AVX 0805ZA101CT2A

www.avx.com
AVX Surface Mount
Ceramic Capacitor Products
Version 9.4
Ceramic Chip Capacitors
Table of Contents
How to Order - AVX Part Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
C0G (NP0) Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
U Dielectric
RF/Microwave C0G (NP0) Capaciators (RoHS) General Information and Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10
RF/Microwave C0G (NP0) Capaciators (Sn/Pb) General Information and Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12
Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
X8R Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
X7R Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-19
X7S Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
X5R Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Y5V Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MLCC Tin/Lead Termination (LD Series)
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-35
MLCC Low Profile
General Specifications / Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
UltraThin Ceramic Capacitors
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Automotive MLCC
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-39
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40-42
APS for COTS+ Applications
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-45
MLCC with FLEXITERM®
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47-48
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-50
FLEXISAFE MLC Chips
General Specifications and Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Capacitor Array
Capacitor Array (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-55
Automotive Capacitor Array (IPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Multi-Value Capacitor Array (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Part and Pad Layout Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Low Inductance Capacitors
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-60
LICC (Low Inductance Chip Capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-64
IDC (InterDigitated Capacitors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-68
LGA Low Inductance Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-70
LICA (Low Inductance Decoupling Capacitor Arrays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-72
High Voltage MLC Chips
600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73-74
Tin/Lead Termination “B” - 600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-76
MIL-PRF-55681/Chips
CDR01 thru CDR06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77-78
CDR31 thru CDR35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-82
Packaging of Chip Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Embossed Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Paper Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Bulk Case Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Basic Capacitor Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88-92
Surface Mounting Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93-97
1
How to Order
Part Number Explanation
Commercial Surface Mount Chips
EXAMPLE: 08055A101JAT2A
0805
5
A
101
Size
(L" x W")
0201
0402
0603
0805
1206
1210
1812
1825
2220
2225
Voltage
Dielectric
Capacitance
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
D = 35V
5 = 50V
1 = 100V
2 = 200V
7 = 500V
A = NP0(C0G)
C = X7R
D = X5R
F = X8R
G = Y5V
U = U Series
W = X6S
Z = X7S
2 Sig. Fig +
No. of Zeros
Examples:
100 = 10 pF
101 = 100 pF
102 = 1000 pF
223 = 22000 pF
224 = 220000 pF
105 = 1µF
106 = 10µF
107 = 100µF
For values below
10 pF, use “R”
in place of
Decimal point, e.g.,
9.1 pF = 9R1.
Contact Factory for
Special Voltages
F
*
E
V
= 63V
= 75V
= 150V
= 250V
9 = 300V
X = 350V
8 = 400V
J*
A
Tolerance
Failure
B = ±.10 pF
Rate
C = ±.25 pF
A = N/A
D = ±.50 pF
4 = Automotive
F = ±1% (≥ 10 pF)
G = ±2% (≥ 10 pF)
J = ±5%
K = ±10%
M = ±20%
Z = +80%, -20%
P = +100%, -0%
T
2
A
Terminations
Packaging
T = Plated Ni
and Sn
7 = Gold Plated
U = Conductive
Expoxy for
Hybrid
Applications
Z = FLEXITERM®
X = FLEXITERM®
with 5% min
lead (X7R &
X8R only)
Available
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Special
Code
A = Std.
Contact
Factory For
Multiples
Contact
Factory For
1 = Pd/Ag Term
* B, C & D tolerance for ≤10 pF values.
Standard Tape and Reel material (Paper/Embossed) depends upon chip
size and thickness.
See individual part tables for tape material type for each capacitance value.
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
For Tin/Lead Terminations, please refer to LD Series
High Voltage MLC Chips
EXAMPLE: 1808AA271KA11A
1808
AVX
Style
0805
1206
1210
1808
1812
1825
2220
2225
3640
A
A
271
K
A
1
Voltage
Temperature Capacitance Capacitance
Failure
Packaging/
Termination
C = 600V/630V Coefficient
Code
Tolerance
Rate
Marking
1= Pd/Ag
(2 significant digits C0G: J = ±5%
1 = 7" Reel
A = 1000V
A = C0G
A=Not
T = Plated Ni
+ no. of zeros)
K = ±10% Applicable
3 = 13" Reel
S = 1500V
C = X7R
and Sn
Examples:
M = ±20%
9 = Bulk
G = 2000V
B = 5% Min Pb
10 pF = 100 X7R: K = ±10%
W = 2500V
Z = FLEXITERM®
100 pF = 101
M = ±20%
H = 3000V
X = FLEXITERM®
1,000 pF = 102
Z = +80%,
J = 4000V
with 5% min
22,000 pF = 223
-20%
K = 5000V
lead (X7R only)
220,000 pF = 224
1 µF = 105
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
For Tin/Lead Terminations, please refer to LD Series
2
T
A
Special
Code
A = Standard
How to Order
Part Number Explanation
Capacitor Array
EXAMPLE: W2A43C103MAT2A
W
2
Style
W = RoHS
L = SnPb
A
4
3
Case Array Number
Size
of Caps
1 = 0405
2 = 0508
3 = 0612
C
Voltage
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
103
M
Dielectric Capacitance
A = NP0 Code (In pF)
C = X7R 2 Sig Digits +
Number of
D = X5R
Zeros
A
T
2A
Capacitance
Failure
Termination
Tolerance
Rate
Code
J = ±5% A = Commercial T = Plated Ni and Sn
K = ±10% 4 = Automotive Z = FLEXITERM®
M = ±20%
B = 5% min lead
X = FLEXITERM®
with 5% min lead
Packaging &
Quantity
Code
2A = 7" Reel
(4000)
4A = 13" Reel
(10000)
2F = 7" Reel
(1000)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Low Inductance Capacitors (LICC)
EXAMPLE: 0612ZD105MAT2A
0612
Z
D
105
M
A
Size
0306
0508
0612
LD16
LD17
LD18
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
Dielectric
C = X7R
D = X5R
Capacitance
Code (In pF)
2 Sig. Digits +
Number of Zeros
Capacitance
Tolerance
K = ±10%
M = ±20%
T
Failure Rate Terminations
A = N/A
T = Plated Ni
and Sn
B = 5% min
lead
2
A
Packaging
Available
2 = 7" Reel
4 = 13" Reel
Thickness
See Page 64
for Codes
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Interdigitated Capacitors (IDC)
EXAMPLE: W3L16D225MAT3A
W
3
L
D
225
Dielectric
C = X7R
D = X5R
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
6
1
Style
Case
Low
Voltage
Number
Inductance
of
W = RoHS Size
4 = 4V
L = SnPb 2 = 0508 ESL = 50pH Terminals
6 = 6.3V
3 = 0612 ESL = 60pH 1 = 8 Terminals Z = 10V
Y = 16V
M
A
Capacitance Failure
Tolerance
Rate
M = ±20
A = N/A
T
3
Termination Packaging
T = Plated Ni
Available
and Sn
1=7" Reel
B = 5% min
3=13" Reel
Lead
A
Thickness
Max. Thickness
mm (in.)
A=0.95 (0.037)
S=0.55 (0.022)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Low Inductance Decoupling Capacitor Arrays (LICA)
EXAMPLE: LICA3T183M3FC4AA
LICA
Style
&
Size
3
T
102
M
3
Voltage Dielectric Cap/Section Capacitance Height
5V = 9 D = X5R
(EIA Code)
Tolerance
Code
10V = Z T = T55T 102 = 1000 pF M = ±20% 6 = 0.500mm
25V = 3 S = High K 103 = 10 nF
P = GMV 3 = 0.650mm
T55T 104 = 100 nF
1 = 0.875mm
5 = 1.100mm
7 = 1.600mm
NOTE: Contact factory for availability of Termination and
Tolerance Options for Specific Part Numbers.
F
Termination
F = C4 Solder
Balls- 97Pb/3Sn
H = C4 Solder
Balls–Low ESR
P = Cr-Cu-Au
N = Cr-Ni-Au
X = None
C
4
A
# of
Inspection
Reel Packaging
Caps/Part
Code
M = 7" Reel
1 = one A = Standard
R = 13" Reel
6 = 2"x2" Waffle Pack 2 = two B = Established
Reliability
8 = 2"x2" Black Waffle 4 = four
Testing
Pack
7 = 2"x2" Waffle Pack
w/ termination
facing up
A = 2"x2" Black Waffle
Pack
w/ termination
facing up
C = 4"x4" Waffle Pack
w/ clear lid
A
Code
Face
A = Bar
B = No Bar
C = Dot, S55S
Dielectrics
D = Triangle
3
C0G (NP0) Dielectric
General Specifications
C0G (NP0) is the most popular formulation of the
“temperature-compensating,” EIA Class I ceramic materials.
Modern C0G (NP0) formulations contain neodymium,
samarium and other rare earth oxides.
C0G (NP0) ceramics offer one of the most stable capacitor
dielectrics available. Capacitance change with temperature
is 0 ±30ppm/°C which is less than ±0.3% ⌬C from -55°C
to +125°C. Capacitance drift or hysteresis for C0G (NP0)
ceramics is negligible at less than ±0.05% versus up to
±2% for films. Typical capacitance change with life is less
than ±0.1% for C0G (NP0), one-fifth that shown by most
other dielectrics. C0G (NP0) formulations show no aging
characteristics.
PART NUMBER (see page 2 for complete part number explanation)
0805
5
A
101
J
Size
(L" x W")
Voltage
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
Dielectric
C0G (NP0) = A
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
B
C
D
F
G
J
K
=
=
=
=
=
=
=
A
Capacitance
Tolerance
±.10 pF (<10pF)
±.25 pF (<10pF)
±.50 pF (<10pF)
±1% (≥ 10 pF)
±2% (≥ 10 pF)
±5%
±10%
Failure
Rate
A = Not
Applicable
T
2
A
Terminations
Packaging
2 = 7" Reel
T = Plated Ni
4 = 13" Reel
and Sn
7 = Gold Plated 7 = Bulk Cass.
9 = Bulk
Contact
Factory For
1 = Pd/Ag Term
Special
Code
A = Std.
Product
Contact
Factory
For
Multiples
⌬ Capacitance vs. Frequency
+2
Typical Capacitance Change
Envelope: 0 ± 30 ppm/°C
% ⌬ Capacitance
+0.5
0
-0.5
+1
0
-1
-2
1KHz
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125
Temperature °C
10 KHz
100 KHz
100
0
0
20
40
60
80
100
Temperature °C
Variation of Impedance with Chip Size
Impedance vs. Frequency
1000 pF - C0G (NP0)
100,000
Variation of Impedance with Ceramic Formulation
Impedance vs. Frequency
1000 pF - C0G (NP0) vs X7R
0805
10
100
10 pF
10.0
1.0
100 pF
1000 pF
0.1
1
10
100
Frequency, MHz
1000
Impedance, ⍀
1,000
10.00
1206
0805
1812
1210
10,000
Impedance, ⍀
10 MHz
1,000
Frequency
Variation of Impedance with Cap Value
Impedance vs. Frequency
0805 - C0G (NP0)
10 pF vs. 100 pF vs. 1000 pF
4
1 MHz
Insulation Resistance vs Temperature
10,000
X7R
NPO
Impedance, ⍀
% ⌬ Capacitance
Temperature Coefficient
Insulation Resistance (Ohm-Farads)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.
1.0
0.1
10
100
Frequency, MHz
1000
1.00
0.10
0.01
10
100
Frequency, MHz
1000
C0G (NP0) Dielectric
Specifications and Test Methods
Parameter/Test
Operating Temperature Range
Capacitance
Insulation Resistance
NP0 Specification Limits
-55ºC to +125ºC
Within specified tolerance
<30 pF: Q≥ 400+20 x Cap Value
≥30 pF: Q≥ 1000
100,000MΩ or 1000MΩ - µF,
whichever is less
Dielectric Strength
No breakdown or visual defects
Q
Resistance to
Flexure
Stresses
Appearance
Capacitance
Variation
±5% or ±.5 pF, whichever is greater
Q
Meets Initial Values (As Above)
Insulation
Resistance
Solderability
Appearance
Capacitance
Variation
Resistance to
Solder Heat
Thermal
Shock
Load Life
Q
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Q
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Q
(C=Nominal Cap)
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Load
Humidity
Q
Insulation
Resistance
Dielectric
Strength
No defects
Measuring Conditions
Temperature Cycle Chamber
Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF
1.0 kHz ± 10% for cap > 1000 pF
Voltage: 1.0Vrms ± .2V
Charge device with rated voltage for
60 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Note: Charge device with 150% of rated
voltage for 500V devices.
Deflection: 2mm
Test Time: 30 seconds
1mm/sec
≥ Initial Value x 0.3
≥ 95% of each terminal should be covered
with fresh solder
No defects, <25% leaching of either end terminal
90 mm
Dip device in eutectic solder at 230 ± 5ºC
for 5.0 ± 0.5 seconds
≤ ±2.5% or ±.25 pF, whichever is greater
Meets Initial Values (As Above)
Dip device in eutectic solder at 260ºC for 60
seconds. Store at room temperature for 24 ± 2
hours before measuring electrical properties.
Meets Initial Values (As Above)
Meets Initial Values (As Above)
No visual defects
Step 1: -55ºC ± 2º
30 ± 3 minutes
≤ ±2.5% or ±.25 pF, whichever is greater
Step 2: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Step 3: +125ºC ± 2º
30 ± 3 minutes
Meets Initial Values (As Above)
Step 4: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Repeat for 5 cycles and measure after
24 hours at room temperature
No visual defects
≤ ±3.0% or ± .3 pF, whichever is greater
≥ 30 pF:
≥10 pF, <30 pF:
<10 pF:
Q≥ 350
Q≥ 275 +5C/2
Q≥ 200 +10C
≥ Initial Value x 0.3 (See Above)
Meets Initial Values (As Above)
Charge device with twice rated voltage in
test chamber set at 125ºC ± 2ºC
for 1000 hours (+48, -0).
Remove from test chamber and stabilize at
room temperature for 24 hours
before measuring.
No visual defects
≤ ±5.0% or ± .5 pF, whichever is greater
≥ 30 pF:
≥10 pF, <30 pF:
<10 pF:
Q≥ 350
Q≥ 275 +5C/2
Q≥ 200 +10C
≥ Initial Value x 0.3 (See Above)
Meets Initial Values (As Above)
Store in a test chamber set at 85ºC ± 2ºC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
Remove from chamber and stabilize at
room temperature for 24 ± 2 hours
before measuring.
5
C0G (NP0) Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE
0201
0402
0603
0805
1206
Soldering
Packaging
Reflow Only
All Paper
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
0.60 ± 0.03
(0.024 ± 0.001)
0.30 ± 0.03
(0.011 ± 0.001)
0.15 ± 0.05
(0.006 ± 0.002)
25
50
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
25
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
25
50
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
50
100
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
6
A
0.33
(0.013)
䉲
Letter
Max.
Thickness
L
50
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
W
16
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
䉲
䉲
SIZE
䉲
Cap
(µF)
16
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
100
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
16
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100
16
25
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
16
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
25
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
200
16
25
䉲
Cap
(pF)
䉲
(t) Terminal
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
50
100
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
J
J
Q
J
J
Q
J
M
Q
M
M
M
P
M
P
M
P
M
P
M
P
M
500
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
P
T
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
0.5
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.010
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.068
0.082
0.1
WVDC
䉲
(L) Length
25
50
16
0201
C
0.56
(0.022)
t
25
50
16
0402
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
25
50
0603
J
0.94
(0.037)
K
1.02
(0.040)
50
100
0805
M
1.27
(0.050)
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
50
100
1206
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
200
500
C0G (NP0) Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
1210
1812
1825
2220
2225
Reflow Only
Paper/Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
50
100
200
4.50 ± 0.30
(0.177 ± 0.012)
3.20 ± 0.20
(0.126 ± 0.008)
0.61 ± 0.36
(0.024 ± 0.014)
50
100
200
4.50 ± 0.30
(0.177 ± 0.012)
6.40 ± 0.40
(0.252 ± 0.016)
0.61 ± 0.36
(0.024 ± 0.014)
50
100
200
5.70 ± 0.40
(0.225 ± 0.016)
5.00 ± 0.40
(0.197 ± 0.016)
0.64 ± 0.39
(0.025 ± 0.015)
50
100
200
5.72 ± 0.25
(0.225 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
0.64 ± 0.39
(0.025 ± 0.015)
50
100
200
Cap
(pF)
500
䉲
L
䉲
A
0.33
(0.013)
25
W
䉲
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25
50
SIZE
Letter
Max.
Thickness
500
䉲
Cap
(µF)
25
䉲
(t) Terminal
T
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
0.5
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.010
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.068
0.082
0.1
WVDC
䉲
(L) Length
䉲
SIZE
Soldering
Packaging
J
J
J
J
J
J
J
J
J
J
M
M
J
J
J
J
M
M
M
Q
Q
100
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
500
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
M
M
M
M
M
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
M
M
M
M
M
M
M
M
25
50
1210
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
K
K
K
K
K
K
K
K
K
M
M
M
M
K
K
K
K
K
P
P
P
P
P
X
M
M
M
M
P
Q
Q
Q
Q
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
P
P
P
P
100
200
500
50
1812
G
0.90
(0.035)
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
100
200
X
X
X
X
X
X
X
X
X
X
X
Y
Y
50
1825
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
X
X
X
X
X
X
X
X
X
X
100
X
X
X
X
X
X
X
X
X
X
200
2220
X
2.29
(0.090)
Y
2.54
(0.100)
t
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
P
P
P
Q
Q
50
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Y
Y
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Y
Y
Y
Y
100
200
2225
Z
2.79
(0.110)
7
RF/Microwave C0G (NP0)
Capacitors (RoHS)
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
GENERAL INFORMATION
are met on each value producing lot to lot uniformity.
Sizes available are EIA chip sizes 0603, 0805, and 1210.
“U” Series capacitors are C0G (NP0) chip capacitors specially designed for “Ultra” low ESR for applications in the
communications market. Max ESR and effective capacitance
DIMENSIONS: inches (millimeters)
0402
0603
0805
1210
A
A
C
B
A
A
C
B
D
E
B
B
C
C
D
D
E D
D
D
E
inches (mm)
E
Size
A
B
C
D
0402
0603
0805
1210
0.039±0.004 (1.00±0.1)
0.060±0.010 (1.52±0.25)
0.079±0.008 (2.01±0.2)
0.126±0.008 (3.2±0.2)
0.020±0.004 (0.50±0.1)
0.030±0.010 (0.76±0.25)
0.049±0.008 (1.25±0.2)
0.098±0.008 (2.49±0.2)
0.024 (0.6) max
0.036 (0.91) max
0.040±0.005 (1.02±0.127)
0.050±0.005 (1.27±0.127)
N/A
0.010±0.005 (0.25±0.13)
0.020±0.010 (0.51±0.255)
0.025±0.015 (0.635±0.381)
N/A
0.030 (0.76) min
0.020 (0.51) min
0.040 (1.02) min
HOW TO ORDER
0805
1
Case Size
U
100
Dielectric =
Ultra Low
ESR
0402
0603
0805
1210
=
=
=
=
25V
50V
100V
200V
A
T
Capacitance
Tolerance
Code
B = ±0.1pF
C = ±0.25pF
D = ±0.5pF
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
Voltage
Code
3
5
1
2
J
Capacitance
EIA Capacitance Code in pF.
First two digits = significant figures
or “R” for decimal place.
Third digit = number of zeros or after
“R” significant figures.
2
A
Termination
Special
Code
T= Plated Ni
and Sn
A = Standard
Failure Rate
Code
Packaging
Code
A = Not Applicable
2 = 7" Reel
4 = 13" Reel
9 = Bulk
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
ELECTRICAL CHARACTERISTICS
Capacitance Values and Tolerances:
Size 0402 - 0.2 pF to 22 pF @ 1 MHz
Size 0603 - 1.0 pF to 100 pF @ 1 MHz
Size 0805 - 1.6 pF to 160 pF @ 1 MHz
Size 1210 - 2.4 pF to 1000 pF @ 1 MHz
Temperature Coefficient of Capacitance (TC):
0±30 ppm/°C (-55° to +125°C)
Insulation Resistance (IR):
1012 Ω min. @ 25°C and rated WVDC
1011 Ω min. @ 125°C and rated WVDC
Working Voltage (WVDC):
Size
0402
0603
0805
1210
8
-
Working Voltage
50, 25 WVDC
200, 100, 50 WVDC
200, 100 WVDC
200, 100 WVDC
Dielectric Working Voltage (DWV):
250% of rated WVDC
Equivalent Series Resistance Typical (ESR):
0402
0603
0805
1210
-
See Performance Curve, page 9
See Performance Curve, page 9
See Performance Curve, page 9
See Performance Curve, page 9
Marking: Laser marking EIA J marking standard
(except 0603) (capacitance code and
tolerance upon request).
MILITARY SPECIFICATIONS
Meets or exceeds the requirements of MIL-C-55681
RoHS COMPLIANT
Pb: Free
RF/Microwave C0G (NP0)
Capacitors (RoHS)
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
CAPACITANCE RANGE
100
110
120
130
140
150
160
180
200
220
270
300
330
360
390
430
470
510
560
620
680
750
820
910
1000
B,C,J,K,M
F,G,J,K,M
200V
100V
50V
N/A
F,G,J,K,M N/A 100V 200V 200V
50V
50V
N/A 200V
100V
100V
N/A
200V
100V
䉱
B,C,J,K,M 50V 200V 200V 200V
F,G,J,K,M
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
B,C,D
B,C,J,K,M
7.5
8.2
9.1
10
11
12
13
15
18
20
22
24
27
30
33
36
39
43
47
51
56
68
75
82
91
䉱
50V 200V 200V 200V
䉱
䉱
䉱
䉱
䉱
䉱
B,C,D
B,C,D
䉱
䉱
B,C
B,C,D
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
䉱
N/A N/A
䉱
N/A
䉱
50V
Size
Available
Cap (pF) Tolerance 0402 0603 0805 1210
䉱
B,C
Size
Available
Cap (pF) Tolerance 0402 0603 0805 1210
䉱
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Size
Available
Cap (pF) Tolerance 0402 0603 0805 1210
䉱
Size
Available
Cap (pF) Tolerance 0402 0603 0805 1210
ULTRA LOW ESR, “U” SERIES
TYPICAL ESR vs. FREQUENCY
0603 “U” SERIES
TYPICAL ESR vs. FREQUENCY
0402 “U” SERIES
1
1
3.9 pF
4.7 pF
5.1 pF
6.8 pF
10.0 pF
15.0 pF
ESR (ohms)
ESR (ohms)
10 pF
15 pF
3.3 pF
0.1
0.01
0.01
0
500
1000
1500
2000
2500
0
500
1000
1500
2000
Frequency (MHz)
Frequency (MHz)
TYPICAL ESR vs. FREQUENCY
0805 “U” SERIES
TYPICAL ESR vs. FREQUENCY
1210 “U” SERIES
2500
1
1
100 pF
10.0 pF
ESR (ohms)
ESR (ohms)
0.1
0.1
0.1
10 pF
100 pF
300 pF
0.01
0.01
0
500
1000
1500
Frequency (MHz)
2000
2500
0
500
1000
1500
2000
Frequency (MHz)
ESR Measured on the Boonton 34A
RoHS COMPLIANT
Pb: Free
9
10
0.1
1.0
1.0
10
10
1210
0603
Capacitance (pF)
0402
100
0805
TYPICAL
SERIES RESONANT FREQUENCY
“U” SERIES CHIP
1000
RF/Microwave C0G (NP0) Capacitors
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
Frequency (GHz)
RF/Microwave C0G (NP0)
Capacitors (Sn/Pb)
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
GENERAL INFORMATION
are met on each value producing lot to lot uniformity.
Sizes available are EIA chip sizes 0603, 0805, and 1210.
“U” Series capacitors are C0G (NP0) chip capacitors specially
designed for “Ultra” low ESR for applications in the communications market. Max ESR and effective capacitance
DIMENSIONS: inches (millimeters)
0402
0603
0805
1210
A
A
C
B
A
A
C
B
D
E
B
B
C
C
D
D
E D
D
E
D
inches (mm)
E
Size
A
B
C
D
0402
0603
0805
1210
0.039±0.004 (1.00±0.1)
0.060±0.010 (1.52±0.25)
0.079±0.008 (2.01±0.2)
0.126±0.008 (3.2±0.2)
0.020±0.004 (0.50±0.1)
0.030±0.010 (0.76±0.25)
0.049±0.008 (1.25±0.2)
0.098±0.008 (2.49±0.2)
0.024 (0.6) max
0.036 (0.91) max
0.040±0.005 (1.02±0.127)
0.050±0.005 (1.27±0.127)
N/A
0.010±0.005 (0.25±0.13)
0.020±0.010 (0.51±0.254)
0.025±0.015 (0.635±0.381)
N/A
0.030 (0.76) min
0.020 (0.51) min
0.040 (1.02) min
HOW TO ORDER
LD05
1
Case Size
U
100
Dielectric =
Ultra Low ESR
LD02 = 0402
LD03 = 0603
LD05 = 0805
LD10 = 1210
A
B
Capacitance
Tolerance
Code
B = ±0.1pF
C = ±0.25pF
D = ±0.5pF
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
Voltage Code
3 = 25V
5 = 50V
1 = 100V
2 = 200V
J
Capacitance
EIA Capacitance Code in pF.
2
A
Termination
Special Code
B = 5% min lead
A = Standard
Failure Rate
Code
Packaging
Code
A = Not Applicable
2 = 7" Reel
4 = 13" Reel
9 = Bulk
First two digits = significant figures
or “R” for decimal place.
Third digit = number of zeros or after
“R” significant figures.
ELECTRICAL CHARACTERISTICS
Capacitance Values and Tolerances:
Size 0402 - 0.2 pF to 22 pF @ 1 MHz
Size 0603 - 1.0 pF to 100 pF @ 1 MHz
Size 0805 - 1.6 pF to 160 pF @ 1 MHz
Size 1210 - 2.4 pF to 1000 pF @ 1 MHz
Temperature Coefficient of Capacitance (TC):
0±30 ppm/°C (-55° to +125°C)
Insulation Resistance (IR):
1012 Ω min. @ 25°C and rated WVDC
1011 Ω min. @ 125°C and rated WVDC
Working Voltage (WVDC):
Size
0402
0603
0805
1210
-
Working Voltage
50, 25 WVDC
200, 100, 50 WVDC
200, 100 WVDC
200, 100 WVDC
Dielectric Working Voltage (DWV):
250% of rated WVDC
Equivalent Series Resistance Typical (ESR):
0402
0603
0805
1210
-
See Performance Curve, page 12
See Performance Curve, page 12
See Performance Curve, page 12
See Performance Curve, page 12
Marking: Laser marking EIA J marking standard
(except 0603) (capacitance code and
tolerance upon request).
MILITARY SPECIFICATIONS
Meets or exceeds the requirements of MIL-C-55681
11
RF/Microwave C0G (NP0)
Capacitors (Sn/Pb)
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
CAPACITANCE RANGE
100
110
120
130
140
150
160
180
200
220
270
300
330
360
390
430
470
510
560
620
680
750
820
910
1000
B,C,J,K,M
F,G,J,K,M
200V
100V
50V
N/A
F,G,J,K,M N/A 100V 200V 200V
50V
50V
N/A 200V
100V
100V
N/A
200V
100V
䉱
B,C,J,K,M 50V 200V 200V 200V
F,G,J,K,M
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
䉱
B,C,D
B,C,J,K,M
7.5
8.2
9.1
10
11
12
13
15
18
20
22
24
27
30
33
36
39
43
47
51
56
68
75
82
91
䉱
50V 200V 200V 200V
䉱
䉱
䉱
䉱
䉱
䉱
B,C,D
B,C,D
䉱
䉱
B,C
B,C,D
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
䉱
N/A N/A
䉱
N/A
䉱
50V
䉱
B,C
Size
Available
Cap (pF) Tolerance LD02 LD03 LD05 LD10
Size
Available
Cap (pF) Tolerance LD02 LD03 LD05 LD10
䉱
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Size
Available
Cap (pF) Tolerance LD02 LD03 LD05 LD10
䉱
Size
Available
Cap (pF) Tolerance LD02 LD03 LD05 LD10
ULTRA LOW ESR, “U” SERIES
TYPICAL ESR vs. FREQUENCY
0603 “U” SERIES
TYPICAL ESR vs. FREQUENCY
0402 “U” SERIES
1
1
3.9 pF
4.7 pF
5.1 pF
6.8 pF
10.0 pF
15.0 pF
ESR (ohms)
ESR (ohms)
10 pF
15 pF
3.3 pF
0.1
0.01
0.01
0
500
1000
1500
2000
2500
0
500
1000
1500
2000
Frequency (MHz)
Frequency (MHz)
TYPICAL ESR vs. FREQUENCY
0805 “U” SERIES
TYPICAL ESR vs. FREQUENCY
1210 “U” SERIES
2500
1
1
ESR (ohms)
100 pF
10.0 pF
ESR (ohms)
0.1
0.1
0.1
10 pF
100 pF
300 pF
0.01
0.01
0
500
1000
1500
Frequency (MHz)
2000
2500
0
500
1000
1500
2000
Frequency (MHz)
ESR Measured on the Boonton 34A
12
Designer Kits
Communication Kits “U” Series
“U” SERIES KITS
0402
0603
Kit 5000 UZ
Kit 4000 UZ
Cap.
Cap.
Value Tolerance Value Tolerance
pF
pF
Cap.
Cap.
Value Tolerance Value Tolerance
pF
pF
0.5
1.0
1.5
1.8
2.2
2.4
3.0
3.6
B (±0.1pF)
4.7
5.6
6.8
8.2
10.0
12.0
15.0
B (±0.1pF)
J (±5%)
***25 each of 15 values
1.0
1.2
1.5
1.8
2.0
2.4
2.7
3.0
3.3
3.9
4.7
5.6
B (±0.1pF)
6.8
7.5
8.2
10.0
12.0
15.0
18.0
22.0
27.0
33.0
39.0
47.0
B (±0.1pF)
J (±5%)
***25 each of 24 values
0805
1210
Kit 3000 UZ
Kit 3500 UZ
Cap.
Cap.
Value Tolerance Value Tolerance
pF
pF
Cap.
Cap.
Value Tolerance Value Tolerance
pF
pF
1.0
1.5
2.2
2.4
2.7
3.0
3.3
3.9
4.7
5.6
7.5
8.2
9.1
10.0
12.0
B (±0.1pF)
J (±5%)
***25 each of 30 values
15.0
18.0
22.0
24.0
27.0
33.0
36.0
39.0
47.0
56.0
68.0
82.0
100.0
130.0
160.0
J (±5%)
2.2
2.7
4.7
5.1
6.8
8.2
9.1
10.0
13.0
15.0
18.0
20.0
24.0
27.0
30.0
B (±0.1pF)
J (±5%)
36.0
39.0
47.0
51.0
56.0
68.0
82.0
100.0
120.0
130.0
240.0
300.0
390.0
470.0
680.0
J (±5%)
***25 each of 30 values
13
X8R Dielectric
General Specifications
AVX have developed a range of multilayer ceramic capacitors designed for use in applications up to
150ºC. These capacitors are manufactured with an X8R dielectric material which has a capacitance
variation of ±15% between -55ºC and +150ºC.
The need for X8R performance has been driven by customer requirements for parts that operate at
elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance
over temperature.
They are ideal for automotive under the hood sensors, measure while drilling and log while drilling.
Typical applications include wire line logging tools such as gamma ray receivers, acoustic
transceivers and micro-resistivity tools. They can also be used as bulk capacitors for high
temperature camera modules.
X8R capacitors are available as standard and Automotive AEC-Q200 qualified parts. Optional
termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available.
Providing this series with our FLEXITERM® termination system provides further advantage to
customers by way of enhanced resistance to both, temperature cycling and mechanical damage.
PART NUMBER (see page 2 for complete part number explanation)
0805
5
F
104
K
4
T
Capacitance Capacitance
Failure
Terminations
Tolerance
Code (In pF)
Rate
T = Plated Ni
J = ± 5%
4 = Automotive
2 Sig. Digits +
and Sn
K = ±10%
A = Not
Number of
Z = FLEXITERM®
M = ± 20%
Applicable U = Conductive
Zeros
e.g. 10µF = 106
Epoxy for
Hybrid apps
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Size
0603
0805
1206
Voltage
25V = 3
50V = 5
Dielectric
X8R = F
SIZE
271
331
471
681
102
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
684
824
105
Cap
(pF)
Cap
(µF)
0603
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
WVDC
270
330
470
680
1000
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.01
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.056
0.068
0.082
0.1
0.12
0.15
0.18
0.22
0.27
0.33
0.39
0.47
0.68
0.82
1
WVDC
25V
SIZE
Letter
Max.
Thickness
14
A
0.33
(0.013)
0805
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
50V
25V
M
1.27
(0.050)
50V
N
1.40
(0.055)
Packaging
2 = 7" Reel
4 = 13" Reel
Special
Code
A = Std.
Product
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
25V
0805
K
1.02
(0.040)
A
1206
50V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
0603
2
50V
1206
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
= AEC-Q200 Qualified
Y
2.54
(0.100)
Z
2.79
(0.110)
X8R Dielectric
General Specifications
APPLICATIONS FOR X8R CAPACITORS
•
•
•
•
All market sectors with a 150°C requirement
Automotive on engine applications
Oil exploration applications
Hybrid automotive applications
– Battery control
– Inverter / converter circuits
– Motor control applications
– Water pump
• Hybrid commercial applications
– Emergency circuits
– Sensors
– Temperature regulation
ADVANTAGES OF X8R MLC CAPACITORS
• Capacitance variation of ±15% between –55°C and
+150°C
• Qualified to the highest automotive AEC-Q200 standards
• Excellent reliability compared to other capacitor
technologies
• RoHS compliant
• Low ESR / ESL compared to other technologies
• Tin solder finish
• FLEXITERM® available
• Hybrid available
• 50V range available
ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS
Samples
Technical Articles
Application Engineering
Application Support
X8R Dielectric
0805, 50V, X8R Typical Temperature Coefficient
5.00
0.00
% Cap change
•
•
•
•
-5.00
-10.00
X7R included
for comparison
-15.00
-20.00
-25.00
-60
-40
-20
0
20
40
60
80
100
120
140
160
Temperature (°C)
15
X7R Dielectric
General Specifications
X7R formulations are called “temperature stable” ceramics
and fall into EIA Class II materials. X7R is the most popular of
these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from
-55°C to +125°C. This capacitance change is non-linear.
Capacitance for X7R varies under the influence of electrical
operating conditions such as voltage and frequency.
X7R dielectric chip usage covers the broad spectrum of
industrial applications where known changes in capacitance
due to applied voltages are acceptable.
PART NUMBER (see page 2 for complete part number explanation)
0805
5
C
103
M
A
T
Size
(L" x W")
Voltage
4V = 4
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
Dielectric
X7R = C
Capacitance
Code (In pF)
2 Sig. Digits +
Number of Zeros
Capacitance
Tolerance
J = ± 5%*
K = ±10%
M = ± 20%
Failure
Rate
A = Not
Applicable
Terminations
T = Plated Ni
and Sn
7 = Gold Plated*
Z= FLEXITERM®**
*≤1µF only
2
A
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Special
Code
A = Std. Product
Contact
Factory For
Multiples
*Optional termination
**See FLEXITERM®
X7R section
X7R Dielectric
Typical Temperature Coefficient
⌬ Capacitance vs. Frequency
+30
10
+20
% ⌬ Capacitance
0
-5
-10
-15
-20
0
20
40
60
0
-10
-20
-30
1KHz
-25
-60 -40 -20
+10
80 100 120 140
Temperature °C
10 KHz
100 KHz
10
1206
0805
1210
1,000 pF
Impedance, ⍀
Impedance, ⍀
10,000 pF
1.00
0.10
Frequency, MHz
16
100
0
0
20
40
1000
1.0
0.1
1
10
80
100
120
Variation of Impedance with Chip Size
Impedance vs. Frequency
100,000 pF - X7R
10
1206
0805
1210
1.0
0.1
.01
.01
60
Temperature °C
Variation of Impedance with Chip Size
Impedance vs. Frequency
10,000 pF - X7R
10.00
100
10 MHz
1,000
Frequency
Variation of Impedance with Cap Value
Impedance vs. Frequency
1,000 pF vs. 10,000 pF - X7R
0805
0.01
10
1 MHz
Insulation Resistance vs Temperature
10,000
Impedance, ⍀
% Cap Change
5
Insulation Resistance (Ohm-Farads)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.
100
Frequency, MHz
1,000
1
10
100
Frequency, MHz
1,000
X7R Dielectric
Specifications and Test Methods
Parameter/Test
Operating Temperature Range
Capacitance
Insulation Resistance
X7R Specification Limits
-55ºC to +125ºC
Within specified tolerance
≤ 2.5% for ≥ 50V DC rating
≤ 3.0% for 25V DC rating
≤ 3.5% for 16V DC rating
≤ 5.0% for ≤ 10V DC rating
100,000MΩ or 1000MΩ - µF,
whichever is less
Dielectric Strength
No breakdown or visual defects
Dissipation Factor
Resistance to
Flexure
Stresses
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Solderability
Resistance to
Solder Heat
Thermal
Shock
Load Life
Load
Humidity
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
No defects
≤ ±12%
Measuring Conditions
Temperature Cycle Chamber
Freq.: 1.0 kHz ± 10%
Voltage: 1.0Vrms ± .2V
For Cap > 10 µF, 0.5Vrms @ 120Hz
Charge device with rated voltage for
120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Note: Charge device with 150% of rated
voltage for 500V devices.
Deflection: 2mm
Test Time: 30 seconds
1mm/sec
Meets Initial Values (As Above)
≥ Initial Value x 0.3
≥ 95% of each terminal should be covered
with fresh solder
No defects, <25% leaching of either end terminal
90 mm
Dip device in eutectic solder at 230 ± 5ºC
for 5.0 ± 0.5 seconds
≤ ±7.5%
Meets Initial Values (As Above)
Dip device in eutectic solder at 260ºC for 60
seconds. Store at room temperature for 24 ± 2
hours before measuring electrical properties.
Meets Initial Values (As Above)
Meets Initial Values (As Above)
No visual defects
Step 1: -55ºC ± 2º
30 ± 3 minutes
≤ ±7.5%
Step 2: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Step 3: +125ºC ± 2º
30 ± 3 minutes
Meets Initial Values (As Above)
Step 4: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Repeat for 5 cycles and measure after
24 ± 2 hours at room temperature
No visual defects
≤ ±12.5%
≤ Initial Value x 2.0 (See Above)
≥ Initial Value x 0.3 (See Above)
Meets Initial Values (As Above)
No visual defects
≤ ±12.5%
≤ Initial Value x 2.0 (See Above)
≥ Initial Value x 0.3 (See Above)
Charge device with 1.5 rated voltage (≤ 10V) in
test chamber set at 125ºC ± 2ºC
for 1000 hours (+48, -0)
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ºC ± 2ºC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
Meets Initial Values (As Above)
17
X7R Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE
0201
0402
0603
0805
1206
Soldering
Packaging
Reflow Only
All Paper
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
0.60 ± 0.03
(0.024 ± 0.001)
0.30 ± 0.03
(0.011 ± 0.001)
0.15 ± 0.05
(0.006 ± 0.002)
10
16
25
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
16
25
50
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
16
25
50
10
2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
16
25
50
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
16
25
50 100
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
(L) Length
(W) Width
(t)
Terminal
Cap
(pF)
Cap
(µF
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
100
150
220
330
470
680
1000
1500
2200
3300
4700
6800
0.010
0.015
0.022
0.033
0.047
0.068
0.10
0.15
0.22
0.33
0.47
0.68
1.0
1.5
2.2
3.3
4.7
10
22
47
100
WVDC
SIZE
Letter
Max.
Thickness
A
0.33
(0.013)
C
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100
200
G
G
G
G
G
G
G
G
G
G
G
G
G
G
6.3
J*
J*
J*
J*
J*
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
100
200
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
N
6.3
P*
P*
P*
P*
10
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
P
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
Q
Q
Q
Q
Q*
Q*
Q*
Q*
Q*
10
16
25
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
P
P
Q
Q
J
J
J
J
J
J
J
J
J
J
J
M
Q
Q
Q
Q
Q
Q
J
J
J
J
J
J
M
M
M
M
P
P
50
100
200
500
K
K
K
K
M
M
M
M
P
P
Q*
10
16
25
16
0201
C
0.56
(0.022)
25
50
6.3
10
0402
E
0.71
(0.028)
PAPER
*Optional Specifications – Contact factory
18
10
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
6.3
G
0.90
(0.035)
16
25
50
100
200
6.3
0603
J
0.94
(0.037)
K
1.02
(0.040)
10
16
25
50
100
200
6.3
0805
M
1.27
(0.050)
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
1206
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
500
X7R Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
1210
1812
1825
2220
2225
Reflow Only
Paper/Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
25
50
100
4.50 ± 0.30
(0.177 ± 0.012)
3.20 ± 0.20
(0.126 ± 0.008)
0.61 ± 0.36
(0.024 ± 0.014)
100
200
4.50 ± 0.30
(0.177 ± 0.012)
6.40 ± 0.40
(0.252 ± 0.016)
0.61 ± 0.36
(0.024 ± 0.014)
50
100
5.70 ± 0.40
(0.225 ± 0.016)
5.00 ± 0.40
(0.197 ± 0.016)
0.64 ± 0.39
(0.025 ± 0.015)
50
100
5.72 ± 0.25
(0.225 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
0.64 ± 0.39
(0.025 ± 0.015)
50
100
16
500
50
25
200
L
䉲
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z*
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z*
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
P
P
Z
Z
Z
Z
Z*
10
16
25
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
X
X
Z
Z
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
M
P
Q
Q
X
Z
Z
Z
J
J
J
J
J
J
J
J
J
J
M
M
Z
Z
M
M
M
M
M
M
P
Q
Q
K
K
K
K
K
K
K
K
K
K
K
M
M
Z
Z
Z
Z
W
T
C
0.56
(0.022)
K
K
K
K
K
K
K
K
K
M
P
Q
X
Z
Z
K
K
K
K
K
K
K
P
P
X
K
P
P
X
Z
Z
Z
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
t
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
Z
X
X
X
X
X
X
X
X
X
X
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
100
200
50
P
P
P
P
P
P
P
P
P
P
P
P
P
X
Z
50
100
200
500
50
1210
A
0.33
(0.013)
500
䉲
SIZE
Letter
Max.
Thickness
200
䉲
Cap
(µF
10
䉲
Cap
(pF)
䉲
(t) Terminal
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
100
150
220
330
470
680
1000
1500
2200
3300
4700
6800
0.010
0.015
0.022
0.033
0.047
0.068
0.10
0.15
0.22
0.33
0.47
0.68
1.0
1.5
2.2
3.3
4.7
10
22
47
100
WVDC
䉲
(L) Length
䉲
SIZE
Soldering
Packaging
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
100
200
1812
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
500
50
100
25
1825
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
50
2220
X
2.29
(0.090)
Y
2.54
(0.100)
100
2225
Z
2.79
(0.110)
*Optional Specifications – Contact factory
19
X7S Dielectric
General Specifications
GENERAL DESCRIPTION
X7S formulations are called “temperature stable” ceramics and fall
into EIA Class II materials. Its temperature variation of capacitance
is within ±22% from –55°C to +125°C. This capacitance change is
non-linear.
Capacitance for X7S varies under the influence of electrical operating
conditions such as voltage and frequency.
X7S dielectric chip usage covers the broad spectrum of industrial
applications where known changes in capacitance due to applied
voltages are acceptable.
PART NUMBER (see page 2 for complete part number explanation)
1206
Z
Z
105
M
A
T
2
A
Size
(L" x W")
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
2 = 200V
Dielectric
Z = X7S
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
Capacitance
Tolerance
K = ±10%
M = ±20%
Failure
Rate
A = N/A
Terminations
T = Plated Ni
and Sn
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
Special
Code
A = Std.
Product
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.
X7S Dielectric
Typical Temperature Coefficient
⌬ Capacitance vs. Frequency
10
+30
+20
% ⌬ Capacitance
% Cap Change
5
0
-5
-10
-15
-20
-25
-60 -40 -20
+10
0
-10
-20
-30
1KHz
0 20 40 60 80 100 120 140
Temperature (°C)
10 KHz
100 KHz
1 MHz
10 MHz
Insulation Resistance (Ohm-Farads)
TYPICAL ELECTRICAL CHARACTERISTICS
Insulation Resistance vs Temperature
10,000
1,000
100
0
0
20
40
Variation of Impedance with Cap Value
Impedance vs. Frequency
1,000 pF vs. 10,000 pF - X7S
0805
10
Impedance, ⍀
Impedance, ⍀
10,000 pF
1.00
0.10
0.01
10
100
Frequency, MHz
20
1000
1.0
0.1
1
10
120
1206
0805
1210
1.0
0.1
.01
.01
100
10
Impedance, ⍀
1206
0805
1210
1,000 pF
80
Variation of Impedance with Chip Size
Impedance vs. Frequency
100,000 pF - X7S
Variation of Impedance with Chip Size
Impedance vs. Frequency
10,000 pF - X7S
10.00
60
Temperature °C
Frequency
100
Frequency, MHz
1,000
1
10
100
Frequency, MHz
1,000
X7S Dielectric
Specifications and Test Methods
Parameter/Test
Operating Temperature Range
Capacitance
Insulation Resistance
X7S Specification Limits
-55ºC to +125ºC
Within specified tolerance
≤ 2.5% for ≥ 50V DC rating
≤ 3.0% for 25V DC rating
≤ 3.5% for 16V DC rating
≤ 5.0% for ≤ 10V DC rating
100,000MΩ or 1000MΩ - µF,
whichever is less
Dielectric Strength
No breakdown or visual defects
Dissipation Factor
Resistance to
Flexure
Stresses
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Solderability
Resistance to
Solder Heat
Thermal
Shock
Load Life
Load
Humidity
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
No defects
≤ ±12%
Measuring Conditions
Temperature Cycle Chamber
Freq.: 1.0 kHz ± 10%
Voltage: 1.0Vrms ± .2V
For Cap > 10 µF, 0.5Vrms @ 120Hz
Charge device with rated voltage for
120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Deflection: 2mm
Test Time: 30 seconds
1mm/sec
Meets Initial Values (As Above)
≥ Initial Value x 0.3
≥ 95% of each terminal should be covered
with fresh solder
No defects, <25% leaching of either end terminal
90 mm
Dip device in eutectic solder at 230 ± 5ºC
for 5.0 ± 0.5 seconds
≤ ±7.5%
Meets Initial Values (As Above)
Dip device in eutectic solder at 260ºC for 60
seconds. Store at room temperature for 24 ± 2
hours before measuring electrical properties.
Meets Initial Values (As Above)
Meets Initial Values (As Above)
No visual defects
Step 1: -55ºC ± 2º
30 ± 3 minutes
≤ ±7.5%
Step 2: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Step 3: +125ºC ± 2º
30 ± 3 minutes
Meets Initial Values (As Above)
Step 4: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Repeat for 5 cycles and measure after
24 ± 2 hours at room temperature
No visual defects
≤ ±12.5%
≤ Initial Value x 2.0 (See Above)
≥ Initial Value x 0.3 (See Above)
Meets Initial Values (As Above)
No visual defects
≤ ±12.5%
Charge device with 1.5 rated voltage (≤ 10V) in
test chamber set at 125ºC ± 2ºC
for 1000 hours (+48, -0)
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ºC ± 2ºC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
≤ Initial Value x 2.0 (See Above)
≥ Initial Value x 0.3 (See Above)
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
Meets Initial Values (As Above)
21
X7S Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
0402
0603
0805
1206
1210
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
Reflow Only
Paper/Embossed
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
6.3
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
6.3
25
2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
4
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
6.3
10
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
6.3
Cap
(pF)
22
A
0.33
(0.013)
䉲
Letter
Max.
Thickness
L
W
䉲
䉲
SIZE
䉲
Cap
(µF
䉲
(t) Terminal
T
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
100
150
220
330
470
680
1000
1500
2200
3300
4700
6800
0.010
0.015
0.022
0.033
0.047
0.068
0.10
0.15
0.22
0.33
0.47
0.68
1.0
1.5
2.2
3.3
4.7
10
22
47
100
WVDC
䉲
(L) Length
䉲
SIZE
Soldering
Packaging
t
C
C
C
C
G
G
G
G
G
N
N
N
N
Q
Q
Q
Q
Q
Z
6.3
6.3
0402
C
0.56
(0.022)
25
4
0603
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
6.3
0805
J
0.94
(0.037)
K
1.02
(0.040)
10
1206
M
1.27
(0.050)
N
1.40
(0.055)
6.3
1210
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
X5R Dielectric
General Specifications
GENERAL DESCRIPTION
• General Purpose Dielectric for Ceramic Capacitors
• EIA Class II Dielectric
• Temperature variation of capacitance is within ±15%
from -55°C to +85°C
• Well suited for decoupling and filtering applications
• Available in High Capacitance values (up to 100µF)
PART NUMBER (see page 2 for complete part number explanation)
1210
4
D
107
M
A
T
2
A
Size
(L" x W")
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
D = 35V
5 = 50V
Dielectric
D = X5R
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
Capacitance
Tolerance
K = ±10%
M = ±20%
Failure
Rate
A = N/A
Terminations
T = Plated Ni
and Sn
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Special
Code
A = Std.
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.
Temperature Coefficient
20
% ⌬ Capacitance
15
10
5
0
-5
-10
-15
-20
-60
-40
-20
0
+20
+40
Temperature °C
+60
+80
Insulation Resistance (Ohm-Farads)
TYPICAL ELECTRICAL CHARACTERISTICS
Insulation Resistance vs Temperature
10,000
1,000
100
0
0
20
40
60
80
100
120
Temperature °C
23
X5R Dielectric
Specifications and Test Methods
Parameter/Test
Operating Temperature Range
Capacitance
Insulation Resistance
X5R Specification Limits
-55ºC to +85ºC
Within specified tolerance
≤ 2.5% for ≥ 50V DC rating
≤ 3.0% for 25V DC rating
≤ 12.5% Max. for 16V DC rating and lower
Contact Factory for DF by PN
10,000MΩ or 500MΩ - µF,
whichever is less
Dielectric Strength
No breakdown or visual defects
Dissipation Factor
Resistance to
Flexure
Stresses
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Solderability
Resistance to
Solder Heat
Thermal
Shock
Load Life
Load
Humidity
24
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
No defects
≤ ±12%
Measuring Conditions
Temperature Cycle Chamber
Freq.: 1.0 kHz ± 10%
Voltage: 1.0Vrms ± .2V
For Cap > 10 µF, 0.5Vrms @ 120Hz
Charge device with rated voltage for
120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Deflection: 2mm
Test Time: 30 seconds
1mm/sec
Meets Initial Values (As Above)
≥ Initial Value x 0.3
≥ 95% of each terminal should be covered
with fresh solder
No defects, <25% leaching of either end terminal
90 mm
Dip device in eutectic solder at 230 ± 5ºC
for 5.0 ± 0.5 seconds
≤ ±7.5%
Meets Initial Values (As Above)
Dip device in eutectic solder at 260ºC for 60
seconds. Store at room temperature for 24 ± 2
hours before measuring electrical properties.
Meets Initial Values (As Above)
Meets Initial Values (As Above)
No visual defects
Step 1: -55ºC ± 2º
30 ± 3 minutes
≤ ±7.5%
Step 2: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Step 3: +85ºC ± 2º
30 ± 3 minutes
Meets Initial Values (As Above)
Step 4: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
No visual defects
≤ ±12.5%
≤ Initial Value x 2.0 (See Above)
≥ Initial Value x 0.3 (See Above)
Meets Initial Values (As Above)
No visual defects
≤ ±12.5%
≤ Initial Value x 2.0 (See Above)
≥ Initial Value x 0.3 (See Above)
Meets Initial Values (As Above)
Repeat for 5 cycles and measure after
24 ± 2 hours at room temperature
Charge device with 1.5X rated voltage in
test chamber set at 85ºC ± 2ºC for 1000 hours
(+48, -0). Note: Contact factory for *optional
specification part numbers that are tested at
< 1.5X rated voltage.
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ºC ± 2ºC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
X5R Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE
0201
0402
0603
0805
1206
1210
1812
Soldering
Packaging
Reflow Only
All Paper
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
Reflow Only
Paper/Embossed
Reflow Only
All Embossed
0.60 ± 0.03
(0.024 ± 0.001)
0.30 ± 0.03
(0.011 ± 0.001)
0.15 ± 0.05
(0.006 ± 0.002)
4 6.3 10 16 25
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
4 6.3 10 16 25 50
100
150
220
A
A
A
C
330
470
680
A
A
A
C
C
C
A
C
C
C
0.010
0.015
0.022
A
0.033
0.047
0.068
0.10
0.15
0.22
A
0.33
(0.013)
C
A*
C
C
C
C
C
C
A*
C
A* A*
G
G
G
G
G
G
G
G
G
G
G
G
C*
G
G
C* C*
G
G
G
G
G
J*
C* C*
G* G* J*
J*
J*
E*
J*
J*
K
C* C* C*
G
4 6.3 10 16 25
4 6.3 10 16 25 50
0201
0402
C
0.56
(0.022)
t
G
G
C
C
C
A*
3.3
4.7
10
Letter
Max.
Thickness
T
C
1.0
1.5
2.2
SIZE
W
䉲
C
C
0.33
0.47
0.68
22
47
100
WVDC
䉲
A
A
A
L
䉲
A
3300
4700
6800
A
A
A
䉲
Cap
(µF)
1000
1500
2200
3.20 ± 0.20
4.50 ± 0.30
(0.126 ± 0.008)
(0.177 ± 0.012)
2.50 ± 0.20
3.20 ± 0.20
(0.098 ± 0.008)
(0.126 ± 0.008)
0.50 ± 0.25
0.61 ± 0.36
(0.020 ± 0.010)
(0.024 ± 0.014)
4 6.3 10 16 25 35 50 6.3 10 25 50
䉲
Cap
(pF)
2.01 ± 0.20
3.20 ± 0.20
(0.079 ± 0.008)
(0.126 ± 0.008)
1.25 ± 0.20
1.60 ± 0.20
(0.049 ± 0.008)
(0.063 ± 0.008)
0.50 ± 0.25
0.50 ± 0.25
(0.020 ± 0.010)
(0.020 ± 0.010)
10 16 25 35 50 6.3 10 16 25 35 50
䉲
(t) Terminal
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
4 6.3 10 16 25 35 50 6.3
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
䉲
(L) Length
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J*
J*
J*
J*
J*
G
G
G
N
G
G
G
N
N
N
G
N
N
N
N
N
N
Q
N
N
N
N
N
N
N
N
P*
Q
Q
Q
Q
Q
Q
Q
Q
Q*
N N
N N N* N*
N* N* N* *
Q
Q
Q
N*
*
Q* Q* Q*
Q*
*
Q
Q
Q
Q
X
X
Q
Z
X
X
Z
X
Z
Z*
X
Z
Z Z Z Z*
Z*
Z* Z*
4 6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10 25 50
0603
J
0.94
(0.037)
K
1.02
(0.040)
0805
M
1.27
(0.050)
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
1206
X
2.29
(0.090)
1210
Y
2.54
(0.100)
1812
Z
2.79
(0.110)
= Under Development
= *Optional Specifications – Contact factory
NOTE: Contact factory for non-specified capacitance values
25
Y5V Dielectric
General Specifications
Y5V formulations are for general-purpose use in a limited
temperature range. They have a wide temperature
characteristic of +22% –82% capacitance change over the
operating temperature range of –30°C to +85°C.
These characteristics make Y5V ideal for decoupling
applications within limited temperature range.
PART NUMBER (see page 2 for complete part number explanation)
3
G
104
Z
A
T
2
A
Size
(L" x W")
Voltage
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
Dielectric
Y5V = G
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
Capacitance
Tolerance
Z = +80 –20%
Failure
Rate
A = Not
Applicable
Terminations
T = Plated Ni
and Sn
Packaging
2 = 7" Reel
4 = 13" Reel
Special
Code
A = Std.
Product
Capacitance Change
vs. DC Bias Voltage
+20
+10
0
-10
-20
-30
-40
-50
-60
-70
-80
+40
+20
⌬ c/c (%)
0
-20
-40
-60
-80
-55
-35 -15
-100
0
+5 +25 +45 +65 +85 +105 +125
Temperature °C
10,000
80
100
100
10
1
1,000,000
Frequency (Hz)
+20
10,000,000
+40
+50
+60
+70
+80
+90
1 ␮F - 1206
Impedance vs. Frequency
1,000
100
100
10
1
0.01
10,000
+30
Temperature °C
10
1
0.1
0.1
0.1
100,000
0
1,000
|Z| (Ohms)
|Z| (Ohms)
60
100
0.22 ␮F - 0805
Impedance vs. Frequency
1,000
26
40
1,000
% DC Bias Voltage
0.1 ␮F - 0603
Impedance vs. Frequency
0.01
10,000
20
Insulation Resistance vs. Temperature
10,000
|Z| (Ohms)
% ⌬ Capacitance
Temperature Coefficient
Insulation Resistance (Ohm-Farads)
0805
100,000
1,000,000
Frequency (Hz)
10,000,000
0.01
10,000
100,000
1,000,000
Frequency (Hz)
10,000,000
Y5V Dielectric
Specifications and Test Methods
Parameter/Test
Operating Temperature Range
Capacitance
Insulation Resistance
Y5V Specification Limits
-30ºC to +85ºC
Within specified tolerance
≤ 5.0% for ≥ 50V DC rating
≤ 7.0% for 25V DC rating
≤ 9.0% for 16V DC rating
≤ 12.5% for ≤ 10V DC rating
10,000MΩ or 500MΩ - µF,
whichever is less
Dielectric Strength
No breakdown or visual defects
Dissipation Factor
Resistance to
Flexure
Stresses
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Solderability
Resistance to
Solder Heat
Thermal
Shock
Load Life
Load
Humidity
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
Appearance
Capacitance
Variation
Dissipation
Factor
Insulation
Resistance
Dielectric
Strength
No defects
≤ ±30%
Measuring Conditions
Temperature Cycle Chamber
Freq.: 1.0 kHz ± 10%
Voltage: 1.0Vrms ± .2V
For Cap > 10 µF, 0.5Vrms @ 120Hz
Charge device with rated voltage for
120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Deflection: 2mm
Test Time: 30 seconds
1mm/sec
Meets Initial Values (As Above)
≥ Initial Value x 0.1
≥ 95% of each terminal should be covered
with fresh solder
No defects, <25% leaching of either end terminal
90 mm
Dip device in eutectic solder at 230 ± 5ºC
for 5.0 ± 0.5 seconds
≤ ±20%
Meets Initial Values (As Above)
Dip device in eutectic solder at 260ºC for 60
seconds. Store at room temperature for 24 ± 2
hours before measuring electrical properties.
Meets Initial Values (As Above)
Meets Initial Values (As Above)
No visual defects
Step 1: -30ºC ± 2º
30 ± 3 minutes
≤ ±20%
Step 2: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Step 3: +85ºC ± 2º
30 ± 3 minutes
Meets Initial Values (As Above)
Step 4: Room Temp
≤ 3 minutes
Meets Initial Values (As Above)
Repeat for 5 cycles and measure after
24 ±2 hours at room temperature
No visual defects
≤ ±30%
≤ Initial Value x 1.5 (See Above)
≥ Initial Value x 0.1 (See Above)
Meets Initial Values (As Above)
No visual defects
≤ ±30%
Charge device with twice rated voltage in
test chamber set at 85ºC ± 2ºC
for 1000 hours (+48, -0)
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ºC ± 2ºC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
≤ Initial Value x 1.5 (See above)
≥ Initial Value x 0.1 (See Above)
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
Meets Initial Values (As Above)
27
Y5V Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE
0201
0402
0603
0805
1206
1210
Soldering
Packaging
Reflow Only
All Paper
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
Reflow Only
Paper/Embossed
0.60 ± 0.03
(0.024 ± 0.001)
0.30 ± 0.03
(0.011 ± 0.001)
0.15 ± 0.05
(0.006 ± 0.002)
6.3
10
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
10
16
25
1.60 ± 0.15
(0.063 ± 0.006)
.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
16
25
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
16
25
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
.50 ± 0.25
(0.020 ± 0.010)
16
25
Cap
(µF)
50
50
A
A
A
A
A
C
C
C
G
C
C
G
K
C
G
G
G
G
28
T
t
G
N
C
N
N
M
M
M
Q
P
Q
X
Q
6.3
10
6
C
0.56
(0.022)
10
16
25
50
10
0402
E
0.71
(0.028)
PAPER
N
N
N
N
0201
A
0.33
(0.013)
W
L
50
G
22.0
47.0
Letter
Max.
Thickness
10
䉲
2.2
4.7
10.0
WVDC
50
A
A
0.33
0.47
1.0
SIZE
10
䉲
10
䉲
0.047
0.10
0.22
50
䉲
4700
0.010
0.022
6
䉲
Cap
(pF)
䉲
(t) Terminal
2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
10
16
25
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
820
1000
2200
䉲
(L) Length
G
0.90
(0.035)
16
25
50
0603
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
10
16
25
50
10
0805
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
N
Q
X
16
25
50
10
1206
X
2.29
(0.090)
N
Q
Y
2.54
(0.100)
16
25
1210
Z
2.79
(0.110)
50
MLCC Tin/Lead Termination “B”
General Specifications
AVX Corporation will support those customers for
commercial and military Multilayer Ceramic Capacitors with
a termination consisting of 5% minimum lead. This
termination is indicated by the use of a “B” in the 12th
position of the AVX Catalog Part Number. This fulfills AVX’s
commitment to providing a full range of products to our
customers. AVX has provided in the following pages a full
range of values that we are currently offering in this special
“B” termination. Please contact the factory if you require
additional information on our MLCC Tin/Lead Termination
“B” products.
PART NUMBER (see page 2 for complete part number explanation)
LD05
Size
LD02 - 0402
LD03 - 0603
LD04 - 0504*
LD05 - 0805
LD06 - 1206
LD10 - 1210
LD12 - 1812
LD13 - 1825
LD14 - 2225
LD20 - 2220
5
A
Dielectric
Voltage
6.3V = 6 C0G (NP0) = A
X7R = C
10V = Z
X5R = D
16V = Y
X8R = F
25V = 3
35V = D
50V = 5
100V = 1
200V = 2
500V = 7
101
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
J
B
C
D
F
G
J
K
M
=
=
=
=
=
=
=
=
Capacitance
Tolerance
±.10 pF (<10pF)
±.25 pF (<10pF)
±.50 pF (<10pF)
±1% (≥ 10 pF)
±2% (≥ 10 pF)
±5%
±10%
±20%
A
B
Terminations
Failure
Rate
B = 5% min lead
A = Not X = FLEXITERM®
Applicable
with 5% min
lead**
**X7R only
2
A
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Special
Code
A = Std.
Product
Contact
Factory
For
Multiples
*LD04 has the same CV ranges as LD03.
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.
NP0
X7R
X7S
X5R
Y5V
See FLEXITERM® section
for CV options
Refer to page 4 for Electrical Graphs
Refer to page 16 for Electrical Graphs
Refer to page 20 for Electrical Graphs
Refer to page 23 for Electrical Graphs
Refer to page 26 for Electrical Graphs
29
MLCC Tin/Lead Termination “B”
Capacitance Range (NP0 Dielectric)
PREFERRED SIZES ARE SHADED
SIZE
LD02
LD03
LD05
LD06
Soldering
Packaging
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
16
25
50
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
25
50
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
Cap
(µF)
䉲
30
A
0.33
(0.013)
L
W
䉲
䉲
Letter
Max.
Thickness
䉲
SIZE
16
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
16
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100
16
25
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
16
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
25
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
200
16
25
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
50
100
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
P
M
P
M
P
M
P
M
P
M
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
Q
Q
Q
500
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
P
200
500
䉲
Cap
(pF)
䉲
(t) Terminal
2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
50
100
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
T
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
0.5
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.010
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.068
0.082
0.1
WVDC
䉲
(L) Length
16
25
50
t
16
LD02
C
0.56
(0.022)
25
50
LD03
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
50
100
LD05
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
50
100
LD06
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
MLCC Tin/Lead Termination “B”
Capacitance Range (NP0 Dielectric)
PREFERRED SIZES ARE SHADED
LD10
LD12
LD13
LD14
Reflow Only
Paper/Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
50
100
200
4.50 ± 0.30
(0.177 ± 0.012)
3.20 ± 0.20
(0.126 ± 0.008)
0.61 ± 0.36
(0.024 ± 0.014)
50
100
200
4.50 ± 0.30
(0.177 ± 0.012)
6.40 ± 0.40
(0.252 ± 0.016)
0.61 ± 0.36
(0.024 ± 0.014)
100
5.72 ± 0.25
(0.225 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
0.64 ± 0.39
(0.025 ± 0.015)
100
Cap
(pF)
25
50
200
50
䉲
L
䉲
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25
50
J
J
J
J
J
J
J
J
J
J
M
M
J
J
J
J
M
M
M
Q
Q
100
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
500
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
M
M
M
M
M
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
M
M
M
M
M
M
M
M
25
50
LD10
A
0.33
(0.013)
500
200
W
䉲
SIZE
Letter
Max.
Thickness
500
䉲
Cap
(µF)
25
䉲
(t) Terminal
T
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
0.5
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.010
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.068
0.082
0.1
WVDC
䉲
(L) Length
䉲
SIZE
Soldering
Packaging
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
K
K
K
K
K
K
K
K
K
M
M
M
M
K
K
K
K
K
P
P
P
P
P
X
M
M
M
M
P
Q
Q
Q
Q
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
P
P
P
P
100
200
500
50
LD12
G
0.90
(0.035)
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
100
200
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
P
P
P
Q
Q
50
LD13
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
t
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Y
Y
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Y
Y
Y
Y
100
200
LD14
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
31
MLCC Tin/Lead Termination “B”
Capacitance Range (X8R Dielectric)
SIZE
271
331
471
681
102
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
684
824
105
Cap
(pF)
Cap
(µF)
LD03
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
WVDC
270
330
470
680
1000
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.01
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.056
0.068
0.082
0.1
0.12
0.15
0.18
0.22
0.27
0.33
0.39
0.47
0.68
0.82
1
WVDC
25V
SIZE
Letter
Max.
Thickness
32
A
0.33
(0.013)
LD05
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
50V
25V
LD03
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
LD06
50V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
25V
LD05
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
50V
LD06
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
MLCC Tin/Lead Termination “B”
Capacitance Range (X7R Dielectric)
PREFERRED SIZES ARE SHADED
SIZE
LD02
LD03
LD05
LD06
Soldering
Packaging
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
16
25
50
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
16
25
50
10
2.01 ± 0.20
(0.079 ± 0.008)
1.25 ± 0.20
(0.049 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
16
25
50
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
P*
P*
(L) Length
(W) Width
(t)
Terminal
Cap
(pF)
Cap
(µF
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
100
150
220
330
470
680
1000
1500
2200
3300
4700
6800
0.010
0.015
0.022
0.033
0.047
0.068
0.10
0.15
0.22
0.33
0.47
0.68
1.0
1.5
2.2
3.3
4.7
10
22
47
100
WVDC
SIZE
Letter
Max.
Thickness
A
0.33
(0.013)
C
C
C
C
C
C
C
6.3
10
C
C
C
C
C
C
C
C
C
C*
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100
200
G
G
G
G
G
G
G
G
G
G
G
G
G
G
6.3
J*
J*
J*
J*
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N*
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
100
200
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
N
6.3
P*
P*
10
16
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
25 50
100
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
P
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
Q
Q
Q
Q
Q*
Q*
Q*
Q*
Q*
10
16
25
200
J
J
J
J
J
J
J
J
J
J
J
J
J
J
P
P
Q
Q
J
J
J
J
J
J
J
J
J
J
J
M
Q
Q
Q
Q
Q
Q
J
J
J
J
J
J
M
M
M
M
P
P
50
100
200
500
K
K
K
K
M
M
M
M
P
P
Q*
16
25
50
6.3
10
16
LD02
C
0.56
(0.022)
25
50
100
200
6.3
10
LD03
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
16
25
50
100
200
6.3
LD05
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
500
LD06
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
= Under Development
33
MLCC Tin/Lead Termination “B”
Capacitance Range (X7R Dielectric)
PREFERRED SIZES ARE SHADED
LD10
LD12
LD13
LD20
LD14
Reflow Only
Paper/Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
Reflow Only
All Embossed
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
25
50
100
4.50 ± 0.30
(0.177 ± 0.012)
3.20 ± 0.20
(0.126 ± 0.008)
0.61 ± 0.36
(0.024 ± 0.014)
100
200
4.50 ± 0.30
(0.177 ± 0.012)
6.40 ± 0.40
(0.252 ± 0.016)
0.61 ± 0.36
(0.024 ± 0.014)
50
100
5.70 ± 0.40
(0.225 ± 0.016)
5.00 ± 0.40
(0.197 ± 0.016)
0.64 ± 0.39
(0.025 ± 0.015)
50
100
5.72 ± 0.25
(0.225 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
0.64 ± 0.39
(0.025 ± 0.015)
50
100
16
50
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
P
P
Z
Z
Z
Z
Z
10
16
25
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
X
X
Z
Z
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
M
P
Q
Q
X
Z
Z
Z
J
J
J
J
J
J
J
J
J
J
M
M
Z
Z
M
M
M
M
M
M
P
Q
Q
K
K
K
K
K
K
K
K
K
K
K
M
M
Z
Z
Z
Z
25
200
L
W
T
C
0.56
(0.022)
K
K
K
K
K
K
K
K
K
M
P
Q
X
Z
Z
K
K
K
K
K
K
K
P
P
X
K
P
P
X
Z
Z
Z
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
t
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
Z
X
X
X
X
X
X
X
X
X
X
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
100
200
50
P
P
P
P
P
P
P
P
P
P
P
P
P
X
Z
50
100
200
500
50
LD10
A
0.33
(0.013)
500
䉲
34
500
䉲
SIZE
Letter
Max.
Thickness
200
䉲
Cap
(µF
10
䉲
Cap
(pF)
䉲
(t) Terminal
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
100
150
220
330
470
680
1000
1500
2200
3300
4700
6800
0.010
0.015
0.022
0.033
0.047
0.068
0.10
0.15
0.22
0.33
0.47
0.68
1.0
1.5
2.2
3.3
4.7
10
22
47
100
WVDC
䉲
(L) Length
䉲
SIZE
Soldering
Packaging
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
100
200
LD12
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
500
50
100
25
LD13
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
50
LD20
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
100
LD14
MLCC Tin/Lead Termination “B”
Capacitance Range (X5R Dielectric)
PREFERRED SIZES ARE SHADED
LD02
LD03
LD05
LD06
LD10
Reflow/Wave
All Paper
Reflow/Wave
All Paper
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
Reflow/Wave
Paper/Embossed
Cap
(pF)
1000
1500
2200
C
C
C
3300
4700
6800
C
C
0.010
0.015
0.022
C
C
C
C
0.033
0.047
0.068
C
C
C
C
C
C
1.0
1.5
2.2
3.3
4.7
10
22
47
100
WVDC
SIZE
Letter
Max.
Thickness
W
䉲
T
t
C
G
G
G
G
G
G
G
G
G
G
G
G
G
G
C*
G
G
C* C*
G
G
G
G
J*
C* C* C*
G
G
C* C*
G*
G* J*
J*
J*
J*
J*
J*
E*
J*
J*
K*
4 6.3 10 16
25 50
4
J*
J*
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
G
G
N
G
G
G
N
N
N
G
N
N
N
J
0.94
(0.037)
Q
N
N
N
N
N
P*
Q
Q
Q
Q
Q
Q
Q
Q*
Q
Q
Q
P*
Q* Q* Q*
Q*
*
Q
Q
Q
Q
Q
N N
N N N* N*
N* N* N* *
X
Q
Z
X
X
X
Z
X
X
Z
Z
Z
Z Z Z Z
Z*
Z* Z*
6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10
LD03
G
0.90
(0.035)
N
N
N
N
N
N
6.3 10 16 25 35 50
LD02
A
0.33
(0.013)
L
25 50
C
0.10
0.15
0.22
0.33
0.47
0.68
䉲
C
C
C
4
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
0.50 ± 0.25
(0.020 ± 0.010)
6.3 10 16 25 35 50 6.3 10
䉲
C
330
470
680
4
2.01 ± 0.20
3.20 ± 0.20
(0.079 ± 0.008)
(0.126 ± 0.008)
1.25 ± 0.20
1.60 ± 0.20
(0.049 ± 0.008)
(0.063 ± 0.008)
0.50 ± 0.25
0.50 ± 0.25
(0.020 ± 0.010)
(0.020 ± 0.010)
6.3 10 16 25 35 50 6.3 10 16 25 35 50
䉲
Cap
(µF)
100
150
220
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.35 ± 0.15
(0.014 ± 0.006)
6.3 10 16 25 35 50
䉲
(t) Terminal
1.00 ± 0.10
(0.040 ± 0.004)
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.15
(0.010 ± 0.006)
4 6.3 10 16 25 50
䉲
(W) Width
mm
(in.)
mm
(in.)
mm
(in.)
WVDC
䉲
(L) Length
LD12
䉲
SIZE
Soldering
Packaging
LD05
K
1.02
(0.040)
M
1.27
(0.050)
LD06
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
LD10
X
2.29
(0.090)
25 50
LD12
Y
2.54
(0.100)
Z
2.79
(0.110)
= Under Development
= *Optional Specifications – Contact factory
NOTE: Contact factory for non-specified capacitance values
35
MLCC Low Profile
General Specifications
GENERAL DESCRIPTION
AVX introduces the LT series comprising a range of low profile
products in our X5R and X7R dielectric. X5R is a Class II dielectric
with temperature varation of capacitance within ±15% from –55°C to
+85°C. Offerings include 0201, 0402, 0603, 0805 1206, and 1210
packages in compact, low profile designs. The LT series is ideal for
decoupling and filtering applications where height clearance is limited.
AVX is also expanding the low profile products in our X7R dielectric.
X7R is a Class II dielectric with temperature variation of capacitance
within ±15% from -55ºC to +125ºC. Please contact the factory for
availability of any additional values not listed.
PART NUMBER (see page 2 for complete part number explanation)
LT05
Z
D
475
K
A
T
2
Size
LT01 - 0201
LT02 - 0402
LT03 - 0603
LT05 - 0805
LT06 - 1206
LT10 - 1210
Voltage
4V = 4
6.3V = 6
10V = Z
16V = Y
25V = 3
Dielectric
X5R = D
X7R = C
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
Capacitance
Tolerance
K = ±10%
M = ±20%
Failure
Rate
A = Not
Applicable
Terminations
T = Plated Ni
and Sn
S
Special
Packaging
Code
2 = 7" Reel
See table below
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Contact
Factory
For
Multiples
NOTE: Contact factory for availability of tolerance options for specific part numbers.
SIZE
Cap
(µF)
WVDC
104
0.10
0.22
0.47
105
1.0
1.5
2.2
4.7
106
10
22
47
WVDC
SIZE
LT01
4
Z
LT02
4
6.3
Q
C
LT03
10
16
S
4
S
X/W
4
4
LT05
16
25
S
X
X
X
S
S
LT01
6.3
6.3
10
16
4
LT02
S
X
36
J
0.15
(0.006)
Z
0.22
(0.009)
Q
C
0.25
0.36
(0.010)
(0.014)
PAPER
6.3
16
LT03
S
0.56
(0.022)
X
0.95
(0.038)
10
W
1.02
(0.040)
EMBOSSED
25
LT06
16
25
X
X
10
16
LT10
25
16
25
X
X
= X7R
Letter
Max.
Thickness
6.3
X
S
X
6.3
10
LT05
X
X
16
25
10
W
W
W
W
W
16
25
16
LT06
LT10
25
UltraThin Ceramic Capacitors
UT023D103MAT2C
The Ultrathin (UT) series of ceramic capacitors is a new product offering from AVX. The UT
series was designed to meet the stringent thickness requirements of our customers. AVX
developed a new termination process (FCT - Fine Copper Termination) that provides
unbeatable flatness and repeatability. The series includes products < 0.35mm in height
and is targeted for applications such as Smart cards, Memory modules, High Density SIM
cards, Mobile phones, MP3 players, and embedded solutions.
HOW TO ORDER
UT
02
3
D
103
M
A
T
2
C
Style
Ultra
Thin
Case
Size
0402
Rated
Voltage
25V
Temperature
Characteristic
X5R
Coded
Cap
0.01µF
Cap
Tolerance
± 20%
Termination
Style
Commercial
Termination
100% Sn
Packaging
7" Reel = 15,000 pcs
13" Reel = 50,000 pcs
Thickness
0.30mm max
RECOMMENDED SOLDER
PAD DIMENSIONS
L
BL
W
L
BL
End View
T
0.50
(0.020)
Top View
Side View
PART DIMENSIONS
L
W
T
BL
0.50 ± 0.10
(0.020 ± 0.004)
0.25 ± 0.05
(0.010 ± 0.002)
0.25 ± 0.10
(0.010 ± 0.004)
0.60
(0.024)
0.50
(0.020)
mm (inches)
1.00 ± 0.10
(0.039±0.004)
mm (inches)
1.70
(0.067)
Temperature Coefficient
% ⌬ Capacitance
20
15
10
5
0
-5
-10
-15
-20
-80
-60
-40
-20
0
20
40
60
80
100
Temperature ºC
PERFORMANCE CHARACTERISTICS
Capacitance Value
Capacitance Tolerance
Dissipation Factor Range
Operating Temperature
Temperature Coefficient
Rated Voltage
Insulation Resistance at 25ºC and Rated Voltage
Test Frequency
0.01µF
±20%
3.0%
-55°C to +85°C
±15%
25V
100,000 Mohms
1 Vrms @ 1 KHz
37
Automotive MLCC
Automotive
GENERAL DESCRIPTION
AVX Corporation has supported the Automotive Industry requirements for
Multilayer Ceramic Capacitors consistently for more than 10 years. Products
have been developed and tested specifically for automotive applications and
all manufacturing facilities are QS9000 and VDA 6.4 approved.
As part of our sustained investment in capacity and state of the art
technology, we are now transitioning from the established Pd/Ag electrode
system to a Base Metal Electrode system (BME).
AVX is using AECQ200 as the qualification vehicle for this transition. A detailed
qualification package is available on request and contains results on a range
of part numbers including:
• X7R dielectric components containing BME electrode and copper
terminations with a Ni/Sn plated overcoat.
• X7R dielectric components, BME electrode with epoxy finish for conductive
glue mounting.
• X7R dielectric components BME electrode and soft terminations with a
Ni/Sn plated overcoat.
• NP0 dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat.
HOW TO ORDER
0805
Size
0402
0603
0805
1206
1210
1812
5
Voltage
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
A
104
K
4
T
2
A
Dielectric
NP0 = A
X7R = C
X8R = F
Capacitance
Code (In pF)
2 Significant
Digits + Number
of Zeros
e.g. 10µF = 106
Capacitance
Tolerance
F = ±1%
(≥10pF)*
G = ±2%
(≥10pF)*
J = ±5%
(≤1µF)
K = ±10%
M = ±20%
Failure Rate
4 = Automotive
Terminations
T = Plated Ni and Sn
Z = FLEXITERM®**
U = Conductive Epoxy**
Packaging
2 = 7" Reel
4 = 13" Reel
Special Code
A = Std. Product
**X7R & X8R only
*NPO only
Contact factory for availability of Tolerance Options for Specific Part Numbers.
NOTE: Contact factory for non-specified capacitance values.
0402 case size available in T termination only.
COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON
Administrative
Commercial
Standard Part Numbers.
No restriction on who purchases these parts.
Automotive
Specific Automotive Part Number. Used to control
supply of product to Automotive customers.
Design
Minimum ceramic thickness of 0.020"
Minimum Ceramic thickness of 0.029" (0.74mm)
on all X7R product.
Dicing
Side & End Margins = 0.003" min
Side & End Margins = 0.004" min
Cover Layers = 0.005" min
Lot Qualification
(Destructive Physical
Analysis - DPA)
As per EIA RS469
Increased sample plan –
stricter criteria.
Visual/Cosmetic Quality
Standard process and inspection
100% inspection
Application Robustness
Standard sampling for accelerated
wave solder on X7R dielectrics
Increased sampling for accelerated wave solder on
X7R and NP0 followed by lot by lot reliability testing.
All Tests have Accept/Reject Criteria 0/1
38
Automotive MLCC
NP0/X7R Dielectric
FLEXITERM® FEATURES
a) Bend Test
The capacitor is soldered to the PC Board as shown:
b) Temperature Cycle testing
FLEXITERM® has the ability to withstand at least 1000
cycles between –55°C and +125°C
1mm/sec
90 mm
Typical bend test results are shown below:
Style
Conventional Term
0603
>2mm
0805
>2mm
1206
>2mm
Soft Term
>5
>5
>5
ELECTRODE AND TERMINATION OPTIONS
NP0 DIELECTRIC
NP0 Ag/Pd Electrode
Nickel Barrier Termination
PCB Application
Sn
Ni
Ag
Figure 1 Termination Code T
X7R DIELECTRIC
X7R Nickel Electrode
Soft Termination
PCB Application
X7R Dielectric
PCB Application
Ni
Cu
Epoxy
Ni
Sn
Sn
Ni
Cu
Figure 2 Termination Code T
Ni
Figure 3 Termination Code Z
Conductive Epoxy Termination
Hybrid Application
Cu
Termination
Ni
Conductive
Epoxy
Figure 4 Termination Code U
39
Automotive MLCC - NP0
Capacitance Range
0603
100
120
150
180
220
270
330
390
470
510
560
680
820
101
121
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
103
10pF
12
15
18
22
27
33
39
47
51
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
10nF
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V
50V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V
0805
100V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100V
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25V
0603
Letter
Max.
Thickness
A
0.33
(0.013)
C
0.56
(0.022)
50V
1206
100V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100V
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
1210
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
100V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
200V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
25V
50V
100V
200V
0805
= Under Development
40
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
500V
J
J
J
500V
50V
100V
200V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
P
P
P
J
M
M
M
M
25V
50V
100V
200V
1206
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
1812
25V
1210
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
50V
100V
K
K
K
K
K
K
50V
100V
1812
Y
2.54
(0.100)
Z
2.79
(0.110)
Automotive MLCC - X7R
Capacitance Range
0402
16V
221
271
331
391
471
561
681
821
102
182
222
332
472
103
123
153
183
223
273
333
473
563
683
823
104
124
154
224
334
474
684
105
155
225
335
475
106
226
25V
0603
50V
16V
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
Cap .22
(nF) .27
.33
.39
.47
.56
.68
.82
1
1.8
2.2
3.3
4.7
10
12
15
18
22
27
33
47
56
68
82
100
120
150
220
330
470
680
Cap 1
(µF) 1.5
2.2
3.3
4.7
10
22
0805
50V 100V 200V 16V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
N
N
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
1206
50V 100V 200V 16V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
Q
Q
1210
50V 100V 200V 500V 16V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
P
P
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
Q
Q
Q
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
P
P
P
X
X
X
25V
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
P
Q
Q
Z
Z
Z
1812
2220
50V 100V 50V 100V 25V
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
Q
Q
Z
Z
Z
Z
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
P
P
P
Q
Q
X
X
Z
Z
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
X
X
X
X
X
Z
Z
Z
50V
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
X
X
X
X
X
Z
Z
16V
25V
50V
16V
25V
0402
50V 100V 200V 16V
25V
0603
50V 100V 200V 16V
25V
50V 100V 200V 500V 16V
0805
1206
25V
Z
50V 100V 50V 100V 25V
1210
1812
50V
2220
= Under Development
Letter
Max.
Thickness
A
0.33
(0.013)
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
41
Automotive MLCC - X8R
Capacitance Range
SIZE
271
331
471
681
102
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
684
824
105
Cap
(pF)
Cap
(µF)
0603
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
WVDC
270
330
470
680
1000
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.01
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.056
0.068
0.082
0.1
0.12
0.15
0.18
0.22
0.27
0.33
0.39
0.47
0.68
0.82
1
WVDC
25V
SIZE
Letter
Max.
Thickness
A
0.33
(0.013)
0805
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
50V
25V
0603
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
1206
50V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
25V
0805
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
= AEC-Q200 Qualified
42
50V
1206
Y
2.54
(0.100)
Z
2.79
(0.110)
APS Series
APS for COTS+ Applications
GENERAL DESCRIPTION
As part of our continuing support to high reliability customers, AVX
has launched an Automotive Plus Series of parts (APS) qualified and manufactured
in accordance with automotive AEC-Q200 standard. Each production batch is quality tested to an enhanced requirement and shipped with a certificate of conformance.
On a quarterly basis a reliability package is issued to all APS customers.
A detailed qualification package is available on request and contains results on a
range of part numbers including:
• X7R dielectric components containing BME electrode and copper terminations
with a Ni/Sn plated overcoat.
• X7R dielectric components BME electrode and soft terminations with a Ni/Sn
plated overcoat (FLEXITERM®).
• X7R for Hybrid applications.
• NP0 dielectric components containing Pd/Ag electrode and silver termination with
a Ni/Sn plated overcoat.
We are also able to support customers who require an AEC-Q200 grade component
finished with Tin/Lead.
HOW TO ORDER
AP03
Size
AP03=0603
AP05=0805
AP06=1206
AP10=1210
AP12=1812
5
Voltage
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
A
104
K
Dielectric
NP0 = A
X7R = C
Capacitance
Code (In pF)
2 Significant Digits +
Number of Zeros
e.g. 10µF = 106
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
Q
T
2
Failure Rate
Packaging
Terminations
Q = APS T = Plated Ni and Sn** 2 = 7" Reel
4 = 13" Reel
Z = FLEXITERM®**
U = Conductive Epoxy**
B = 5% min lead
X = FLEXITERM® with
5% min lead
A
Special Code
A = Std. Product
Z, U, X for X7R only
**RoHS compliant
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
43
NP0 Automotive Plus Series / APS
Capacitance Range
0603
100
120
150
180
220
270
330
390
470
510
560
680
820
101
121
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
103
10pF
12
15
18
22
27
33
39
47
51
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
10nF
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V
50V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V
0805
100V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100V
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25V
0603
Letter
Max.
Thickness
A
0.33
(0.013)
C
0.56
(0.022)
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V
1206
100V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100V
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
25V
50V
0805
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
1210
100V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
200V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100V
200V
500V
J
J
J
500V
50V
100V
200V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
P
P
P
J
M
M
M
M
25V
50V
100V
200V
1206
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
1812
25V
1210
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
50V
100V
K
K
K
K
K
K
50V
100V
1812
Y
2.54
(0.100)
Z
2.79
(0.110)
AEC-Q200 qualified
TS 16949, ISO 9001 certified
44
X7R Automotive Plus Series / APS
Capacitance Range
0603
102
182
222
332
472
103
123
153
183
223
273
333
473
563
683
823
104
124
154
224
334
474
684
105
155
225
335
475
106
226
Cap 1
(nF) 1.8
2.2
3.3
4.7
10
12
15
18
22
27
33
47
56
68
82
100
120
150
220
330
470
680
Cap 1
(µF) 1.5
2.2
3.3
4.7
10
22
16V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
0805
50V 100V 200V 16V
G
G
G
J
G
G
J
G
G
J
G
G
J
G
G
J
G
G
J
G
J
G
J
G
J
G
J
G
J
G
J
G
J
G
J
G
J
G
J
G
J
J
M
M
N
N
N
N
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
1206
50V 100V 200V 16V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
J
J
M
J
J
M
J
J
M
J
J
M
J
J
M
J
J
M
J
J
M
J
J
M
J
J
M
J
M
M
J
M
J
M
J
M
J
M
J
M
M
M
M
Q
Q
25V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
Q
Q
1210
50V 100V 200V 500V 16V
J
J
J
J
K
J
J
J
J
K
J
J
J
J
K
J
J
J
J
K
J
J
J
J
K
J
J
J
J
K
J
J
J
K
J
J
J
K
J
J
J
K
J
J
J
K
J
J
J
K
J
J
J
K
J
M
J
K
J
M
J
K
J
M
J
K
J
M
J
K
J
M
J
K
M
M
K
M
M
K
M
Q
M
P
Q
P
P
Q
P
Q
Q
P
Q
Q
P
P
X
X
X
1812
2220
25V
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
P
Q
Q
Z
Z
Z
50V 100V 50V 100V 25V
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
K
K
K
M
K
K
K
M
K
K
K
M
K
K
K
P
K
K
K
P
K
K
M
P
M
M
P
Q
X
X
P
Q
X
X
Q
X
X
X
Q
X
X
X
Z
Z
X
X
Z
Z
Z
Z
Z
Z
Z
Z
25V
Z
50V 100V 50V 100V 25V
50V
Z
16V
25V
50V 100V 200V 16V
0603
25V
50V 100V 200V 16V
25V
0805
50V 100V 200V 500V 16V
1206
1210
50V
1812
2220
X
2.29
(0.090)
Y
2.54
(0.100)
= Under Development
Letter
Max.
Thickness
A
0.33
(0.013)
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
Z
2.79
(0.110)
AEC-Q200 qualified
TS 16949, ISO 9001 certified
45
MLCC with FLEXITERM®
General Specifications
GENERAL DESCRIPTION
With increased requirements from the automotive industry for additional
component robustness, AVX recognized the need to produce a MLCC with
enhanced mechanical strength. It was noted that many components may be
subject to severe flexing and vibration when used in various under the hood
automotive and other harsh environment applications.
To satisfy the requirement for enhanced mechanical strength, AVX had to
find a way of ensuring electrical integrity is maintained whilst external forces
are being applied to the component. It was found that the structure of the
termination needed to be flexible and after much research and development,
AVX launched FLEXITERM ® . FLEXITERM ® is designed to enhance the
mechanical flexure and temperature cycling performance of a standard
ceramic capacitor with an X7R dielectric. The industry standard for
flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to
5mm of flexure without internal cracks. Beyond 5mm, the capacitor
will generally fail “open”.
As well as for automotive applications FLEXITERM® will provide Design
Engineers with a satisfactory solution when designing PCB’s which may be
subject to high levels of board flexure.
PRODUCT ADVANTAGES
• High mechanical performance able to withstand, 5mm bend test
guaranteed.
• Increased temperature cycling performance, 3000 cycles and beyond.
• Flexible termination system.
• Reduction in circuit board flex failures.
• Base metal electrode system.
• Automotive or commercial grade products available.
APPLICATIONS
High Flexure Stress Circuit Boards
• e.g. Depanelization: Components near edges
of board.
Variable Temperature Applications
• Soft termination offers improved reliability performance in applications where there is temperature variation.
• e.g. All kind of engine sensors: Direct
connection to battery rail.
Automotive Applications
• Improved reliability.
• Excellent mechanical performance and
thermo mechanical performance.
HOW TO ORDER
0805
5
C
104
K
Style
0603
0805
1206
1210
1812
2220
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
2 = 200V
Dielectric
C = X7R
F = X8R
Capacitance
Code (In pF)
2 Sig Digits +
Number of Zeros
e.g., 104 = 100nF
Capacitance
Tolerance
J = ±5%*
K = ±10%
M = ±20%
*≤1µF only
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.
46
A
Z
Failure
Terminations
Rate
Z = FLEXITERM®
A=Commercial For FLEXITERM®
4 = Automotive with Tin/Lead
termination see
AVX LD Series
2
A
Packaging
2 = 7" reel
4 = 13" reel
Special Code
A = Std. Product
MLCC with FLEXITERM®
Specifications and Test Methods
BOARD BEND TEST PROCEDURE
PERFORMANCE TESTING
According to AEC-Q200
AEC-Q200 Qualification:
• Created by the Automotive Electronics
Council
• Specification defining stress
test qualification for
passive components
Testing:
Key tests used to compare
soft termination to
AEC-Q200 qualification:
• Bend Test
• Temperature Cycle Test
Test Procedure as per AEC-Q200:
Sample size:
20 components
Span: 90mm
Minimum deflection spec: 2 mm
LOADING
KNIFE
• Components soldered onto FR4 PCB (Figure 1)
MOUNTING
ASSEMBLY
• Board connected electrically to the test equipment
(Figure 2)
DIGITAL
CALIPER
BEND TESTPLATE
CONNECTOR
CONTROL
PANEL
CONTROL PANEL
Fig 1 - PCB layout with electrical connections
BOARD BEND TEST RESULTS
Fig 2 - Board Bend test
equipment
0603
Substrate Bend (mm)
NPO
X7R
X7R soft term
1206
12
10
8
6
4
2
0
NPO
X7R
0805
Substrate Bend (mm)
12
10
8
6
4
2
0
12
10
8
6
4
2
0
Substrate Bend (mm)
Substrate Bend (mm)
AEC-Q200 Vrs AVX FLEXITERM® Bend Test
12
10
8
6
4
2
0
NPO
X7R
AVX ENHANCED SOFT
TERMINATION BEND TEST
PROCEDURE
X7R soft term
1210
X7R soft term
NPO
X7R
Bend Test
The capacitor is soldered to the printed circuit
board as shown and is bent up to 10mm at
1mm per second:
Max. = 10mm
X7R soft term
TABLE SUMMARY
90mm
Typical bend test results are shown below:
Style
Conventional Termination
FLEXITERM®
0603
>2mm
>5mm
0805
>2mm
>5mm
1206
>2mm
>5mm
TEMPERATURE CYCLE TEST PROCEDURE
Test Procedure as per AEC-Q200:
The test is conducted to determine the resistance of the
component when it is exposed to extremes of alternating
high and low temperatures.
• Sample lot size quantity 77 pieces
• TC chamber cycle from -55ºC to +125ºC for 1000 cycles
• Interim electrical measurements at 250, 500, 1000 cycles
• Measure parameter capacitance dissipation factor,
insulation resistance
Test Temperature Profile (1 cycle)
+1250 C
• The board is placed on 2 supports 90mm
apart (capacitor side down)
• The row of capacitors is aligned with the
load stressing knife
Max. = 10mm
• The load is applied and the deflection where
the part starts to crack is recorded (Note:
Equipment detects the start of the crack
using a highly sensitive current detection
circuit)
• The maximum deflection capability is 10mm
+250 C
-550 C
1 hour 12mins
47
MLCC with FLEXITERM®
Specifications and Test Methods
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS
0603
10
8
% Failure
% Failure
8
6
4
2
0
6
4
2
0
0
500 1000 1500 2000 2500 3000
0
1206
10
500 1000 1500 2000 2500 3000
1210
10
8
% Failure
8
% Failure
0805
10
6
4
2
0
6
4
2
0
0
500 1000 1500 2000 2500 3000
0
Soft Term - No Defects up to 3000 cycles
500 1000 1500 2000 2500 3000
AEC-Q200 specification states
1000 cycles compared to AVX
3000 temperature cycles.
FLEXITERM® TEST SUMMARY
• Qualified to AEC-Q200 test/specification with the exception
of using AVX 3000 temperature cycles (up to +150°C bend
test guaranteed greater than 5mm).
• FLEXITERM® provides improved performance compared to
standard termination systems.
WITHOUT SOFT TERMINATION
Major fear is of latent board flex failures.
48
• Board bend test improvement by a factor of 2 to 4 times.
• Temperature Cycling:
– 0% Failure up to 3000 cycles
– No ESR change up to 3000 cycles
WITH SOFT TERMINATION
Far superior mechanical performance.
Generally open failure mode beyond
5mm flexure.
MLCC with FLEXITERM®
X8R Dielectric Capacitance Range
SIZE
271
331
471
681
102
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
684
824
105
Cap
(pF)
Cap
(µF)
0603
25V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
WVDC
270
330
470
680
1000
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.01
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.056
0.068
0.082
0.1
0.12
0.15
0.18
0.22
0.27
0.33
0.39
0.47
0.68
0.82
1
WVDC
25V
SIZE
Letter
Max.
Thickness
A
0.33
(0.013)
0805
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
50V
25V
0603
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
1206
50V
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V
25V
50V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
25V
0805
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
50V
1206
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
= AEC-Q200 Qualified
49
MLCC with FLEXITERM®
X7R Dielectric Capacitance Range
0603
101
121
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
562
682
822
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
564
684
824
105
155
185
225
335
475
106
226
0805
25V
50V
100V
200V
10V
16V
25V
50V
100V
200V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
N
N
N
N
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
16V
25V
50V
100V
200V
10V
0603
Letter
Max.
Thickness
50
1206
16V
A
0.33
(0.013)
16V
25V
50V
100V
200V
25V
50V
100V
200V
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
Q
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
Q
Q
Q
Q
Q
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
P
P
P
P
P
P
P
P
Q
Q
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
P
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
16V
25V
0805
C
0.56
(0.022)
E
0.71
(0.028)
PAPER
G
0.90
(0.035)
J
0.94
(0.037)
1210
16V
50V
100V
1206
K
1.02
(0.040)
M
1.27
(0.050)
N
1.40
(0.055)
200V
16V
K
K
K
K
K
K
M
M
P
P
P
P
P
P
P
P
P
Z
Z
Z
Z
16V
25V
K
K
K
K
K
K
M
M
P
P
P
P
Q
X
Z
Z
Z
Z
Z
Z
Z
25V
1812
50V
100V
K
K
K
K
K
M
M
M
P
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
Z
Z
Z
Z
Z
K
K
K
K
K
K
M
M
P
P
P
P
Q
X
Z
Z
Z
Z
Z
Z
Z
50V
100V
25V
50V
100V
K
K
K
K
K
K
K
M
M
M
X
X
X
X
X
X
K
K
K
K
K
K
K
M
M
M
X
X
X
X
X
X
K
K
K
K
K
K
K
M
M
M
X
X
X
X
X
X
Z
Z
Z
Z
Z
K
K
K
K
K
M
M
X
X
X
X
X
Z
Z
Z
Z
Z
Z
Z
16V
25V
1210
P
Q
1.52
1.78
(0.060)
(0.070)
EMBOSSED
2220
16V
50V
100V
1812
X
2.29
(0.090)
Y
2.54
(0.100)
Z
2.79
(0.110)
25V
50V
100V
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
Z
Z
Z
25V
Z
50V
2220
100V
FLEXISAFE MLC Chips
For Ultra Safety Critical Applications
AVX have developed a range of components specifically for safety
critical applications.
Utilizing the award-winning FLEXITERM™ layer in conjunction with
the cascade design previously used for high voltage MLCCs, a
range of ceramic capacitors is now available for customers who
require components designed with an industry leading set of
safety features.
The FLEXITERM™ layer protects the component from any
damage to the ceramic resulting from mechanical stress during
PCB assembly or use with end customers. Board flexure type
mechanical damage accounts for the majority of MLCC failures.
The addition of the cascade structure protects the component
from low insulation resistance failure resulting from other common
causes for failure; thermal stress damage, repetitive strike ESD
damage and placement damage. With the inclusion of the
cascade design structure to complement the FLEXITERM™ layer,
the FLEXISAFE range of capacitors has unbeatable safety
features.
HOW TO ORDER
FS03
5
C
104
K
Q
Z
2
A
Size
FS03 = 0603
FS05 = 0805
FS06 = 1206
FS10 = 1210
Voltage
16V = Y
25V = 3
50V = 5
100V = 1
Dielectric
X7R = C
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
e.g. 10µF =106
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
Failure
Rate
A = Commercial
4 = Automotive
Q = APS
Terminations
Z = FLEXITERMTM
X = FLEXITERMTM
with 5%
min lead
Packaging
2 = 7" Reel
4 = 13" Reel
Special
Code
A = Std. Product
FLEXISAFE X7R RANGE
Capacitance
Code
nF
102
1
182
1.8
222
2.2
332
3.3
472
4.7
103
10
123
12
153
15
183
18
223
22
273
27
333
33
473
47
563
56
683
68
823
82
104
100
124
120
154
150
224
220
334
330
474
470
Qualified
16
0603
25
50
100
16
0805
25
50
16
1206
25
50
16
1210
25
50
In Qualification
51
Capacitor Array
Capacitor Array (IPC)
BENEFITS OF USING CAPACITOR
ARRAYS
AVX capacitor arrays offer designers the opportunity to
lower placement costs, increase assembly line output
through lower component count per board and to reduce
real estate requirements.
Reduced Costs
Placement costs are greatly reduced by effectively placing
one device instead of four or two. This results in increased
throughput and translates into savings on machine time.
Inventory levels are lowered and further savings are made
on solder materials, etc.
Space Saving
Space savings can be quite dramatic when compared to
the use of discrete chip capacitors. As an example, the
0508 4-element array offers a space reduction of >40% vs.
4 x 0402 discrete capacitors and of >70% vs. 4 x 0603
discrete capacitors. (This calculation is dependent on the
spacing of the discrete components.)
Increased Throughput
Assuming that there are 220 passive components placed in a
mobile phone:
A reduction in the passive count to 200 (by replacing
discrete components with arrays) results in an increase in
throughput of approximately 9%.
A reduction of 40 placements increases throughput by 18%.
For high volume users of cap arrays using the very latest
placement equipment capable of placing 10 components per
second, the increase in throughput can be very significant and
can have the overall effect of reducing the number of placement machines required to mount components:
If 120 million 2-element arrays or 40 million 4-element arrays
were placed in a year, the requirement for placement
equipment would be reduced by one machine.
During a 20Hr operational day a machine places 720K
components. Over a working year of 167 days the machine
can place approximately 120 million. If 2-element arrays are
mounted instead of discrete components, then the number
of placements is reduced by a factor of two and in the
scenario where 120 million 2-element arrays are placed there
is a saving of one pick and place machine.
Smaller volume users can also benefit from replacing
discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement
machines. This in turn generates the opportunity to increase
overall production output without further investment in new
equipment.
W2A (0508) Capacitor Arrays
4 pcs 0402 Capacitors
=
1 pc 0508 Array
1.88
(0.074)
1.0
1.4
(0.055) (0.039)
5.0 (0.197)
AREA = 7.0mm2 (0.276 in2)
2.1 (0.083)
AREA = 3.95mm2 (0.156 in2)
The 0508 4-element capacitor array gives a PCB space saving of over 40%
vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.
W3A (0612) Capacitor Arrays
4 pcs 0603 Capacitors
=
1 pc 0612 Array
2.0
(0.079)
2.3
1.5
(0.091) (0.059)
6.0 (0.236)
AREA = 13.8mm2 (0.543 in2)
3.2 (0.126)
AREA = 6.4mm2 (0.252 in2)
The 0612 4-element capacitor array gives a PCB space saving of over 50%
vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.
52
Capacitor Array
Capacitor Array (IPC)
GENERAL DESCRIPTION
0405 - 2 Element
0508 - 4 Element
0508 - 2 Element
0612 - 4 Element
AVX is the market leader in the development and manufacture of
capacitor arrays. The smallest array option available from AVX, the
0405 2-element device, has been an enormous success in the
Telecommunications market. The array family of products also
includes the 0612 4-element device as well as 0508 2-element and
4-element series, all of which have received widespread acceptance
in the marketplace.
AVX capacitor arrays are available in X5R, X7R and NP0 (C0G)
ceramic dielectrics to cover a broad range of capacitance values.
Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX
also now offers a range of automotive capacitor arrays qualified to
AEC-Q200 (see separate table).
Key markets for capacitor arrays are Mobile and Cordless Phones,
Digital Set Top Boxes, Computer Motherboards and Peripherals
as well as Automotive applications, RF Modems, Networking
Products, etc.
AVX Capacitor Array - W2A41A***K
S21 Magnitude
0
-5
-10
S21 mag. (dB)
-15
-20
-25
-30
5pF
10pF
15pF
22pF
33pF
39pF
68pF
-35
-40
0.01
0.1
1
10
Frequency (GHz)
HOW TO ORDER
W
Style
W = RoHS
L = SnPb
2
A
4
Case Array Number
Size
of Caps
1 = 0405
2 = 0508
3 = 0612
5 = 0306
3
Voltage
6 = 6V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
C
103
Dielectric Capacitance
Code
A = NP0
C = X7R 2 Sig Digits +
Number of
D = X5R
Zeros
M
A
Capacitance
Failure
Tolerance
Rate
J = ±5% A = Commercial
K = ±10% 4 = Automotive
M = ±20%
T
2A
Packaging &
Quantity
T = Plated Ni
Code
and Sn**
2A = 7" Reel
Z = FLEXITERM®**
(4000)
B = 5% min lead
4A = 13" Reel
X = FLEXITERM® with
(10000)
5% min lead
2F = 7" Reel
(1000)
Termination
Code
**RoHS compliant
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
53
Capacitor Array
Capacitance Range – NP0/C0G
SIZE
# Elements
0405
2
0508
2
0508
4
0612
4
Soldering
Packaging
Reflow Only
All Paper
1.00 ± 0.15
(0.039 ± 0.006)
1.37 ± 0.15
(0.054 ± 0.006)
0.66
(0.026)
Reflow/Wave
All Paper
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.60 ± 0.150
(0.063 ± 0.006)
3.20 ± 0.20
(0.126 ± 0.008)
1.35
(0.053)
Length
Width
mm
(in.)
mm
(in.)
mm
(in.)
Max.
Thickness
WVDC
1R0
Cap 1.0
1R2
(pF) 1.2
1R5
1.5
1R8
1.8
2R2
2.2
2R7
2.7
3R3
3.3
3R9
3.9
4R7
4.7
5R6
5.6
6R8
6.8
8R2
8.2
100
10
120
12
150
15
180
18
220
22
270
27
330
33
390
39
470
47
560
56
680
68
820
82
101
100
121
120
151
150
181
180
221
220
271
270
331
330
391
390
471
470
561
560
681
680
821
820
102
1000
122
1200
152
1500
182
1800
222
2200
272
2700
332
3300
392
3900
472
4700
562
5600
682
6800
822
8200
54
16
25
50
16
25
50
100
16
25
50
100
16
25
50
100
Capacitor Array
Capacitance Range – X7R/X5R
SIZE
0306 04050508 05080612
# Elements
4
Soldering
Packaging
Length
Width
Max.
Thickness
WVDC
101 Cap
121 (µF)
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
562
682
822
103 Cap
123 (µF)
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
474
564
684
824
105
125
155
185
225
335
475
106
226
476
107
mm
(in.)
mm
(in.)
mm
(in.)
Reflow Only
All Paper
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.50
(0.020)
6 10
16 25
6
2
2
4
4
Reflow Only
All Paper
1.00 ± 0.15
(0.039 ± 0.006)
1.37 ± 0.15
(0.054 ± 0.006)
0.66
(0.026)
10 16 25
Reflow/Wave
All Paper
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.60 ± 0.150
(0.063 ± 0.006)
3.20 ± 0.20
(0.126 ± 0.008)
1.35
(0.053)
50
6
10
16
25
50
100
6
10
16
25
50
100
6
10
16
25
50
100
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.010
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.056
0.068
0.082
0.10
0.12
0.15
0.18
0.22
0.27
0.33
0.47
0.56
0.68
0.82
1.0
1.2
1.5
1.8
2.2
3.3
4.7
10
22
47
100
= Currently available X7R
= Currently available X5R
= Under development X7R, contact factory for advance samples
= Under development X5R, contact factory for advance samples
55
Automotive Capacitor Array (IPC)
As the market leader in the development and manufacture of capacitor
arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to
compliment our product offering to the Automotive industry. Both the
AVX 0612 and 0508 4-element capacitor array styles are qualified to the
AEC-Q200 automotive specifications.
AEC-Q200 is the Automotive Industry qualification standard and a
detailed qualification package is available on request.
All AVX automotive capacitor array production facilities are certified to
ISO/TS 16949:2002.
0508 - 4 Element
0612 - 4 Element
HOW TO ORDER
3
W
Style
W = RoHS
L = SnPb
A
Y
4
C
Case
Array Number Voltage Dielectric
A = NP0
Size
of Caps Z = 10V
Y = 16V
C = X7R
1 = 0405
3 = 25V
F = X8R
2 = 0508
5 = 50V
3 = 0612
1 = 100V
104
K
4
Capacitance
Code (In pF)
Significant
Digits +
Number of
Zeros
e.g. 10µF=106
Capacitance
Tolerance
*J = ±5%
*K = ±10%
M = ±20%
T
2A
Failure Rate
Packaging
Terminations
4 = Automotive T = Plated Ni and Sn** & Quantity
Code
Z = FLEXITERM®**
2A = 7" Reel
B = 5% min lead
(4000)
X = FLEXITERM® with
4A = 13" Reel
5% min lead
(10000)
2F = 7" Reel
(1000)
**RoHS compliant
*Contact factory for availability by part number for K = ±10% and J = ±5% tolerance.
NP0/C0G
SIZE
No. of Elements
WVDC
1R0
Cap 1.0
1R2
(pF) 1.2
1R5
1.5
1R8
1.8
2R2
2.2
2R7
2.7
3R3
3.3
3R9
3.9
4R7
4.7
5R6
5.6
6R8
6.8
8R2
8.2
100
10
120
12
150
15
180
18
220
22
270
27
330
33
390
39
470
47
560
56
680
68
820
82
101
100
121
120
151
150
181
180
221
220
271
270
331
330
391
390
471
470
561
560
681
680
821
820
102
1000
122
1200
152
1500
182
1800
222
2200
272
2700
332
3300
392
3900
472
4700
562
5600
682
6800
822
8200
0405 0508
2
50
= NPO/COG
= Under development
56
2
50
16
X7R
X8R
0508
0612
SIZE
0508
0508
0612
4
4
No. of Elements
WVDC
101
Cap 100
121
(pF) 120
151
150
181
180
221
220
271
270
331
330
391
390
471
470
561
560
681
680
821
820
102
1000
122
1200
152
1500
182
1800
222
2200
272
2700
332
3300
392
3900
472
4700
562
5600
682
6800
822
8200
103 Cap 0.010
123
(µF) 0.012
153
0.015
183
0.018
223
0.022
273
0.027
333
0.033
393
0.039
473
0.047
563
0.056
683
0.068
823
0.082
104
0.10
124
0.12
154
0.15
224
0.22
2
25
4
4
25
25
50
100
16
25
50
100
10
= X7R
= X8R
= Under development
16
50
100
16
25
50
100
10
16
0405
50
100
2
16
Capacitor Array
Multi-Value Capacitor Array (IPC)
GENERAL DESCRIPTION
ADVANTAGES OF THE MULTI-VALUE
CAPACITOR ARRAYS
A recent addition to the array product range is the MultiValue Capacitor Array. These devices combine two different
capacitance values in standard ‘Cap Array’ packages and
are available with a maximum ratio between the two
capacitance values of 100:1. The multi-value array is
currently available in the 0405 and 0508 2-element styles
and also in the 0612 4-element style.
Whereas to date AVX capacitor arrays have been suited to
applications where multiple capacitors of the same value are
used, the multi-value array introduces a new flexibility to the
range. The multi-value array can replace discrete capacitors
of different values and can be used for broadband
decoupling applications. The 0508 x 2 element multi-value
array would be particularly recommended in this application.
Another application is filtering the 900/1800 or 1900MHz
noise in mobile phones. The 0405 2-element, low
capacitance value NP0, (C0G) device would be suited to this
application, in view of the space saving requirements of
mobile phone manufacturers.
Enhanced Performance Due to Reduced Parasitic
Inductance
When connected in parallel, not only do discrete capacitors
of different values give the desired self-resonance, but an
additional unwanted parallel resonance also results. This
parallel resonance is induced between each capacitor’s selfresonant frequencies and produces a peak in impedance
response. For decoupling and bypassing applications this
peak will result in a frequency band of reduced decoupling
and in filtering applications reduced attenuation.
The multi-value capacitor array, combining capacitors in one
unit, virtually eliminates the problematic parallel resonance,
by minimizing parasitic inductance between the capacitors,
thus enhancing the broadband decoupling/filtering
performance of the part.
Reduced ESR
An advantage of connecting two capacitors in parallel is a
significant reduction in ESR. However, as stated above,
using discrete components brings with it the unwanted side
effect of parallel resonance. The multi-value cap array is
an excellent alternative as not only does it perform the
same function as parallel capacitors but also it reduces the
uncertainty of the frequency response.
HOW TO ORDER (Multi-Value Capacitor Array - IPC)
W
Style
2
Case
Size
1 = 0405
2 = 0508
3 = 0612
A
Array
2
Y
C
102M
104M
1st Value
2nd Value
Number
of Caps
Voltage
Dielectric Capacitance Capacitance
Z = 10V
A = NP0
Code (In pF)
Tolerance
Y = 16V
C = X7R
2 Sig. Digits +
K = ±10%
3 = 25V
D = X5R
No. of Zeros
M = ±20%
5 = 50V
1 = 100V
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
A
T
2A
Failure
Rate
Terminations
T = Plated Ni and Sn**
Z = FLEXITERM®**
B = 5% min lead
X = FLEXITERM® with
5% min lead
Packaging &
Quantity
Code
2A = 7" Reel (4000)
4A = 13" Reel (10000)
2F = 7" Reel (1000)
**RoHS compliant
IMPEDANCE VS FREQUENCY
Cap (Min/Max)
NP0
X5R/X7R
0612 4-element
100/471
221/104
0508 2-element
100/471
221/104
0405 2-element
100/101
101/103
1
• Max. ratio between the two cap values is 1:100.
• The voltage of the higher capacitance value dictates
the voltage of the multi-value part.
• Only combinations of values within a specific dielectric
range are possible.
Impedance (Ohms)
2xDiscrete Caps (0603)
0.8
0.6
0.4
Multi Value Cap (0508)
0.2
0
1
10
100
1000
Frequency (MHz)
57
Capacitor Array
PART & PAD LAYOUT DIMENSIONS
0405 - 2 Element
PAD LAYOUT
millimeters (inches)
0612 - 4 Element
PAD LAYOUT
W
W
E
E
X
X
P
D
S
P
S
S
D
S
A
A
B
T
C
C
C/L
OF CHIP
BW
B
T
BW
C/L OF CHIP
C
L
C
L
BL L
BL
L
0508 - 2 Element
PAD LAYOUT
0508 - 4 Element
PAD LAYOUT
E
E
W
P
S
D
W
S
D
X
X
A
P
S
S
A
B
B
C
T
T
BW
BW
C/L
OF CHIP
C
C/L OF CHIP
C
L
C
L
BL
L
BL L
PART DIMENSIONS
PAD LAYOUT DIMENSIONS
0405 - 2 Element
L
W
1.00 ± 0.15
1.37 ± 0.15
(0.039 ± 0.006) (0.054 ± 0.006)
0405 - 2 Element
T
0.66 MAX
(0.026 MAX)
BW
BL
0.36 ± 0.10
0.20 ± 0.10
(0.014 ± 0.004) (0.008 ± 0.004)
P
S
0.64 REF
0.32 ± 0.10
(0.025 REF) (0.013 ± 0.004)
0508 - 2 Element
L
W
1.30 ± 0.15
2.10 ± 0.15
(0.051 ± 0.006) (0.083 ± 0.006)
W
1.30 ± 0.15
2.10 ± 0.15
(0.051 ± 0.006) (0.083 ± 0.006)
0.94 MAX
(0.037 MAX)
BW
BL
0.43 ± 0.10
0.33 ± 0.08
(0.017 ± 0.004) (0.013 ± 0.003)
P
S
1.00 REF
0.50 ± 0.10
(0.039 REF) (0.020 ± 0.004)
L
W
58
C
D
E
1.20
(0.047)
0.30
(0.012)
0.64
(0.025)
A
B
C
D
E
0.68
(0.027)
1.32
(0.052)
2.00
(0.079)
0.46
(0.018)
1.00
(0.039)
0508 - 4 Element
T
0.94 MAX
(0.037 MAX)
BW
BL
0.25 ± 0.06
0.20 ± 0.08
(0.010 ± 0.003) (0.008 ± 0.003)
P
X
S
0.50 REF
0.75 ± 0.10
0.25 ± 0.10
(0.020 REF) (0.030 ± 0.004) (0.010 ± 0.004)
0612 - 4 Element
1.60 ± 0.20
3.20 ± 0.20
(0.063 ± 0.008) (0.126 ± 0.008)
B
0.74
(0.029)
0508 - 2 Element
T
0508 - 4 Element
L
A
0.46
(0.018)
A
B
C
D
E
0.56
(0.022)
1.32
(0.052)
1.88
(0.074)
0.30
(0.012)
0.50
(0.020)
0612 - 4 Element
T
1.35 MAX
(0.053 MAX)
BW
BL
+0.25
0.41 ± 0.10
0.18 -0.08
(0.016 ± 0.004) (0.007+0.010 )
-0.003
P
X
S
0.76 REF
1.14 ± 0.10
0.38 ± 0.10
(0.030 REF) (0.045 ± 0.004) (0.015 ± 0.004)
A
B
C
D
E
0.89
(0.035)
1.65
(0.065)
2.54
(0.100)
0.46
(0.018)
0.76
(0.030)
Low Inductance Capacitors
Introduction
The signal integrity characteristics of a Power Delivery
Network (PDN) are becoming critical aspects of board level
and semiconductor package designs due to higher operating
frequencies, larger power demands, and the ever shrinking
lower and upper voltage limits around low operating voltages.
These power system challenges are coming from mainstream
designs with operating frequencies of 300MHz or greater,
modest ICs with power demand of 15 watts or more, and
operating voltages below 3 volts.
The classic PDN topology is comprised of a series of
capacitor stages. Figure 1 is an example of this architecture
with multiple capacitor stages.
An ideal capacitor can transfer all its stored energy to a load
instantly. A real capacitor has parasitics that prevent
instantaneous transfer of a capacitor’s stored energy. The
true nature of a capacitor can be modeled as an RLC
equivalent circuit. For most simulation purposes, it is possible
to model the characteristics of a real capacitor with one
capacitor, one resistor, and one inductor. The RLC values in
this model are commonly referred to as equivalent series
capacitance (ESC), equivalent series resistance (ESR), and
equivalent series inductance (ESL).
The ESL of a capacitor determines the speed of energy
transfer to a load. The lower the ESL of a capacitor, the faster
that energy can be transferred to a load. Historically, there
has been a tradeoff between energy storage (capacitance)
and inductance (speed of energy delivery). Low ESL devices
typically have low capacitance. Likewise, higher capacitance
devices typically have higher ESLs. This tradeoff between
ESL (speed of energy delivery) and capacitance (energy
storage) drives the PDN design topology that places the
fastest low ESL capacitors as close to the load as possible.
Low Inductance MLCCs are found on semiconductor
packages and on boards as close as possible to the load.
Slowest Capacitors
Fastest Capacitors
Semiconductor Product
VR
Bulk
Board-Level
Package-Level
Die-Level
Low Inductance Decoupling Capacitors
Figure 1 Classic Power Delivery Network (PDN) Architecture
LOW INDUCTANCE CHIP CAPACITORS
INTERDIGITATED CAPACITORS
The key physical characteristic determining equivalent series
inductance (ESL) of a capacitor is the size of the current loop
it creates. The smaller the current loop, the lower the ESL. A
standard surface mount MLCC is rectangular in shape with
electrical terminations on its shorter sides. A Low Inductance
Chip Capacitor (LICC) sometimes referred to as Reverse
Geometry Capacitor (RGC) has its terminations on the longer
side of its rectangular shape.
When the distance between terminations is reduced, the size
of the current loop is reduced. Since the size of the current
loop is the primary driver of inductance, an 0306 with a
smaller current loop has significantly lower ESL then an 0603.
The reduction in ESL varies by EIA size, however, ESL is
typically reduced 60% or more with an LICC versus a
standard MLCC.
The size of a current loop has the greatest impact on the ESL
characteristics of a surface mount capacitor. There is a
secondary method for decreasing the ESL of a capacitor.
This secondary method uses adjacent opposing current loops
to reduce ESL. The InterDigitated Capacitor (IDC) utilizes
both primary and secondary methods of reducing inductance.
The IDC architecture shrinks the distance between
terminations to minimize the current loop size, then further
reduces inductance by creating adjacent opposing current
loops.
An IDC is one single capacitor with an internal structure that
has been optimized for low ESL. Similar to standard MLCC
versus LICCs, the reduction in ESL varies by EIA case size.
Typically, for the same EIA size, an IDC delivers an ESL that is
at least 80% lower than an MLCC.
59
Low Inductance Capacitors
Introduction
LAND GRID ARRAY (LGA) CAPACITORS
LOW INDUCTANCE CHIP ARRAYS (LICA®)
Land Grid Array (LGA) capacitors are based on the first Low
ESL MLCC technology created to specifically address the
design needs of current day Power Delivery Networks (PDNs).
This is the 3rd low inductance capacitor technology
developed by AVX. LGA technology provides engineers with
new options. The LGA internal structure and manufacturing
technology eliminates the historic need for a device to be
physically small to create small current loops to minimize
inductance.
The first family of LGA products are 2 terminal devices. A
2 terminal 0306 LGA delivers ESL performance that is equal
to or better than an 0306 8 terminal IDC. The 2 terminal 0805
LGA delivers ESL performance that approaches the 0508
8 terminal IDC. New designs that would have used 8 terminal
IDCs are moving to 2 terminal LGAs because the layout is
easier for a 2 terminal device and manufacturing yield is better
for a 2 terminal LGA versus an 8 terminal IDC.
LGA technology is also used in a 4 terminal family of products
that AVX is sampling and will formerly introduce in 2008.
Beyond 2008, there are new multi-terminal LGA product
families that will provide even more attractive options for PDN
designers.
The LICA® product family is the result of a joint development
effort between AVX and IBM to develop a high performance
MLCC family of decoupling capacitors. LICA was introduced
in the 1980s and remains the leading choice of designers in
high performance semiconductor packages and high
reliability board level decoupling applications.
LICA® products are used in 99.999% uptime semiconductor
package applications on both ceramic and organic
substrates. The C4 solder ball termination option is the
perfect compliment to flip-chip packaging technology.
Mainframe class CPUs, ultimate performance multi-chip
modules, and communications systems that must have the
reliability of 5 9’s use LICA®.
LICA® products with either Sn/Pb or Pb-free solder balls are
used for decoupling in high reliability military and aerospace
applications. These LICA® devices are used for decoupling of
large pin count FPGAs, ASICs, CPUs, and other high power
ICs with low operating voltages.
When high reliability decoupling applications require the very
lowest ESL capacitors, LICA® products are the best option.
470 nF 0306 Impedance Comparison
1
0306 2T-LGA
0306 LICC
0306 8T-IDC
Impedance (ohms)
0603 MLCC
0.1
0.01
0.001
1
10
100
1000
Frequency (MHz)
Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).
60
Low Inductance Capacitors (RoHS)
0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors)
GENERAL DESCRIPTION
The key physical characteristic determining equivalent
series inductance (ESL) of a capacitor is the size of the
current loop it creates. The smaller the current loop, the
lower the ESL.
A standard surface mount MLCC is rectangular in shape
with electrical terminations on its shorter sides. A Low
Inductance Chip Capacitor (LICC) sometimes referred to
as Reverse Geometry Capacitor (RGC) has its
terminations on the longer sides of its rectangular shape.
The image on the right shows the termination differences
between an MLCC and an LICC.
When the distance between terminations is reduced, the
size of the current loop is reduced. Since the size of the
current loop is the primary driver of inductance, an 0306
with a smaller current loop has significantly lower ESL
then an 0603. The reduction in ESL varies by EIA size,
however, ESL is typically reduced 60% or more with an
LICC versus a standard MLCC.
AVX LICC products are available with a lead-free finish of
plated Nickel/Tin.
LICC
MLCC
PERFORMANCE CHARACTERISTICS
Capacitance Tolerances
Operation
Temperature Range
K = ±10%; M = ±20%
X7R = -55°C to +125°C
X5R = -55°C to +85°C
X7S = -55°C to +125°C
X7R, X5R = ±15%; X7S = ±22%
4, 6.3, 10, 16, 25 VDC
4V, 6.3V = 6.5% max; 10V = 5.0% max;
16V = 3.5% max; 25V = 3.0% max
100,000MΩ min, or 1,000MΩ per
µF min.,whichever is less
Temperature Coefficient
Voltage Ratings
Dissipation Factor
Insulation Resistance
(@+25°C, RVDC)
HOW TO ORDER
0612
Z
D
105
M
A
T
2
A*
Size
0204
0306
0508
0612
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
Dielectric
C = X7R
D = X5R
W = X6S
Z = X7S
Capacitance
Code (In pF)
2 Sig. Digits +
Number of Zeros
Capacitance
Tolerance
K = ±10%
M = ±20%
Failure Rate
A = N/A
Terminations
T = Plated Ni
and Sn
Packaging
Available
2 = 7" Reel
4 = 13" Reel
Thickness
Thickness
mm (in)
0.35 (0.014)
0.56 (0.022)
0.61 (0.024)
0.76 (0.030)
1.02 (0.040)
1.27 (0.050)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
TYPICAL IMPEDANCE CHARACTERISTICS
10
MLCC_0805
Impedance (Ohms)
Impedance (Ohms)
10
1
0.1
LICC_0508
0.01
0.001
1
10
Frequency (MHz)
100
1000
MLCC_1206
1
0.1
LICC_0612
0.01
0.001
1
10
100
1000
Frequency (MHz)
61
Low Inductance Capacitors (RoHS)
0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors)
SIZE
0204
Packaging
Length
Width
mm
(in.)
mm
(in.)
WVDC
CAP
(µF)
4 6.3 10 16
0306
0508
0612
Embossed
Embossed
Embossed
0.81 ± 0.15
(0.032 ± 0.006)
1.60 ± 0.15
(0.063 ± 0.006)
1.27 ± 0.25
(0.050 ± 0.010)
2.00 ± 0.25
(0.080 ± 0.010)
1.60 ± 0.25
(0.063 ± 0.010)
3.20 ± 0.25
(0.126 ± 0.010)
4 6.3 10
PHYSICAL DIMENSIONS AND
PAD LAYOUT
16 25 50 6.3 10 16 25 50 6.3 10 16 25 50
t
W
0.001
0.0022
T
0.0047
0.010
L
0.015
0.022
0.047
PHYSICAL CHIP DIMENSIONS
0.068
0.10
0612
0.15
0.22
0508
0.47
0306
0.68
1.0
0204
1.5
L
W
1.60 ± 0.25
(0.063 ± 0.010)
1.27 ± 0.25
(0.050 ± 0.010)
0.81 ± 0.15
(0.032 ± 0.006)
0.50 ± 0.05
(0.020 ± 0.002)
3.20 ± 0.25
(0.126 ± 0.010)
2.00 ± 0.25
(0.080 ± 0.010)
1.60 ± 0.15
(0.063 ± 0.006)
1.00 ± 0.05
(0.040 ± 0.002)
mm (in)
t
0.13 min.
(0.005 min.)
0.13 min.
(0.005 min.)
0.13 min.
(0.005 min.)
0.18 ± 0.08
(0.007 ± 0.003)
T - See Range Chart for Thickness and Codes
2.2
3.3
PAD LAYOUT DIMENSIONS
4.7
10
Solid = X7R
= X5R
mm (in.)
= X6S
= X7S
mm (in.)
mm (in.)
mm (in.)
0204
0306
0508
0612
Code Thickness
Code Thickness
Code Thickness
Code Thickness
C
0.35 (0.014)
A
0.61 (0.024)
S
0.56 (0.022)
S
V
0.76 (0.030)
V
0.76 (0.030)
A
1.02 (0.040)
W
1.02 (0.040)
A
1.27 (0.050)
0612
0508
0306
0204
mm (in)
C
A
B
0.76 (0.030)
3.05 (0.120)
.635 (0.025)
0.51 (0.020)
2.03 (0.080)
0.51 (0.020)
0.31 (0.012)
1.52 (0.060)
0.51 (0.020)
0.56 (0.022)
“B”
C
62
“A”
C
Low Inductance Capacitors (SnPb)
0612/0508/0306/0204 Tin Lead Termination “B”
GENERAL DESCRIPTION
The key physical characteristic determining equivalent
series inductance (ESL) of a capacitor is the size of the
current loop it creates. The smaller the current loop, the
lower the ESL.
A standard surface mount MLCC is rectangular in shape
with electrical terminations on its shorter sides. A Low
Inductance Chip Capacitor (LICC) sometimes referred to
as Reverse Geometry Capacitor (RGC) has its
terminations on the longer sides of its rectangular shape.
The image on the right shows the termination differences
between an MLCC and an LICC.
When the distance between terminations is reduced, the
size of the current loop is reduced. Since the size of the
current loop is the primary driver of inductance, an 0306
with a smaller current loop has significantly lower ESL
then an 0603. The reduction in ESL varies by EIA size,
however, ESL is typically reduced 60% or more with an
LICC versus a standard MLCC.
AVX LICC products are available with a lead termination
for high reliability military and aerospace applications that
must avoid tin whisker reliability issues.
LICC
MLCC
PERFORMANCE CHARACTERISTICS
Capacitance Tolerances
Operation
Temperature Range
Temperature Coefficient
Voltage Ratings
Dissipation Factor
Insulation Resistance
(@+25°C, RVDC)
K = ±10%; M = ±20%
X7R = -55°C to +125°C
X5R = -55°C to +85°C
X7S = -55°C to +125°C
X7R, X5R = ±15%; X7S = ±22%
4, 6.3, 10, 16, 25 VDC
4V, 6.3V = 6.5% max; 10V = 5.0% max;
16V = 3.5% max; 25V = 3.0% max
100,000MΩ min, or 1,000MΩ per
µF min.,whichever is less
HOW TO ORDER
LD18
Z
D
105
M
A
Size
LD15 = 0204
LD16 = 0306
LD17 = 0508
LD18 = 0612
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
Dielectric
C = X7R
D = X5R
W = X6S
Capacitance
Code (In pF)
2 Sig. Digits +
Number of Zeros
Capacitance
Tolerance
K = ±10%
M = ±20%
B
Failure Rate Terminations
A = N/A
B = 5% min lead
2
A*
Packaging
Available
2 = 7" Reel
4 = 13" Reel
Thickness
Thickness
mm (in)
0.35 (0.014)
0.56 (0.022)
0.61 (0.024)
0.76 (0.030)
1.02 (0.040)
1.27 (0.050)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
TYPICAL IMPEDANCE CHARACTERISTICS
10
MLCC_0805
Impedance (Ohms)
Impedance (Ohms)
10
1
0.1
LICC_0508
0.01
0.001
1
10
Frequency (MHz)
100
1000
MLCC_1206
1
0.1
LICC_0612
0.01
0.001
1
10
100
1000
Frequency (MHz)
63
Low Inductance Capacitors (SnPb)
0612/0508/0306/0204 Tin Lead Termination “B”
PHYSICAL DIMENSIONS AND
PAD LAYOUT
PREFERRED SIZES ARE SHADED
SIZE
LD15
Soldering
Packaging
(L) Length mm
(in.)
(W) Width mm
(in.)
WVDC
Cap
1000
(pF)
2200
4700
Cap
0.010
(µF)
0.015
0.022
0.047
0.068
0.10
0.15
0.22
0.47
0.68
1.0
1.5
2.2
3.3
4.7
10
WVDC
4
C
4
6.3
10
16
C
6.3
SIZE
10
16
0204
6.3
A
A
A
A
A
A
A
A
A
A
A
6.3
LD16
LD17
LD18
Reflow Only
All Paper
Reflow Only
All Paper
Reflow/Wave
Paper/Embossed
0.81 ± 0.15
(0.032 ± 0.006)
1.60 ± 0.15
(0.063 ± 0.006)
10 16 25 50
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1.27 ± 0.25
(0.050 ± 0.010)
2.00 ± 0.25
(0.080 ± 0.010)
10 16 25
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
V
S
S
A
S
V
A
S
V
S
A
V
A
A
A
10
16
25
50
6.3
S
S
S
S
S
S
S
S
S
S
S
V
A
A
A
6.3
0306
10
16
25
50
V
V
V
V
V
V
A
A
A
50
1.60 ± 0.25
(0.063 ± 0.010)
3.20 ± 0.25
(0.126 ± 0.010)
6.3 10 16 25
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
V
S
S
S
V
S
S
S W
S
S
V
S
S
V
V
V W
V
V
A
W W
A
A
A
6.3
10
0508
16
25
50
V
V
V
V
W
W
W
W
W
W
T
L
PHYSICAL CHIP DIMENSIONS
0612
0508
50
0612
0306
0204
Solid = X7R
= X5R
mm (in.)
= X6S
= X7S
mm (in.)
LD16 - 0306
LD17 - 0508
LD18 - 0612
Code Thickness
Code Thickness
Code Thickness
A
0.61 (0.024)
W
3.20 ± 0.25
(0.126 ± 0.010)
2.00 ± 0.25
(0.080 ± 0.010)
1.60 ± 0.15
(0.063 ± 0.006)
1.00 ± 0.05
(0.040 ± 0.002)
0.13 min.
(0.005 min.)
0.13 min.
(0.005 min.)
0.13 min.
(0.005 min.)
0.18 ± 0.08
(0.007 ± 0.003)
mm (in.)
LD15 - 0204
0.35 (0.014)
L
1.60 ± 0.25
(0.063 ± 0.010)
1.27 ± 0.25
(0.050 ± 0.010)
0.81 ± 0.15
(0.032 ± 0.006)
0.50 ± 0.05
(0.020 ± 0.002)
mm (in)
t
T - See Range Chart for Thickness and Codes
mm (in.)
Code Thickness
C
t
W
S
0.56 (0.022)
S
V
0.76 (0.030)
V
0.76 (0.030)
A
1.02 (0.040)
W
1.02 (0.040)
A
PAD LAYOUT DIMENSIONS
0.56 (0.022)
1.27 (0.050)
0612
0508
0306
0204
mm (in)
C
A
B
0.76 (0.030)
3.05 (0.120)
.635 (0.025)
0.51 (0.020)
2.03 (0.080)
0.51 (0.020)
0.31 (0.012)
1.52 (0.060)
0.51 (0.020)
“B”
C
64
“A”
C
IDC Low Inductance Capacitors (RoHS)
0612/0508 IDC (InterDigitated Capacitors)
GENERAL DESCRIPTION
0612
0508
–
+
–
+
+
–
+
–
TYPICAL IMPEDANCE
10
Impedance (Ohms)
Inter-Digitated Capacitors (IDCs) are used for both semiconductor
package and board level decoupling. The equivalent series
inductance (ESL) of a single capacitor or an array of capacitors in
parallel determines the response time of a Power Delivery Network
(PDN). The lower the ESL of a PDN, the faster the response time.
A designer can use many standard MLCCs in parallel to reduce ESL
or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC
devices are available in versions with a maximum height of 0.95mm
or 0.55mm.
IDCs are typically used on packages of semiconductor products
with power levels of 15 watts or greater. Inter-Digitated Capacitors
are used on CPU, GPU, ASIC, and ASSP devices produced on
0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used
on both ceramic and organic package substrates. These low ESL
surface mount capacitors can be placed on the bottom side or the
top side of a package substrate. The low profile 0.55mm maximum
height IDCs can easily be used on the bottom side of BGA
packages or on the die side of packages under a heat spreader.
IDCs are used for board level decoupling of systems with speeds of
300MHz or greater. Low ESL IDCs free up valuable board space by
reducing the number of capacitors required versus standard
MLCCs. There are additional benefits to reducing the number of
capacitors beyond saving board space including higher reliability
from a reduction in the number of components and lower
placement costs based on the need for fewer capacitors.
The Inter-Digitated Capacitor (IDC) technology was developed by
AVX. This is the second family of Low Inductance MLCC products
created by AVX. IDCs are a cost effective alternative to AVX’s first
generation low ESL family for high-reliability applications known as
LICA (Low Inductance Chip Array).
AVX IDC products are available with a lead-free finish of plated
Nickel/Tin.
MLCC_1206
1
LICC_0612
0.1
IDC_0612
0.01
0.001
1
10
100
1000
Frequency (MHz)
HOW TO ORDER
W
Style
3
L
1
6
IDC
Low
Number Voltage
Case
Inductance
of
4 = 4V
Size
Terminals 6 = 6.3V
2 = 0508
1 = 8 Terminals Z = 10V
3 = 0612
Y = 16V
3 = 25V
D
225
M
T
A
3
Dielectric Capacitance Capacitance Failure Termination Packaging
Tolerance Rate T = Plated Ni
C = X7R Code (In pF)
Available
D = X5R 2 Sig. Digits + M = ±20% A = N/A
and Sn
1=7" Reel
Number of
Z = X7S
3=13" Reel
Zeros
A
Thickness
Max. Thickness
mm (in.)
A=0.95 (0.037)
S=0.55 (0.022)
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
PERFORMANCE CHARACTERISTICS
Capacitance Tolerance
Operation
Temperature Range
Temperature Coefficient
Voltage Ratings
Dissipation Factor
Insulation Resistance
(@+25°C, RVDC)
±20% Preferred
X7R = -55°C to +125°C
X5R = -55°C to +85°C
X7S = -55°C to +125°C
±15% (0VDC)
4, 6.3, 10, 16 VDC
4V, 6.3V = 6.5% max;
10V = 5.0% max;
16V = 3.5% max
100,000MΩ min, or 1,000MΩ per
µF min.,whichever is less
Dielectric Strength
No problems observed after 2.5 x RVDC
for 5 seconds at 50mA max current
CTE (ppm/C)
12.0
Thermal Conductivity 4-5W/M K
Terminations
Available
Max. Thickness
Plated Nickel and Solder
0.037" (0.95mm)
65
IDC Low Inductance Capacitors (RoHS)
0612/0508 IDC (InterDigitated Capacitors)
SIZE
Length
Width
Terminal
Pitch
Thickness
WVDC
Cap
(µF)
mm
(in.)
mm
(in.)
mm
(in.)
mm
(in.)
4
Thin 0508
0508
Thin 0612
0612
2.03 ± 0.20
(0.080 ± 0.008)
1.27 ± 0.20
(0.050 ± 0.008)
0.50 ± 0.05
(0.020 ± 0.002)
0.55 MAX.
(0.022) MAX.
6.3
10
16
2.03 ± 0.20
(0.080 ± 0.008)
1.27 ± 0.20
(0.050 ± 0.008)
0.50 ± 0.05
(0.020 ± 0.002)
0.95 MAX.
(0.037) MAX.
6.3
10
16
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.80 ± 0.10
(0.031 ± 0.004)
0.55 MAX.
(0.022) MAX.
4
6.3
10
16
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.80 ± 0.10
(0.031 ± 0.004)
0.95 MAX.
(0.037) MAX.
4
6.3
10
16
25
4
25
0.01
0.033
0.047
0.068
0.10
0.22
0.33
Consult factory for
additional requirements
0.47
0.68
1.0
= X7R
1.5
= X5R
2.2
= X7S
3.3
PHYSICAL DIMENSIONS AND PAD LAYOUT
L
P
T
E
D
BW
A
B
C
BL
W
PHYSICAL CHIP DIMENSIONS
0612
L
W
BW
3.20 ± 0.20
1.60 ± 0.20
0.41 ± 0.10
(0.126 ± 0.008) (0.063 ± 0.008) (0.016 ± 0.004)
BL
millimeters (inches)
P
0.18 +0.25
0.80 ± 0.10
-0.08
(0.007 +0.010
) (0.031 ± 0.004)
-0.003
L
66
A
B
C
D
E
0.89
1.65
2.54
0.46
0.80
(0.035) (0.065) (0.100) (0.018) (0.031)
0508
0508
2.03±0.20
(0.080±0.008)
PAD LAYOUT
DIMENSIONS
0612
W
BW
1.27±0.20
(0.050±0.008)
0.25 +0.15
-0.10
(0.010 +0.006
)
-0.004
BL
P
0.18 +0.25
0.50 ± 0.05
-0.08
(0.007 +0.010
) (0.020 ± 0.002)
-0.003
A
B
C
D
E
0.64
1.27
1.91
0.28
0.50
(0.025) (0.050) (0.075) (0.011) (0.020)
IDC Low Inductance Capacitors (SnPb)
0612/0508 IDC with Sn/Pb Termination
GENERAL DESCRIPTION
0612
0508
–
+
–
+
+
–
+
–
TYPICAL IMPEDANCE
10
Impedance (Ohms)
Inter-Digitated Capacitors (IDCs) are used for both semiconductor
package and board level decoupling. The equivalent series
inductance (ESL) of a single capacitor or an array of capacitors in
parallel determines the response time of a Power Delivery Network
(PDN). The lower the ESL of a PDN, the faster the response time.
A designer can use many standard MLCCs in parallel to reduce ESL
or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC
devices are available in versions with a maximum height of 0.95mm
or 0.55mm.
IDCs are typically used on packages of semiconductor products
with power levels of 15 watts or greater. Inter-Digitated Capacitors
are used on CPU, GPU, ASIC, and ASSP devices produced on
0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used
on both ceramic and organic package substrates. These low ESL
surface mount capacitors can be placed on the bottom side or the
top side of a package substrate. The low profile 0.55mm maximum
height IDCs can easily be used on the bottom side of BGA
packages or on the die side of packages under a heat spreader.
IDCs are used for board level decoupling of systems with speeds of
300MHz or greater. Low ESL IDCs free up valuable board space by
reducing the number of capacitors required versus standard
MLCCs. There are additional benefits to reducing the number of
capacitors beyond saving board space including higher reliability
from a reduction in the number of components and lower
placement costs based on the need for fewer capacitors.
The Inter-Digitated Capacitor (IDC) technology was developed by
AVX. This is the second family of Low Inductance MLCC products
created by AVX. IDCs are a cost effective alternative to AVX’s first
generation low ESL family for high-reliability applications known as
LICA (Low Inductance Chip Array).
AVX IDC products are available with a lead termination for high
reliability military and aerospace applications that must avoid tin
whisker reliability issues.
MLCC_1206
1
LICC_0612
0.1
IDC_0612
0.01
0.001
1
10
100
1000
Frequency (MHz)
HOW TO ORDER
L
3
L
1
6
D
225
M
B
A
3
Voltage Dielectric Capacitance Capacitance Failure Termination Packaging
Tolerance Rate B = 5% min.
C = X7R Code (In pF)
Available
4 = 4V
Lead
1=7" Reel
6 = 6.3V D = X5R 2 Sig. Digits + M = ±20% A = N/A
Number of
3=13" Reel
Z = 10V Z = X7S
Zeros
Y = 16V
3 = 25V
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Style
IDC
Low
Number
Case
Inductance
of
Size
Terminals
2 = 0508
1 = 8 Terminals
3 = 0612
A
Thickness
Max. Thickness
mm (in.)
A=0.95 (0.037)
S=0.55 (0.022)
PERFORMANCE CHARACTERISTICS
Capacitance Tolerance
Operation
Temperature Range
Temperature Coefficient
Voltage Ratings
Dissipation Factor
Insulation Resistance
(@+25°C, RVDC)
±20% Preferred
X7R = -55°C to +125°C
X5R = -55°C to +85°C
X7S = -55°C to +125°C
±15% (0VDC)
4, 6.3, 10, 16 VDC
4V, 6.3V = 6.5% max;
10V = 5.0% max;
16V = 3.5% max
100,000MΩ min, or 1,000MΩ per
µF min.,whichever is less
Dielectric Strength
No problems observed after 2.5 x RVDC
for 5 seconds at 50mA max current
CTE (ppm/C)
12.0
Thermal Conductivity 4-5W/M K
Terminations
Available
Max. Thickness
Plated Nickel and 5% min. Lead
0.037" (0.95mm)
67
IDC Low Inductance Capacitors (SnPb)
0612/0508 IDC with Sn/Pb Termination
SIZE
Length
Width
Terminal
Pitch
Thickness
WVDC
Cap
(µF)
mm
(in.)
mm
(in.)
mm
(in.)
mm
(in.)
4
Thin 0508
0508
Thin 0612
0612
2.03 ± 0.20
(0.080 ± 0.008)
1.27 ± 0.20
(0.050 ± 0.008)
0.50 ± 0.05
(0.020 ± 0.002)
0.55 MAX.
(0.022) MAX.
6.3
10
16
2.03 ± 0.20
(0.080 ± 0.008)
1.27 ± 0.20
(0.050 ± 0.008)
0.50 ± 0.05
(0.020 ± 0.002)
0.95 MAX.
(0.037) MAX.
6.3
10
16
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.80 ± 0.10
(0.031 ± 0.004)
0.55 MAX.
(0.022) MAX.
4
6.3
10
16
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
0.80 ± 0.10
(0.031 ± 0.004)
0.95 MAX.
(0.037) MAX.
4
6.3
10
16
25
4
25
0.01
0.033
0.047
0.068
0.10
0.22
0.33
Consult factory for
additional requirements
0.47
0.68
1.0
= X7R
1.5
= X5R
2.2
= X7S
3.3
PHYSICAL DIMENSIONS AND PAD LAYOUT
L
P
T
E
D
BW
A
B
C
BL
W
PHYSICAL CHIP DIMENSIONS
0612
L
W
BW
3.20 ± 0.20
1.60 ± 0.20
0.41 ± 0.10
(0.126 ± 0.008) (0.063 ± 0.008) (0.016 ± 0.004)
BL
millimeters (inches)
P
0.18 +0.25
0.80 ± 0.10
-0.08
(0.007 +0.010
) (0.031 ± 0.004)
-0.003
L
68
A
B
C
D
E
0.89
1.65
2.54
0.46
0.80
(0.035) (0.065) (0.100) (0.018) (0.031)
0508
0508
2.03±0.20
(0.080±0.008)
PAD LAYOUT
DIMENSIONS
0612
W
BW
1.27±0.20
(0.050±0.008)
0.254±0.10
(0.010±0.004)
BL
P
0.18 +0.25
0.50 ± 0.05
-0.08
(0.007 +0.010
) (0.020 ± 0.002)
-0.003
A
B
C
D
E
0.64
1.27
1.91
0.28
0.50
(0.025) (0.050) (0.075) (0.011) (0.020)
LGA Low Inductance Capacitors
0204/0306/0805 Land Grid Arrays
Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX.
These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.
Electronic Products awarded its 2006 Product of the Year Award to the LGA Decoupling
capacitor.
Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal
IDC low inductance MLCC with a number of advantages including:
• Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
• Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
• Advanced FCT manufacturing process used to create uniformly flat terminations on
the capacitor that resist “tombstoning”
• Better solder joint reliability
APPLICATIONS
Semiconductor Packages
• Microprocessors/CPUs
• Graphics Processors/GPUs
• Chipsets
• FPGAs
• ASICs
Board Level Device Decoupling
• Frequencies of 300 MHz or more
• ICs drawing 15W or more
• Low voltages
• High speed buses
0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC
Impedance (Ω)
1
0.1
0.01
0.001
1
10
100
1000
Frequency (MHz)
69
LGA Low Inductance Capacitors
0204/0306/0805 Land Grid Arrays
SIZE
LG12 (0204)
LG22 (0306)
LGC2 (0805)
Length
mm (in.)
Width
mm (in.)
Temp. Char.
Working Voltage
0.50 (0.020)
1.00 (0.039)
X7S (Z)
6.3
4
(6)
(4)
0.76 (0.030)
1.60 (0.063)
X5R (D)
X7S (Z)
4
6.3
4
6.3
4
(4)
(6)
(4)
(6)
(4)
2.06 (0.081)
1.32 (0.052)
X5R (D)
X7S (Z)
6.3
4
6.3
4
(6)
(4)
(6)
(4)
Cap (µF)
X5R (D)
6.3
4
(6)
(4)
X6S (W)
6.3
4
(6)
(4)
X7R (C)
10
6.3
(Z)
(6)
X6S (W)
6.3
4
(6)
(4)
X7R (C)
6.3
4
(6)
(4)
0.010 (103)
0.022 (223)
0.047 (473)
0.100 (104)
0.220 (224)
0.330 (334)
0.470 (474)
1.000 (105)
2.200 (225)
X6S (W)
6.3
4
(6)
(4)
Please
contact AVX
for values
= X7R
= X5R
= X7S
= X6S
HOW TO ORDER
LG
Style
1
2
6
Case Number of
Size
Terminals
1 = 0204
2
2 = 0306
C = 0805
Z
104
M
A
T
2
Working Temperature Coded
Cap
Termination Termination
Voltage Characteristic Cap Tolerance
Style
100% Sn*
4 = 4V
C = X7R
M = 20% A = “U” Land *Contact factory for
6 = 6.3V
D = X5R
other termination
Z = 10V
Z = X7S
finishes
W = X6S
L
T
iew
pV
BL
Top
T
Sid
e2
e1
Sid
Sid
e1
BL
BW
L
W
mm (inches)
Series
L
W
T
BW
BL
LG12 (0204)
0.5 ± 0.05
(0.020±0.002)
0.76 ± 0.10
(0.030 ± 0.004)
2.06 ± 0.10
(0.081 ± 0.004)
1.00 ± 0.10
(0.039 ± 0.004)
1.60 ± 0.10
(0.063 ± 0.004)
1.32 ± 0.10
(0.052 ± 0.004)
0.50 ± 0.05
(0.020 ± 0.002)
0.50 ± 0.05
(0.020 ± 0.002)
0.50 ± 0.05
(0.020 ± 0.002)
0.8 ± 0.10
(0.031 ± 0.004)
1.50 ±0.10
(0.059 ± 0.004)
1.14 ± 0.10
(0.045 ± 0.004)
0.13 ± 0.08
(0.005 ± 0.003)
0.28 ± 0.08
(0.011 ± 0.003)
0.90 ±0.08
(0.035 ± 0.003)
RECOMMENDED SOLDER PAD DIMENSIONS
PL
G
PW1
e2
Sid
BL
L
PART DIMENSIONS
70
w
Vie
To
W
LGC2 (0805)
Standard
Geometry LGA
LGC2
BL
BW
LG22 (0306)
1
Packaging
Thickness
Tape & Reel S = 0.55mm
2 = 7" Reel
max
4 = 13" Reel
Reverse
Geometry LGA
LG12, LG22
L
S
mm (inches)
Series
PL
PW1
G
LG12 (0204)
LG22 (0306)
LGC2 (0805)
0.50 (0.020)
0.65 (0.026)
1.25 (0.049)
1.00 (0.039)
1.50 (0.059)
1.40 (0.055)
0.20 (0.008)
0.20 (0.008)
0.20 (0.008)
Number of
Capacitors
Low Inductance Capacitors
LICA® (Low Inductance Decoupling Capacitor Arrays)
LICA® arrays utilize up to four separate capacitor sections in one
ceramic body (see Configurations and Capacitance Options). These
designs exhibit a number of technical advancements:
Low Inductance features–
Low resistance platinum electrodes in a low aspect ratio pattern
Double electrode pickup and perpendicular current paths
C4 “flip-chip” technology for minimal interconnect inductance
HOW TO ORDER
LICA 3
T
Style
&
Size
Voltage
5V = 9
10V = Z
25V = 3
102
M
F
3
Dielectric Cap/Section Capacitance Height
D = X5R
(EIA Code)
Tolerance
Code
T = T55T 102 = 1000 pF M = ±20% 6 = 0.500mm
S = High K 103 = 10 nF
P = GMV 3 = 0.650mm
T55T 104 = 100 nF
1 = 0.875mm
5 = 1.100mm
7 = 1.600mm
TABLE 1
Typical Parameters
T55T/S55S
Termination
F = C4 Solder
Balls- 97Pb/3Sn
H = C4 Solder Balls
Low ESR
G = Lead Free SAC
R = Cr-Cu-Au
N = Cr-Ni-Au
V = Eutectic LeadTin Bump37%Pb/63%Sn
X = None
Units
Capacitance, 25°C
Co
Capacitance, 55°C
1.45 x Co
Capacitance, 85°C
0.7 x Co
Dissipation Factor 25°
15
ESR (Nominal)
20
DC Resistance
0.2
IR (Minimum @25°) (Design Dependent)
300
Dielectric Breakdown, Min
500
Thermal Coefficient of Expansion
8.5
Inductance: (Design Dependent) (Nominal)
30
Frequency of Operation
DC to 5 Gigahertz
Ambient Temp Range
-55° to 125°C
Nanofarads
Nanofarads
Nanofarads
Percent
Milliohms
Ohms
Megaohms
Volts
ppm/°C 25-100°
Pico-Henries
4
A
A
# of
Inspection
Code
Reel Packaging
Caps/Part
Code
Face
M = 7" Reel
1 = one A = Standard
A = Bar
R = 13" Reel
B = No Bar
6 = 2"x2" Waffle Pack 2 = two B = COTS+
8 = 2"x2" Black Waffle 4 = four X = MIL-PRF-123 C = Dot, S55S
Dielectrics
Pack
D = Triangle
7 = 2"x2" Waffle Pack
w/ termination
facing up
A = 2"x2" Black Waffle
Pack
w/ termination
NOTE: Contact factory for
facing up
availability of Termination and
C = 4"x4" Waffle Pack
Tolerance Options for Specific
w/ clear lid
Part Numbers.
TERMINATION OPTIONS
SOLDER BALLS
TERMINATION OPTION F, H, G OR V
SOLDER BALL AND PAD DIMENSIONS
0.8 ±.03 (2 pics)
0.6 ±.100mm
C
} “Centrality”*
0.925 ±0.03mm
L = ±.06mm
0.925 ±0.03mm
Vertical and
Horizontal
Pitch=0.4 ±.02mm
Code Face
to Denote
Orientation
(Optional)
C4 Ball diameter:
.164 ±.03mm
"Ht" = (Hb +.096 ±.02mm typ)
"Hb" ±.06
"W" = ±.06mm
Pin A1 is the lower left hand ball.
*NOTE: The C4 pattern
will be within
0.1mm of the
center of the
LICA body, in
both axes.
Code
(Body Height)
Width
(W)
Length
(L)
Height
Body (Hb)
1
3
5
6
7
1.600mm
1.600mm
1.600mm
1.600mm
1.600mm
1.850mm
1.850mm
1.850mm
1.850mm
1.850mm
0.875mm
0.650mm
1.100mm
0.500mm
1.600mm
TERMINATION OPTION R OR N
71
Low Inductance Capacitors
LICA® (Low Inductance Decoupling Capacitor Arrays)
TEMPERATURE VS CAPACITANCE CHANGE
TYPICAL S21 FOR LICA AT SINGLE VIA
Maximum
+45%
0
LICA T55T/S55S
CERAMIC
linear1.sch1.DB[S21]
Capacitance Change
-14
0%
-28
-42
Maximum
-30%
-56
-70
25°C
50°C
60°C
3
85°C
30
300
3000
Freq (MHz)
LICA COMMON PART NUMBER LIST
Part Number
LICA3T193M3FC4AA
LICA3T153P3FC4AA
LICA3T134M1FC1AA
LICA3T104P1FC1AA
LICA3T333M1FC4AA
LICA3T263P3FC4AA
LICA3T244M5FC1AA
LICA3T194P5FC1AA
LICA3T394M7FC1AB
LICA3T314P7FC1AB
Extended Range
LICAZT623M3FC4AB
LICA3T104M3FC1A
LICA3T803P3FC1A
LICA3T423M3FC2A
LICA3T333P3FC2A
LICA3S253M3FC4A
LICAZD753M3FC4AD
LICAZD504M3FC1AB
LICAZD604M7FC1AB
LICA3D193M3FC4AB
Voltage
Thickness (mm)
25
25
25
25
25
25
25
25
25
25
0.650
0.650
0.875
0.875
0.875
0.650
1.100
1.100
1.600
1.600
10
25
25
25
25
25
10
10
10
25
CONFIGURATION
Capacitors per
Package
4
4
1
1
4
4
1
1
1
1
0.650
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.600
0.650
4
1
1
2
2
4
4
1
1
4
Schematic
D
D
CAP
C
B1
A1
B1
D1
C1
B1
A1
D2
C2
B2
A2
CAP 2
A2
C2
D2
CAP 1
Code Face
B2
CAP 2
C1
A1
C2
A2
D3
B3
D4
B4
CAP 3
A3
A
Code Face
Schematic
D1
B
B2
D2
CAP 1
C1
C
A
Schematic
D1
C3
WAFFLE PACK OPTIONS FOR LICA®
Code Face
B
D1
C1
B1
A1
D2
C2
B2
A2
D3
C3
B3
A3
D4
C4
B4
A4
CAP 4
C4
A4
LICA® PACKAGING SCHEME “M” AND “R”
8mm conductive plastic tape on reel:
“M”=7" reel max. qty. 3,000, “R”=13" reel max. qty. 8,000
FLUOROWARE®
Code Face
to Denote
Orientation
Code Face
to Denote
Orientation
Wells for LICA® part, C4 side down
76 pieces/foot
1.75mm x 2.01mm x 1.27mm deep
on 4mm centers
0.64mm Push Holes
H20-080
Option "6"
100 pcs.
per 2" x 2"
package
Note: Standard configuration is
Termination side down
72
Option "C"
400 pcs. per
4" x 4" package
Code Face
to Denote
Orientation
(Typical)
1.75mm
Sprocket Holes: 1.55mm, 4mm pitch
High Voltage MLC Chips
For 600V to 5000V Application
High value, low leakage and small size are difficult parameters to obtain
in capacitors for high voltage systems. AVX special high voltage MLC
chip capacitors meet these performance characteristics and are
designed for applications such as snubbers in high frequency power
converters, resonators in SMPS, and high voltage coupling/dc blocking.
These high voltage chip designs exhibit low ESRs at high frequencies.
Larger physical sizes than normally encountered chips are used to make
high voltage MLC chip products. Special precautions must be taken in
applying these chips in surface mount assemblies. The temperature
gradient during heating or cooling cycles should not exceed 4ºC per
second. The preheat temperature must be within 50ºC of the peak
temperature reached by the ceramic bodies through the soldering
process. Chip sizes 1210 and larger should be reflow soldered only.
Capacitors may require protective surface coating to prevent external
arcing.
NEW 630V RANGE
HOW TO ORDER
1808
AVX
Style
0805
1206
1210
1808
1812
1825
2220
2225
3640
A
A
271
K
A
1
1
A
Voltage
Temperature Capacitance Code Capacitance
Test Level
Termination*
Packaging
Special
600V/630V = C Coefficient
(2 significant digits
Tolerance
A = Standard 1 = Pd/Ag
1 = 7" Reel
Code
1000V = A
C0G = A
+ no. of zeros)
C0G:J = ±5%
T = Plated
3 = 13" Reel A = Standard
1500V = S
X7R = C
Examples:
K = ±10%
Ni and Sn
9 = Bulk
(RoHS Compliant)
2000V = G
10 pF = 100
M = ±20%
2500V = W
100 pF = 101 X7R: K = ±10%
1,000 pF = 102
M = ±20%
3000V = H
22,000 pF = 223
Z = +80%,
4000V = J
220,000 pF = 224
-20%
5000V = K
1 µF = 105
*Note: Terminations with 5% minimum lead (Pb) is available, see pages 75 and 76 for LD style.
Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
W
L
T
t
DIMENSIONS
millimeters (inches)
SIZE
(L) Length
0805
1206
1210*
1808*
1812*
1825*
2220*
2225*
3640*
2.01 ± 0.20
3.20 ± 0.20
3.20 ± 0.20
4.57 ± 0.25
4.50 ± 0.30
4.50 ± 0.30
5.70 ± 0.40
5.72 ± 0.25
9.14 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width
1.25 ± 0.20
1.60 ± 0.20
2.50 ± 0.20
2.03 ± 0.25
3.20 ± 0.20
6.40 ± 0.30
5.00 ± 0.40
6.35 ± 0.25
10.2 ± 0.25
(0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness
1.30
1.52
1.70
2.03
2.54
2.54
3.30
2.54
2.54
Max.
(0.051)
(0.060)
(0.067)
(0.080)
(0.100)
(0.100)
(0.130)
(0.100)
(0.100)
(t) terminal min. 0.50 ± 0.25
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.76 (0.030)
max. (0.020 ± 0.010) 0.75 (0.030)
0.75 (0.030)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.52 (0.060)
*Reflow Soldering Only
73
High Voltage MLC Chips
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range
10 pF to 0.047 µF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
±5%, ±10%, ±20%
0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
-55°C to +125°C
0 ±30 ppm/°C (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - µF min., whichever is less
10K MΩ min. or 100 MΩ - µF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
HIGH VOLTAGE C0G CAPACITANCE VALUES
VOLTAGE
600/630 min.
max.
min.
1000 max.
min.
1500 max.
min.
2000 max.
min.
2500 max.
min.
3000 max.
min.
4000 max.
min.
5000 max.
0805
10pF
330pF
10pF
180pF
—
—
—
—
—
—
—
—
—
—
—
—
1206
1210
1808
1812
1825
2220
2225
3640
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
10 pF
120 pF
—
—
—
—
—
—
—
—
100 pF
2700 pF
10 pF
1500 pF
10 pF
680 pF
10 pF
270 pF
—
—
—
—
—
—
—
—
100 pF
3300 pF
100 pF
2200 pF
10 pF
820 pF
10 pF
330 pF
10 pF
180 pF
10 pF
120 pF
10 pF
47 pF
—
—
100 pF
5600 pF
100 pF
3300 pF
10 pF
1800 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
330 pF
10 pF
150 pF
—
—
1000 pF
0.012 µF
100 pF
8200 pF
100 pF
4700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
820 pF
10 pF
330 pF
—
—
1000 pF
0.012 µF
1000 pF
0.010 µF
100 pF
4700 pF
100 pF
2200 pF
100 pF
1500 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
220 pF
1000 pF
0.018 µF
1000 pF
0.010 µF
100 pF
5600 pF
100 pF
2700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
1000 pF
0.047 µF
1000 pF
0.022 µF
100 pF
0.010 µF
100 pF
6800 pF
100 pF
3900 pF
100 pF
2700 pF
100 pF
1200 pF
10 pF
820 pF
X7R Dielectric
Performance Characteristics
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
10 pF to 0.56 µF (25°C, 1.0 ±0.2 Vrms at 1kHz)
±10%; ±20%; +80%, -20%
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
-55°C to +125°C
±15% (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - µF min., whichever is less
10K MΩ min. or 100 MΩ - µF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
VOLTAGE
0805
1206
1210
1808
1812
1825
2220
2225
3640
600/630 min.
max.
min.
1000 max.
min.
1500 max.
Development
min.
2000 max.
Development
min.
2500 max.
Development
min.
3000 max.
Development
min.
4000 max.
min.
5000 max.
100pF
6800pF
100pF
1500pF
—
—
1000 pF
0.022 µF
100 pF
6800 pF
100 pF
2700 pF
1000 pF
0.056 µF
1000 pF
0.015 µF
100 pF
4700 pF
6800 pF
100 pF
3000 pF
3900 pF
—
—
1000 pF
0.056 µF
1000 pF
0.018 µF
100 pF
6800 pF
1000 pF
0.100 µF
1000 pF
0.027 µF
100 pF
0.012 µF
0.015 µF
100 pF
4700 pF
8200 pF
10 pF
3300 pF
5600 pF
10 pF
2200 pF
4700 pF
—
—
—
—
0.010 µF
0.180 µF
1000 pF
0.100 µF
1000 pF
0.033 µF
0.056 µF
100 pF
0.010 µF
0.027 µF
100 pF
6800 pF
0.015 µF
100 pF
4700 pF
0.012 µF
—
—
—
—
0.010 µF
0.220 µF
1000 pF
0.100 µF
1000 pF
0.039 µF
0.056 µF
1000 pF
0.010 µF
0.027 µF
100 pF
8200 pF
0.018 µF
100 pF
4700 µF
0.012 µF
—
—
—
—
0.010 µF
0.220 µF
1000 pF
0.100 µF
1000 pF
0.047 µF
0.068 µF
1000 pF
0.022 µF
0.033 µF
100 pF
0.010 µF
0.022 µF
100 pF
6800 pF
0.015 µF
—
—
—
—
0.010 µF
0.560 µF
0.010 µF
0.220 µF
1000 pF
0.100 µF
74
—
—
10 pF
1500 pF
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
100 pF
2700 pF
3900 pF
10 pF
1800 pF
2200 pF
10 pF
1500 pF
1800 pF
—
—
—
—
1000 pF
0.027 µF
1000 pF
0.022 µF
1000 pF
0.018 µF
100 pF
6800 pF
100 pF
3300 pF
High Voltage MLC Chips
Tin/Lead Termination “B”
For 600V to 5000V Application
AVX Corporation will support those customers for commercial and
military Multilayer Ceramic Capacitors with a termination consisting of
5% minimum lead. This termination is indicated by the use of a “B” in
the 12th position of the AVX Catalog Part Number. This fulfills AVX’s
commitment to providing a full range of products to our customers. AVX
has provided in the following pages, a full range of values that we are
offering in this “B” termination.
Larger physical sizes than normally encountered chips are used to make
high voltage MLC chip product. Special precautions must be taken in
applying these chips in surface mount assemblies. The temperature
gradient during heating or cooling cycles should not exceed 4ºC per
second. The preheat temperature must be within 50ºC of the peak
temperature reached by the ceramic bodies through the soldering
process. Chip sizes 1210 and larger should be reflow soldered only.
Capacitors may require protective surface coating to prevent external
arcing.
NEW 630V RANGE
HOW TO ORDER
LD08
A
A
271
K
A
B
1
A
AVX
Style
LD05 - 0805
LD06 - 1206
LD10 - 1210
LD08 - 1808
LD12 - 1812
LD13 - 1825
LD20 - 2220
LD14 - 2225
LD40 - 3640
Voltage
600V/630V = C
1000V = A
1500V = S
2000V = G
2500V = W
3000V = H
4000V = J
5000V = K
Temperature
Coefficient
C0G = A
X7R = C
Capacitance Code
(2 significant digits
+ no. of zeros)
Examples:
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 µF = 105
Capacitance
Tolerance
C0G: J = ±5%
K = ±10%
M = ±20%
X7R: K = ±10%
M = ±20%
Z = +80%, -20%
Test
Level
A = Standard
Termination
B = 5% Min Pb
Packaging
1 = 7" Reel
3 = 13" Reel
9 = Bulk
Special Code
A = Standard
Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
W
L
T
DIMENSIONS
t
millimeters (inches)
SIZE
(L) Length
LD05 (0805)
LD06 (1206)
LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD25* (2225) LD40* (3640)
2.01 ± 0.20
3.20 ± 0.20
3.20 ± 0.20
4.57 ± 0.25
4.50 ± 0.30
4.50 ± 0.30
5.70 ± 0.40
5.72 ± 0.25
9.14 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width
1.25 ± 0.20
1.60 ± 0.20
2.50 ± 0.20
2.03 ± 0.25
3.20 ± 0.20
6.40 ± 0.30
5.00 ± 0.40
6.35 ± 0.25
10.2 ± 0.25
(0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness
1.30
1.52
1.70
2.03
2.54
2.54
3.30
2.54
2.54
Max.
(0.051)
(0.060)
(0.067)
(0.080)
(0.100)
(0.100)
(0.130)
(0.100)
(0.100)
(t) terminal min. 0.50 ± 0.25
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.76 (0.030)
max. (0.020 ± 0.010) 0.75 (0.030)
0.75 (0.030)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.52 (0.060)
* Reflow soldering only.
75
High Voltage MLC Chips
Tin/Lead Termination “B”
For 600V to 5000V Application
C0G Dielectric
Performance Characteristics
Capacitance Range
10 pF to 0.047 µF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
±5%, ±10%, ±20%
0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
-55°C to +125°C
0 ±30 ppm/°C (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - µF min., whichever is less
10K MΩ min. or 100 MΩ - µF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
HIGH VOLTAGE C0G CAPACITANCE VALUES
VOLTAGE
600/630
1000
1500
2000
2500
3000
4000
5000
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640)
10pF
330pF
10pF
180pF
—
—
—
—
—
—
—
—
—
—
—
—
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
10 pF
120 pF
—
—
—
—
—
—
—
—
100 pF
2700 pF
10 pF
1500 pF
10 pF
680 pF
10 pF
270 pF
—
—
—
—
—
—
—
—
100 pF
3300 pF
100 pF
2200 pF
10 pF
820 pF
10 pF
330 pF
10 pF
180 pF
10 pF
120 pF
10 pF
47 pF
—
—
100 pF
5600 pF
100 pF
3300 pF
10 pF
1800 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
330 pF
10 pF
150 pF
—
—
1000 pF
0.012 µF
100 pF
8200 pF
100 pF
4700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
820 pF
10 pF
330 pF
—
—
1000 pF
0.012 µF
1000 pF
0.010 µF
100 pF
4700 pF
100 pF
2200 pF
100 pF
1500 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
220 pF
1000 pF
0.018 µF
1000 pF
0.010 µF
100 pF
5600 pF
100 pF
2700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
1000 pF
0.047 µF
1000 pF
0.022 µF
100 pF
0.010 µF
100 pF
6800 pF
100 pF
3900 pF
100 pF
2700 pF
100 pF
1200 pF
10 pF
820 pF
X7R Dielectric
Performance Characteristics
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
10 pF to 0.56 µF (25°C, 1.0 ±0.2 Vrms at 1kHz)
±10%; ±20%; +80%, -20%
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
-55°C to +125°C
±15% (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - µF min., whichever is less
10K MΩ min. or 100 MΩ - µF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
VOLTAGE
600/630 min.
max.
min.
1000 max.
min.
1500 max.
Development
min.
2000 max.
Development
min.
2500 max.
Development
min.
3000 max.
Development
min.
4000 max.
min.
5000 max.
76
LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640)
100pF
6800pF
100pF
1500pF
—
—
—
—
1000 pF
0.022 µF
100 pF
6800 pF
100 pF
2700 pF
10 pF
1500 pF
1000 pF
0.056 µF
1000 pF
0.015 µF
100 pF
4700 pF
6800 pF
100 pF
3300 pF
3900 pF
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
1000 pF
0.056 µF
1000 pF
0.018 µF
100 pF
6800 pF
100 pF
2700 pF
3900 pF
10 pF
1800 pF
2200 pF
10 pF
1500 pF
1800 pF
—
—
—
—
1000 pF
0.100 µF
1000 pF
0.027 µF
100 pF
0.012 µF
0.015 µF
100 pF
4700 pF
8200 pF
10 pF
3300 pF
5600 pF
10 pF
2200 pF
4700 pF
—
—
—
—
0.010 µF
0.180 µF
1000 pF
0.100 µF
1000 pF
0.033 µF
0.056 µF
100 pF
0.010 µF
0.027 µF
100 pF
6800 pF
0.015 µF
100 pF
4700 pF
0.012 µF
—
—
—
—
0.010 µF
0.220 µF
1000 pF
0.100 µF
1000 pF
0.039 µF
0.056 µF
1000 pF
0.010 µF
0.027 µF
100 pF
8200 pF
0.018 µF
100 pF
4700 µF
0.012 µF
—
—
—
—
0.010 µF
0.220 µF
1000 pF
0.100 µF
1000 pF
0.047 µF
0.068 µF
1000 pF
0.022 µF
0.033 µF
100 pF
0.010 µF
0.022 µF
100 pF
6800 pF
0.015 µF
—
—
—
—
0.010 µF
0.560 µF
0.010 µF
0.220 µF
1000 pF
0.100 µF
1000 pF
0.027 µF
1000 pF
0.022 µF
1000 pF
0.018 µF
100 pF
6800 pF
100 pF
3300 pF
MIL-PRF-55681/Chips
Part Number Example
CDR01 thru CDR06
MILITARY DESIGNATION PER MIL-PRF-55681
Part Number Example
CDR01
L
W
D
t
BP
101
B
K
S
M
MIL Style
Voltage-temperature
Limits
Capacitance
T
Rated Voltage
Capacitance Tolerance
Termination Finish
Failure Rate
NOTE: Contact factory for availability of Termination and Tolerance Options for
Specific Part Numbers.
MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,
CDR06
Voltage Temperature Limits:
BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with
rated voltage from -55°C to +125°C
BX = ±15% without voltage; +15 –25% with rated voltage
from -55°C to +125°C
Capacitance: Two digit figures followed by multiplier
(number of zeros to be added) e.g., 101 = 100 pF
Termination Finish:
M = Palladium Silver
N = Silver Nickel Gold
S = Solder-coated
U = Base Metallization/Barrier
Metal/Solder Coated*
W = Base Metallization/Barrier
Metal/Tinned (Tin or Tin/
Lead Alloy)
*Solder shall have a melting point of 200°C or less.
Failure Rate Level: M = 1.0%, P = .1%, R = .01%,
S = .001%
Packaging: Bulk is standard packaging. Tape and reel
per RS481 is available upon request.
Rated Voltage: A = 50V, B = 100V
Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20%
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*
Per
MIL-PRF-55681
AVX
Style
CDR01
CDR02
CDR03
CDR04
0805
1805
1808
1812
CDR05
1825
CDR06
2225
Length (L)
Width (W)
.080 ± .015
.180 ± .015
.180 ± .015
.180 ± .015
.180 +.020
-.015
.225 ± .020
.050 ± .015
.050 ± .015
.080 ± .018
.125 ± .015
.250 +.020
-.015
.250 ± .020
Thickness (T)
Max.
Min.
.055
.020
.055
.020
.080
.020
.080
.020
D
Max.
—
—
—
—
Min.
.030
—
—
—
Termination Band (t)
Max.
Min.
—
.010
.030
.010
.030
.010
.030
.010
.080
.020
—
—
.030
.010
.080
.020
—
—
.030
.010
*For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog
77
MIL-PRF-55681/Chips
Military Part Number Identification
CDR01 thru CDR06
CDR01 thru CDR06 to MIL-PRF-55681
Military
Type
Designation
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 0805/CDR01
Military
Type
Designation
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 1808/CDR03
CDR01BP100B--CDR01BP120B--CDR01BP150B--CDR01BP180B--CDR01BP220B---
10
12
15
18
22
J,K
J
J,K
J
J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR03BP331B--CDR03BP391B--CDR03BP471B--CDR03BP561B--CDR03BP681B---
330
390
470
560
680
J,K
J
J,K
J
J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR01BP270B--CDR01BP330B--CDR01BP390B--CDR01BP470B--CDR01BP560B---
27
33
39
47
56
J
J,K
J
J,K
J
BP
BP
BP
BP
BP
100
100
100
100
100
CDR03BP821B-CDR03BP102B--CDR03BX123B-CDR03BX153B--CDR03BX183B---
820
1000
12,000
15,000
18,000
J
J,K
K
K,M
K
BP
BP
BX
BX
BX
100
100
100
100
100
CDR01BP680B--CDR01BP820B--CDR01BP101B--CDR01B--121B--CDR01B--151B---
68
82
100
120
150
J,K
J
J,K
J,K
J,K
BP
BP
BP
BP,BX
BP,BX
100
100
100
100
100
CDR03BX223B--CDR03BX273B--CDR03BX333B--CDR03BX393A--CDR03BX473A---
22,000
27,000
33,000
39,000
47,000
K,M
K
K,M
K
K,M
BX
BX
BX
BX
BX
100
100
100
50
50
CDR01B--181B--CDR01BX221B--CDR01BX271B--CDR01BX331B--CDR01BX391B---
180
220
270
330
390
J,K
K,M
K
K,M
K
BP,BX
BX
BX
BX
BX
100
100
100
100
100
CDR03BX563A--CDR03BX683A---
56,000
68,000
K
K,M
BX
BX
50
50
CDR01BX471B--CDR01BX561B--CDR01BX681B--CDR01BX821B--CDR01BX102B---
470
560
680
820
1000
K,M
K
K,M
K
K,M
BX
BX
BX
BX
BX
100
100
100
100
100
CDR04BP122B--CDR04BP152B--CDR04BP182B--CDR04BP222B--CDR04BP272B---
1200
1500
1800
2200
2700
J
J,K
J
J,K
J
BP
BP
BP
BP
BP
100
100
100
100
100
CDR01BX122B--CDR01BX152B--CDR01BX182B--CDR01BX222B--CDR01BX272B---
1200
1500
1800
2200
2700
K
K,M
K
K,M
K
BX
BX
BX
BX
BX
100
100
100
100
100
CDR04BP332B--CDR04BX393B--CDR04BX473B--CDR04BX563B--CDR04BX823A---
3300
39,000
47,000
56,000
82,000
J,K
K
K,M
K
K
BP
BX
BX
BX
BX
100
100
100
100
50
CDR01BX332B--CDR01BX392A--CDR01BX472A---
3300
3900
4700
K,M
K
K,M
BX
BX
BX
100
50
50
CDR04BX104A--CDR04BX124A--CDR04BX154A--CDR04BX184A---
100,000
120,000
150,000
180,000
K,M
K
K,M
K
BX
BX
BX
BX
50
50
50
50
AVX Style 1812/CDR04
AVX Style 1805/CDR02
CDR02BP221B--CDR02BP271B--CDR02BX392B--CDR02BX472B--CDR02BX562B---
220
270
3900
4700
5600
J,K
J
K
K,M
K
BP
BP
BX
BX
BX
100
100
100
100
100
CDR02BX682B--CDR02BX822B--CDR02BX103B--CDR02BX123A--CDR02BX153A---
6800
8200
10,000
12,000
15,000
K,M
K
K,M
K
K,M
BX
BX
BX
BX
BX
100
100
100
50
50
CDR02BX183A--CDR02BX223A---
18,000
22,000
K
K,M
BX
BX
50
50
AVX Style 1825/CDR05
CDR05BP392B--CDR05BP472B--CDR05BP562B--CDR05BX683B--CDR05BX823B---
3900
4700
5600
68,000
82,000
J,K
J,K
J,K
K,M
K
BP
BP
BP
BX
BX
100
100
100
100
100
CDR05BX104B--CDR05BX124B--CDR05BX154B--CDR05BX224A--CDR05BX274A---
100,000
120,000
150,000
220,000
270,000
K,M
K
K,M
K,M
K
BX
BX
BX
BX
BX
100
100
100
50
50
CDR05BX334A---
330,000
K,M
BX
50
J,K
J,K
J,K
K
K,M
BP
BP
BP
BX
BX
100
100
100
50
50
Add appropriate failure rate
AVX Style 2225/CDR06
Add appropriate termination finish
CDR06BP682B--CDR06BP822B--CDR06BP103B--CDR06BX394A--CDR06BX474A---
Capacitance Tolerance
6800
8200
10,000
390,000
470,000
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
78
MIL-PRF-55681/Chips
Part Number Example
CDR31 thru CDR35
MILITARY DESIGNATION PER MIL-PRF-55681
Part Number Example
(example)
L
W
t
D
CDR31
BP
101
B
K
S
M
MIL Style
Voltage-temperature
Limits
Capacitance
T
Rated Voltage
Capacitance Tolerance
Termination Finish
Failure Rate
NOTE: Contact factory for availability of Termination and Tolerance Options for
Specific Part Numbers.
MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35
Voltage Temperature Limits:
BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with
rated voltage from -55°C to +125°C
Termination Finish:
M = Palladium Silver
N = Silver Nickel Gold
S = Solder-coated
Y = 100% Tin
BX = ±15% without voltage; +15 –25% with rated voltage
from -55°C to +125°C
*Solder shall have a melting point of 200°C or less.
Capacitance: Two digit figures followed by multiplier
(number of zeros to be added) e.g., 101 = 100 pF
Failure Rate Level: M = 1.0%, P = .1%, R = .01%,
S = .001%
Rated Voltage: A = 50V, B = 100V
Packaging: Bulk is standard packaging. Tape and reel
per RS481 is available upon request.
Capacitance Tolerance: B ± .10 pF, C ± .25 pF, D ± .5
pF, F ± 1%, J ± 5%, K ± 10%,
M ± 20%
U = Base Metallization/Barrier
Metal/Solder Coated*
W = Base Metallization/Barrier
Metal/Tinned (Tin or Tin/
Lead Alloy)
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35
Per MIL-PRF-55681
(Metric Sizes)
AVX
Style
Length (L)
(mm)
Width (W)
(mm)
CDR31
CDR32
CDR33
CDR34
CDR35
0805
1206
1210
1812
1825
2.00
3.20
3.20
4.50
4.50
1.25
1.60
2.50
3.20
6.40
Thickness (T)
D
Max. (mm)
1.3
1.3
1.5
1.5
1.5
Min. (mm)
.50
—
—
—
—
Termination Band (t)
Max. (mm)
.70
.70
.70
.70
.70
Min. (mm)
.30
.30
.30
.30
.30
79
MIL-PRF-55681/Chips
Military Part Number Identification CDR31
CDR31 to MIL-PRF-55681/7
Military
Type
Designation 1/
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 0805/CDR31 (BP)
Military
Type
Designation 1/
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 0805/CDR31 (BP) cont’d
CDR31BP1R0B--CDR31BP1R1B--CDR31BP1R2B--CDR31BP1R3B--CDR31BP1R5B---
1.0
1.1
1.2
1.3
1.5
B,C
B,C
B,C
B,C
B,C
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP101B--CDR31BP111B--CDR31BP121B--CDR31BP131B--CDR31BP151B---
100
110
120
130
150
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP1R6B--CDR31BP1R8B--CDR31BP2R0B--CDR31BP2R2B--CDR31BP2R4B---
1.6
1.8
2.0
2.2
2.4
B,C
B,C
B,C
B,C
B,C
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP161B--CDR31BP181B--CDR31BP201B--CDR31BP221B--CDR31BP241B---
160
180
200
220
240
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP2R7B--CDR31BP3R0B--CDR31BP3R3B--CDR31BP3R6B--CDR31BP3R9B---
2.7
3.0
3.3
3.6
3.9
B,C,D
B,C,D
B,C,D
B,C,D
B,C,D
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP271B--CDR31BP301B--CDR31BP331B--CDR31BP361B--CDR31BP391B---
270
300
330
360
390
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP4R3B--CDR31BP4R7B--CDR31BP5R1B--CDR31BP5R6B--CDR31BP6R2B---
4.3
4.7
5.1
5.6
6.2
B,C,D
B,C,D
B,C,D
B,C,D
B,C,D
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP431B--CDR31BP471B--CDR31BP511A--CDR31BP561A--CDR31BP621A---
430
470
510
560
620
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
50
50
50
CDR31BP6R8B--CDR31BP7R5B--CDR31BP8R2B--CDR31BP9R1B--CDR31BP100B---
6.8
7.5
8.2
9.1
10
B,C,D
B,C,D
B,C,D
B,C,D
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP681A---
680
F,J,K
BP
50
CDR31BP110B--CDR31BP120B--CDR31BP130B--CDR31BP150B--CDR31BP160B---
11
12
13
15
16
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP180B--CDR31BP200B--CDR31BP220B--CDR31BP240B--CDR31BP270B---
18
20
22
24
27
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP300B--CDR31BP330B--CDR31BP360B--CDR31BP390B--CDR31BP430B---
30
33
36
39
43
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP470B--CDR31BP510B--CDR31BP560B--CDR31BP620B--CDR31BP680B---
47
51
56
62
68
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR31BP750B--CDR31BP820B--CDR31BP910B---
75
82
91
F,J,K
F,J,K
F,J,K
BP
BP
BP
100
100
100
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
80
AVX Style 0805/CDR31 (BX)
CDR31BX471B--CDR31BX561B--CDR31BX681B--CDR31BX821B--CDR31BX102B---
470
560
680
820
1,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
100
100
100
CDR31BX122B--CDR31BX152B--CDR31BX182B--CDR31BX222B--CDR31BX272B---
1,200
1,500
1,800
2,200
2,700
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
100
100
100
CDR31BX332B--CDR31BX392B--CDR31BX472B--CDR31BX562A--CDR31BX682A---
3,300
3,900
4,700
5,600
6,800
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
100
50
50
CDR31BX822A--CDR31BX103A--CDR31BX123A--CDR31BX153A--CDR31BX183A---
8,200
10,000
12,000
15,000
18,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
50
50
50
50
50
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
1/ The complete part number will include additional symbols to indicate capacitance
tolerance, termination and failure rate level.
MIL-PRF-55681/Chips
Military Part Number Identification CDR32
CDR32 to MIL-PRF-55681/8
Military
Type
Designation 1/
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 1206/CDR32 (BP)
Military
Type
Designation 1/
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 1206/CDR32 (BP) cont’d
CDR32BP1R0B--CDR32BP1R1B--CDR32BP1R2B--CDR32BP1R3B--CDR32BP1R5B---
1.0
1.1
1.2
1.3
1.5
B,C
B,C
B,C
B,C
B,C
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP101B--CDR32BP111B--CDR32BP121B--CDR32BP131B--CDR32BP151B---
100
110
120
130
150
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP1R6B--CDR32BP1R8B--CDR32BP2R0B--CDR32BP2R2B--CDR32BP2R4B---
1.6
1.8
2.0
2.2
2.4
B,C
B,C
B,C
B,C
B,C
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP161B--CDR32BP181B--CDR32BP201B--CDR32BP221B--CDR32BP241B---
160
180
200
220
240
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP2R7B--CDR32BP3R0B--CDR32BP3R3B--CDR32BP3R6B--CDR32BP3R9B---
2.7
3.0
3.3
3.6
3.9
B,C,D
B,C,D
B,C,D
B,C,D
B,C,D
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP271B--CDR32BP301B--CDR32BP331B--CDR32BP361B--CDR32BP391B---
270
300
330
360
390
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP4R3B--CDR32BP4R7B--CDR32BP5R1B--CDR32BP5R6B--CDR32BP6R2B---
4.3
4.7
5.1
5.6
6.2
B,C,D
B,C,D
B,C,D
B,C,D
B,C,D
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP431B--CDR32BP471B--CDR32BP511B--CDR32BP561B--CDR32BP621B---
430
470
510
560
620
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP6R8B--CDR32BP7R5B--CDR32BP8R2B--CDR32BP9R1B--CDR32BP100B---
6.8
7.5
8.2
9.1
10
B,C,D
B,C,D
B,C,D
B,C,D
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP681B--CDR32BP751B--CDR32BP821B--CDR32BP911B--CDR32BP102B---
680
750
820
910
1,000
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP110B--CDR32BP120B--CDR32BP130B--CDR32BP150B--CDR32BP160B---
11
12
13
15
16
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP112A--CDR32BP122A--CDR32BP132A--CDR32BP152A--CDR32BP162A---
1,100
1,200
1,300
1,500
1,600
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
50
50
50
50
50
CDR32BP180B--CDR32BP200B--CDR32BP220B--CDR32BP240B--CDR32BP270B---
18
20
22
24
27
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP182A--CDR32BP202A--CDR32BP222A---
1,800
2,000
2,200
F,J,K
F,J,K
F,J,K
BP
BP
BP
50
50
50
CDR32BP300B--CDR32BP330B--CDR32BP360B--CDR32BP390B--CDR32BP430B---
30
33
36
39
43
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP470B--CDR32BP510B--CDR32BP560B--CDR32BP620B--CDR32BP680B---
47
51
56
62
68
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR32BP750B--CDR32BP820B--CDR32BP910B---
75
82
91
F,J,K
F,J,K
F,J,K
BP
BP
BP
100
100
100
AVX Style 1206/CDR32 (BX)
CDR32BX472B--CDR32BX562B--CDR32BX682B--CDR32BX822B--CDR32BX103B---
4,700
5,600
6,800
8,200
10,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
100
100
100
CDR32BX123B--CDR32BX153B--CDR32BX183A--CDR32BX223A--CDR32BX273A---
12,000
15,000
18,000
22,000
27,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
50
50
50
CDR32BX333A--CDR32BX393A---
33,000
39,000
K,M
K,M
BX
BX
50
50
Add appropriate failure rate
Add appropriate failure rate
Add appropriate termination finish
Add appropriate termination finish
Capacitance Tolerance
Capacitance Tolerance
1/ The complete part number will include additional symbols to indicate capacitance
tolerance, termination and failure rate level.
81
MIL-PRF-55681/Chips
Military Part Number Identification CDR33/34/35
CDR33/34/35 to MIL-PRF-55681/9/10/11
Military
Type
Designation 1/
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 1210/CDR33 (BP)
Military
Type
Designation 1/
Capacitance
in pF
Rated temperature WVDC
Capacitance
and voltagetolerance temperature limits
AVX Style 1812/CDR34 (BX)
CDR33BP102B--CDR33BP112B--CDR33BP122B--CDR33BP132B--CDR33BP152B---
1,000
1,100
1,200
1,300
1,500
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR34BX273B--CDR34BX333B--CDR34BX393B--CDR34BX473B--CDR34BX563B---
27,000
33,000
39,000
47,000
56,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
100
100
100
CDR33BP162B--CDR33BP182B--CDR33BP202B--CDR33BP222B--CDR33BP242A---
1,600
1,800
2,000
2,200
2,400
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
50
CDR34BX104A--CDR34BX124A--CDR34BX154A--CDR34BX184A---
100,000
120,000
150,000
180,000
K,M
K,M
K,M
K,M
BX
BX
BX
BX
50
50
50
50
CDR33BP272A--CDR33BP302A--CDR33BP332A---
2,700
3,000
3,300
F,J,K
F,J,K
F,J,K
BP
BP
BP
50
50
50
AVX Style 1825/CDR35 (BP)
AVX Style 1210/CDR33 (BX)
CDR33BX153B--CDR33BX183B--CDR33BX223B--CDR33BX273B--CDR33BX393A---
15,000
18,000
22,000
27,000
39,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
100
100
50
CDR33BX473A--CDR33BX563A--CDR33BX683A--CDR33BX823A--CDR33BX104A---
47,000
56,000
68,000
82,000
100,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
50
50
50
50
50
AVX Style 1812/CDR34 (BP)
CDR34BP222B--CDR34BP242B--CDR34BP272B--CDR34BP302B--CDR34BP332B---
2,200
2,400
2,700
3,000
3,300
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR34BP362B--CDR34BP392B--CDR34BP432B--CDR34BP472B--CDR34BP512A---
3,600
3,900
4,300
4,700
5,100
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
50
CDR34BP562A--CDR34BP622A--CDR34BP682A--CDR34BP752A--CDR34BP822A---
5,600
6,200
6,800
7,500
8,200
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
50
50
50
50
50
CDR34BP912A--CDR34BP103A---
9,100
10,000
F,J,K
F,J,K
BP
BP
50
50
CDR35BP472B--CDR35BP512B--CDR35BP562B--CDR35BP622B--CDR35BP682B---
4,700
5,100
5,600
6,200
6,800
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
100
CDR35BP752B--CDR35BP822B--CDR35BP912B--CDR35BP103B--CDR35BP113A---
7,500
8,200
9,100
10,000
11,000
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
100
100
100
100
50
CDR35BP123A--CDR35BP133A--CDR35BP153A--CDR35BP163A--CDR35BP183A---
12,000
13,000
15,000
16,000
18,000
F,J,K
F,J,K
F,J,K
F,J,K
F,J,K
BP
BP
BP
BP
BP
50
50
50
50
50
CDR35BP203A--CDR35BP223A---
20,000
22,000
F,J,K
F,J,K
BP
BP
50
50
AVX Style 1825/CDR35 (BX)
CDR35BX563B--CDR35BX683B--CDR35BX823B--CDR35BX104B--CDR35BX124B---
56,000
68,000
82,000
100,000
120,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
100
100
100
100
CDR35BX154B--CDR35BX184A--CDR35BX224A--CDR35BX274A--CDR35BX334A---
150,000
180,000
220,000
270,000
330,000
K,M
K,M
K,M
K,M
K,M
BX
BX
BX
BX
BX
100
50
50
50
50
CDR35BX394A--CDR35BX474A---
390,000
470,000
K,M
K,M
BX
BX
50
50
Add appropriate failure rate
Add appropriate failure rate
Add appropriate termination finish
Add appropriate termination finish
Capacitance Tolerance
Capacitance Tolerance
1/ The complete part number will include additional symbols to indicate capacitance
tolerance, termination and failure rate level.
82
Packaging of Chip Components
Automatic Insertion Packaging
TAPE & REEL QUANTITIES
All tape and reel specifications are in compliance with RS481.
8mm
Paper or Embossed Carrier
12mm
0612, 0508, 0805, 1206,
1210
Embossed Only
1812, 1825
2220, 2225
1808
Paper Only
0201, 0306, 0402, 0603
Qty. per Reel/7" Reel
2,000, 3,000 or 4,000, 10,000, 15,000
3,000
500, 1,000
Contact factory for exact quantity
Qty. per Reel/13" Reel
Contact factory for exact quantity
5,000, 10,000, 50,000
10,000
4,000
Contact factory for exact quantity
REEL DIMENSIONS
Tape
Size
(1)
A
Max.
B*
Min.
C
D*
Min.
N
Min.
8mm
330
(12.992)
1.5
(0.059)
-0.20
13.0 +0.50
(0.512 +0.020
-0.008 )
20.2
(0.795)
W2
Max.
W3
-0.0
8.40 +1.5
(0.331 +0.059
-0.0
)
14.4
(0.567)
7.90 Min.
(0.311)
10.9 Max.
(0.429)
12.4 +2.0
-0.0
(0.488 +0.079
-0.0
)
18.4
(0.724)
11.9 Min.
(0.469)
15.4 Max.
(0.607)
W1
50.0
(1.969)
12mm
Metric dimensions will govern.
English measurements rounded and for reference only.
(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.
83
Embossed Carrier Configuration
8 & 12mm Tape Only
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
±0.2mm (±0.008)
EMBOSSMENT
P0
T2
T
D0
P2
DEFORMATION
BETWEEN
EMBOSSMENTS
Chip Orientation
E1
A0
F
TOP COVER
TAPE
B1
T1
W
B0
K0
S1
E2
P1
MAX. CAVITY
SIZE - SEE NOTE 1
CENTER LINES
OF CAVITY
B1 IS FOR TAPE READER REFERENCE ONLY
INCLUDING DRAFT CONCENTRIC AROUND B0
D1 FOR COMPONENTS
2.00 mm x 1.20 mm AND
LARGER (0.079 x 0.047)
User Direction of Feed
8 & 12mm Embossed Tape
Metric Dimensions Will Govern
CONSTANT DIMENSIONS
Tape Size
8mm
and
12mm
D0
1.50
(0.059
E
+0.10
-0.0
+0.004
-0.0
)
P0
P2
1.75 ± 0.10
4.0 ± 0.10
2.0 ± 0.05
(0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002)
S1 Min.
T Max.
T1
0.60
(0.024)
0.60
(0.024)
0.10
(0.004)
Max.
VARIABLE DIMENSIONS
Tape Size
B1
Max.
D1
Min.
E2
Min.
F
P1
See Note 5
R
Min.
See Note 2
T2
W
Max.
A0 B0 K0
8mm
4.35
(0.171)
1.00
(0.039)
6.25
(0.246)
3.50 ± 0.05
4.00 ± 0.10
(0.138 ± 0.002) (0.157 ± 0.004)
25.0
(0.984)
2.50 Max.
(0.098)
8.30
(0.327)
See Note 1
12mm
8.20
(0.323)
1.50
(0.059)
10.25
(0.404)
5.50 ± 0.05
4.00 ± 0.10
(0.217 ± 0.002) (0.157 ± 0.004)
30.0
(1.181)
6.50 Max.
(0.256)
12.3
(0.484)
See Note 1
8mm
1/2 Pitch
4.35
(0.171)
1.00
(0.039)
6.25
(0.246)
3.50 ± 0.05
2.00 ± 0.10
(0.138 ± 0.002) (0.079 ± 0.004)
25.0
(0.984)
2.50 Max.
(0.098)
8.30
(0.327)
See Note 1
12mm
Double
Pitch
8.20
(0.323)
1.50
(0.059)
10.25
(0.404)
5.50 ± 0.05
8.00 ± 0.10
(0.217 ± 0.002) (0.315 ± 0.004)
30.0
(1.181)
6.50 Max.
(0.256)
12.3
(0.484)
See Note 1
NOTES:
1. The cavity defined by A0, B0, and K0 shall be configured to provide the following:
Surround the component with sufficient clearance such that:
a) the component does not protrude beyond the sealing plane of the cover tape.
b) the component can be removed from the cavity in a vertical direction without mechanical
restriction, after the cover tape has been removed.
c) rotation of the component is limited to 20º maximum (see Sketches D & E).
d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
2. Tape with or without components shall pass around radius “R” without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes.
Refer to EIA-556.
4. B1 dimension is a reference dimension for tape feeder clearance only.
5. If P1 = 2.0mm, the tape may not properly index in all tape feeders.
Top View, Sketch "F"
Component Lateral Movements
0.50mm (0.020)
Maximum
0.50mm (0.020)
Maximum
84
Paper Carrier Configuration
8 & 12mm Tape Only
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
±0.20mm (±0.008)
P0
D0
T
P2
E1
BOTTOM
COVER
TAPE
TOP
COVER
TAPE
F
W
E2
B0
G
T1
T1
A0
CENTER LINES
OF CAVITY
CAVITY SIZE
SEE NOTE 1
P1
User Direction of Feed
8 & 12mm Paper Tape
Metric Dimensions Will Govern
CONSTANT DIMENSIONS
Tape Size
8mm
and
12mm
D0
1.50
(0.059
+0.10
-0.0
+0.004
-0.0
E
)
P0
P2
1.75 ± 0.10
4.00 ± 0.10
2.00 ± 0.05
(0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002)
T1
G. Min.
R Min.
0.10
(0.004)
Max.
0.75
(0.030)
Min.
25.0 (0.984)
See Note 2
Min.
VARIABLE DIMENSIONS
P1
See Note 4
E2 Min.
F
W
A0 B0
4.00 ± 0.10
(0.157 ± 0.004)
6.25
(0.246)
3.50 ± 0.05
(0.138 ± 0.002)
8.00 +0.30
-0.10
(0.315 +0.012
-0.004 )
See Note 1
12mm
4.00 ± 0.010
(0.157 ± 0.004)
10.25
(0.404)
5.50 ± 0.05
(0.217 ± 0.002)
12.0 ± 0.30
(0.472 ± 0.012)
8mm
1/2 Pitch
2.00 ± 0.05
(0.079 ± 0.002)
6.25
(0.246)
3.50 ± 0.05
(0.138 ± 0.002)
-0.10
8.00 +0.30
(0.315 +0.012
-0.004 )
12mm
Double
Pitch
8.00 ± 0.10
(0.315 ± 0.004)
10.25
(0.404)
5.50 ± 0.05
(0.217 ± 0.002)
12.0 ± 0.30
(0.472 ± 0.012)
Tape Size
8mm
NOTES:
1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance
surrounding the component so that:
a) the component does not protrude beyond either surface of the carrier tape;
b) the component can be removed from the cavity in a vertical direction without
mechanical restriction after the top cover tape has been removed;
c) rotation of the component is limited to 20º maximum (see Sketches A & B);
d) lateral movement of the component is restricted to 0.5mm maximum
(see Sketch C).
T
1.10mm
(0.043) Max.
for Paper Base
Tape and
1.60mm
(0.063) Max.
for Non-Paper
Base Compositions
2. Tape with or without components shall pass around radius “R” without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket
holes. Refer to EIA-556.
4. If P1 = 2.0mm, the tape may not properly index in all tape feeders.
Top View, Sketch "C"
Component Lateral
0.50mm (0.020)
Maximum
0.50mm (0.020)
Maximum
Bar Code Labeling Standard
AVX bar code labeling is available and follows latest version of EIA-556
85
Bulk Case Packaging
BENEFITS
BULK FEEDER
• Easier handling
• Smaller packaging volume
(1/20 of T/R packaging)
• Easier inventory control
Case
• Flexibility
• Recyclable
Cassette
Gate
Shooter
CASE DIMENSIONS
Shutter
Slider
12mm
36mm
Mounter
Head
Expanded Drawing
110mm
Chips
Attachment Base
CASE QUANTITIES
Part Size
Qty.
(pcs / cassette)
86
0402
80,000
0603
15,000
0805
10,000 (T=.023")
8,000 (T=.031")
6,000 (T=.043")
1206
5,000 (T=.023")
4,000 (T=.032")
3,000 (T=.044")
Basic Capacitor Formulas
I. Capacitance (farads)
English: C = .224 K A
TD
Metric: C = .0884 K A
TD
XI. Equivalent Series Resistance (ohms)
E.S.R. = (D.F.) (Xc) = (D.F.) / (2 π fC)
XII. Power Loss (watts)
Power Loss = (2 π fCV2) (D.F.)
XIII. KVA (Kilowatts)
KVA = 2 π fCV2 x 10 -3
II. Energy stored in capacitors (Joules, watt - sec)
E = 1⁄2 CV2
XIV. Temperature Characteristic (ppm/°C)
T.C. = Ct – C25 x 106
C25 (Tt – 25)
III. Linear charge of a capacitor (Amperes)
dV
I=C
dt
XV. Cap Drift (%)
C1 – C2
C.D. =
C1
IV. Total Impedance of a capacitor (ohms)
Z = 冑 R2S + (XC - XL )2
V. Capacitive Reactance (ohms)
1
xc =
2 π fC
XVI. Reliability of Ceramic Capacitors
Vt
L0
X
Tt
Y
=
Lt
Vo
To
( ) ( )
VI. Inductive Reactance (ohms)
xL = 2 π fL
XVII. Capacitors in Series (current the same)
VII. Phase Angles:
Ideal Capacitors: Current leads voltage 90°
Ideal Inductors: Current lags voltage 90°
Ideal Resistors: Current in phase with voltage
Any Number:
VIII. Dissipation Factor (%)
Two: CT =
D.F.= tan ␦ (loss angle) = E.S.R. = (2 πfC) (E.S.R.)
Xc
IX. Power Factor (%)
P.F. = Sine ␦ (loss angle) = Cos (phase angle)
f
P.F. = (when less than 10%) = DF
X 10-12
X 10-9
X 10-6
X 10-3
X 10-1
X 10+1
X 10+3
X 10+6
X 10+9
X 10+12
C1 + C2
XIX. Aging Rate
D C/decade of time
A.R. = %
XX. Decibels
db = 20 log V1
V2
D.F.
Pico
Nano
Micro
Milli
Deci
Deca
Kilo
Mega
Giga
Tera
1 = 1 + 1 --- 1
CT
C1
C2
CN
C1 C2
XVIII. Capacitors in Parallel (voltage the same)
CT = C1 + C2 --- + CN
X. Quality Factor (dimensionless)
Q = Cotan ␦ (loss angle) = 1
METRIC PREFIXES
x 100
SYMBOLS
K
= Dielectric Constant
f
= frequency
Lt
= Test life
A
= Area
L
= Inductance
Vt
= Test voltage
TD
= Dielectric thickness
␦
= Loss angle
Vo
= Operating voltage
V
= Voltage
f
= Phase angle
Tt
= Test temperature
t
= time
X&Y
= exponent effect of voltage and temp.
To
= Operating temperature
Rs
= Series Resistance
Lo
= Operating life
87
General Description
Basic Construction – A multilayer ceramic (MLC)
capacitor is a monolithic block of ceramic containing two
sets of offset, interleaved planar electrodes that extend to
two opposite surfaces of the ceramic dielectric. This simple
Ceramic Layer
structure requires a considerable amount of sophistication,
both in material and manufacture, to produce it in the quality
and quantities needed in today’s electronic equipment.
Electrode
End Terminations
Terminated
Edge
Terminated
Edge
Margin
Electrodes
Multilayer Ceramic Capacitor
Figure 1
Formulations – Multilayer ceramic capacitors are available
in both Class 1 and Class 2 formulations. Temperature
compensating formulation are Class 1 and temperature
stable and general application formulations are classified
as Class 2.
Class 1 – Class 1 capacitors or temperature compensating
capacitors are usually made from mixtures of titanates
where barium titanate is normally not a major part of the
mix. They have predictable temperature coefficients and
in general, do not have an aging characteristic. Thus they
are the most stable capacitor available. The most popular
Class 1 multilayer ceramic capacitors are C0G (NP0)
temperature compensating capacitors (negative-positive
0 ppm/°C).
88
Class 2 – EIA Class 2 capacitors typically are based on the
chemistry of barium titanate and provide a wide range of
capacitance values and temperature stability. The most
commonly used Class 2 dielectrics are X7R and Y5V. The
X7R provides intermediate capacitance values which vary
only ±15% over the temperature range of -55°C to 125°C. It
finds applications where stability over a wide temperature
range is required.
The Y5V provides the highest capacitance values and is
used in applications where limited temperature changes are
expected. The capacitance value for Y5V can vary from
22% to -82% over the -30°C to 85°C temperature range.
All Class 2 capacitors vary in capacitance value under the
influence of temperature, operating voltage (both AC and
DC), and frequency. For additional information on
performance changes with operating conditions, consult
AVX’s software, SpiCap.
General Description
EIA CODE
Percent Capacity Change Over Temperature Range
RS198
Temperature Range
X7
X6
X5
Y5
Z5
-55°C to +125°C
-55°C to +105°C
-55°C to +85°C
-30°C to +85°C
+10°C to +85°C
Code
Percent Capacity Change
D
E
F
P
R
S
T
U
V
±3.3%
±4.7%
±7.5%
±10%
±15%
±22%
+22%, -33%
+22%, - 56%
+22%, -82%
Effects of Voltage – Variations in voltage have little effect
on Class 1 dielectric but does affect the capacitance and
dissipation factor of Class 2 dielectrics. The application of DC
voltage reduces both the capacitance and dissipation factor
while the application of an AC voltage within a reasonable
range tends to increase both capacitance and dissipation
|factor readings. If a high enough AC voltage is applied,
eventually it will reduce capacitance just as a DC voltage will.
Figure 2 shows the effects of AC voltage.
Cap. Change vs. A.C. Volts
X7R
Capacitance Change Percent
Table 1: EIA and MIL Temperature Stable and General
Application Codes
50
40
30
20
10
0
12.5
EXAMPLE – A capacitor is desired with the capacitance value at 25°C to
increase no more than 7.5% or decrease no more than 7.5% from
-30°C to +85°C. EIA Code will be Y5F.
Symbol
Temperature Range
A
B
C
-55°C to +85°C
-55°C to +125°C
-55°C to +150°C
Symbol
R
S
W
X
Y
Z
Cap. Change
Zero Volts
Cap. Change
Rated Volts
+15%, -15%
+22%, -22%
+22%, -56%
+15%, -15%
+30%, -70%
+20%, -20%
+15%, -40%
+22%, -56%
+22%, -66%
+15%, -25%
+30%, -80%
+20%, -30%
Temperature characteristic is specified by combining range and change
symbols, for example BR or AW. Specification slash sheets indicate the
characteristic applicable to a given style of capacitor.
50
Figure 2
Capacitor specifications specify the AC voltage at which to
measure (normally 0.5 or 1 VAC) and application of the wrong
voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at
1 kilohertz. Applications of different frequencies will affect the
percentage changes versus voltages.
D.F. vs. A.C. Measurement Volts
X7R
10.0
Dissipation Factor Percent
MIL CODE
25
37.5
Volts AC at 1.0 KHz
Curve 1 - 100 VDC Rated Capacitor
8.0 Curve 2 - 50 VDC Rated Capacitor
Curve 3 - 25 VDC Rated Capacitor
6.0
Curve 3
Curve 2
4.0
Curve 1
2.0
0
.5
In specifying capacitance change with temperature for Class
2 materials, EIA expresses the capacitance change over an
operating temperature range by a 3 symbol code. The first
symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the
operating temperature range and the third symbol represents
the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA
system.
1.0
1.5
2.0
2.5
AC Measurement Volts at 1.0 KHz
Figure 3
Typical effect of the application of DC voltage is shown in
Figure 4. The voltage coefficient is more pronounced for
higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as
voltage temperature limits which shows the effects of rated
voltage over the operating temperature range is shown in
Figure 5 for the military BX characteristic.
89
General Description
capacitors and is why re-reading of capacitance after 12 or
24 hours is allowed in military specifications after dielectric
strength tests have been performed.
5
Typical Curve of Aging Rate
X7R
0
+1.5
-5
-10
0
-15
-20
25%
50%
75%
Percent Rated Volts
100%
Figure 4
Capacitance Change Percent
Typical Cap. Change vs. Temperature
X7R
-1.5
-3.0
-4.5
-6.0
-7.5
+20
1
10
100
+10
0VDC
0
-10
-30
-55 -35
Characteristic
C0G (NP0)
X7R, X5R
Y5V
1000 10,000 100,000
Hours
Max. Aging Rate %/Decade
None
2
7
Figure 6
-20
-15
+5
+25 +45 +65 +85 +105 +125
Temperature Degrees Centigrade
Figure 5
Effects of Time – Class 2 ceramic capacitors change
capacitance and dissipation factor with time as well as
temperature, voltage and frequency. This change with time is
known as aging. Aging is caused by a gradual re-alignment
of the crystalline structure of the ceramic and produces an
exponential loss in capacitance and decrease in dissipation
factor versus time. A typical curve of aging rate for
semistable ceramics is shown in Figure 6.
If a Class 2 ceramic capacitor that has been sitting on the
shelf for a period of time, is heated above its curie point,
(125°C for 4 hours or 150°C for 1⁄2 hour will suffice) the part will
de-age and return to its initial capacitance and dissi-pation
factor readings. Because the capacitance changes
rapidly, immediately after de-aging, the basic capacitance
measurements are normally referred to a time period
sometime after the de-aging process. Various manufacturers
use different time bases but the most popular one is one day
or twenty-four hours after “last heat.” Change in the aging
curve can be caused by the application of voltage and
other stresses. The possible changes in capacitance due to
de-aging by heating the unit explain why capacitance changes
are allowed after test, such as temperature cycling, moisture
resistance, etc., in MIL specs. The application of high voltages
such as dielectric withstanding voltages also tends to de-age
90
Capacitance Change Percent
Capacitance Change Percent
Typical Cap. Change vs. D.C. Volts
X7R
Effects of Frequency – Frequency affects capacitance and
impedance characteristics of capacitors. This effect is much
more pronounced in high dielectric constant ceramic
formulation than in low K formulations. AVX’s SpiCap
software generates impedance, ESR, series inductance,
series resonant frequency and capacitance all as functions
of frequency, temperature and DC bias for standard chip
sizes and styles. It is available free from AVX and can be
downloaded for free from AVX website: www.avx.com.
General Description
Effects of Mechanical Stress – High “K” dielectric ceramic
capacitors exhibit some low level piezoelectric reactions
under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of
the ceramic. It is desirable to investigate this effect before
using high “K” dielectrics as coupling capacitors in extremely
low level applications.
Reliability – Historically ceramic capacitors have been one
of the most reliable types of capacitors in use today.
The approximate formula for the reliability of a ceramic
capacitor is:
Lo
=
Lt
共共共共
Vt
Vo
where
Lo = operating life
Lt = test life
Vt = test voltage
Vo = operating voltage
X
Tt
To
Y
Tt = test temperature and
To = operating temperature
in °C
X,Y = see text
Historically for ceramic capacitors exponent X has been
considered as 3. The exponent Y for temperature effects
typically tends to run about 8.
A capacitor is a component which is capable of storing
electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the
dielectric. A typical formula for determining capacitance is:
Energy Stored – The energy which can be stored in a
capacitor is given by the formula:
E = 1⁄2CV2
E = energy in joules (watts-sec)
V = applied voltage
C = capacitance in farads
Potential Change – A capacitor is a reactive component
which reacts against a change in potential across it. This is
shown by the equation for the linear charge of a capacitor:
I ideal = C dV
dt
where
I = Current
C = Capacitance
dV/dt = Slope of voltage transition across capacitor
Thus an infinite current would be required to instantly change
the potential across a capacitor. The amount of current a
capacitor can “sink” is determined by the above equation.
Equivalent Circuit – A capacitor, as a practical device,
exhibits not only capacitance but also resistance and
inductance. A simplified schematic for the equivalent circuit
is:
C = Capacitance
L = Inductance
Rp = Parallel Resistance
Rs = Series Resistance
C = .224 KA
t
C = capacitance (picofarads)
K = dielectric constant (Vacuum = 1)
A = area in square inches
t = separation between the plates in inches
(thickness of dielectric)
.224 = conversion constant
(.0884 for metric system in cm)
Capacitance – The standard unit of capacitance is the
farad. A capacitor has a capacitance of 1 farad when 1
coulomb charges it to 1 volt. One farad is a very large unit
and most capacitors have values in the micro (10-6), nano
(10-9) or pico (10-12) farad level.
Dielectric Constant – In the formula for capacitance given
above the dielectric constant of a vacuum is arbitrarily chosen
as the number 1. Dielectric constants of other materials are
then compared to the dielectric constant of a vacuum.
Dielectric Thickness – Capacitance is indirectly proportional
to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per
volume.
Area – Capacitance is directly proportional to the area of the
electrodes. Since the other variables in the equation are
usually set by the performance desired, area is the easiest
parameter to modify to obtain a specific capacitance within
a material group.
RP
L
RS
C
Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:
Z=
where
冑
RS2 + (XC - XL )2
Z = Total Impedance
Rs = Series Resistance
XC = Capacitive Reactance =
XL = Inductive Reactance
1
2 π fC
= 2 π fL
The variation of a capacitor’s impedance with frequency
determines its effectiveness in many applications.
Phase Angle – Power Factor and Dissipation Factor are
often confused since they are both measures of the loss in
a capacitor under AC application and are often almost
identical in value. In a “perfect” capacitor the current in the
capacitor will lead the voltage by 90°.
91
General Description
di
I (Ideal)
I (Actual)
Loss
Angle
Phase
Angle
␦
f
V
IR s
In practice the current leads the voltage by some other phase
angle due to the series resistance RS. The complement of this
angle is called the loss angle and:
Power Factor (P.F.) = Cos f or Sine ␦
Dissipation Factor (D.F.) = tan ␦
for small values of ␦ the tan and sine are essentially equal
which has led to the common interchangeability of the two
terms in the industry.
Equivalent Series Resistance – The term E.S.R. or
Equivalent Series Resistance combines all losses both
series and parallel in a capacitor at a given frequency so
that the equivalent circuit is reduced to a simple R-C series
connection.
E.S.R.
C
Dissipation Factor – The DF/PF of a capacitor tells what
percent of the apparent power input will turn to heat in the
capacitor.
Dissipation Factor = E.S.R. = (2 π fC) (E.S.R.)
XC
The watts loss are:
Watts loss = (2 π fCV2 ) (D.F.)
Very low values of dissipation factor are expressed as their
reciprocal for convenience. These are called the “Q” or
Quality factor of capacitors.
Parasitic Inductance – The parasitic inductance of
capacitors is becoming more and more important in the
decoupling of today’s high speed digital systems. The
relationship between the inductance and the ripple voltage
induced on the DC voltage line can be seen from the simple
inductance equation:
V = L di
dt
92
The dt seen in current microprocessors can be as high as
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic
inductance can cause a voltage spike of 30mV. While this
does not sound very drastic, with the Vcc for
microprocessors decreasing at the current rate, this can be
a fairly large percentage.
Another important, often overlooked, reason for knowing the
parasitic inductance is the calculation of the resonant
frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most
signal attenuation. The resonant frequency is calculated
from the simple equation:
1
fres =
2␲冑 LC
Insulation Resistance – Insulation Resistance is the
resistance measured across the terminals of a capacitor and
consists principally of the parallel resistance R P shown in the
equivalent circuit. As capacitance values and hence the area
of dielectric increases, the I.R. decreases and hence the
product (C x IR or RC) is often specified in ohm farads or
more commonly megohm-microfarads. Leakage current is
determined by dividing the rated voltage by IR (Ohm’s Law).
Dielectric Strength – Dielectric Strength is an expression
of the ability of a material to withstand an electrical stress.
Although dielectric strength is ordinarily expressed in volts, it
is actually dependent on the thickness of the dielectric and
thus is also more generically a function of volts/mil.
Dielectric Absorption – A capacitor does not discharge
instantaneously upon application of a short circuit, but
drains gradually after the capacitance proper has been
discharged. It is common practice to measure the dielectric
absorption by determining the “reappearing voltage” which
appears across a capacitor at some point in time after it has
been fully discharged under short circuit conditions.
Corona – Corona is the ionization of air or other vapors
which causes them to conduct current. It is especially
prevalent in high voltage units but can occur with low voltages
as well where high voltage gradients occur. The energy
discharged degrades the performance of the capacitor and
can in time cause catastrophic failures.
Surface Mounting Guide
MLC Chip Capacitors
REFLOW SOLDERING
D2
D1
D3
D4
D5
Dimensions in millimeters (inches)
Case Size
0201
0402
0603
0805
1206
1210
1808
1812
1825
2220
2225
D1
D2
D3
D4
D5
0.85 (0.033)
1.70 (0.067)
2.30 (0.091)
3.00 (0.118)
4.00 (0.157)
4.00 (0.157)
5.60 (0.220)
5.60 (0.220)
5.60 (0.220)
6.60 (0.260)
6.60 (0.260)
0.30 (0.012)
0.60 (0.024)
0.80 (0.031)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
0.25 (0.010)
0.50 (0.020)
0.70 (0.028)
1.00 (0.039)
2.00 (0.079)
2.00 (0.079)
3.60 (0.142)
3.60 (0.142)
3.60 (0.142)
4.60 (0.181)
4.60 (0.181)
0.30 (0.012)
0.60 (0.024)
0.80 (0.031)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
1.00 (0.039)
0.35 (0.014)
0.50 (0.020)
0.75 (0.030)
1.25 (0.049)
1.60 (0.063)
2.50 (0.098)
2.00 (0.079)
3.00 (0.118)
6.35 (0.250)
5.00 (0.197)
6.35 (0.250)
Component Pad Design
Component pads should be designed to achieve good
solder filets and minimize component movement during
reflow soldering. Pad designs are given below for the most
common sizes of multilayer ceramic capacitors for both
wave and reflow soldering. The basis of these designs is:
• Pad width equal to component width. It is permissible to
decrease this to as low as 85% of component width but it
is not advisable to go below this.
• Pad overlap 0.5mm beneath component.
• Pad extension 0.5mm beyond components for reflow and
1.0mm for wave soldering.
WAVE SOLDERING
D2
D1
Case Size
0603
0805
1206
D3
D4
D1
D2
D3
D4
D5
3.10 (0.12)
4.00 (0.15)
5.00 (0.19)
1.20 (0.05)
1.50 (0.06)
1.50 (0.06)
0.70 (0.03)
1.00 (0.04)
2.00 (0.09)
1.20 (0.05)
1.50 (0.06)
1.50 (0.06)
0.75 (0.03)
1.25 (0.05)
1.60 (0.06)
Dimensions in millimeters (inches)
D5
Component Spacing
Preheat & Soldering
For wave soldering components, must be spaced sufficiently
far apart to avoid bridging or shadowing (inability of solder
to penetrate properly into small spaces). This is less
important for reflow soldering but sufficient space must be
allowed to enable rework should it be required.
The rate of preheat should not exceed 4°C/second to
prevent thermal shock. A better maximum figure is about
2°C/second.
For capacitors size 1206 and below, with a maximum
thickness of 1.25mm, it is generally permissible to allow a
temperature differential from preheat to soldering of 150°C.
In all other cases this differential should not exceed 100°C.
For further specific application or process advice, please
consult AVX.
Cleaning
≥1.5mm (0.06)
≥1mm (0.04)
≥1mm (0.04)
Care should be taken to ensure that the capacitors are
thoroughly cleaned of flux residues especially the space
beneath the capacitor. Such residues may otherwise
become conductive and effectively offer a low resistance
bypass to the capacitor.
Ultrasonic cleaning is permissible, the recommended
conditions being 8 Watts/litre at 20-45 kHz, with a process
cycle of 2 minutes vapor rinse, 2 minutes immersion in the
ultrasonic solvent bath and finally 2 minutes vapor rinse.
93
Surface Mounting Guide
Recommended Soldering Profiles
REFLOW SOLDER PROFILES
Recommended Reflow Profiles
AVX RoHS compliant products utilize termination
finishes (e.g.Sn or SnAg) that are compatible
with all Pb-Free soldering systems and are fully
reverse compatible with SnPb soldering systems.
A recommended SnPb profile is shown for
comparison; for Pb-Free soldering, IPC/JEDECJSTD-020C may be referenced. The upper line in
the chart shows the maximum envelope to which
products are qualified (typically 3x reflow cycles
at 260ºC max). The center line gives the
recommended profile for optimum wettability and
soldering in Pb-Free Systems.
Component Temperature / ºC
275
Pb Free Recommended
250
Pb Free Max with care
Reflow CoolCool
Down
Reflow
Down
Preheat
Preheat
Sn Pb Recommended
225
200
175
150
125
100
75
50
25
0
20
40
60
80
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420
Time / secs
Preheat:
Wetting Force at 2nd Sec. (higher is better)
0.40
0.30
0.20
F [mN]
The pre-heat stabilizes the part and reduces the
temperature differential prior to reflow. The initial ramp to
125ºC may be rapid, but from that point (2-3)ºC/sec is
recommended to allow ceramic parts to heat uniformly and
plastic encapsulated parts to stabilize through the glass
transition temperature of the body (~ 180ºC).
SnPb - Sn60Pb40
0.10
Sn - Sn60Pb40
0.00
Sn-Sn3.5Ag0.7Cu
-0.10
Sn-Sn2.5Ag1Bi0.5Cu
Reflow:
-0.20
Sn-Sn0.7Cu
In the reflow phase, the maximum recommended time
> 230ºC is 40secs. Time at peak reflow is 10secs max.;
optimum reflow is achieved at 250ºC, (see wetting balance
chart opposite) but products are qualified to 260ºC max.
Please reference individual product datasheets for
maximum limits
-0.30
Cool Down:
Cool down should not be forced and 6ºC/sec is
recommended. A slow cool down will result in a finer grain
structure of the reflow solder in the solder fillet.
-0.40
200
210
220
230
240
250
260
270
Temperature of Solder [C]
IMPORTANT NOTE: Typical Pb-Free reflow solders have a
more dull and grainy appearance compared to traditional
SnPb. Elevating the reflow temperature will not change this,
but extending the cool down can help improve the visual
appearance of the joint.
WAVE SOLDER PROFILES
Preheat:
This is more important for wave solder; a higher
temperature preheat will reduce the thermal shock to SMD
parts that are immersed (please consult individual product
data sheets for SMD parts that are suited to wave solder).
SMD parts should ideally be heated from the bottom-Side
prior to wave. PTH (Pin through hole) parts on the topside
should not be separately heated.
Recommended Soldering Profiles
275
Component Temperature / ºC
For wave solder, there is no change in the recommended
wave profile; all standard Pb-Free (SnCu/SnCuAg) systems
operate at the same 260ºC max recommended for SnPb
systems.
225
Wave
175
Preheat
125
Wave
75
Preheat
Wave:
250ºC – 260ºC recommended for optimum solderability.
Cool Down:
As with reflow solder, cool down should not be forced and
6ºC/sec is recommended. Any air knives at the end of the
2nd wave should be heated.
94
Cool Down
Cool Down
25
0
50
100
150
200
250
Time / seconds
300
350
400
Surface Mounting Guide
MLC Chip Capacitors
APPLICATION NOTES
Handling
Storage
The components should be stored in their “as received
packaging” where possible. If the components are removed
from their original packaging then they should be stored in
an airtight container (e.g. a heat sealed plastic bag) with
desiccant (e.g. silica gel). Storage area temperature should
be kept between +5 degrees C and +30 degrees C with
humidity < 70% RH. Storage atmosphere must be free of
gas containing sulfur and chlorine. Avoid exposing the
product to saline moisture or to temperature changes that
might result in the formation of condensation. To assure
good solderability performance we recommend that the
product be used within 6 months from our shipping date,
but can be used for up to 12 months. Chip capacitors may
crack if exposed to hydrogen (H2) gas while sealed or if
coated with silicon, which generates hydrogen gas.
Solderability
Terminations to be well soldered after immersion in a 60/40
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds.
Leaching
Terminations will resist leaching for at least the immersion
times and conditions shown below.
Termination Type
Nickel Barrier
Solder
Solder
Tin/Lead/Silver Temp. °C
60/40/0
260 ± 5
Immersion Time
Seconds
30 ± 1
Lead-Free Wave Soldering
The recommended peak temperature for lead-free wave
soldering is 250°C-260°C for 3-5 seconds. The other
parameters of the profile remains the same as above.
The following should be noted by customers changing from
lead based systems to the new lead free pastes.
a) The visual standards used for evaluation of solder joints
will need to be modified as lead free joints are not as
bright as with tin-lead pastes and the fillet may not be as
large.
b) Lead-free solder pastes do not allow the same self
alignment as lead containing systems. Standard
mounting pads are acceptable, but machine set up may
need to be modified.
General
Surface mounting chip multilayer ceramic capacitors
are designed for soldering to printed circuit boards or other
substrates. The construction of the components is such that
they will withstand the time/temperature profiles used in both
wave and reflow soldering methods.
Chip multilayer ceramic capacitors should be handled with
care to avoid damage or contamination from perspiration
and skin oils. The use of tweezers or vacuum pick ups
is strongly recommended for individual components. Bulk
handling should ensure that abrasion and mechanical shock
are minimized. Taped and reeled components provides the
ideal medium for direct presentation to the placement
machine. Any mechanical shock should be minimized during
handling chip multilayer ceramic capacitors.
Preheat
It is important to avoid the possibility of thermal shock during
soldering and carefully controlled preheat is therefore
required. The rate of preheat should not exceed 4°C/second
and a target figure 2°C/second is recommended. Although
an 80°C to 120°C temperature differential is preferred, recent
developments allow a temperature differential between the
component surface and the soldering temper-ature of 150°C
(Maximum) for capacitors of 1210 size and below with a
maximum thickness of 1.25mm. The user is cautioned that
the risk of thermal shock increases as chip size or
temperature differential increases.
Soldering
Mildly activated rosin fluxes are preferred. The minimum
amount of solder to give a good joint should be used.
Excessive solder can lead to damage from the stresses
caused by the difference in coefficients of expansion
between solder, chip and substrate. AVX terminations are
suitable for all wave and reflow soldering systems. If hand
soldering cannot be avoided, the preferred technique is the
utilization of hot air soldering tools.
Cooling
Natural cooling in air is preferred, as this minimizes stresses
within the soldered joint. When forced air cooling is used,
cooling rate should not exceed 4°C/second. Quenching
is not recommended but if used, maximum temperature
differentials should be observed according to the preheat
conditions above.
Cleaning
Flux residues may be hygroscopic or acidic and must be
removed. AVX MLC capacitors are acceptable for use with
all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable
and properly controlled water cleaning systems are also
acceptable. Many other solvents have been proven successful,
and most solvents that are acceptable to other components
on circuit assemblies are equally acceptable for use with
ceramic capacitors.
95
Surface Mounting Guide
MLC Chip Capacitors
POST SOLDER HANDLING
Once SMP components are soldered to the board, any
bending or flexure of the PCB applies stresses to the
soldered joints of the components. For leaded devices, the
stresses are absorbed by the compliancy of the metal leads
and generally don’t result in problems unless the stress is
large enough to fracture the soldered connection.
Ceramic capacitors are more susceptible to such stress
because they don’t have compliant leads and are brittle in
nature. The most frequent failure mode is low DC resistance
or short circuit. The second failure mode is significant loss of
capacitance due to severing of contact between sets of the
internal electrodes.
Cracks caused by mechanical flexure are very easily
identified and generally take one of the following two general
forms:
Mechanical cracks are often hidden underneath the
termination and are difficult to see externally. However, if one
end termination falls off during the removal process from
PCB, this is one indication that the cause of failure was
excessive mechanical stress due to board warping.
96
Type A:
Angled crack between bottom of device to top of solder joint.
Type B:
Fracture from top of device to bottom of device.
Surface Mounting Guide
MLC Chip Capacitors
COMMON CAUSES OF
MECHANICAL CRACKING
REWORKING OF MLCs
The most common source for mechanical stress is board
depanelization equipment, such as manual breakapart, vcutters and shear presses. Improperly aligned or dull cutters
may cause torqueing of the PCB resulting in flex stresses
being transmitted to components near the board edge.
Another common source of flexural stress is contact during
parametric testing when test points are probed. If the PCB
is allowed to flex during the test cycle, nearby ceramic
capacitors may be broken.
A third common source is board to board connections at
vertical connectors where cables or other PCBs are
connected to the PCB. If the board is not supported during
the plug/unplug cycle, it may flex and cause damage to
nearby components.
Special care should also be taken when handling large (>6"
on a side) PCBs since they more easily flex or warp than
smaller boards.
Solder Tip
Preferred Method - No Direct Part Contact
Thermal shock is common in MLCs that are manually
attached or reworked with a soldering iron. AVX strongly
recommends that any reworking of MLCs be done with hot
air reflow rather than soldering irons. It is practically
impossible to cause any thermal shock in ceramic
capacitors when using hot air reflow.
However direct contact by the soldering iron tip often
causes thermal cracks that may fail at a later date. If rework
by soldering iron is absolutely necessary, it is recommended
that the wattage of the iron be less than 30 watts and the
tip temperature be <300ºC. Rework should be performed by
applying the solder iron tip to the pad and not directly
contacting any part of the ceramic capacitor.
Solder Tip
Poor Method - Direct Contact with Part
PCB BOARD DESIGN
To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board.
However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is
located.
No Stress Relief for MLCs
Routed Cut Line Relieves Stress on MLC
97
AMERICAS
EUROPE
ASIA-PACIFIC
ASIA-KED
(KYOCERA Electronic Devices)
AVX Myrtle Beach, SC
AVX Limited, England
Tel: 843-448-9411
Tel: +44-1252-770000
AVX Northwest, WA
AVX S.A.S., France
Tel: 360-699-8746
Tel: +33-1-69-18-46-00
AVX/Kyocera, Asia, Ltd.,
Hong Kong
AVX Midwest, IN
AVX GmbH, Germany
Tel: +852-2363-3303
Tel: 317-861-9184
Tel: +49-8131-9004-0
AVX/Kyocera (S) Pte Ltd.,
Singapore
KED Hong Kong Ltd.
Tel: +852-2305-1080/1223
Tel: +65-6286-7555
AVX Mid/Pacific, CA
AVX SRL, Italy
AVX/Kyocera Yuhan Hoesa,
South Korea
Tel: 408-988-4900
Tel: +39-02-614-571
Tel: +82-2785-6504
AVX Northeast, MA
AVX Czech Republic
Tel: 617-479-0345
Tel: +420-57-57-57-521
AVX/Kyocera HK Ltd.,
Taiwan
KED Hong Kong Ltd.
Shenzen
Tel: +86-755-3398-9600
KED Company Ltd.
Shanghai
Tel: +86-21-6217-1201
KED Hong Kong Ltd.
Beijing
Tel: +86-10-5869-4655
Tel: +886-2-2698-8778
AVX Southwest, CA
AVX/ELCO UK
Tel: 949-859-9509
Tel: +44-1638-675000
AVX/Kyocera (M) Sdn Bhd,
Malaysia
AVX Canada
ELCO Europe GmbH
Tel: +60-4228-1190
Tel: 905-238-3151
Tel: +49-2741-299-0
AVX South America
AVX S.A., Spain
AVX/Kyocera International
Trading Co. Ltd.,
Shanghai
Tel: +55-11-4688-1960
Tel: +34-91-63-97-197
Tel: +86-21-6215-5588
AVX Benelux
AVX/Kyocera Asia Ltd.,
Shenzen
Tel: +65-6509-0328
Tel: +86-755-3336-0615
Kyocera Corporation
Japan
AVX/Kyocera International
Trading Co. Ltd.,
Beijing
Tel: +81-75-604-3449
Tel: +31-187-489-337
KED Taiwan Ltd.
Tel: +886-2-2950-0268
KED Korea Yuhan Hoesa,
South Korea
Tel: +82-2-783-3604/6126
KED (S) Pte Ltd.
Singapore
Tel: +86-10-6588-3528
AVX/Kyocera India
Liaison Office
Tel: +91-80-6450-0715
Contact:
A KYOCERA GROUP COMPANY
http://www.avx.com
S-MLCC0M409-C