guidelines: f/5) Input buffer capacitance CEQI (pF) Output Buffer Number of output buffers switching at fp Average output buffers switching rate fp(MHz) (Guidelines: f/10) Output buffers buffer Capacitance CEQO (pF) Output Load capacitance CL (pF) RCLKA Number of Clock loads q1 Capacitance of routed array clock (pF) Average clock rate (MHz) Fixed capacitance (pF) RCLKB Number of Clock loads q2 Capacitance of routed array clock (pF) Average clock rate (MHz) Fixed capacitance (pF) HCLK Number of Clock loads Variable capacitance of dedicated array clock (pF) Fixed capacitance of dedicated array clock (pF) Average clock rate (MHz) 3.3 m 264 fm 20 CEQM 4.0 n fn 1 40 CEQI 3.4 p fp 1 20 CEQO 4.7 CL 35 q1 CEQCR fq1 r1 528 1.6 200 138 q2 CEQCR fq2 r2 0 1.6 0 138 s1 0 CEQHV 0.615 CEQHF 96 fs1 0 (5) AC P owe r Di ss ip ati on PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net + POutput Buffer + PInput Buffer (6) PAC = VCCA2 * [(m * CEQM * fm)Module + (n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output 19 PDC = (Istandby)*VCCA Step #2: Calculate Dynamic Power Consumption VCCA*VCCA m*fm*CEQM n*fn*CEQI p*fp*(CEQO+CL) 0.5*(q1*CEQCR*fq1)+(r1*fq1) 0.5*(q2*CEQCR*fq2)+(r2*fq2) 0.5 *(s1 * CEQHV * fs1)+(CEQHF*fs1) PAC = 1.461W 10.89 0.02112 0.000136 0.000794 0.11208 0 0 PDC = .55mA*3.3V PDC = 0.001815W Step #4: Calculate Total Power Consumption PTotal = PAC + PDC PTotal = 1.461 + 0.001815 PTotal = 1.4628W Step #5: Compare Estimated Power Consumption against Characterized Power Consumption Step #3: Calculate DC Power Dissipation DC Power Dissipation PDC = (Istandby)*VCCA + (Istandby)*VCCR + (Istandby)*VCCI + X*VOL*IOL + Y*(VCCI – VOH)*VOH (8) For a rough estimate of DC Power Dissipation, only use PDC = (Istandby)*VCCA. The rest of the formula provides a very small number that can be considered negligible. The estimated total power consumption for this design is 1.46W. The characterized power consumption for this design at 200 MHz is 1.0164W. Figure 10 shows the characterized power dissipation numbers for the shift register design using frequencies ranging from 1 MHz to 200 MHz. 1200 Power Dissipation mW 1000 800 600 400 200 0 0 20 40 60 80 100 120 Frequency MHz Figure 10 • Power Dissipation 20 140 160 180 200 5 4 SX F a m i ly F PG A s Ju n ct i o n Te m p er a t u r e ( T J ) P = Power calculated from Estimating Power Consumption section The temperature that you select in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Use the equation below to calculate junction temperature. θja = Junction to ambient of package. θja numbers are located in Package Thermal Characteristics section. Pa c ka ge T he r m a l C ha r a ct e r i s t i c s The device junction to case thermal characteristic is θjc, and the junction to ambient air characteristic is θja. The thermal characteristics for θja are shown with two different air flow rates. Junction Temperature = ∆T + Ta Where: Ta = Ambient Temperature The maximum junction temperature is 150°C. ∆T = Temperature gradient between junction (silicon) and ambient A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follows: ∆T = θja * P – 70°C = 2.86W junction temp. (°C) – Max. ambient temp. (°C) = 150°C -------------------------------------------------------------------------------------------------------------------------------------------------------------Maximum Power Allowed = Max. 28°C/W θ ja (°C/W) Pin Count θjc θja Still Air θja 300 ft/min Units Plastic Leaded Chip Carrier (PLCC) 84 12 32 22 °C/W Thin Quad Flat Pack (TQFP) 144 11 32 24 °C/W Thin Quad Flat Pack (TQFP) 176 11 28 21 °C/W Very Thin Quad Flatpack (VQFP) 100 10 38 32 °C/W Plastic Quad Flat Pack (PQFP) without Heat Spreader 208 8 30 23 °C/W Plastic Quad Flat Pack (PQFP) with Heat Spreader 208 3.8 20 17 °C/W Plastic Ball Grid Array (PBGA) 272 3 20 14.5 °C/W Plastic Ball Grid Array (PBGA) 313 3 23 17 °C/W Package Type Plastic Ball Grid Array (PBGA) 329 3 18 13.5 °C/W Fine Pitch Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W Note: SX08 does not have a heat spreader. 21 54 S X T i m i n g M o d el * Input Delays I/O Module tINY = 1.5 ns Internal Delays Predicted Routing Delays Combinatorial Cell Output Delays I/O Module tIRD2 = 0.6 ns tDHL = 1.6 ns tPD =0.6 ns tRD1 = 0.3 ns tRD4 = 1.0 ns tRD8 = 1.9 ns I/O Module tDHL = 1.6 ns Register Cell D Q Register Cell tRD1 = 0.3 ns D Q tRD1 = 0.3 ns tENZH = 2.3 ns tSUD = 0.5 ns tHD = 0.0 ns tRCO = 0.8 ns Routed Clock tRCO = 0.8 ns tRCKH = 1.5 ns (100% Load) FMAX = 250 MHz Hard-Wired Clock tHCKH = 1.0 ns FHMAX = 320 MHz *Values shown for A54SX08-3, worst-case commercial conditions. H ar d-W i re d C loc k R out ed Cl ock External Set-Up External Set-Up = tINY + tIRD1 + tSUD – tRCKH = tINY + tIRD1 + tSUD – tHCKH = 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns Clock-to-Out (Pin-to-Pin) 22 = 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns Clock-to-Out (Pin-to-Pin) = tHCKH + tRCO + tRD1 + tDHL = tRCKH + tRCO + tRD1 + tDHL = 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns = 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns 5 4 SX F a m i ly F PG A s O ut p u t B uf f e r D e l ay s E D VCC In 50% Out VOL PAD To AC test loads (shown below) TRIBUFF VCC GND 50% VOH En 1.5V 1.5V 50% VCC VCC GND 50% 1.5V Out En Out GND 10% VOL tDLH tENZL tDHL tENLZ GND 50% VOH 50% 90% 1.5V tENHZ tENZH A C T e st L oa d s Load 3 (Used to measure disable delays) Load 2 (Used to measure enable delays) Load 1 (Used to measure propagation delay) To the output under test VCC 35 pF To the output under test VCC GND R to VCC for tPZL R to GND for tPZH R = 1 kΩ GND R to VCC for tPLZ R to GND for tPHZ R = 1 kΩ To the output under test 35 pF I n pu t B uf f er D e l ay s PAD 5 pF C - Ce l l D el a y s S A B Y INBUF Y VCC 3V In 0V 1.5V 1.5V VCC Out GND 50% 50% VCC Out GND 50% 50% 50% tINY S, A or B tPD GND 50% tPD VCC Out tINY 50% tPD GND 50% tPD 23 R eg i st e r C e l l Ti m i ng C ha r a ct e r i s t i c s Fli p- Flop s D Q PRESET CLK CLR (Positive edge triggered) tHD D tHP tHPWH, tRPWH tSUD CLK tRCO tHPWL, tRPWL Q tCLR tPRESET CLR tWASYN PRESET Ti m i ng C ha r a ct e r i s t i c s Lo ng T r ack s Timing characteristics for 54SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all 54SX family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user’s design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays. Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout (FO=24) routing delays in the data sheet specifications section. Cr it ic al Net s and T ypi cal Ne ts T im i ng Der at in g Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical. 54SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. Te m p er a t u r e an d Vo l t a ge D er at i n g Fa ct or s (Normalized to Worst-Case Commercial, T J = 70 ° C, V CCA = 3.0V) Junction Temperature (TJ) 24 VCCA –55 –40 0 25 70 85 125 3.0 0.75 0.78 0.87 0.89 1.00 1.04 1.16 3.3 0.70 0.73 0.82 0.83 0.93 0.97 1.08 3.6 0.66 0.69 0.77 0.78 0.87 0.92 1.02 5 4 SX F a m i ly F PG A s A 54 SX 0 8 T i m i n g C h ar ac t e r i st i cs (Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA , V C CI = 3.0V, T J = 70 ° C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units C-Cell Propagation Delays1 tPD Internal Array Module Predicted Routing Delays 0.6 0.7 0.8 0.9 ns 2 tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns tRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns tRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns tRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns tRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.8 1.1 1.2 1.4 ns tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tIRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns tIRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns tIRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns tIRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns tIRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 25 A 54 SX 0 8 T i m i n g C h ar ac t e r i st i cs (continued) (Worst-Case Commercial Conditions) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units Dedicated (Hard-Wired) Array Clock Network tHCKH Input LOW to HIGH (Pad to R-Cell Input) 1.0 1.1 1.3 1.5 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) 1.0 1.2 1.4 1.6 ns tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.1 2.7 0.2 3.1 0.2 3.6 0.2 4.2 ns ns 350 320 280 240 MHz Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 1.3 1.5 1.7 2.0 ns tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 1.4 1.6 1.8 2.1 ns tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 1.4 1.7 1.9 2.2 ns tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 1.5 1.7 2.0 2.3 ns tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 1.5 1.7 1.9 2.2 ns tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 1.5 1.8 2.0 2.3 ns tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns tRCKSW Maximum Skew (Light Load) 0.1 0.2 0.2 0.2 ns tRCKSW Maximum Skew (50% Load) 0.3 0.3 0.4 0.4 ns tRCKSW Maximum Skew (100% Load) 0.3 0.3 0.4 0.4 ns 1 TTL Output Module Timing tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns Note: 1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF. 26 5 4 SX F a m i ly F PG A s A 54 SX 1 6 T i m i n g C h ar ac t e r i st i cs (Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA , V C CI = 3.0V, T J = 70 ° C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units C-Cell Propagation Delays1 tPD Internal Array Module Predicted Routing Delays 0.6 0.7 0.8 0.9 ns 2 tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns tRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns tRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns tRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns tRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.8 1.1 1.2 1.4 ns tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns Predicted Input Routing Delays2 tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tIRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns tIRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns tIRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns tIRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns tIRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 27 A 54 SX 1 6 T i m i n g C h ar ac t e r i st i cs (continued) (Worst-Case Commercial Conditions) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units Dedicated (Hard-Wired) Array Clock Network tHCKH Input LOW to HIGH (Pad to R-Cell Input) 1.2 1.4 1.5 1.8 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) 1.2 1.4 1.6 1.9 ns tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.2 2.7 0.2 3.1 0.3 3.6 0.3 4.2 ns ns 350 320 280 240 MHz Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 1.6 1.8 2.1 2.5 ns tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 1.8 2.0 2.3 2.7 ns tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 1.8 2.1 2.5 2.8 ns tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 1.8 2.1 2.4 2.8 ns tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns tRCKSW Maximum Skew (Light Load) 0.5 0.5 0.5 0.7 ns tRCKSW Maximum Skew (50% Load) 0.5 0.6 0.7 0.8 ns tRCKSW Maximum Skew (100% Load) 0.5 0.6 0.7 0.8 ns 1 TTL Output ModuleTiming tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns Note: 1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF. 28 5 4 SX F a m i ly F PG A s A 54 SX 1 6P T i m i ng C ha r a ct er i s t i c s (Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA , V C CI = 3.0V, T J = 70 ° C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units C-Cell Propagation Delays1 tPD Internal Array Module Predicted Routing Delays 0.6 0.7 0.8 0.9 ns 2 tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns tRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns tRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns tRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns tRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.9 1.1 1.3 1.4 ns tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns Predicted Input Routing Delays2 tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tIRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns tIRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns tIRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns tIRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns tIRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 29 A 54 SX 1 6P T i m i ng C ha r a ct er i s t i c s (continued) (Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA , V CC I = 3.0V, T J = 70 ° C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units Dedicated (Hard-Wired) Array Clock Network tHCKH Input LOW to HIGH (Pad to R-Cell Input) 1.2 1.4 1.5 1.8 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) 1.2 1.4 1.6 1.9 ns tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.2 2.7 0.2 3.1 0.3 3.6 0.3 4.2 ns ns 350 320 280 240 MHz Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 1.6 1.8 2.1 2.5 ns tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 1.8 2.0 2.3 2.7 ns tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 1.8 2.1 2.5 2.8 ns tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 1.8 2.1 2.4 2.8 ns tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns tRPWH Min. Pulse Width HIGH 2.1 tRPWL Min. Pulse Width LOW 2.1 tRCKSW Maximum Skew (Light Load) 0.5 0.5 0.5 0.7 ns tRCKSW Maximum Skew (50% Load) 0.5 0.6 0.7 0.8 ns tRCKSW Maximum Skew (100% Load) 0.5 0.6 0.7 0.8 ns 2.4 2.7 2.4 3.2 2.7 ns 3.2 ns TTL Output Module Timing tDLH Data-to-Pad LOW to HIGH 2.4 2.8 3.1 3.7 ns tDHL Data-to-Pad HIGH to LOW 2.3 2.9 3.2 3.8 ns tENZL Enable-to-Pad, Z to L 3.0 3.4 3.9 4.6 ns tENZH Enable-to-Pad, Z to H 3.3 3.8 4.3 5.0 ns tENLZ Enable-to-Pad, L to Z 2.3 2.7 3.0 3.5 ns tENHZ Enable-to-Pad, H to Z 2.8 3.2 3.7 4.3 ns 1.5 1.7 2.0 2.3 ns TTL/PCI Output Module Timing tDLH Data-to-Pad LOW to HIGH tDHL Data-to-Pad HIGH to LOW 1.9 2.2 2.4 2.9 ns tENZL Enable-to-Pad, Z to L 2.3 2.6 3.0 3.5 ns tENZH Enable-to-Pad, Z to H 1.5 1.7 1.9 2.3 ns tENLZ Enable-to-Pad, L to Z 2.7 3.1 3.5 4.1 ns tENHZ Enable-to-Pad, H to Z 2.9 3.3 3.7 4.4 ns 30 5 4 SX F a m i ly F PG A s A 54 SX 1 6P T i m i ng C ha r a ct er i s t i c s (continued) (Worst-Case Commercial Conditions V CCR = 3.0V, V CCA , V C CI = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units PCI Output Module Timing1 tDLH Data-to-Pad LOW to HIGH 1.8 2.0 2.3 2.7 ns tDHL Data-to-Pad HIGH to LOW 1.7 2.0 2.2 2.6 ns tENZL Enable-to-Pad, Z to L 0.8 1.0 1.1 1.3 ns tENZH Enable-to-Pad, Z to H 1.2 1.2 1.5 1.8 ns tENLZ Enable-to-Pad, L to Z 1.0 1.1 1.3 1.5 ns tENHZ Enable-to-Pad, H to Z 1.1 1.3 1.5 1.7 ns TTL Output Module Timing tDLH Data-to-Pad LOW to HIGH 2.1 2.5 2.8 3.3 ns tDHL Data-to-Pad HIGH to LOW 2.0 2.3 2.6 3.1 ns tENZL Enable-to-Pad, Z to L 2.5 2.9 3.2 3.8 ns tENZH Enable-to-Pad, Z to H 3.0 3.5 3.9 4.6 ns tENLZ Enable-to-Pad, L to Z 2.3 2.7 3.1 3.6 ns tENHZ Enable-to-Pad, H to Z 2.9 3.3 3.7 4.4 ns Note: 1. Delays based on 10 pF loading. 31 A 54 SX 3 2 T i m i n g C h ar ac t e r i st i cs (Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA , V CC I = 3.0V, T J = 70 ° C) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units C-Cell Propagation Delays1 tPD Internal Array Module Predicted Routing Delays 0.6 0.7 0.8 0.9 ns 2 tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tRD2 FO=2 Routing Delay 0.7 0.8 0.9 1.0 ns tRD3 FO=3 Routing Delay 1.0 1.2 1.4 1.6 ns tRD4 FO=4 Routing Delay 1.4 1.6 1.8 2.1 ns tRD8 FO=8 Routing Delay 2.7 3.1 3.5 4.1 ns tRD12 FO=12 Routing Delay 4.0 4.7 5.3 6.2 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.8 1.1 1.3 1.4 ns tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns tSUD Flip-Flop Data Input Set-Up 0.5 0.6 0.7 0.8 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns Predicted Input Routing Delays2 tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns tIRD2 FO=2 Routing Delay 0.7 0.8 0.9 1.0 ns tIRD3 FO=3 Routing Delay 1.0 1.2 1.4 1.6 ns tIRD4 FO=4 Routing Delay 1.4 1.6 1.8 2.1 ns tIRD8 FO=8 Routing Delay 2.7 3.1 3.5 4.1 ns tIRD12 FO=12 Routing Delay 4.0 4.7 5.3 6.2 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 32 5 4 SX F a m i ly F PG A s A 54 SX 3 2 T i m i n g C h ar ac t e r i st i cs (continued) (Worst-Case Commercial Conditions) ‘–3’ Speed Parameter Description Min. Max. ‘–2’ Speed Min. Max. ‘–1’ Speed Min. Max. ‘Std’ Speed Min. Max. Units Dedicated (Hard-Wired) Array Clock Network tHCKH Input LOW to HIGH (Pad to R-Cell Input) 1.9 2.1 2.4 2.8 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) 1.9 2.1 2.4 2.8 ns tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.3 2.7 0.4 3.1 0.4 3.6 0.5 4.2 ns ns 350 320 280 240 MHz Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 2.4 2.7 3.0 3.5 ns tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 2.4 2.7 3.1 3.6 ns tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 2.7 3.0 3.5 4.1 ns tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 2.7 3.1 3.6 4.2 ns tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 2.7 3.1 3.5 4.1 ns tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 2.8 3.2 3.6 4.3 ns tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns tRCKSW Maximum Skew (Light Load) 0.85 0.98 1.1 1.3 ns tRCKSW Maximum Skew (50% Load) 1.23 1.4 1.6 1.9 ns tRCKSW Maximum Skew (100% Load) 1.30 1.5 1.7 2.0 ns 1 TTL Output Module Timing tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns Note: 1. Delays based on 35pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5pF. 33 Pi n D es c r i pt i on CLKA/B Clock A and B TDI Test Data Input These pins are 3.3V/5.0V PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A54SX72A, these clocks can be configured as bidirectional.) Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 2 on page 8). This pin functions as an I/O when the boundary scan state machine reaches the “logic reset” state. GND TDO Ground LOW supply voltage. HCLK Dedicated (Hard-wired) Array Clock This pin is the 3.3V/5.0V PCI/TTL clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. I/O Input/Output The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3V PCI or 5.0V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software. NC No Connection This pin is not connected to circuitry within the device. PRA, I/O Probe A The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB, I/O Probe B The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. TCK Test Clock Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 2 on page 8). This pin functions as an I/O when the boundary scan state machine reaches the “logic reset” state. 34 Test Data Output Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 2 on page 8). This pin functions as an I/O when the boundary scan state machine reaches the “logic reset” state. TMS Test Mode Select The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 2 on page 8). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the “logic reset” state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The “logic reset” state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. V C CI Supply Voltage Supply voltage for I/Os. See Table 1 on page 8. V C CA Supply Voltage Supply voltage for Array. See Table 1 on page 8. V C CR Supply Voltage Supply voltage for input tolerance (required for internal biasing) See Table 1 on page 8. 5 4 SX F a m i ly F PG A s Pa c ka ge P i n A s si g nm e n t s 84- Pi n PL CC (T op Vi ew) 1 84 84-Pin PLCC 35 84- Pi n PL CC P acka ge 36 Pin Number A54SX08 Function Pin Number A54SX08 Function 1 VCCR 43 VCCR 2 GND 44 I/O 3 VCCA 45 HCLK 4 PRA, I/O 46 I/O 5 I/O 47 I/O 6 I/O 48 I/O 7 VCCI 49 I/O 8 I/O 50 I/O 9 I/O 51 I/O 10 I/O 52 TDO, I/O 11 TCK, I/O 53 I/O 12 TDI, I/O 54 I/O 13 I/O 55 I/O 14 I/O 56 I/O 15 I/O 57 I/O 16 TMS 58 I/O 17 I/O 59 VCCA 18 I/O 60 VCCI 19 I/O 61 GND 20 I/O 62 I/O 21 I/O 63 I/O 22 I/O 64 I/O 23 I/O 65 I/O 24 I/O 66 I/O 25 I/O 67 I/O 26 I/O 68 VCCA 27 GND 69 GND 28 VCCI 70 I/O 29 I/O 71 I/O 30 I/O 72 I/O 31 I/O 73 I/O 32 I/O 74 I/O 33 I/O 75 I/O 34 I/O 76 I/O 35 I/O 77 I/O 36 I/O 78 I/O 37 I/O 79 I/O 38 I/O 80 I/O 39 I/O 81 I/O 40 PRB, I/O 82 I/O 41 VCCA 83 CLKA 42 GND 84 CLKB 54SX Family FPGAs Pa c ka ge P i n A s si g nm e n t s (continued) 208- P in P Q FP (T op Vi ew) 208 1 208-Pin PQFP 37 208- P in P Q FP Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function GND TDI, I/O I/O NC I/O NC I/O I/O I/O I/O TMS VCCI I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O VCCR GND VCCA GND I/O I/O NC I/O I/O I/O NC I/O I/O I/O NC VCCI VCCA I/O I/O I/O I/O I/O I/O NC I/O NC I/O GND I/O GND TDI, I/O I/O I/O I/O I/O I/O I/O I/O I/O TMS VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCR GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI VCCA I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O GND TDI, I/O I/O I/O I/O I/O I/O I/O I/O I/O TMS VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCR GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI VCCA I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 * Please note that Pin 65 in the A54SX32—PQ208 is a no connect (NC). 38 Pin Number A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function 54 55 56 57 58 59 60 61 62 63 64 65* 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 I/O I/O I/O I/O I/O I/O VCCI NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O NC PRB, I/O GND VCCA GND VCCR I/O HCLK I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC VCCI I/O I/O I/O I/O TDO, I/O I/O GND NC I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O GND VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O NC* I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O GND VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O 54SX Family FPGAs 208- P in P Q FP (C ont inu ed) Pin Number A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function 107 I/O I/O I/O 108 NC I/O I/O I/O I/O I/O 109 110 I/O I/O I/O 111 I/O I/O I/O I/O I/O I/O 112 I/O I/O I/O 113 114 VCCA VCCA VCCA VCCI VCCI VCCI 115 NC I/O I/O 116 117 I/O I/O I/O I/O I/O I/O 118 NC I/O I/O 119 120 I/O I/O I/O I/O I/O I/O 121 NC I/O I/O 122 123 I/O I/O I/O I/O I/O I/O 124 NC I/O I/O 125 126 I/O I/O I/O I/O I/O I/O 127 I/O I/O I/O 128 129 GND GND GND VCCA VCCA VCCA 130 GND GND GND 131 132 VCCR VCCR VCCR I/O I/O I/O 133 I/O I/O I/O 134 135 NC I/O I/O I/O I/O I/O 136 I/O I/O I/O 137 138 NC I/O I/O I/O I/O I/O 139 I/O I/O I/O 140 141 NC I/O I/O I/O I/O I/O 142 NC I/O I/O 143 144 I/O I/O I/O VCCA VCCA VCCA 145 GND GND GND 146 147 I/O I/O I/O VCCI VCCI VCCI 148 I/O I/O I/O 149 150 I/O I/O I/O I/O I/O I/O 151 I/O I/O I/O 152 153 I/O I/O I/O I/O I/O I/O 154 NC I/O I/O 155 156 NC I/O I/O GND GND GND 157 * Please note that Pin 65 in the A54SX32—PQ208 is a no connect (NC). Pin Number A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 I/O I/O I/O I/O I/O I/O VCCI I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O I/O CLKA CLKB VCCR GND VCCA GND PRA, I/O I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O VCCI NC NC I/O NC I/O I/O TCK, I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O TCK, I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O TCK, I/O 39 Pa c ka ge P i n A s si g nm e n t s (continued) 144- P in T Q FP (T op Vi ew) 144 1 144-Pin TQFP 40 54SX Family FPGAs 144-Pin TQFP Pin Number A54SX08 Function A54SX16P Function A54SX32 Function Pin Number A54SX08 Function A54SX16P Function A54SX32 Function 1 GND GND GND 41 I/O I/O I/O 2 TDI, I/O TDI, I/O TDI, I/O 42 I/O I/O I/O 3 I/O I/O I/O 43 I/O I/O I/O 4 I/O I/O I/O 44 VCCI VCCI VCCI 5 I/O I/O I/O 45 I/O I/O I/O 6 I/O I/O I/O 46 I/O I/O I/O 7 I/O I/O I/O 47 I/O I/O I/O 8 I/O I/O I/O 48 I/O I/O I/O 9 TMS TMS TMS 49 I/O I/O I/O 10 VCCI VCCI VCCI 50 I/O I/O I/O 11 GND GND GND 51 I/O I/O I/O 12 I/O I/O I/O 52 I/O I/O I/O 13 I/O I/O I/O 53 I/O I/O I/O 14 I/O I/O I/O 54 PRB, I/O PRB, I/O PRB, I/O 15 I/O I/O I/O 55 I/O I/O I/O 16 I/O I/O I/O 56 VCCA VCCA VCCA 17 I/O I/O I/O 57 GND GND GND 18 I/O I/O I/O 58 VCCR VCCR VCCR 19 VCCR VCCR VCCR 59 I/O I/O I/O 20 VCCA VCCA VCCA 60 HCLK HCLK HCLK 21 I/O I/O I/O 61 I/O I/O I/O 22 I/O I/O I/O 62 I/O I/O I/O 23 I/O I/O I/O 63 I/O I/O I/O 24 I/O I/O I/O 64 I/O I/O I/O 25 I/O I/O I/O 65 I/O I/O I/O 26 I/O I/O I/O 66 I/O I/O I/O 27 I/O I/O I/O 67 I/O I/O I/O 28 GND GND GND 68 VCCI VCCI VCCI 29 VCCI VCCI VCCI 69 I/O I/O I/O 30 VCCA VCCA VCCA 70 I/O I/O I/O 31 I/O I/O I/O 71 TDO, I/O TDO, I/O TDO, I/O 32 I/O I/O I/O 72 I/O I/O I/O 33 I/O I/O I/O 73 GND GND GND 34 I/O I/O I/O 74 I/O I/O I/O 35 I/O I/O I/O 75 I/O I/O I/O 36 GND GND GND 76 I/O I/O I/O 37 I/O I/O I/O 77 I/O I/O I/O 38 I/O I/O I/O 78 I/O I/O I/O 39 I/O I/O I/O 79 VCCA VCCA VCCA 40 I/O I/O I/O 80 VCCI VCCI VCCI 41 144-Pin TQFP (Continued) Pin Number A54SX08 Function A54SX16P Function A54SX32 Function Pin Number A54SX08 Function A54SX16P Function A54SX32 Function 81 GND GND GND 113 I/O I/O I/O 82 I/O I/O I/O 114 I/O I/O I/O 83 I/O I/O I/O 115 VCCI VCCI VCCI 84 I/O I/O I/O 116 I/O I/O I/O 85 I/O I/O I/O 117 I/O I/O I/O 86 I/O I/O I/O 118 I/O I/O I/O 87 I/O I/O I/O 119 I/O I/O I/O 88 I/O I/O I/O 120 I/O I/O I/O 89 VCCA VCCA VCCA 121 I/O I/O I/O 90 VCCR VCCR VCCR 122 I/O I/O I/O 91 I/O I/O I/O 123 I/O I/O I/O 92 I/O I/O I/O 124 I/O I/O I/O 93 I/O I/O I/O 125 CLKA CLKA CLKA 94 I/O I/O I/O 126 CLKB CLKB CLKB 95 I/O I/O I/O 127 VCCR VCCR VCCR 96 I/O I/O I/O 128 GND GND GND 97 I/O I/O I/O 129 VCCA VCCA VCCA 98 VCCA VCCA VCCA 130 I/O I/O I/O 42 99 GND GND GND 131 PRA, I/O PRA, I/O PRA, I/O 100 I/O I/O I/O 132 I/O I/O I/O 101 GND GND GND 133 I/O I/O I/O 102 VCCI VCCI VCCI 134 I/O I/O I/O 103 I/O I/O I/O 135 I/O I/O I/O 104 I/O I/O I/O 136 I/O I/O I/O 105 I/O I/O I/O 137 I/O I/O I/O 106 I/O I/O I/O 138 I/O I/O I/O 107 I/O I/O I/O 139 I/O I/O I/O 108 I/O I/O I/O 140 VCCI VCCI VCCI 109 GND GND GND 141 I/O I/O I/O 110 I/O I/O I/O 142 I/O I/O I/O 111 I/O I/O I/O 143 I/O I/O I/O 112 I/O I/O I/O 144 TCK, I/O TCK, I/O TCK, I/O 113 I/O I/O I/O 54SX Family FPGAs Pa c ka ge P i n A s si g nm e n t s (continued) 176- P in T Q FP (T op Vi ew) 176 1 176-Pin TQFP 43 176- P in T Q FP Pin Number A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function 1 GND GND GND 2 TDI, I/O TDI, I/O TDI, I/O 46 I/O I/O I/O 3 NC I/O I/O 47 I/O I/O I/O 4 I/O I/O I/O 48 I/O I/O I/O 5 I/O I/O I/O 49 I/O I/O I/O 6 I/O I/O I/O 50 I/O I/O I/O 7 I/O I/O I/O 51 I/O I/O I/O 44 Pin Number A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function 45 I/O I/O I/O 8 I/O I/O I/O 52 VCCI VCCI VCCI 9 I/O I/O I/O 53 I/O I/O I/O 10 TMS TMS TMS 54 NC I/O I/O 11 VCCI VCCI VCCI 55 I/O I/O I/O 12 NC I/O I/O 56 I/O I/O I/O 13 I/O I/O I/O 57 NC I/O I/O 14 I/O I/O I/O 58 I/O I/O I/O 15 I/O I/O I/O 59 I/O I/O I/O 16 I/O I/O I/O 60 I/O I/O I/O 17 I/O I/O I/O 61 I/O I/O I/O 18 I/O I/O I/O 62 I/O I/O I/O 19 I/O I/O I/O 63 I/O I/O I/O 20 I/O I/O I/O 64 PRB, I/O PRB, I/O PRB, I/O 21 GND GND GND 65 GND GND GND 22 VCCA VCCA VCCA 66 VCCA VCCA VCCA 23 GND GND GND 67 VCCR VCCR VCCR 24 I/O I/O I/O 68 I/O I/O I/O 25 I/O I/O I/O 69 HCLK HCLK HCLK 26 I/O I/O I/O 70 I/O I/O I/O 27 I/O I/O I/O 71 I/O I/O I/O 28 I/O I/O I/O 72 I/O I/O I/O 29 I/O I/O I/O 73 I/O I/O I/O 30 I/O I/O I/O 74 I/O I/O I/O 31 I/O I/O I/O 75 I/O I/O I/O 32 VCCI VCCI VCCI 76 I/O I/O I/O 33 VCCA VCCA VCCA 77 I/O I/O I/O 34 I/O I/O I/O 78 I/O I/O I/O 35 I/O I/O I/O 79 NC I/O I/O 36 I/O I/O I/O 80 I/O I/O I/O 37 I/O I/O I/O 81 NC I/O I/O 38 I/O I/O I/O 82 VCCI VCCI VCCI 39 I/O I/O I/O 83 I/O I/O I/O 40 NC I/O I/O 84 I/O I/O I/O 41 I/O I/O I/O 85 I/O I/O I/O 42 NC I/O I/O 86 I/O I/O I/O 43 I/O I/O I/O 87 TDO, I/O TDO, I/O TDO, I/O 44 GND GND GND 88 I/O I/O I/O 54SX Family FPGAs 176- P in T Q FP (C ont inu ed) Pin Number A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function Pin Number A54SX08 Function A54SX16, A54SX16P Function A54SX32 Function 89 GND GND GND 133 GND GND GND 90 NC 91 NC I/O I/O 134 I/O I/O I/O I/O I/O 135 I/O I/O I/O 92 93 I/O I/O I/O 136 I/O I/O I/O I/O I/O I/O 137 I/O I/O I/O 94 I/O I/O I/O 138 I/O I/O I/O 95 I/O I/O I/O 139 I/O I/O I/O 96 I/O I/O I/O 140 VCCI VCCI VCCI 97 I/O I/O I/O 141 I/O I/O I/O 98 VCCA VCCA VCCA 142 I/O I/O I/O 99 VCCI VCCI VCCI 143 I/O I/O I/O 100 I/O I/O I/O 144 I/O I/O I/O 101 I/O I/O I/O 145 I/O I/O I/O 102 I/O I/O I/O 146 I/O I/O I/O 103 I/O I/O I/O 147 I/O I/O I/O 104 I/O I/O I/O 148 I/O I/O I/O 105 I/O I/O I/O 149 I/O I/O I/O 106 I/O I/O I/O 150 I/O I/O I/O 107 I/O I/O I/O 151 I/O I/O I/O 108 GND GND GND 152 CLKA CLKA CLKA 109 VCCA VCCA VCCA 153 CLKB CLKB CLKB 110 GND GND GND 154 VCCR VCCR VCCR 111 I/O I/O I/O 155 GND GND GND 112 I/O I/O I/O 156 VCCA VCCA VCCA 113 I/O I/O I/O 157 PRA, I/O PRA, I/O PRA, I/O 114 I/O I/O I/O 158 I/O I/O I/O 115 I/O I/O I/O 159 I/O I/O I/O 116 I/O I/O I/O 160 I/O I/O I/O 117 I/O I/O I/O 161 I/O I/O I/O 118 NC I/O I/O 162 I/O I/O I/O 119 I/O I/O I/O 163 I/O I/O I/O 120 NC I/O I/O 164 I/O I/O I/O 121 NC I/O I/O 165 I/O I/O I/O 122 VCCA VCCA VCCA 166 I/O I/O I/O 123 GND GND GND 167 I/O I/O I/O 124 VCCI VCCI VCCI 168 NC I/O I/O 125 I/O I/O I/O 169 VCCI VCCI VCCI 126 I/O I/O I/O 170 I/O I/O I/O 127 I/O I/O I/O 171 NC I/O I/O 128 I/O I/O I/O 172 NC I/O I/O 129 I/O I/O I/O 173 NC I/O I/O 130 I/O I/O I/O 174 I/O I/O I/O 131 NC I/O I/O 175 I/O I/O I/O 132 NC I/O I/O 176 TCK, I/O TCK, I/O TCK, I/O 45 Pa c ka ge P i n A s si g nm e n t s (continued) 100- P in VQF P (T op Vie w) 100 1 100-Pin VQFP 46 54SX Family FPGAs 100- VQF P Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A54SX08 Function A54SX16, A54SX16P Function GND TDI, I/O I/O I/O I/O I/O TMS VCCI GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O VCCA GND VCCR I/O HCLK I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND TDI, I/O I/O I/O I/O I/O TMS VCCI GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O VCCA GND VCCR I/O HCLK I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O Pin Number 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 A54SX08 Function A54SX16 A54SX16P Function GND I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O I/O I/O I/O I/O I/O VCCA GND GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O CLKA CLKB VCCR VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O TCK, I/O GND I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O I/O I/O I/O I/O I/O VCCA GND GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O CLKA CLKB VCCR VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O TCK, I/O 47 Pa c ka ge P i n A s si g nm e n t s (continued) 313-Pin PBGA (Top View) 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A A B B C C D D E E F F G G H J H J K K L L M M N N P P R R T U T U V V W W Y AA Y AA AB AB AC AC AD AD AE AE 1 48 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 54SX Family FPGAs 3 1 3 - P in P BG A Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function A1 GND AC15 I/O C5 NC F20 I/O A3 NC AC17 I/O C7 I/O F22 I/O A5 I/O AC19 I/O C9 I/O F24 I/O A7 I/O AC21 I/O C11 I/O G1 I/O A9 I/O AC23 I/O C13 VCCI G3 TMS A11 I/O AC25 NC C15 I/O G5 I/O A13 VCCR AD2 GND C17 I/O G7 I/O A15 I/O AD4 I/O C19 VCCI G9 VCCI A17 I/O AD6 VCCI C21 I/O G11 I/O A19 I/O AD8 I/O C23 I/O G13 CLKB A21 I/O AD10 I/O C25 NC G15 I/O A23 NC AD12 PRB, I/O D2 I/O G17 I/O A25 GND AD14 I/O D4 NC G19 I/O AA1 I/O AD16 I/O D6 I/O G21 I/O AA3 I/O AD18 I/O D8 I/O G23 I/O AA5 NC AD20 I/O D10 I/O G25 I/O AA7 I/O AD22 NC D12 I/O H2 I/O AA9 NC AD24 I/O D14 I/O H4 I/O AA11 I/O AE1 NC D16 I/O H6 I/O AA13 I/O AE3 I/O D18 I/O H8 I/O AA15 I/O AE5 I/O D20 I/O H10 I/O AA17 I/O AE7 I/O D22 I/O H12 PRA, I/O AA19 I/O AE9 I/O D24 NC H14 I/O AA21 I/O AE11 I/O E1 I/O H16 I/O AA23 NC AE13 VCCA E3 NC H18 NC AA25 I/O AE15 I/O E5 I/O H20 I/O AB2 NC AE17 I/O E7 I/O H22 VCCI AB4 NC AE19 I/O E9 I/O H24 I/O AB6 I/O AE21 I/O E11 I/O J1 I/O AB8 I/O AE23 TDO, I/O E13 VCCA J3 I/O AB10 I/O AE25 GND E15 I/O J5 I/O AB12 I/O B2 TCK, I/O E17 I/O J7 NC AB14 I/O B4 I/O E19 I/O J9 I/O AB16 I/O B6 I/O E21 I/O J11 I/O AB18 VCCI B8 I/O E23 I/O J13 CLKA AB20 NC B10 I/O E25 I/O J15 I/O AB22 I/O B12 I/O F2 I/O J17 I/O AB24 I/O B14 I/O F4 I/O J19 I/O AC1 I/O B16 I/O F6 NC J21 GND AC3 I/O B18 I/O F8 I/O J23 I/O AC5 I/O B20 I/O F10 NC J25 I/O AC7 I/O B22 I/O F12 I/O K2 I/O AC9 I/O B24 I/O F14 I/O K4 I/O AC11 I/O C1 TDI, I/O F16 NC K6 I/O AC13 VCCR C3 I/O F18 I/O K8 VCCI 49 313- P in P BGA (C ont inu ed) Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function K10 I/O N3 VCCA R21 I/O V18 I/O 50 K12 I/O N5 VCCR R23 I/O V20 I/O K14 I/O N7 I/O R25 I/O V22 VCCA K16 I/O N9 VCCI T2 I/O V24 VCCI K18 I/O N11 GND T4 I/O W1 I/O K20 VCCA N13 GND T6 I/O W3 I/O K22 I/O N15 GND T8 I/O W5 I/O K24 I/O N17 I/O T10 I/O W7 NC L1 I/O N19 I/O T12 I/O W9 I/O L3 I/O N21 I/O T14 HCLK W11 I/O L5 I/O N23 VCCR T16 I/O W13 VCCI L7 I/O N25 VCCA T18 I/O W15 I/O L9 I/O P2 I/O T20 I/O W17 I/O L11 I/O P4 I/O T22 I/O W19 I/O L13 GND P6 I/O T24 I/O W21 I/O L15 I/O P8 I/O U1 I/O W23 I/O L17 I/O P10 I/O U3 I/O W25 I/O L19 I/O P12 GND U5 VCCI Y2 I/O L21 I/O P14 GND U7 I/O Y4 I/O L23 I/O P16 I/O U9 I/O Y6 I/O L25 I/O P18 I/O U15 I/O Y8 I/O M2 I/O P20 NC U17 I/O Y10 I/O M4 I/O P22 I/O U19 I/O Y12 I/O M6 I/O P24 I/O U21 I/O Y14 I/O M8 I/O R1 I/O U23 I/O Y16 I/O M10 I/O R3 I/O U25 I/O Y18 I/O M12 GND R5 I/O V2 VCCA Y20 NC M14 GND R7 I/O V4 I/O Y22 I/O M16 VCCI R9 I/O V6 I/O Y24 NC M18 I/O R11 I/O V8 I/O M20 I/O R13 GND V10 I/O M22 I/O R15 I/O V12 I/O M24 I/O R17 I/O V14 I/O N1 I/O R19 I/O V16 NC 54SX Family FPGAs Pa c ka ge P i n A s si g nm e n t s (continued) 329-Pin PBGA (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 A B C D E F G H J K L M N P R T U V W Y AA AB AC 51 3 2 9 - P in P BG A Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function A1 GND AA23 VCCI AC22 VCCI C21 VCCI A2 GND AB1 I/O AC23 GND C22 GND A3 VCCI AB2 GND B1 VCCI C23 NC A4 NC AB3 I/O B2 GND D1 I/O A5 I/O AB4 I/O B3 I/O D2 I/O A6 I/O AB5 I/O B4 I/O D3 I/O A7 VCCI AB6 I/O B5 I/O D4 TCK, I/O A8 NC AB7 I/O B6 I/O D5 I/O A9 I/O AB8 I/O B7 I/O D6 I/O A10 I/O AB9 I/O B8 I/O D7 I/O A11 I/O AB10 I/O B9 I/O D8 I/O 52 A12 I/O AB11 PRB, I/O B10 I/O D9 I/O A13 CLKB AB12 I/O B11 I/O D10 I/O A14 I/O AB13 HCLK B12 PRA, I/O D11 VCCA A15 I/O AB14 I/O B13 CLKA D12 VCCR A16 I/O AB15 I/O B14 I/O D13 I/O A17 I/O AB16 I/O B15 I/O D14 I/O A18 I/O AB17 I/O B16 I/O D15 I/O A19 I/O AB18 I/O B17 I/O D16 I/O A20 I/O AB19 I/O B18 I/O D17 I/O A21 NC AB20 I/O B19 I/O D18 I/O A22 VCCI AB21 I/O B20 I/O D19 I/O A23 GND AB22 GND B21 I/O D20 I/O AA1 VCCI AB23 I/O B22 GND D21 I/O AA2 I/O AC1 GND B23 VCCI D22 I/O AA3 GND AC2 VCCI C1 NC D23 I/O AA4 I/O AC3 NC C2 TDI, I/O E1 VCCI AA5 I/O AC4 I/O C3 GND E2 I/O AA6 I/O AC5 I/O C4 I/O E3 I/O AA7 I/O AC6 I/O C5 I/O E4 I/O AA8 I/O AC7 I/O C6 I/O E20 I/O AA9 I/O AC8 I/O C7 I/O E21 I/O AA10 I/O AC9 VCCI C8 I/O E22 I/O AA11 I/O AC10 I/O C9 I/O E23 I/O AA12 I/O AC11 I/O C10 I/O F1 I/O AA13 I/O AC12 I/O C11 I/O F2 TMS AA14 I/O AC13 I/O C12 I/O F3 I/O AA15 I/O AC14 I/O C13 I/O F4 I/O AA16 I/O AC15 NC C14 I/O F20 I/O AA17 I/O AC16 I/O C15 I/O F21 I/O AA18 I/O AC17 I/O C16 I/O F22 I/O AA19 I/O AC18 I/O C17 I/O F23 I/O AA20 TDO, I/O AC19 I/O C18 I/O G1 I/O AA21 VCCI AC20 I/O C19 I/O G2 I/O AA22 I/O AC21 NC C20 I/O G3 I/O 54SX Family FPGAs 3 2 9 - P in P BG A Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function Pin Number A54SX32 Function G4 I/O L22 I/O R20 I/O Y10 I/O G20 I/O L23 NC R21 I/O Y11 I/O G21 I/O M1 I/O R22 I/O Y12 VCCA G22 I/O M2 I/O R23 I/O Y13 VCCR G23 GND M3 I/O T1 I/O Y14 I/O H1 I/O M4 VCCA T2 I/O Y15 I/O H2 I/O M10 GND T3 I/O Y16 I/O H3 I/O M11 GND T4 I/O Y17 I/O H4 I/O M12 GND T20 I/O Y18 I/O H20 VCCA M13 GND T21 I/O Y19 I/O H21 I/O M14 GND T22 I/O Y20 GND H22 I/O M20 VCCA T23 I/O Y21 I/O H23 I/O M21 I/O U1 I/O Y22 I/O J1 NC M22 I/O U2 I/O Y23 I/O J2 I/O M23 VCCI U3 VCCA J3 I/O N1 I/O U4 I/O J4 I/O N2 I/O U20 I/O J20 I/O N3 I/O U21 VCCA J21 I/O N4 I/O U22 I/O J22 I/O N10 GND U23 I/O J23 I/O N11 GND V1 VCCI K1 I/O N12 GND V2 I/O K2 I/O N13 GND V3 I/O K3 I/O N14 GND V4 I/O K4 I/O N20 NC V20 I/O K10 GND N21 I/O V21 I/O K11 GND N22 I/O V22 I/O K12 GND N23 I/O V23 I/O K13 GND P1 I/O W1 I/O K14 GND P2 I/O W2 I/O K20 I/O P3 I/O W3 I/O K21 I/O P4 I/O W4 I/O K22 I/O P10 GND W20 I/O K23 I/O P11 GND W21 I/O L1 I/O P12 GND W22 I/O L2 I/O P13 GND W23 NC L3 I/O P14 GND Y1 NC L4 VCCR P20 I/O Y2 I/O L10 GND P21 I/O Y3 I/O L11 GND P22 I/O Y4 GND L12 GND P23 I/O Y5 I/O L13 GND R1 I/O Y6 I/O L14 GND R2 I/O Y7 I/O L20 VCCR R3 I/O Y8 I/O L21 I/O R4 I/O Y9 I/O 53 Pa c ka ge P i n A s si g nm e n t s (Continued) 144-Pin FBGA (Top View) 1 A B C D E F G H J K L M 54 2 3 4 5 6 7 8 9 10 11 12 5 4 SX F a m i ly F PG A s 144- P in FBG A Pin Number A54SX08 Function Pin Number A54SX08 Function Pin Number A54SX08 Function A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 I/O I/O I/O I/O VCCA GND CLKA I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O CLKB I/O I/O I/O GND I/O I/O I/O TCK, I/O I/O I/O PRA, I/O I/O I/O I/O I/O I/O I/O I/O VCCI TDI, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 I/O I/O I/O I/O TMS VCCI VCCI VCCI VCCA I/O GND I/O I/O I/O VCCR I/O GND GND GND VCCI I/O GND I/O I/O I/O GND I/O I/O GND GND GND VCCI I/O I/O I/O I/O I/O I/O I/O I/O VCCA VCCA VCCI VCCI VCCA I/O I/O VCCR J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 I/O I/O I/O I/O I/O PRB, I/O I/O I/O I/O I/O I/O VCCA I/O I/O I/O I/O I/O I/O GND I/O I/O GND I/O I/O GND I/O I/O I/O I/O I/O HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCA I/O I/O I/O TDO, I/O I/O 55 Pa c ka ge M e ch an i c al D r a w i ng s P las ti c Leade d C hip C ar ri er (P LC C) .048 (1.219) .042 (1.067) D3 D1 D E3 E1 E .049 (1.244) A A1 0.006 e1 D2/E2 .075 (1.905) MAX B2 C .032 (0.812) MAX .005 (0.127) After Lead Finish Base Line .020 (0.508) MIN 56 .044 (1.117) .035 RAD (0.889) B 54SX Family FPGAs P las t ic Leade d C hip C ar ri er P acka ges (P LC C) JEDEC Equiv PLCC 84 MS007 AE VAR Dimension Min. Max A 3.94 4.45 A1 2.29 3.30 B 0.33 0.69 B2 0.66 0.81 C 0.13 0.28 D/E 29.72 30.73 D1/E1 28.96 29.46 D2/E2 27.69 28.70 D3/E3 25.4 nominal e1 1.27 BSC Notes: 1. All dimensions are in millimeters. 2. BSC—Basic Spacing between Centers. 57 Pa c ka ge M e ch an i c al D r a w i ng s (continued) P las ti c Quad Fla t P ack (P QFP , TQ F P, V Q FP ) E1 E D1 D See Detail A A1 A2 A ccc C L Detail A 10 Typ 0.20 RAD Typ Theta b e 0.20 RAD Typ 58 54SX Family FPGAs Pa c ka ge M e ch an i c al D r a w i ng s (continued) P las t ic Quad Fla t P ack Rec ta ngul ar P acka ge (PQ FP ) E1 E D1 D See Detail A A1 A2 A ccc C L Detail A 10 Typ 0.20 RAD Typ Theta b e 0.20 RAD Typ 59 P las ti c Quad Fla t P acks (P QFP ) PQFP 208 MO-143 JEDEC Equiv Dimension Min. A Nom Max 3.70 4.10 A1 0.25 0.38 A2 3.20 3.40 b 0.17 0.27 c 0.09 0.20 D/E 30.25 30.60 30.85 D1/E1 27.90 28.00 28.10 e L 3.60 0.50 BSC 0.50 0.60 ccc 0.75 0.10 Theta 0 Diameter 19.82 7 deg 20.32 20.82 T hin Quad Fl at P ack s (TQ FP ) TQFP 144 MO-136 JEDEC Equiv Dimension Min. Nom A Max Min Nom 1.60 Max 1.60 A1 0.05 0.10 0.15 0.05 0.10 0.15 A2 1.35 1.40 1.45 1.35 1.40 1.45 b 0.17 0.27 0.17 0.27 c 0.09 0.20 0.09 0.20 D/E 21.75 22.00 22.25 25.75 26.00 26.25 D1/E1 19.90 20.00 20.10 23.90 24.00 24.10 e L 0.50 BSC 0.45 0.60 ccc Theta 0.50 BSC 0.75 0.45 0.10 0 Notes: 1. All dimensions are in millimeters. 2. BSC—Basic Spacing between Centers. 60 TQFP 176 MO-136 7 deg 0.60 0.75 0.10 0 7 deg 54SX Family FPGAs T hin Quad Fl at P ack s (VQFP ) VQFP 100 MO-136 JEDEC Equiv Dimension Min Nom A Max 1.20 A1 0.05 0.10 0.15 A2 0.95 1.00 1.05 b 0.17 0.27 c 0.09 0.20 D/E 15.75 16.00 16.25 D1/E1 13.90 14.00 14.10 e L 0.50 BSC 0.45 0.60 ccc Theta 0.75 0.10 0 7 deg Notes: 1. All dimensions are in millimeters. 2. BSC—Basic Spacing between Centers. 61 Pa c ka ge M e ch an i c al D r a w i ng s (continued) 144- P in FBG A Bottom View Top View Pin One Corner D/D2 12 11 10 9 8 7 6 5 4 3 2 1 A B C e D E F E/E2 E1 G H J K L M D1 Side View Detail A D1/E1 SQ Detail A // ccc C A2 A // bbb C C ∅b 62 aaa C c A1 54SX Family FPGAs Fin e P i tch B all G r id Ar r ay ( FB G A) FBGA 144 Dimension Min. Nom. Max. A 1.35 1.45 1.55 A1 0.35 0.40 0.45 A2 0.65 0.70 0.75 aaa b 0.15 0.45 0.50 bbb 0.20 c 0.35 ccc D 0.55 0.25 12.80 D1 13.00 13.20 11.00 BSC D2 12.80 13.00 13.20 E 12.80 13.00 13.20 E1 11.00 BSC E2 12.80 13.00 13.20 e 0.9 1.00 1.10 Notes: 1. All dimensions are in millimeters. 2. BSC—Basic Spacing between Centers. 63 Pa c ka ge M e ch an i c al D r a w i ng s (continued) P las ti c Bal l Gri d A r ra y (PB G A3 13) Bottom View Top View Pin One Corner D Pin One Corner D2 25 24 23 22 21 20 19 18 17 1615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE e E E2 E1 D1 Side View Detail A D1/E1 SQ Detail A R0.025 Typ. // ccc C A2 30 A // bbb C C ∅b 64 aaa C c A1 r (dia.) 5 4 SX F a m i ly F PG A s Pa c ka ge M e ch an i c al D r a w i ng s (continued) P las t ic Bal l Gri d A r ra y (PB G A3 29) Bottom View Top View Pin One Corner D Pin One Corner D2 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC e E E2 E1 D1 Side View Detail A D1/E1 SQ Detail A R0.025 Typ. // ccc C A2 30 A // bbb C C ∅b aaa C c A1 65 P las ti c Bal l G ri d A r ra y ( PB G A) JEDEC Equivalent PBGA313 Dimension Min. Nom. Max. Min. Nom. Max. A 2.12 2.33 2.52 2.17 2.33 2.70 A1 0.50 0.60 0.70 0.50 0.60 0.70 A2 1.12 1.17 1.22 1.10 1.20 1.30 D 34.80 35.00 35.20 30.80 31.00 31.20 D1 30.48 BSC 27.94 BSC D2 29.50 30.00 30.70 27.90 28.00 28.10 E 34.80 35.00 35.20 30.80 31.00 31.20 E1 30.48 BSC 27.94 BSC E2 29.50 30.00 30.70 27.90 28.00 28.10 b 0.60 0.76 0.90 0.60 0.76 0.90 c 0.53 0.56 0.61 0.53 0.60 0.70 aaa 0.15 0.20 bbb N/A 0.20 ccc 0.35 0.25 e 1.27 typ. Notes: 1. All dimensions are in millimeters. 2. BSC—Basic Spacing between Centers. 66 PBGA329 1.27 typ. 5 4 SX F a m i ly F PG A s 67 68 5 4 SX F a m i ly F PG A s 69 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. http://www.actel.com Actel Europe Ltd. Daneshill House, Lutyens Close Basingstoke, Hampshire RG24 8AG United Kingdom Tel: +44-(0)125-630-5600 Fax: +44-(0)125-635-5420 Actel Corporation 955 East Arques Avenue Sunnyvale, California 94086 USA Tel: (408) 739-1010 Fax: (408) 739-1540 Actel Asia-Pacific EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Tel: +81-(0)3-3445-7671 Fax: +81-(0)3-3445-7668 5172137-3/5.00