www.avx.com AVX Surface Mount Ceramic Capacitor Products Version 9.4 Ceramic Chip Capacitors Table of Contents How to Order - AVX Part Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 C0G (NP0) Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 U Dielectric RF/Microwave C0G (NP0) Capaciators (RoHS) General Information and Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 RF/Microwave C0G (NP0) Capaciators (Sn/Pb) General Information and Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12 Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 X8R Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15 X7R Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-19 X7S Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 X5R Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Y5V Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MLCC Tin/Lead Termination (LD Series) General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-35 MLCC Low Profile General Specifications / Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 UltraThin Ceramic Capacitors General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Automotive MLCC General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-39 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40-42 APS for COTS+ Applications General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-45 MLCC with FLEXITERM® General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47-48 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-50 FLEXISAFE MLC Chips General Specifications and Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Capacitor Array Capacitor Array (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-55 Automotive Capacitor Array (IPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Multi-Value Capacitor Array (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Part and Pad Layout Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Low Inductance Capacitors Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-60 LICC (Low Inductance Chip Capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-64 IDC (InterDigitated Capacitors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-68 LGA Low Inductance Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-70 LICA (Low Inductance Decoupling Capacitor Arrays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-72 High Voltage MLC Chips 600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73-74 Tin/Lead Termination “B” - 600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-76 MIL-PRF-55681/Chips CDR01 thru CDR06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77-78 CDR31 thru CDR35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-82 Packaging of Chip Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Embossed Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Paper Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Bulk Case Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Basic Capacitor Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88-92 Surface Mounting Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93-97 1 How to Order Part Number Explanation Commercial Surface Mount Chips EXAMPLE: 08055A101JAT2A 0805 5 A 101 Size (L" x W") 0201 0402 0603 0805 1206 1210 1812 1825 2220 2225 Voltage Dielectric Capacitance 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V D = 35V 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = NP0(C0G) C = X7R D = X5R F = X8R G = Y5V U = U Series W = X6S Z = X7S 2 Sig. Fig + No. of Zeros Examples: 100 = 10 pF 101 = 100 pF 102 = 1000 pF 223 = 22000 pF 224 = 220000 pF 105 = 1µF 106 = 10µF 107 = 100µF For values below 10 pF, use “R” in place of Decimal point, e.g., 9.1 pF = 9R1. Contact Factory for Special Voltages F * E V = 63V = 75V = 150V = 250V 9 = 300V X = 350V 8 = 400V J* A Tolerance Failure B = ±.10 pF Rate C = ±.25 pF A = N/A D = ±.50 pF 4 = Automotive F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20% Z = +80%, -20% P = +100%, -0% T 2 A Terminations Packaging T = Plated Ni and Sn 7 = Gold Plated U = Conductive Expoxy for Hybrid Applications Z = FLEXITERM® X = FLEXITERM® with 5% min lead (X7R & X8R only) Available 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Special Code A = Std. Contact Factory For Multiples Contact Factory For 1 = Pd/Ag Term * B, C & D tolerance for ≤10 pF values. Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value. NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series High Voltage MLC Chips EXAMPLE: 1808AA271KA11A 1808 AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 3640 A A 271 K A 1 Voltage Temperature Capacitance Capacitance Failure Packaging/ Termination C = 600V/630V Coefficient Code Tolerance Rate Marking 1= Pd/Ag (2 significant digits C0G: J = ±5% 1 = 7" Reel A = 1000V A = C0G A=Not T = Plated Ni + no. of zeros) K = ±10% Applicable 3 = 13" Reel S = 1500V C = X7R and Sn Examples: M = ±20% 9 = Bulk G = 2000V B = 5% Min Pb 10 pF = 100 X7R: K = ±10% W = 2500V Z = FLEXITERM® 100 pF = 101 M = ±20% H = 3000V X = FLEXITERM® 1,000 pF = 102 Z = +80%, J = 4000V with 5% min 22,000 pF = 223 -20% K = 5000V lead (X7R only) 220,000 pF = 224 1 µF = 105 NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series 2 T A Special Code A = Standard How to Order Part Number Explanation Capacitor Array EXAMPLE: W2A43C103MAT2A W 2 Style W = RoHS L = SnPb A 4 3 Case Array Number Size of Caps 1 = 0405 2 = 0508 3 = 0612 C Voltage Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V 103 M Dielectric Capacitance A = NP0 Code (In pF) C = X7R 2 Sig Digits + Number of D = X5R Zeros A T 2A Capacitance Failure Termination Tolerance Rate Code J = ±5% A = Commercial T = Plated Ni and Sn K = ±10% 4 = Automotive Z = FLEXITERM® M = ±20% B = 5% min lead X = FLEXITERM® with 5% min lead Packaging & Quantity Code 2A = 7" Reel (4000) 4A = 13" Reel (10000) 2F = 7" Reel (1000) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Low Inductance Capacitors (LICC) EXAMPLE: 0612ZD105MAT2A 0612 Z D 105 M A Size 0306 0508 0612 LD16 LD17 LD18 Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V Dielectric C = X7R D = X5R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% T Failure Rate Terminations A = N/A T = Plated Ni and Sn B = 5% min lead 2 A Packaging Available 2 = 7" Reel 4 = 13" Reel Thickness See Page 64 for Codes NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Interdigitated Capacitors (IDC) EXAMPLE: W3L16D225MAT3A W 3 L D 225 Dielectric C = X7R D = X5R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros 6 1 Style Case Low Voltage Number Inductance of W = RoHS Size 4 = 4V L = SnPb 2 = 0508 ESL = 50pH Terminals 6 = 6.3V 3 = 0612 ESL = 60pH 1 = 8 Terminals Z = 10V Y = 16V M A Capacitance Failure Tolerance Rate M = ±20 A = N/A T 3 Termination Packaging T = Plated Ni Available and Sn 1=7" Reel B = 5% min 3=13" Reel Lead A Thickness Max. Thickness mm (in.) A=0.95 (0.037) S=0.55 (0.022) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Low Inductance Decoupling Capacitor Arrays (LICA) EXAMPLE: LICA3T183M3FC4AA LICA Style & Size 3 T 102 M 3 Voltage Dielectric Cap/Section Capacitance Height 5V = 9 D = X5R (EIA Code) Tolerance Code 10V = Z T = T55T 102 = 1000 pF M = ±20% 6 = 0.500mm 25V = 3 S = High K 103 = 10 nF P = GMV 3 = 0.650mm T55T 104 = 100 nF 1 = 0.875mm 5 = 1.100mm 7 = 1.600mm NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. F Termination F = C4 Solder Balls- 97Pb/3Sn H = C4 Solder Balls–Low ESR P = Cr-Cu-Au N = Cr-Ni-Au X = None C 4 A # of Inspection Reel Packaging Caps/Part Code M = 7" Reel 1 = one A = Standard R = 13" Reel 6 = 2"x2" Waffle Pack 2 = two B = Established Reliability 8 = 2"x2" Black Waffle 4 = four Testing Pack 7 = 2"x2" Waffle Pack w/ termination facing up A = 2"x2" Black Waffle Pack w/ termination facing up C = 4"x4" Waffle Pack w/ clear lid A Code Face A = Bar B = No Bar C = Dot, S55S Dielectrics D = Triangle 3 C0G (NP0) Dielectric General Specifications C0G (NP0) is the most popular formulation of the “temperature-compensating,” EIA Class I ceramic materials. Modern C0G (NP0) formulations contain neodymium, samarium and other rare earth oxides. C0G (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 ±30ppm/°C which is less than ±0.3% ⌬C from -55°C to +125°C. Capacitance drift or hysteresis for C0G (NP0) ceramics is negligible at less than ±0.05% versus up to ±2% for films. Typical capacitance change with life is less than ±0.1% for C0G (NP0), one-fifth that shown by most other dielectrics. C0G (NP0) formulations show no aging characteristics. PART NUMBER (see page 2 for complete part number explanation) 0805 5 A 101 J Size (L" x W") Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 Dielectric C0G (NP0) = A Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros B C D F G J K = = = = = = = A Capacitance Tolerance ±.10 pF (<10pF) ±.25 pF (<10pF) ±.50 pF (<10pF) ±1% (≥ 10 pF) ±2% (≥ 10 pF) ±5% ±10% Failure Rate A = Not Applicable T 2 A Terminations Packaging 2 = 7" Reel T = Plated Ni 4 = 13" Reel and Sn 7 = Gold Plated 7 = Bulk Cass. 9 = Bulk Contact Factory For 1 = Pd/Ag Term Special Code A = Std. Product Contact Factory For Multiples ⌬ Capacitance vs. Frequency +2 Typical Capacitance Change Envelope: 0 ± 30 ppm/°C % ⌬ Capacitance +0.5 0 -0.5 +1 0 -1 -2 1KHz -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 Temperature °C 10 KHz 100 KHz 100 0 0 20 40 60 80 100 Temperature °C Variation of Impedance with Chip Size Impedance vs. Frequency 1000 pF - C0G (NP0) 100,000 Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs X7R 0805 10 100 10 pF 10.0 1.0 100 pF 1000 pF 0.1 1 10 100 Frequency, MHz 1000 Impedance, ⍀ 1,000 10.00 1206 0805 1812 1210 10,000 Impedance, ⍀ 10 MHz 1,000 Frequency Variation of Impedance with Cap Value Impedance vs. Frequency 0805 - C0G (NP0) 10 pF vs. 100 pF vs. 1000 pF 4 1 MHz Insulation Resistance vs Temperature 10,000 X7R NPO Impedance, ⍀ % ⌬ Capacitance Temperature Coefficient Insulation Resistance (Ohm-Farads) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values. 1.0 0.1 10 100 Frequency, MHz 1000 1.00 0.10 0.01 10 100 Frequency, MHz 1000 C0G (NP0) Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance NP0 Specification Limits -55ºC to +125ºC Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000 100,000MΩ or 1000MΩ - µF, whichever is less Dielectric Strength No breakdown or visual defects Q Resistance to Flexure Stresses Appearance Capacitance Variation ±5% or ±.5 pF, whichever is greater Q Meets Initial Values (As Above) Insulation Resistance Solderability Appearance Capacitance Variation Resistance to Solder Heat Thermal Shock Load Life Q Insulation Resistance Dielectric Strength Appearance Capacitance Variation Q Insulation Resistance Dielectric Strength Appearance Capacitance Variation Q (C=Nominal Cap) Insulation Resistance Dielectric Strength Appearance Capacitance Variation Load Humidity Q Insulation Resistance Dielectric Strength No defects Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF 1.0 kHz ± 10% for cap > 1000 pF Voltage: 1.0Vrms ± .2V Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices. Deflection: 2mm Test Time: 30 seconds 1mm/sec ≥ Initial Value x 0.3 ≥ 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 ± 5ºC for 5.0 ± 0.5 seconds ≤ ±2.5% or ±.25 pF, whichever is greater Meets Initial Values (As Above) Dip device in eutectic solder at 260ºC for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55ºC ± 2º 30 ± 3 minutes ≤ ±2.5% or ±.25 pF, whichever is greater Step 2: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Step 3: +125ºC ± 2º 30 ± 3 minutes Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 hours at room temperature No visual defects ≤ ±3.0% or ± .3 pF, whichever is greater ≥ 30 pF: ≥10 pF, <30 pF: <10 pF: Q≥ 350 Q≥ 275 +5C/2 Q≥ 200 +10C ≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) Charge device with twice rated voltage in test chamber set at 125ºC ± 2ºC for 1000 hours (+48, -0). Remove from test chamber and stabilize at room temperature for 24 hours before measuring. No visual defects ≤ ±5.0% or ± .5 pF, whichever is greater ≥ 30 pF: ≥10 pF, <30 pF: <10 pF: Q≥ 350 Q≥ 275 +5C/2 Q≥ 200 +10C ≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) Store in a test chamber set at 85ºC ± 2ºC/ 85% ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring. 5 C0G (NP0) Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 1206 Soldering Packaging Reflow Only All Paper Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 0.60 ± 0.03 (0.024 ± 0.001) 0.30 ± 0.03 (0.011 ± 0.001) 0.15 ± 0.05 (0.006 ± 0.002) 25 50 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 25 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 25 50 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 50 100 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J N N 6 A 0.33 (0.013) 䉲 Letter Max. Thickness L 50 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C W 16 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 䉲 䉲 SIZE 䉲 Cap (µF) 16 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 100 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 16 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 25 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 100 16 25 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M 16 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M 25 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M 200 16 25 䉲 Cap (pF) 䉲 (t) Terminal 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 50 100 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M J J Q J J Q J M Q M M M P M P M P M P M P M 500 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M P T 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 WVDC 䉲 (L) Length 25 50 16 0201 C 0.56 (0.022) t 25 50 16 0402 E 0.71 (0.028) PAPER G 0.90 (0.035) 25 50 0603 J 0.94 (0.037) K 1.02 (0.040) 50 100 0805 M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 50 100 1206 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 200 500 C0G (NP0) Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 1210 1812 1825 2220 2225 Reflow Only Paper/Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 50 100 200 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 0.61 ± 0.36 (0.024 ± 0.014) 50 100 200 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.40 (0.252 ± 0.016) 0.61 ± 0.36 (0.024 ± 0.014) 50 100 200 5.70 ± 0.40 (0.225 ± 0.016) 5.00 ± 0.40 (0.197 ± 0.016) 0.64 ± 0.39 (0.025 ± 0.015) 50 100 200 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 0.64 ± 0.39 (0.025 ± 0.015) 50 100 200 Cap (pF) 500 䉲 L 䉲 A 0.33 (0.013) 25 W 䉲 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 25 50 SIZE Letter Max. Thickness 500 䉲 Cap (µF) 25 䉲 (t) Terminal T 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 WVDC 䉲 (L) Length 䉲 SIZE Soldering Packaging J J J J J J J J J J M M J J J J M M M Q Q 100 200 J J J J J J J J J J J J J J J J J J J M M M M M M M M 500 K K K K K K K K K K K K K K M M M M M M M M M K K K K K K K K K K K M M M M M M M M M M M M 25 50 1210 C 0.56 (0.022) E 0.71 (0.028) PAPER K K K K K K K K K M M M M K K K K K P P P P P X M M M M P Q Q Q Q X M M M M M M M M M M M M M M M P P P P P P 100 200 500 50 1812 G 0.90 (0.035) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) M M M M M M M M M M M M M M M M M M M M M M M M M M M 100 200 X X X X X X X X X X X Y Y 50 1825 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X X X X X X X X X X X 100 X X X X X X X X X X 200 2220 X 2.29 (0.090) Y 2.54 (0.100) t M M M M M M M M M M M M M M M M M P P P P P Q Q 50 M M M M M M M M M M M M M M M M Y Y P P P P P P P P P P P P P P Y Y Y Y 100 200 2225 Z 2.79 (0.110) 7 RF/Microwave C0G (NP0) Capacitors (RoHS) Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors GENERAL INFORMATION are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210. “U” Series capacitors are C0G (NP0) chip capacitors specially designed for “Ultra” low ESR for applications in the communications market. Max ESR and effective capacitance DIMENSIONS: inches (millimeters) 0402 0603 0805 1210 A A C B A A C B D E B B C C D D E D D D E inches (mm) E Size A B C D 0402 0603 0805 1210 0.039±0.004 (1.00±0.1) 0.060±0.010 (1.52±0.25) 0.079±0.008 (2.01±0.2) 0.126±0.008 (3.2±0.2) 0.020±0.004 (0.50±0.1) 0.030±0.010 (0.76±0.25) 0.049±0.008 (1.25±0.2) 0.098±0.008 (2.49±0.2) 0.024 (0.6) max 0.036 (0.91) max 0.040±0.005 (1.02±0.127) 0.050±0.005 (1.27±0.127) N/A 0.010±0.005 (0.25±0.13) 0.020±0.010 (0.51±0.255) 0.025±0.015 (0.635±0.381) N/A 0.030 (0.76) min 0.020 (0.51) min 0.040 (1.02) min HOW TO ORDER 0805 1 Case Size U 100 Dielectric = Ultra Low ESR 0402 0603 0805 1210 = = = = 25V 50V 100V 200V A T Capacitance Tolerance Code B = ±0.1pF C = ±0.25pF D = ±0.5pF F = ±1% G = ±2% J = ±5% K = ±10% M = ±20% Voltage Code 3 5 1 2 J Capacitance EIA Capacitance Code in pF. First two digits = significant figures or “R” for decimal place. Third digit = number of zeros or after “R” significant figures. 2 A Termination Special Code T= Plated Ni and Sn A = Standard Failure Rate Code Packaging Code A = Not Applicable 2 = 7" Reel 4 = 13" Reel 9 = Bulk NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. ELECTRICAL CHARACTERISTICS Capacitance Values and Tolerances: Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz Temperature Coefficient of Capacitance (TC): 0±30 ppm/°C (-55° to +125°C) Insulation Resistance (IR): 1012 Ω min. @ 25°C and rated WVDC 1011 Ω min. @ 125°C and rated WVDC Working Voltage (WVDC): Size 0402 0603 0805 1210 8 - Working Voltage 50, 25 WVDC 200, 100, 50 WVDC 200, 100 WVDC 200, 100 WVDC Dielectric Working Voltage (DWV): 250% of rated WVDC Equivalent Series Resistance Typical (ESR): 0402 0603 0805 1210 - See Performance Curve, page 9 See Performance Curve, page 9 See Performance Curve, page 9 See Performance Curve, page 9 Marking: Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request). MILITARY SPECIFICATIONS Meets or exceeds the requirements of MIL-C-55681 RoHS COMPLIANT Pb: Free RF/Microwave C0G (NP0) Capacitors (RoHS) Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors CAPACITANCE RANGE 100 110 120 130 140 150 160 180 200 220 270 300 330 360 390 430 470 510 560 620 680 750 820 910 1000 B,C,J,K,M F,G,J,K,M 200V 100V 50V N/A F,G,J,K,M N/A 100V 200V 200V 50V 50V N/A 200V 100V 100V N/A 200V 100V 䉱 B,C,J,K,M 50V 200V 200V 200V F,G,J,K,M 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 B,C,D B,C,J,K,M 7.5 8.2 9.1 10 11 12 13 15 18 20 22 24 27 30 33 36 39 43 47 51 56 68 75 82 91 䉱 50V 200V 200V 200V 䉱 䉱 䉱 䉱 䉱 䉱 B,C,D B,C,D 䉱 䉱 B,C B,C,D 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 䉱 N/A N/A 䉱 N/A 䉱 50V Size Available Cap (pF) Tolerance 0402 0603 0805 1210 䉱 B,C Size Available Cap (pF) Tolerance 0402 0603 0805 1210 䉱 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Size Available Cap (pF) Tolerance 0402 0603 0805 1210 䉱 Size Available Cap (pF) Tolerance 0402 0603 0805 1210 ULTRA LOW ESR, “U” SERIES TYPICAL ESR vs. FREQUENCY 0603 “U” SERIES TYPICAL ESR vs. FREQUENCY 0402 “U” SERIES 1 1 3.9 pF 4.7 pF 5.1 pF 6.8 pF 10.0 pF 15.0 pF ESR (ohms) ESR (ohms) 10 pF 15 pF 3.3 pF 0.1 0.01 0.01 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 Frequency (MHz) Frequency (MHz) TYPICAL ESR vs. FREQUENCY 0805 “U” SERIES TYPICAL ESR vs. FREQUENCY 1210 “U” SERIES 2500 1 1 100 pF 10.0 pF ESR (ohms) ESR (ohms) 0.1 0.1 0.1 10 pF 100 pF 300 pF 0.01 0.01 0 500 1000 1500 Frequency (MHz) 2000 2500 0 500 1000 1500 2000 Frequency (MHz) ESR Measured on the Boonton 34A RoHS COMPLIANT Pb: Free 9 10 0.1 1.0 1.0 10 10 1210 0603 Capacitance (pF) 0402 100 0805 TYPICAL SERIES RESONANT FREQUENCY “U” SERIES CHIP 1000 RF/Microwave C0G (NP0) Capacitors Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors Frequency (GHz) RF/Microwave C0G (NP0) Capacitors (Sn/Pb) Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors GENERAL INFORMATION are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210. “U” Series capacitors are C0G (NP0) chip capacitors specially designed for “Ultra” low ESR for applications in the communications market. Max ESR and effective capacitance DIMENSIONS: inches (millimeters) 0402 0603 0805 1210 A A C B A A C B D E B B C C D D E D D E D inches (mm) E Size A B C D 0402 0603 0805 1210 0.039±0.004 (1.00±0.1) 0.060±0.010 (1.52±0.25) 0.079±0.008 (2.01±0.2) 0.126±0.008 (3.2±0.2) 0.020±0.004 (0.50±0.1) 0.030±0.010 (0.76±0.25) 0.049±0.008 (1.25±0.2) 0.098±0.008 (2.49±0.2) 0.024 (0.6) max 0.036 (0.91) max 0.040±0.005 (1.02±0.127) 0.050±0.005 (1.27±0.127) N/A 0.010±0.005 (0.25±0.13) 0.020±0.010 (0.51±0.254) 0.025±0.015 (0.635±0.381) N/A 0.030 (0.76) min 0.020 (0.51) min 0.040 (1.02) min HOW TO ORDER LD05 1 Case Size U 100 Dielectric = Ultra Low ESR LD02 = 0402 LD03 = 0603 LD05 = 0805 LD10 = 1210 A B Capacitance Tolerance Code B = ±0.1pF C = ±0.25pF D = ±0.5pF F = ±1% G = ±2% J = ±5% K = ±10% M = ±20% Voltage Code 3 = 25V 5 = 50V 1 = 100V 2 = 200V J Capacitance EIA Capacitance Code in pF. 2 A Termination Special Code B = 5% min lead A = Standard Failure Rate Code Packaging Code A = Not Applicable 2 = 7" Reel 4 = 13" Reel 9 = Bulk First two digits = significant figures or “R” for decimal place. Third digit = number of zeros or after “R” significant figures. ELECTRICAL CHARACTERISTICS Capacitance Values and Tolerances: Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz Temperature Coefficient of Capacitance (TC): 0±30 ppm/°C (-55° to +125°C) Insulation Resistance (IR): 1012 Ω min. @ 25°C and rated WVDC 1011 Ω min. @ 125°C and rated WVDC Working Voltage (WVDC): Size 0402 0603 0805 1210 - Working Voltage 50, 25 WVDC 200, 100, 50 WVDC 200, 100 WVDC 200, 100 WVDC Dielectric Working Voltage (DWV): 250% of rated WVDC Equivalent Series Resistance Typical (ESR): 0402 0603 0805 1210 - See Performance Curve, page 12 See Performance Curve, page 12 See Performance Curve, page 12 See Performance Curve, page 12 Marking: Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request). MILITARY SPECIFICATIONS Meets or exceeds the requirements of MIL-C-55681 11 RF/Microwave C0G (NP0) Capacitors (Sn/Pb) Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors CAPACITANCE RANGE 100 110 120 130 140 150 160 180 200 220 270 300 330 360 390 430 470 510 560 620 680 750 820 910 1000 B,C,J,K,M F,G,J,K,M 200V 100V 50V N/A F,G,J,K,M N/A 100V 200V 200V 50V 50V N/A 200V 100V 100V N/A 200V 100V 䉱 B,C,J,K,M 50V 200V 200V 200V F,G,J,K,M 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 䉱 B,C,D B,C,J,K,M 7.5 8.2 9.1 10 11 12 13 15 18 20 22 24 27 30 33 36 39 43 47 51 56 68 75 82 91 䉱 50V 200V 200V 200V 䉱 䉱 䉱 䉱 䉱 䉱 B,C,D B,C,D 䉱 䉱 B,C B,C,D 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 䉱 N/A N/A 䉱 N/A 䉱 50V 䉱 B,C Size Available Cap (pF) Tolerance LD02 LD03 LD05 LD10 Size Available Cap (pF) Tolerance LD02 LD03 LD05 LD10 䉱 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Size Available Cap (pF) Tolerance LD02 LD03 LD05 LD10 䉱 Size Available Cap (pF) Tolerance LD02 LD03 LD05 LD10 ULTRA LOW ESR, “U” SERIES TYPICAL ESR vs. FREQUENCY 0603 “U” SERIES TYPICAL ESR vs. FREQUENCY 0402 “U” SERIES 1 1 3.9 pF 4.7 pF 5.1 pF 6.8 pF 10.0 pF 15.0 pF ESR (ohms) ESR (ohms) 10 pF 15 pF 3.3 pF 0.1 0.01 0.01 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 Frequency (MHz) Frequency (MHz) TYPICAL ESR vs. FREQUENCY 0805 “U” SERIES TYPICAL ESR vs. FREQUENCY 1210 “U” SERIES 2500 1 1 ESR (ohms) 100 pF 10.0 pF ESR (ohms) 0.1 0.1 0.1 10 pF 100 pF 300 pF 0.01 0.01 0 500 1000 1500 Frequency (MHz) 2000 2500 0 500 1000 1500 2000 Frequency (MHz) ESR Measured on the Boonton 34A 12 Designer Kits Communication Kits “U” Series “U” SERIES KITS 0402 0603 Kit 5000 UZ Kit 4000 UZ Cap. Cap. Value Tolerance Value Tolerance pF pF Cap. Cap. Value Tolerance Value Tolerance pF pF 0.5 1.0 1.5 1.8 2.2 2.4 3.0 3.6 B (±0.1pF) 4.7 5.6 6.8 8.2 10.0 12.0 15.0 B (±0.1pF) J (±5%) ***25 each of 15 values 1.0 1.2 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.9 4.7 5.6 B (±0.1pF) 6.8 7.5 8.2 10.0 12.0 15.0 18.0 22.0 27.0 33.0 39.0 47.0 B (±0.1pF) J (±5%) ***25 each of 24 values 0805 1210 Kit 3000 UZ Kit 3500 UZ Cap. Cap. Value Tolerance Value Tolerance pF pF Cap. Cap. Value Tolerance Value Tolerance pF pF 1.0 1.5 2.2 2.4 2.7 3.0 3.3 3.9 4.7 5.6 7.5 8.2 9.1 10.0 12.0 B (±0.1pF) J (±5%) ***25 each of 30 values 15.0 18.0 22.0 24.0 27.0 33.0 36.0 39.0 47.0 56.0 68.0 82.0 100.0 130.0 160.0 J (±5%) 2.2 2.7 4.7 5.1 6.8 8.2 9.1 10.0 13.0 15.0 18.0 20.0 24.0 27.0 30.0 B (±0.1pF) J (±5%) 36.0 39.0 47.0 51.0 56.0 68.0 82.0 100.0 120.0 130.0 240.0 300.0 390.0 470.0 680.0 J (±5%) ***25 each of 30 values 13 X8R Dielectric General Specifications AVX have developed a range of multilayer ceramic capacitors designed for use in applications up to 150ºC. These capacitors are manufactured with an X8R dielectric material which has a capacitance variation of ±15% between -55ºC and +150ºC. The need for X8R performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature. They are ideal for automotive under the hood sensors, measure while drilling and log while drilling. Typical applications include wire line logging tools such as gamma ray receivers, acoustic transceivers and micro-resistivity tools. They can also be used as bulk capacitors for high temperature camera modules. X8R capacitors are available as standard and Automotive AEC-Q200 qualified parts. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage. PART NUMBER (see page 2 for complete part number explanation) 0805 5 F 104 K 4 T Capacitance Capacitance Failure Terminations Tolerance Code (In pF) Rate T = Plated Ni J = ± 5% 4 = Automotive 2 Sig. Digits + and Sn K = ±10% A = Not Number of Z = FLEXITERM® M = ± 20% Applicable U = Conductive Zeros e.g. 10µF = 106 Epoxy for Hybrid apps NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Size 0603 0805 1206 Voltage 25V = 3 50V = 5 Dielectric X8R = F SIZE 271 331 471 681 102 152 182 222 272 332 392 472 562 682 822 103 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 684 824 105 Cap (pF) Cap (µF) 0603 25V G G G G G G G G G G G G G G G G G G G G G G G G G G WVDC 270 330 470 680 1000 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.01 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.1 0.12 0.15 0.18 0.22 0.27 0.33 0.39 0.47 0.68 0.82 1 WVDC 25V SIZE Letter Max. Thickness 14 A 0.33 (0.013) 0805 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) 25V 50V J J J J J J J J J J J J J J J J J J J J J J J N N N N N N N N J J J J J J J J J J J J J J J J J J J J J J J N N N N N N 50V 25V M 1.27 (0.050) 50V N 1.40 (0.055) Packaging 2 = 7" Reel 4 = 13" Reel Special Code A = Std. Product 25V 50V J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M M M J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M 25V 0805 K 1.02 (0.040) A 1206 50V G G G G G G G G G G G G G G G G G G G G G G G G 0603 2 50V 1206 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) = AEC-Q200 Qualified Y 2.54 (0.100) Z 2.79 (0.110) X8R Dielectric General Specifications APPLICATIONS FOR X8R CAPACITORS • • • • All market sectors with a 150°C requirement Automotive on engine applications Oil exploration applications Hybrid automotive applications – Battery control – Inverter / converter circuits – Motor control applications – Water pump • Hybrid commercial applications – Emergency circuits – Sensors – Temperature regulation ADVANTAGES OF X8R MLC CAPACITORS • Capacitance variation of ±15% between –55°C and +150°C • Qualified to the highest automotive AEC-Q200 standards • Excellent reliability compared to other capacitor technologies • RoHS compliant • Low ESR / ESL compared to other technologies • Tin solder finish • FLEXITERM® available • Hybrid available • 50V range available ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS Samples Technical Articles Application Engineering Application Support X8R Dielectric 0805, 50V, X8R Typical Temperature Coefficient 5.00 0.00 % Cap change • • • • -5.00 -10.00 X7R included for comparison -15.00 -20.00 -25.00 -60 -40 -20 0 20 40 60 80 100 120 140 160 Temperature (°C) 15 X7R Dielectric General Specifications X7R formulations are called “temperature stable” ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear. Capacitance for X7R varies under the influence of electrical operating conditions such as voltage and frequency. X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. PART NUMBER (see page 2 for complete part number explanation) 0805 5 C 103 M A T Size (L" x W") Voltage 4V = 4 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 Dielectric X7R = C Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance J = ± 5%* K = ±10% M = ± 20% Failure Rate A = Not Applicable Terminations T = Plated Ni and Sn 7 = Gold Plated* Z= FLEXITERM®** *≤1µF only 2 A Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Special Code A = Std. Product Contact Factory For Multiples *Optional termination **See FLEXITERM® X7R section X7R Dielectric Typical Temperature Coefficient ⌬ Capacitance vs. Frequency +30 10 +20 % ⌬ Capacitance 0 -5 -10 -15 -20 0 20 40 60 0 -10 -20 -30 1KHz -25 -60 -40 -20 +10 80 100 120 140 Temperature °C 10 KHz 100 KHz 10 1206 0805 1210 1,000 pF Impedance, ⍀ Impedance, ⍀ 10,000 pF 1.00 0.10 Frequency, MHz 16 100 0 0 20 40 1000 1.0 0.1 1 10 80 100 120 Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R 10 1206 0805 1210 1.0 0.1 .01 .01 60 Temperature °C Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF - X7R 10.00 100 10 MHz 1,000 Frequency Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 0805 0.01 10 1 MHz Insulation Resistance vs Temperature 10,000 Impedance, ⍀ % Cap Change 5 Insulation Resistance (Ohm-Farads) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values. 100 Frequency, MHz 1,000 1 10 100 Frequency, MHz 1,000 X7R Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance X7R Specification Limits -55ºC to +125ºC Within specified tolerance ≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V DC rating ≤ 3.5% for 16V DC rating ≤ 5.0% for ≤ 10V DC rating 100,000MΩ or 1000MΩ - µF, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects ≤ ±12% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 µF, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices. Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) ≥ Initial Value x 0.3 ≥ 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 ± 5ºC for 5.0 ± 0.5 seconds ≤ ±7.5% Meets Initial Values (As Above) Dip device in eutectic solder at 260ºC for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55ºC ± 2º 30 ± 3 minutes ≤ ±7.5% Step 2: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Step 3: +125ºC ± 2º 30 ± 3 minutes Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature No visual defects ≤ ±12.5% ≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects ≤ ±12.5% ≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above) Charge device with 1.5 rated voltage (≤ 10V) in test chamber set at 125ºC ± 2ºC for 1000 hours (+48, -0) Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring. Store in a test chamber set at 85ºC ± 2ºC/ 85% ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring. Meets Initial Values (As Above) 17 X7R Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 1206 Soldering Packaging Reflow Only All Paper Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 0.60 ± 0.03 (0.024 ± 0.001) 0.30 ± 0.03 (0.011 ± 0.001) 0.15 ± 0.05 (0.006 ± 0.002) 10 16 25 A A A A A A A A A A A A A A A A A A A A A A A A 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 16 25 50 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 16 25 50 10 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 16 25 50 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 16 25 50 100 J J J J J J J J J J J J J J J J J J N N N N J J J J J J J J J J J J J J J J J J N N N N (L) Length (W) Width (t) Terminal Cap (pF) Cap (µF mm (in.) mm (in.) mm (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC SIZE Letter Max. Thickness A 0.33 (0.013) C G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 100 200 G G G G G G G G G G G G G G 6.3 J* J* J* J* J* J J J J J J J J J J J J J J J J J N N N N N J J J J J J J J J J J J J J J J N N N N 100 200 J J J J J J J J J J J J N N N N N N N N J J J J J J J J J J J N 6.3 P* P* P* P* 10 J J J J J J J J J J J J J J J M M M P Q J J J J J J J J J J J J J J J M M M Q Q J J J J J J J J J J J J J J M M Q Q Q Q Q* Q* Q* Q* Q* 10 16 25 200 J J J J J J J J J J J J J J P P Q Q J J J J J J J J J J J M Q Q Q Q Q Q J J J J J J M M M M P P 50 100 200 500 K K K K M M M M P P Q* 10 16 25 16 0201 C 0.56 (0.022) 25 50 6.3 10 0402 E 0.71 (0.028) PAPER *Optional Specifications – Contact factory 18 10 C C C C C C C C C C C C C C C C C 6.3 G 0.90 (0.035) 16 25 50 100 200 6.3 0603 J 0.94 (0.037) K 1.02 (0.040) 10 16 25 50 100 200 6.3 0805 M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 1206 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 500 X7R Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 1210 1812 1825 2220 2225 Reflow Only Paper/Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 25 50 100 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 0.61 ± 0.36 (0.024 ± 0.014) 100 200 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.40 (0.252 ± 0.016) 0.61 ± 0.36 (0.024 ± 0.014) 50 100 5.70 ± 0.40 (0.225 ± 0.016) 5.00 ± 0.40 (0.197 ± 0.016) 0.64 ± 0.39 (0.025 ± 0.015) 50 100 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 0.64 ± 0.39 (0.025 ± 0.015) 50 100 16 500 50 25 200 L 䉲 J J J J J J J J J J J J J J J M M N N X X X Z Z* J J J J J J J J J J J J J J J M M N N X X X Z Z* J J J J J J J J J J J J J J J M P P Z Z Z Z Z* 10 16 25 J J J J J J J J J J J J J J J M X X Z Z Z Z J J J J J J J J J J J J M P Q Q X Z Z Z J J J J J J J J J J M M Z Z M M M M M M P Q Q K K K K K K K K K K K M M Z Z Z Z W T C 0.56 (0.022) K K K K K K K K K M P Q X Z Z K K K K K K K P P X K P P X Z Z Z M M M M M M M M M M M M M M M M M M M M M M M M M P P X X X X X X X X X X X X X X X X X Z t X X X X X X X X X X X X X X X Z Z X X X X X X X X X X X M M M M M M M M M M M M M M M 100 200 50 P P P P P P P P P P P P P X Z 50 100 200 500 50 1210 A 0.33 (0.013) 500 䉲 SIZE Letter Max. Thickness 200 䉲 Cap (µF 10 䉲 Cap (pF) 䉲 (t) Terminal 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC 䉲 (L) Length 䉲 SIZE Soldering Packaging E 0.71 (0.028) PAPER G 0.90 (0.035) 100 200 1812 J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 500 50 100 25 1825 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 50 2220 X 2.29 (0.090) Y 2.54 (0.100) 100 2225 Z 2.79 (0.110) *Optional Specifications – Contact factory 19 X7S Dielectric General Specifications GENERAL DESCRIPTION X7S formulations are called “temperature stable” ceramics and fall into EIA Class II materials. Its temperature variation of capacitance is within ±22% from –55°C to +125°C. This capacitance change is non-linear. Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency. X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. PART NUMBER (see page 2 for complete part number explanation) 1206 Z Z 105 M A T 2 A Size (L" x W") Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V Dielectric Z = X7S Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% Failure Rate A = N/A Terminations T = Plated Ni and Sn Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. Special Code A = Std. Product NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. X7S Dielectric Typical Temperature Coefficient ⌬ Capacitance vs. Frequency 10 +30 +20 % ⌬ Capacitance % Cap Change 5 0 -5 -10 -15 -20 -25 -60 -40 -20 +10 0 -10 -20 -30 1KHz 0 20 40 60 80 100 120 140 Temperature (°C) 10 KHz 100 KHz 1 MHz 10 MHz Insulation Resistance (Ohm-Farads) TYPICAL ELECTRICAL CHARACTERISTICS Insulation Resistance vs Temperature 10,000 1,000 100 0 0 20 40 Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7S 0805 10 Impedance, ⍀ Impedance, ⍀ 10,000 pF 1.00 0.10 0.01 10 100 Frequency, MHz 20 1000 1.0 0.1 1 10 120 1206 0805 1210 1.0 0.1 .01 .01 100 10 Impedance, ⍀ 1206 0805 1210 1,000 pF 80 Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7S Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF - X7S 10.00 60 Temperature °C Frequency 100 Frequency, MHz 1,000 1 10 100 Frequency, MHz 1,000 X7S Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance X7S Specification Limits -55ºC to +125ºC Within specified tolerance ≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V DC rating ≤ 3.5% for 16V DC rating ≤ 5.0% for ≤ 10V DC rating 100,000MΩ or 1000MΩ - µF, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects ≤ ±12% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 µF, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) ≥ Initial Value x 0.3 ≥ 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 ± 5ºC for 5.0 ± 0.5 seconds ≤ ±7.5% Meets Initial Values (As Above) Dip device in eutectic solder at 260ºC for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55ºC ± 2º 30 ± 3 minutes ≤ ±7.5% Step 2: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Step 3: +125ºC ± 2º 30 ± 3 minutes Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature No visual defects ≤ ±12.5% ≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects ≤ ±12.5% Charge device with 1.5 rated voltage (≤ 10V) in test chamber set at 125ºC ± 2ºC for 1000 hours (+48, -0) Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring. Store in a test chamber set at 85ºC ± 2ºC/ 85% ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. ≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring. Meets Initial Values (As Above) 21 X7S Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 0402 0603 0805 1206 1210 Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Reflow Only Paper/Embossed 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 6.3 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 6.3 25 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 4 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 6.3 10 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 6.3 Cap (pF) 22 A 0.33 (0.013) 䉲 Letter Max. Thickness L W 䉲 䉲 SIZE 䉲 Cap (µF 䉲 (t) Terminal T 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC 䉲 (L) Length 䉲 SIZE Soldering Packaging t C C C C G G G G G N N N N Q Q Q Q Q Z 6.3 6.3 0402 C 0.56 (0.022) 25 4 0603 E 0.71 (0.028) PAPER G 0.90 (0.035) 6.3 0805 J 0.94 (0.037) K 1.02 (0.040) 10 1206 M 1.27 (0.050) N 1.40 (0.055) 6.3 1210 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) X5R Dielectric General Specifications GENERAL DESCRIPTION • General Purpose Dielectric for Ceramic Capacitors • EIA Class II Dielectric • Temperature variation of capacitance is within ±15% from -55°C to +85°C • Well suited for decoupling and filtering applications • Available in High Capacitance values (up to 100µF) PART NUMBER (see page 2 for complete part number explanation) 1210 4 D 107 M A T 2 A Size (L" x W") Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V D = 35V 5 = 50V Dielectric D = X5R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% Failure Rate A = N/A Terminations T = Plated Ni and Sn Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Special Code A = Std. NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values. Temperature Coefficient 20 % ⌬ Capacitance 15 10 5 0 -5 -10 -15 -20 -60 -40 -20 0 +20 +40 Temperature °C +60 +80 Insulation Resistance (Ohm-Farads) TYPICAL ELECTRICAL CHARACTERISTICS Insulation Resistance vs Temperature 10,000 1,000 100 0 0 20 40 60 80 100 120 Temperature °C 23 X5R Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance X5R Specification Limits -55ºC to +85ºC Within specified tolerance ≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN 10,000MΩ or 500MΩ - µF, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity 24 Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects ≤ ±12% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 µF, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) ≥ Initial Value x 0.3 ≥ 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 ± 5ºC for 5.0 ± 0.5 seconds ≤ ±7.5% Meets Initial Values (As Above) Dip device in eutectic solder at 260ºC for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55ºC ± 2º 30 ± 3 minutes ≤ ±7.5% Step 2: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Step 3: +85ºC ± 2º 30 ± 3 minutes Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Meets Initial Values (As Above) No visual defects ≤ ±12.5% ≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects ≤ ±12.5% ≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above) Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Charge device with 1.5X rated voltage in test chamber set at 85ºC ± 2ºC for 1000 hours (+48, -0). Note: Contact factory for *optional specification part numbers that are tested at < 1.5X rated voltage. Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring. Store in a test chamber set at 85ºC ± 2ºC/ 85% ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring. X5R Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 1206 1210 1812 Soldering Packaging Reflow Only All Paper Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Reflow Only Paper/Embossed Reflow Only All Embossed 0.60 ± 0.03 (0.024 ± 0.001) 0.30 ± 0.03 (0.011 ± 0.001) 0.15 ± 0.05 (0.006 ± 0.002) 4 6.3 10 16 25 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 4 6.3 10 16 25 50 100 150 220 A A A C 330 470 680 A A A C C C A C C C 0.010 0.015 0.022 A 0.033 0.047 0.068 0.10 0.15 0.22 A 0.33 (0.013) C A* C C C C C C A* C A* A* G G G G G G G G G G G G C* G G C* C* G G G G G J* C* C* G* G* J* J* J* E* J* J* K C* C* C* G 4 6.3 10 16 25 4 6.3 10 16 25 50 0201 0402 C 0.56 (0.022) t G G C C C A* 3.3 4.7 10 Letter Max. Thickness T C 1.0 1.5 2.2 SIZE W 䉲 C C 0.33 0.47 0.68 22 47 100 WVDC 䉲 A A A L 䉲 A 3300 4700 6800 A A A 䉲 Cap (µF) 1000 1500 2200 3.20 ± 0.20 4.50 ± 0.30 (0.126 ± 0.008) (0.177 ± 0.012) 2.50 ± 0.20 3.20 ± 0.20 (0.098 ± 0.008) (0.126 ± 0.008) 0.50 ± 0.25 0.61 ± 0.36 (0.020 ± 0.010) (0.024 ± 0.014) 4 6.3 10 16 25 35 50 6.3 10 25 50 䉲 Cap (pF) 2.01 ± 0.20 3.20 ± 0.20 (0.079 ± 0.008) (0.126 ± 0.008) 1.25 ± 0.20 1.60 ± 0.20 (0.049 ± 0.008) (0.063 ± 0.008) 0.50 ± 0.25 0.50 ± 0.25 (0.020 ± 0.010) (0.020 ± 0.010) 10 16 25 35 50 6.3 10 16 25 35 50 䉲 (t) Terminal 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 4 6.3 10 16 25 35 50 6.3 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 䉲 (L) Length E 0.71 (0.028) PAPER G 0.90 (0.035) J* J* J* J* J* G G G N G G G N N N G N N N N N N Q N N N N N N N N P* Q Q Q Q Q Q Q Q Q* N N N N N* N* N* N* N* * Q Q Q N* * Q* Q* Q* Q* * Q Q Q Q X X Q Z X X Z X Z Z* X Z Z Z Z Z* Z* Z* Z* 4 6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10 25 50 0603 J 0.94 (0.037) K 1.02 (0.040) 0805 M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 1206 X 2.29 (0.090) 1210 Y 2.54 (0.100) 1812 Z 2.79 (0.110) = Under Development = *Optional Specifications – Contact factory NOTE: Contact factory for non-specified capacitance values 25 Y5V Dielectric General Specifications Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% –82% capacitance change over the operating temperature range of –30°C to +85°C. These characteristics make Y5V ideal for decoupling applications within limited temperature range. PART NUMBER (see page 2 for complete part number explanation) 3 G 104 Z A T 2 A Size (L" x W") Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 Dielectric Y5V = G Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance Z = +80 –20% Failure Rate A = Not Applicable Terminations T = Plated Ni and Sn Packaging 2 = 7" Reel 4 = 13" Reel Special Code A = Std. Product Capacitance Change vs. DC Bias Voltage +20 +10 0 -10 -20 -30 -40 -50 -60 -70 -80 +40 +20 ⌬ c/c (%) 0 -20 -40 -60 -80 -55 -35 -15 -100 0 +5 +25 +45 +65 +85 +105 +125 Temperature °C 10,000 80 100 100 10 1 1,000,000 Frequency (Hz) +20 10,000,000 +40 +50 +60 +70 +80 +90 1 F - 1206 Impedance vs. Frequency 1,000 100 100 10 1 0.01 10,000 +30 Temperature °C 10 1 0.1 0.1 0.1 100,000 0 1,000 |Z| (Ohms) |Z| (Ohms) 60 100 0.22 F - 0805 Impedance vs. Frequency 1,000 26 40 1,000 % DC Bias Voltage 0.1 F - 0603 Impedance vs. Frequency 0.01 10,000 20 Insulation Resistance vs. Temperature 10,000 |Z| (Ohms) % ⌬ Capacitance Temperature Coefficient Insulation Resistance (Ohm-Farads) 0805 100,000 1,000,000 Frequency (Hz) 10,000,000 0.01 10,000 100,000 1,000,000 Frequency (Hz) 10,000,000 Y5V Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance Y5V Specification Limits -30ºC to +85ºC Within specified tolerance ≤ 5.0% for ≥ 50V DC rating ≤ 7.0% for 25V DC rating ≤ 9.0% for 16V DC rating ≤ 12.5% for ≤ 10V DC rating 10,000MΩ or 500MΩ - µF, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects ≤ ±30% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 µF, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) ≥ Initial Value x 0.1 ≥ 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 ± 5ºC for 5.0 ± 0.5 seconds ≤ ±20% Meets Initial Values (As Above) Dip device in eutectic solder at 260ºC for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -30ºC ± 2º 30 ± 3 minutes ≤ ±20% Step 2: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Step 3: +85ºC ± 2º 30 ± 3 minutes Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ±2 hours at room temperature No visual defects ≤ ±30% ≤ Initial Value x 1.5 (See Above) ≥ Initial Value x 0.1 (See Above) Meets Initial Values (As Above) No visual defects ≤ ±30% Charge device with twice rated voltage in test chamber set at 85ºC ± 2ºC for 1000 hours (+48, -0) Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring. Store in a test chamber set at 85ºC ± 2ºC/ 85% ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. ≤ Initial Value x 1.5 (See above) ≥ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring. Meets Initial Values (As Above) 27 Y5V Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 1206 1210 Soldering Packaging Reflow Only All Paper Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Reflow Only Paper/Embossed 0.60 ± 0.03 (0.024 ± 0.001) 0.30 ± 0.03 (0.011 ± 0.001) 0.15 ± 0.05 (0.006 ± 0.002) 6.3 10 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 10 16 25 1.60 ± 0.15 (0.063 ± 0.006) .81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 16 25 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 16 25 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) .50 ± 0.25 (0.020 ± 0.010) 16 25 Cap (µF) 50 50 A A A A A C C C G C C G K C G G G G 28 T t G N C N N M M M Q P Q X Q 6.3 10 6 C 0.56 (0.022) 10 16 25 50 10 0402 E 0.71 (0.028) PAPER N N N N 0201 A 0.33 (0.013) W L 50 G 22.0 47.0 Letter Max. Thickness 10 䉲 2.2 4.7 10.0 WVDC 50 A A 0.33 0.47 1.0 SIZE 10 䉲 10 䉲 0.047 0.10 0.22 50 䉲 4700 0.010 0.022 6 䉲 Cap (pF) 䉲 (t) Terminal 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 10 16 25 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 820 1000 2200 䉲 (L) Length G 0.90 (0.035) 16 25 50 0603 J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) 10 16 25 50 10 0805 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED N Q X 16 25 50 10 1206 X 2.29 (0.090) N Q Y 2.54 (0.100) 16 25 1210 Z 2.79 (0.110) 50 MLCC Tin/Lead Termination “B” General Specifications AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a “B” in the 12th position of the AVX Catalog Part Number. This fulfills AVX’s commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special “B” termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination “B” products. PART NUMBER (see page 2 for complete part number explanation) LD05 Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220 5 A Dielectric Voltage 6.3V = 6 C0G (NP0) = A X7R = C 10V = Z X5R = D 16V = Y X8R = F 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7 101 Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros J B C D F G J K M = = = = = = = = Capacitance Tolerance ±.10 pF (<10pF) ±.25 pF (<10pF) ±.50 pF (<10pF) ±1% (≥ 10 pF) ±2% (≥ 10 pF) ±5% ±10% ±20% A B Terminations Failure Rate B = 5% min lead A = Not X = FLEXITERM® Applicable with 5% min lead** **X7R only 2 A Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Special Code A = Std. Product Contact Factory For Multiples *LD04 has the same CV ranges as LD03. NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values. NP0 X7R X7S X5R Y5V See FLEXITERM® section for CV options Refer to page 4 for Electrical Graphs Refer to page 16 for Electrical Graphs Refer to page 20 for Electrical Graphs Refer to page 23 for Electrical Graphs Refer to page 26 for Electrical Graphs 29 MLCC Tin/Lead Termination “B” Capacitance Range (NP0 Dielectric) PREFERRED SIZES ARE SHADED SIZE LD02 LD03 LD05 LD06 Soldering Packaging Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 16 25 50 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 25 50 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G Cap (µF) 䉲 30 A 0.33 (0.013) L W 䉲 䉲 Letter Max. Thickness 䉲 SIZE 16 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 100 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 16 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 25 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 100 16 25 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M 16 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M 25 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M 200 16 25 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 50 100 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M P M P M P M P M P M 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M Q Q Q 500 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M P 200 500 䉲 Cap (pF) 䉲 (t) Terminal 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 50 100 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J N N T 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 WVDC 䉲 (L) Length 16 25 50 t 16 LD02 C 0.56 (0.022) 25 50 LD03 E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) 50 100 LD05 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 50 100 LD06 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) MLCC Tin/Lead Termination “B” Capacitance Range (NP0 Dielectric) PREFERRED SIZES ARE SHADED LD10 LD12 LD13 LD14 Reflow Only Paper/Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 50 100 200 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 0.61 ± 0.36 (0.024 ± 0.014) 50 100 200 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.40 (0.252 ± 0.016) 0.61 ± 0.36 (0.024 ± 0.014) 100 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 0.64 ± 0.39 (0.025 ± 0.015) 100 Cap (pF) 25 50 200 50 䉲 L 䉲 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 25 50 J J J J J J J J J J M M J J J J M M M Q Q 100 200 J J J J J J J J J J J J J J J J J J J M M M M M M M M 500 K K K K K K K K K K K K K K M M M M M M M M M K K K K K K K K K K K M M M M M M M M M M M M 25 50 LD10 A 0.33 (0.013) 500 200 W 䉲 SIZE Letter Max. Thickness 500 䉲 Cap (µF) 25 䉲 (t) Terminal T 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 WVDC 䉲 (L) Length 䉲 SIZE Soldering Packaging C 0.56 (0.022) E 0.71 (0.028) PAPER K K K K K K K K K M M M M K K K K K P P P P P X M M M M P Q Q Q Q X M M M M M M M M M M M M M M M P P P P P P 100 200 500 50 LD12 G 0.90 (0.035) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) M M M M M M M M M M M M M M M M M M M M M M M M M M M 100 200 M M M M M M M M M M M M M M M M M P P P P P Q Q 50 LD13 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED t M M M M M M M M M M M M M M M M Y Y P P P P P P P P P P P P P P Y Y Y Y 100 200 LD14 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 31 MLCC Tin/Lead Termination “B” Capacitance Range (X8R Dielectric) SIZE 271 331 471 681 102 152 182 222 272 332 392 472 562 682 822 103 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 684 824 105 Cap (pF) Cap (µF) LD03 25V G G G G G G G G G G G G G G G G G G G G G G G G G G WVDC 270 330 470 680 1000 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.01 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.1 0.12 0.15 0.18 0.22 0.27 0.33 0.39 0.47 0.68 0.82 1 WVDC 25V SIZE Letter Max. Thickness 32 A 0.33 (0.013) LD05 25V 50V J J J J J J J J J J J J J J J J J J J J J J J N N N N N N N N J J J J J J J J J J J J J J J J J J J J J J J N N N N N N 50V 25V LD03 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) LD06 50V G G G G G G G G G G G G G G G G G G G G G G G G 50V 25V 50V J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M M M J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M 25V LD05 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 50V LD06 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) MLCC Tin/Lead Termination “B” Capacitance Range (X7R Dielectric) PREFERRED SIZES ARE SHADED SIZE LD02 LD03 LD05 LD06 Soldering Packaging Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 16 25 50 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 16 25 50 10 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 16 25 50 J J J J J J J J J J J J J J J J J J N N N N J J J J J J J J J J J J J J J J J J N N N N P* P* (L) Length (W) Width (t) Terminal Cap (pF) Cap (µF mm (in.) mm (in.) mm (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC SIZE Letter Max. Thickness A 0.33 (0.013) C C C C C C C 6.3 10 C C C C C C C C C C* G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 100 200 G G G G G G G G G G G G G G 6.3 J* J* J* J* J J J J J J J J J J J J J J J J J N N N N N* J J J J J J J J J J J J J J J J N N N N 100 200 J J J J J J J J J J J J N N N N N N N N J J J J J J J J J J J N 6.3 P* P* 10 16 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 25 50 100 J J J J J J J J J J J J J J J M M M P Q J J J J J J J J J J J J J J J M M M Q Q J J J J J J J J J J J J J J M M Q Q Q Q Q* Q* Q* Q* Q* 10 16 25 200 J J J J J J J J J J J J J J P P Q Q J J J J J J J J J J J M Q Q Q Q Q Q J J J J J J M M M M P P 50 100 200 500 K K K K M M M M P P Q* 16 25 50 6.3 10 16 LD02 C 0.56 (0.022) 25 50 100 200 6.3 10 LD03 E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) 16 25 50 100 200 6.3 LD05 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 500 LD06 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) = Under Development 33 MLCC Tin/Lead Termination “B” Capacitance Range (X7R Dielectric) PREFERRED SIZES ARE SHADED LD10 LD12 LD13 LD20 LD14 Reflow Only Paper/Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 25 50 100 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 0.61 ± 0.36 (0.024 ± 0.014) 100 200 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.40 (0.252 ± 0.016) 0.61 ± 0.36 (0.024 ± 0.014) 50 100 5.70 ± 0.40 (0.225 ± 0.016) 5.00 ± 0.40 (0.197 ± 0.016) 0.64 ± 0.39 (0.025 ± 0.015) 50 100 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 0.64 ± 0.39 (0.025 ± 0.015) 50 100 16 50 J J J J J J J J J J J J J J J M M N N X X X Z Z J J J J J J J J J J J J J J J M M N N X X X Z Z J J J J J J J J J J J J J J J M P P Z Z Z Z Z 10 16 25 J J J J J J J J J J J J J J J M X X Z Z Z Z J J J J J J J J J J J J M P Q Q X Z Z Z J J J J J J J J J J M M Z Z M M M M M M P Q Q K K K K K K K K K K K M M Z Z Z Z 25 200 L W T C 0.56 (0.022) K K K K K K K K K M P Q X Z Z K K K K K K K P P X K P P X Z Z Z M M M M M M M M M M M M M M M M M M M M M M M M M P P X X X X X X X X X X X X X X X X X Z t X X X X X X X X X X X X X X X Z Z X X X X X X X X X X X M M M M M M M M M M M M M M M 100 200 50 P P P P P P P P P P P P P X Z 50 100 200 500 50 LD10 A 0.33 (0.013) 500 䉲 34 500 䉲 SIZE Letter Max. Thickness 200 䉲 Cap (µF 10 䉲 Cap (pF) 䉲 (t) Terminal 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC 䉲 (L) Length 䉲 SIZE Soldering Packaging E 0.71 (0.028) PAPER G 0.90 (0.035) 100 200 LD12 J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 500 50 100 25 LD13 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 50 LD20 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 100 LD14 MLCC Tin/Lead Termination “B” Capacitance Range (X5R Dielectric) PREFERRED SIZES ARE SHADED LD02 LD03 LD05 LD06 LD10 Reflow/Wave All Paper Reflow/Wave All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Cap (pF) 1000 1500 2200 C C C 3300 4700 6800 C C 0.010 0.015 0.022 C C C C 0.033 0.047 0.068 C C C C C C 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC SIZE Letter Max. Thickness W 䉲 T t C G G G G G G G G G G G G G G C* G G C* C* G G G G J* C* C* C* G G C* C* G* G* J* J* J* J* J* J* E* J* J* K* 4 6.3 10 16 25 50 4 J* J* C 0.56 (0.022) E 0.71 (0.028) PAPER G G G N G G G N N N G N N N J 0.94 (0.037) Q N N N N N P* Q Q Q Q Q Q Q Q* Q Q Q P* Q* Q* Q* Q* * Q Q Q Q Q N N N N N* N* N* N* N* * X Q Z X X X Z X X Z Z Z Z Z Z Z Z* Z* Z* 6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10 LD03 G 0.90 (0.035) N N N N N N 6.3 10 16 25 35 50 LD02 A 0.33 (0.013) L 25 50 C 0.10 0.15 0.22 0.33 0.47 0.68 䉲 C C C 4 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 0.50 ± 0.25 (0.020 ± 0.010) 6.3 10 16 25 35 50 6.3 10 䉲 C 330 470 680 4 2.01 ± 0.20 3.20 ± 0.20 (0.079 ± 0.008) (0.126 ± 0.008) 1.25 ± 0.20 1.60 ± 0.20 (0.049 ± 0.008) (0.063 ± 0.008) 0.50 ± 0.25 0.50 ± 0.25 (0.020 ± 0.010) (0.020 ± 0.010) 6.3 10 16 25 35 50 6.3 10 16 25 35 50 䉲 Cap (µF) 100 150 220 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.35 ± 0.15 (0.014 ± 0.006) 6.3 10 16 25 35 50 䉲 (t) Terminal 1.00 ± 0.10 (0.040 ± 0.004) 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.15 (0.010 ± 0.006) 4 6.3 10 16 25 50 䉲 (W) Width mm (in.) mm (in.) mm (in.) WVDC 䉲 (L) Length LD12 䉲 SIZE Soldering Packaging LD05 K 1.02 (0.040) M 1.27 (0.050) LD06 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED LD10 X 2.29 (0.090) 25 50 LD12 Y 2.54 (0.100) Z 2.79 (0.110) = Under Development = *Optional Specifications – Contact factory NOTE: Contact factory for non-specified capacitance values 35 MLCC Low Profile General Specifications GENERAL DESCRIPTION AVX introduces the LT series comprising a range of low profile products in our X5R and X7R dielectric. X5R is a Class II dielectric with temperature varation of capacitance within ±15% from –55°C to +85°C. Offerings include 0201, 0402, 0603, 0805 1206, and 1210 packages in compact, low profile designs. The LT series is ideal for decoupling and filtering applications where height clearance is limited. AVX is also expanding the low profile products in our X7R dielectric. X7R is a Class II dielectric with temperature variation of capacitance within ±15% from -55ºC to +125ºC. Please contact the factory for availability of any additional values not listed. PART NUMBER (see page 2 for complete part number explanation) LT05 Z D 475 K A T 2 Size LT01 - 0201 LT02 - 0402 LT03 - 0603 LT05 - 0805 LT06 - 1206 LT10 - 1210 Voltage 4V = 4 6.3V = 6 10V = Z 16V = Y 25V = 3 Dielectric X5R = D X7R = C Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% Failure Rate A = Not Applicable Terminations T = Plated Ni and Sn S Special Packaging Code 2 = 7" Reel See table below 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Contact Factory For Multiples NOTE: Contact factory for availability of tolerance options for specific part numbers. SIZE Cap (µF) WVDC 104 0.10 0.22 0.47 105 1.0 1.5 2.2 4.7 106 10 22 47 WVDC SIZE LT01 4 Z LT02 4 6.3 Q C LT03 10 16 S 4 S X/W 4 4 LT05 16 25 S X X X S S LT01 6.3 6.3 10 16 4 LT02 S X 36 J 0.15 (0.006) Z 0.22 (0.009) Q C 0.25 0.36 (0.010) (0.014) PAPER 6.3 16 LT03 S 0.56 (0.022) X 0.95 (0.038) 10 W 1.02 (0.040) EMBOSSED 25 LT06 16 25 X X 10 16 LT10 25 16 25 X X = X7R Letter Max. Thickness 6.3 X S X 6.3 10 LT05 X X 16 25 10 W W W W W 16 25 16 LT06 LT10 25 UltraThin Ceramic Capacitors UT023D103MAT2C The Ultrathin (UT) series of ceramic capacitors is a new product offering from AVX. The UT series was designed to meet the stringent thickness requirements of our customers. AVX developed a new termination process (FCT - Fine Copper Termination) that provides unbeatable flatness and repeatability. The series includes products < 0.35mm in height and is targeted for applications such as Smart cards, Memory modules, High Density SIM cards, Mobile phones, MP3 players, and embedded solutions. HOW TO ORDER UT 02 3 D 103 M A T 2 C Style Ultra Thin Case Size 0402 Rated Voltage 25V Temperature Characteristic X5R Coded Cap 0.01µF Cap Tolerance ± 20% Termination Style Commercial Termination 100% Sn Packaging 7" Reel = 15,000 pcs 13" Reel = 50,000 pcs Thickness 0.30mm max RECOMMENDED SOLDER PAD DIMENSIONS L BL W L BL End View T 0.50 (0.020) Top View Side View PART DIMENSIONS L W T BL 0.50 ± 0.10 (0.020 ± 0.004) 0.25 ± 0.05 (0.010 ± 0.002) 0.25 ± 0.10 (0.010 ± 0.004) 0.60 (0.024) 0.50 (0.020) mm (inches) 1.00 ± 0.10 (0.039±0.004) mm (inches) 1.70 (0.067) Temperature Coefficient % ⌬ Capacitance 20 15 10 5 0 -5 -10 -15 -20 -80 -60 -40 -20 0 20 40 60 80 100 Temperature ºC PERFORMANCE CHARACTERISTICS Capacitance Value Capacitance Tolerance Dissipation Factor Range Operating Temperature Temperature Coefficient Rated Voltage Insulation Resistance at 25ºC and Rated Voltage Test Frequency 0.01µF ±20% 3.0% -55°C to +85°C ±15% 25V 100,000 Mohms 1 Vrms @ 1 KHz 37 Automotive MLCC Automotive GENERAL DESCRIPTION AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved. As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established Pd/Ag electrode system to a Base Metal Electrode system (BME). AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including: • X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat. • X7R dielectric components, BME electrode with epoxy finish for conductive glue mounting. • X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat. • NP0 dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat. HOW TO ORDER 0805 Size 0402 0603 0805 1206 1210 1812 5 Voltage 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 A 104 K 4 T 2 A Dielectric NP0 = A X7R = C X8R = F Capacitance Code (In pF) 2 Significant Digits + Number of Zeros e.g. 10µF = 106 Capacitance Tolerance F = ±1% (≥10pF)* G = ±2% (≥10pF)* J = ±5% (≤1µF) K = ±10% M = ±20% Failure Rate 4 = Automotive Terminations T = Plated Ni and Sn Z = FLEXITERM®** U = Conductive Epoxy** Packaging 2 = 7" Reel 4 = 13" Reel Special Code A = Std. Product **X7R & X8R only *NPO only Contact factory for availability of Tolerance Options for Specific Part Numbers. NOTE: Contact factory for non-specified capacitance values. 0402 case size available in T termination only. COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON Administrative Commercial Standard Part Numbers. No restriction on who purchases these parts. Automotive Specific Automotive Part Number. Used to control supply of product to Automotive customers. Design Minimum ceramic thickness of 0.020" Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product. Dicing Side & End Margins = 0.003" min Side & End Margins = 0.004" min Cover Layers = 0.005" min Lot Qualification (Destructive Physical Analysis - DPA) As per EIA RS469 Increased sample plan – stricter criteria. Visual/Cosmetic Quality Standard process and inspection 100% inspection Application Robustness Standard sampling for accelerated wave solder on X7R dielectrics Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing. All Tests have Accept/Reject Criteria 0/1 38 Automotive MLCC NP0/X7R Dielectric FLEXITERM® FEATURES a) Bend Test The capacitor is soldered to the PC Board as shown: b) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between –55°C and +125°C 1mm/sec 90 mm Typical bend test results are shown below: Style Conventional Term 0603 >2mm 0805 >2mm 1206 >2mm Soft Term >5 >5 >5 ELECTRODE AND TERMINATION OPTIONS NP0 DIELECTRIC NP0 Ag/Pd Electrode Nickel Barrier Termination PCB Application Sn Ni Ag Figure 1 Termination Code T X7R DIELECTRIC X7R Nickel Electrode Soft Termination PCB Application X7R Dielectric PCB Application Ni Cu Epoxy Ni Sn Sn Ni Cu Figure 2 Termination Code T Ni Figure 3 Termination Code Z Conductive Epoxy Termination Hybrid Application Cu Termination Ni Conductive Epoxy Figure 4 Termination Code U 39 Automotive MLCC - NP0 Capacitance Range 0603 100 120 150 180 220 270 330 390 470 510 560 680 820 101 121 151 181 221 271 331 391 471 561 681 821 102 122 152 182 222 272 332 392 472 103 10pF 12 15 18 22 27 33 39 47 51 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 10nF 25V G G G G G G G G G G G G G G G G G G G G G G 25V 50V G G G G G G G G G G G G G G G G G G G G G G 50V 0805 100V G G G G G G G G G G G G G G G G G G G G 100V 25V J J J J J J J J J J J J J J J J J J J J J J J J J J 25V 0603 Letter Max. Thickness A 0.33 (0.013) C 0.56 (0.022) 50V 1206 100V J J J J J J J J J J J J J J J J J J J J J J J J J J 100V E 0.71 (0.028) PAPER G 0.90 (0.035) 1210 25V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 50V J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M 100V J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M Q Q 200V J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M 25V 50V 100V 200V 0805 = Under Development 40 50V J J J J J J J J J J J J J J J J J J J J J J J J J J 500V J J J 500V 50V 100V 200V J J J J J J J J J J J J J J J J J J J M M M M M P P P J M M M M 25V 50V 100V 200V 1206 J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) 1812 25V 1210 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) 50V 100V K K K K K K 50V 100V 1812 Y 2.54 (0.100) Z 2.79 (0.110) Automotive MLCC - X7R Capacitance Range 0402 16V 221 271 331 391 471 561 681 821 102 182 222 332 472 103 123 153 183 223 273 333 473 563 683 823 104 124 154 224 334 474 684 105 155 225 335 475 106 226 25V 0603 50V 16V 25V G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G Cap .22 (nF) .27 .33 .39 .47 .56 .68 .82 1 1.8 2.2 3.3 4.7 10 12 15 18 22 27 33 47 56 68 82 100 120 150 220 330 470 680 Cap 1 (µF) 1.5 2.2 3.3 4.7 10 22 0805 50V 100V 200V 16V G G G G G G G G G G G G G G G G G G G G G G G G J J J J J J J J J J J J J J J J J J M M N N N N 25V J J J J J J J J J J J J J J J J J J N N N N N N 1206 50V 100V 200V 16V J J J J J J J J J J J J J J J J M M M M M M J J J J J J M M M M M M M M M M M J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M Q Q 25V J J J J J J J J J J J J J J J J J J J M M M Q Q Q Q 1210 50V 100V 200V 500V 16V J J J J J J J J J J J J J J J J J M M M P P Q Q J J J J J J J J J J J J M M M M M M M Q Q Q Q Q J J J J J J J J J J J J J J J J J J J J J J J K K K K K K K K K K K K K K K K K K K M P P P P P X X X 25V K K K K K K K K K K K K K K K K K K K M P P P Q Q Z Z Z 1812 2220 50V 100V 50V 100V 25V K K K K K K K K K K K K K K K K K K K M P P Q Q Z Z Z Z K K K K K K K K K K K K K M M M M P P P Q Q X X Z Z K K K K K K K K K K K K K K K K K K K M X X X X X Z Z Z 50V K K K K K K K K K K K K K K K K K K K M X X X X X Z Z 16V 25V 50V 16V 25V 0402 50V 100V 200V 16V 25V 0603 50V 100V 200V 16V 25V 50V 100V 200V 500V 16V 0805 1206 25V Z 50V 100V 50V 100V 25V 1210 1812 50V 2220 = Under Development Letter Max. Thickness A 0.33 (0.013) C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 41 Automotive MLCC - X8R Capacitance Range SIZE 271 331 471 681 102 152 182 222 272 332 392 472 562 682 822 103 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 684 824 105 Cap (pF) Cap (µF) 0603 25V G G G G G G G G G G G G G G G G G G G G G G G G G G WVDC 270 330 470 680 1000 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.01 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.1 0.12 0.15 0.18 0.22 0.27 0.33 0.39 0.47 0.68 0.82 1 WVDC 25V SIZE Letter Max. Thickness A 0.33 (0.013) 0805 25V 50V J J J J J J J J J J J J J J J J J J J J J J J N N N N N N N N J J J J J J J J J J J J J J J J J J J J J J J N N N N N N 50V 25V 0603 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) 1206 50V G G G G G G G G G G G G G G G G G G G G G G G G 50V 25V 50V J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M M M J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M 25V 0805 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) = AEC-Q200 Qualified 42 50V 1206 Y 2.54 (0.100) Z 2.79 (0.110) APS Series APS for COTS+ Applications GENERAL DESCRIPTION As part of our continuing support to high reliability customers, AVX has launched an Automotive Plus Series of parts (APS) qualified and manufactured in accordance with automotive AEC-Q200 standard. Each production batch is quality tested to an enhanced requirement and shipped with a certificate of conformance. On a quarterly basis a reliability package is issued to all APS customers. A detailed qualification package is available on request and contains results on a range of part numbers including: • X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat. • X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat (FLEXITERM®). • X7R for Hybrid applications. • NP0 dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat. We are also able to support customers who require an AEC-Q200 grade component finished with Tin/Lead. HOW TO ORDER AP03 Size AP03=0603 AP05=0805 AP06=1206 AP10=1210 AP12=1812 5 Voltage 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 A 104 K Dielectric NP0 = A X7R = C Capacitance Code (In pF) 2 Significant Digits + Number of Zeros e.g. 10µF = 106 Capacitance Tolerance J = ±5% K = ±10% M = ±20% Q T 2 Failure Rate Packaging Terminations Q = APS T = Plated Ni and Sn** 2 = 7" Reel 4 = 13" Reel Z = FLEXITERM®** U = Conductive Epoxy** B = 5% min lead X = FLEXITERM® with 5% min lead A Special Code A = Std. Product Z, U, X for X7R only **RoHS compliant NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. 43 NP0 Automotive Plus Series / APS Capacitance Range 0603 100 120 150 180 220 270 330 390 470 510 560 680 820 101 121 151 181 221 271 331 391 471 561 681 821 102 122 152 182 222 272 332 392 472 103 10pF 12 15 18 22 27 33 39 47 51 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 10nF 25V G G G G G G G G G G G G G G G G G G G G G G 25V 50V G G G G G G G G G G G G G G G G G G G G G G 50V 0805 100V G G G G G G G G G G G G G G G G G G G G 100V 25V J J J J J J J J J J J J J J J J J J J J J J J J J J 25V 0603 Letter Max. Thickness A 0.33 (0.013) C 0.56 (0.022) 50V J J J J J J J J J J J J J J J J J J J J J J J J J J 50V 1206 100V J J J J J J J J J J J J J J J J J J J J J J J J J J 100V 25V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 50V J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M 25V 50V 0805 E 0.71 (0.028) PAPER G 0.90 (0.035) 1210 100V J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M Q Q 200V J J J J J J J J J J J J J J J J J J J J J J J J J J 100V 200V 500V J J J 500V 50V 100V 200V J J J J J J J J J J J J J J J J J J J M M M M M P P P J M M M M 25V 50V 100V 200V 1206 J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) 1812 25V 1210 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) 50V 100V K K K K K K 50V 100V 1812 Y 2.54 (0.100) Z 2.79 (0.110) AEC-Q200 qualified TS 16949, ISO 9001 certified 44 X7R Automotive Plus Series / APS Capacitance Range 0603 102 182 222 332 472 103 123 153 183 223 273 333 473 563 683 823 104 124 154 224 334 474 684 105 155 225 335 475 106 226 Cap 1 (nF) 1.8 2.2 3.3 4.7 10 12 15 18 22 27 33 47 56 68 82 100 120 150 220 330 470 680 Cap 1 (µF) 1.5 2.2 3.3 4.7 10 22 16V G G G G G G G G G G G G G G G G G 25V G G G G G G G G G G G G G G G G G 0805 50V 100V 200V 16V G G G J G G J G G J G G J G G J G G J G J G J G J G J G J G J G J G J G J G J G J J M M N N N N 25V J J J J J J J J J J J J J J J J J J N N N N N N 1206 50V 100V 200V 16V J J J J J J J J J J J J J J J J J J J J J J J J J M J J M J J M J J M J J M J J M J J M J J M J J M J J M J M M J M J M J M J M J M M M M Q Q 25V J J J J J J J J J J J J J J J J J J J M M M Q Q Q Q 1210 50V 100V 200V 500V 16V J J J J K J J J J K J J J J K J J J J K J J J J K J J J J K J J J K J J J K J J J K J J J K J J J K J J J K J M J K J M J K J M J K J M J K J M J K M M K M M K M Q M P Q P P Q P Q Q P Q Q P P X X X 1812 2220 25V K K K K K K K K K K K K K K K K K K K M P P P Q Q Z Z Z 50V 100V 50V 100V 25V K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K M K K K M K K K M K K K M K K K P K K K P K K M P M M P Q X X P Q X X Q X X X Q X X X Z Z X X Z Z Z Z Z Z Z Z 25V Z 50V 100V 50V 100V 25V 50V Z 16V 25V 50V 100V 200V 16V 0603 25V 50V 100V 200V 16V 25V 0805 50V 100V 200V 500V 16V 1206 1210 50V 1812 2220 X 2.29 (0.090) Y 2.54 (0.100) = Under Development Letter Max. Thickness A 0.33 (0.013) C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED Z 2.79 (0.110) AEC-Q200 qualified TS 16949, ISO 9001 certified 45 MLCC with FLEXITERM® General Specifications GENERAL DESCRIPTION With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications. To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM ® . FLEXITERM ® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail “open”. As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB’s which may be subject to high levels of board flexure. PRODUCT ADVANTAGES • High mechanical performance able to withstand, 5mm bend test guaranteed. • Increased temperature cycling performance, 3000 cycles and beyond. • Flexible termination system. • Reduction in circuit board flex failures. • Base metal electrode system. • Automotive or commercial grade products available. APPLICATIONS High Flexure Stress Circuit Boards • e.g. Depanelization: Components near edges of board. Variable Temperature Applications • Soft termination offers improved reliability performance in applications where there is temperature variation. • e.g. All kind of engine sensors: Direct connection to battery rail. Automotive Applications • Improved reliability. • Excellent mechanical performance and thermo mechanical performance. HOW TO ORDER 0805 5 C 104 K Style 0603 0805 1206 1210 1812 2220 Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V Dielectric C = X7R F = X8R Capacitance Code (In pF) 2 Sig Digits + Number of Zeros e.g., 104 = 100nF Capacitance Tolerance J = ±5%* K = ±10% M = ±20% *≤1µF only NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. 46 A Z Failure Terminations Rate Z = FLEXITERM® A=Commercial For FLEXITERM® 4 = Automotive with Tin/Lead termination see AVX LD Series 2 A Packaging 2 = 7" reel 4 = 13" reel Special Code A = Std. Product MLCC with FLEXITERM® Specifications and Test Methods BOARD BEND TEST PROCEDURE PERFORMANCE TESTING According to AEC-Q200 AEC-Q200 Qualification: • Created by the Automotive Electronics Council • Specification defining stress test qualification for passive components Testing: Key tests used to compare soft termination to AEC-Q200 qualification: • Bend Test • Temperature Cycle Test Test Procedure as per AEC-Q200: Sample size: 20 components Span: 90mm Minimum deflection spec: 2 mm LOADING KNIFE • Components soldered onto FR4 PCB (Figure 1) MOUNTING ASSEMBLY • Board connected electrically to the test equipment (Figure 2) DIGITAL CALIPER BEND TESTPLATE CONNECTOR CONTROL PANEL CONTROL PANEL Fig 1 - PCB layout with electrical connections BOARD BEND TEST RESULTS Fig 2 - Board Bend test equipment 0603 Substrate Bend (mm) NPO X7R X7R soft term 1206 12 10 8 6 4 2 0 NPO X7R 0805 Substrate Bend (mm) 12 10 8 6 4 2 0 12 10 8 6 4 2 0 Substrate Bend (mm) Substrate Bend (mm) AEC-Q200 Vrs AVX FLEXITERM® Bend Test 12 10 8 6 4 2 0 NPO X7R AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE X7R soft term 1210 X7R soft term NPO X7R Bend Test The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second: Max. = 10mm X7R soft term TABLE SUMMARY 90mm Typical bend test results are shown below: Style Conventional Termination FLEXITERM® 0603 >2mm >5mm 0805 >2mm >5mm 1206 >2mm >5mm TEMPERATURE CYCLE TEST PROCEDURE Test Procedure as per AEC-Q200: The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures. • Sample lot size quantity 77 pieces • TC chamber cycle from -55ºC to +125ºC for 1000 cycles • Interim electrical measurements at 250, 500, 1000 cycles • Measure parameter capacitance dissipation factor, insulation resistance Test Temperature Profile (1 cycle) +1250 C • The board is placed on 2 supports 90mm apart (capacitor side down) • The row of capacitors is aligned with the load stressing knife Max. = 10mm • The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit) • The maximum deflection capability is 10mm +250 C -550 C 1 hour 12mins 47 MLCC with FLEXITERM® Specifications and Test Methods BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS 0603 10 8 % Failure % Failure 8 6 4 2 0 6 4 2 0 0 500 1000 1500 2000 2500 3000 0 1206 10 500 1000 1500 2000 2500 3000 1210 10 8 % Failure 8 % Failure 0805 10 6 4 2 0 6 4 2 0 0 500 1000 1500 2000 2500 3000 0 Soft Term - No Defects up to 3000 cycles 500 1000 1500 2000 2500 3000 AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles. FLEXITERM® TEST SUMMARY • Qualified to AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm). • FLEXITERM® provides improved performance compared to standard termination systems. WITHOUT SOFT TERMINATION Major fear is of latent board flex failures. 48 • Board bend test improvement by a factor of 2 to 4 times. • Temperature Cycling: – 0% Failure up to 3000 cycles – No ESR change up to 3000 cycles WITH SOFT TERMINATION Far superior mechanical performance. Generally open failure mode beyond 5mm flexure. MLCC with FLEXITERM® X8R Dielectric Capacitance Range SIZE 271 331 471 681 102 152 182 222 272 332 392 472 562 682 822 103 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 684 824 105 Cap (pF) Cap (µF) 0603 25V G G G G G G G G G G G G G G G G G G G G G G G G G G WVDC 270 330 470 680 1000 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.01 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.1 0.12 0.15 0.18 0.22 0.27 0.33 0.39 0.47 0.68 0.82 1 WVDC 25V SIZE Letter Max. Thickness A 0.33 (0.013) 0805 25V 50V J J J J J J J J J J J J J J J J J J J J J J J N N N N N N N N J J J J J J J J J J J J J J J J J J J J J J J N N N N N N 50V 25V 0603 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) 1206 50V G G G G G G G G G G G G G G G G G G G G G G G G 50V 25V 50V J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M M M J J J J J J J J J J J J J J J J J J J J M M M M M M M M M M 25V 0805 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 50V 1206 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) = AEC-Q200 Qualified 49 MLCC with FLEXITERM® X7R Dielectric Capacitance Range 0603 101 121 151 181 221 271 331 391 471 561 681 821 102 122 152 182 222 272 332 392 472 562 682 822 103 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 564 684 824 105 155 185 225 335 475 106 226 0805 25V 50V 100V 200V 10V 16V 25V 50V 100V 200V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M N N N N N N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M N N N N N N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J N N N N N N N N N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J N N N N N N N N J J J J J J J J J J J J J J J J J J J M M M M M M M M N N N N N N N N N N N N J J J J J J J J J J J J J J J J J J J 16V 25V 50V 100V 200V 10V 0603 Letter Max. Thickness 50 1206 16V A 0.33 (0.013) 16V 25V 50V 100V 200V 25V 50V 100V 200V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M Q Q Q J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M Q Q Q Q Q Q Q J J J J J J J J J J J J J J J J J J J J J J J J J P P P P P P P P Q Q Q Q J J J J J J J J J J J J J J J J J J J M M M M P Q Q Q Q Q Q Q Q Q Q Q Q Q J J J J J J J J J J J J J J J J J J J J J J J J J 16V 25V 0805 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.90 (0.035) J 0.94 (0.037) 1210 16V 50V 100V 1206 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 200V 16V K K K K K K M M P P P P P P P P P Z Z Z Z 16V 25V K K K K K K M M P P P P Q X Z Z Z Z Z Z Z 25V 1812 50V 100V K K K K K M M M P Q Q Q Q Q Q Q Q Q X Z Z Z Z Z K K K K K K M M P P P P Q X Z Z Z Z Z Z Z 50V 100V 25V 50V 100V K K K K K K K M M M X X X X X X K K K K K K K M M M X X X X X X K K K K K K K M M M X X X X X X Z Z Z Z Z K K K K K M M X X X X X Z Z Z Z Z Z Z 16V 25V 1210 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 2220 16V 50V 100V 1812 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 25V 50V 100V X X X X X X X X X X X X X X X X X X X X X X X X X X X Z Z Z Z 25V Z 50V 2220 100V FLEXISAFE MLC Chips For Ultra Safety Critical Applications AVX have developed a range of components specifically for safety critical applications. Utilizing the award-winning FLEXITERM™ layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features. The FLEXITERM™ layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM™ layer, the FLEXISAFE range of capacitors has unbeatable safety features. HOW TO ORDER FS03 5 C 104 K Q Z 2 A Size FS03 = 0603 FS05 = 0805 FS06 = 1206 FS10 = 1210 Voltage 16V = Y 25V = 3 50V = 5 100V = 1 Dielectric X7R = C Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10µF =106 Capacitance Tolerance J = ±5% K = ±10% M = ±20% Failure Rate A = Commercial 4 = Automotive Q = APS Terminations Z = FLEXITERMTM X = FLEXITERMTM with 5% min lead Packaging 2 = 7" Reel 4 = 13" Reel Special Code A = Std. Product FLEXISAFE X7R RANGE Capacitance Code nF 102 1 182 1.8 222 2.2 332 3.3 472 4.7 103 10 123 12 153 15 183 18 223 22 273 27 333 33 473 47 563 56 683 68 823 82 104 100 124 120 154 150 224 220 334 330 474 470 Qualified 16 0603 25 50 100 16 0805 25 50 16 1206 25 50 16 1210 25 50 In Qualification 51 Capacitor Array Capacitor Array (IPC) BENEFITS OF USING CAPACITOR ARRAYS AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements. Reduced Costs Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc. Space Saving Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.) Increased Throughput Assuming that there are 220 passive components placed in a mobile phone: A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%. A reduction of 40 placements increases throughput by 18%. For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components: If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine. During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine. Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment. W2A (0508) Capacitor Arrays 4 pcs 0402 Capacitors = 1 pc 0508 Array 1.88 (0.074) 1.0 1.4 (0.055) (0.039) 5.0 (0.197) AREA = 7.0mm2 (0.276 in2) 2.1 (0.083) AREA = 3.95mm2 (0.156 in2) The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors. W3A (0612) Capacitor Arrays 4 pcs 0603 Capacitors = 1 pc 0612 Array 2.0 (0.079) 2.3 1.5 (0.091) (0.059) 6.0 (0.236) AREA = 13.8mm2 (0.543 in2) 3.2 (0.126) AREA = 6.4mm2 (0.252 in2) The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors. 52 Capacitor Array Capacitor Array (IPC) GENERAL DESCRIPTION 0405 - 2 Element 0508 - 4 Element 0508 - 2 Element 0612 - 4 Element AVX is the market leader in the development and manufacture of capacitor arrays. The smallest array option available from AVX, the 0405 2-element device, has been an enormous success in the Telecommunications market. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace. AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table). Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc. AVX Capacitor Array - W2A41A***K S21 Magnitude 0 -5 -10 S21 mag. (dB) -15 -20 -25 -30 5pF 10pF 15pF 22pF 33pF 39pF 68pF -35 -40 0.01 0.1 1 10 Frequency (GHz) HOW TO ORDER W Style W = RoHS L = SnPb 2 A 4 Case Array Number Size of Caps 1 = 0405 2 = 0508 3 = 0612 5 = 0306 3 Voltage 6 = 6V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V C 103 Dielectric Capacitance Code A = NP0 C = X7R 2 Sig Digits + Number of D = X5R Zeros M A Capacitance Failure Tolerance Rate J = ±5% A = Commercial K = ±10% 4 = Automotive M = ±20% T 2A Packaging & Quantity T = Plated Ni Code and Sn** 2A = 7" Reel Z = FLEXITERM®** (4000) B = 5% min lead 4A = 13" Reel X = FLEXITERM® with (10000) 5% min lead 2F = 7" Reel (1000) Termination Code **RoHS compliant NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. 53 Capacitor Array Capacitance Range – NP0/C0G SIZE # Elements 0405 2 0508 2 0508 4 0612 4 Soldering Packaging Reflow Only All Paper 1.00 ± 0.15 (0.039 ± 0.006) 1.37 ± 0.15 (0.054 ± 0.006) 0.66 (0.026) Reflow/Wave All Paper 1.30 ± 0.15 (0.051 ± 0.006) 2.10 ± 0.15 (0.083 ± 0.006) 0.94 (0.037) Reflow/Wave Paper/Embossed 1.30 ± 0.15 (0.051 ± 0.006) 2.10 ± 0.15 (0.083 ± 0.006) 0.94 (0.037) Reflow/Wave Paper/Embossed 1.60 ± 0.150 (0.063 ± 0.006) 3.20 ± 0.20 (0.126 ± 0.008) 1.35 (0.053) Length Width mm (in.) mm (in.) mm (in.) Max. Thickness WVDC 1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800 822 8200 54 16 25 50 16 25 50 100 16 25 50 100 16 25 50 100 Capacitor Array Capacitance Range – X7R/X5R SIZE 0306 04050508 05080612 # Elements 4 Soldering Packaging Length Width Max. Thickness WVDC 101 Cap 121 (µF) 151 181 221 271 331 391 471 561 681 821 102 122 152 182 222 272 332 392 472 562 682 822 103 Cap 123 (µF) 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 474 564 684 824 105 125 155 185 225 335 475 106 226 476 107 mm (in.) mm (in.) mm (in.) Reflow Only All Paper 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 0.50 (0.020) 6 10 16 25 6 2 2 4 4 Reflow Only All Paper 1.00 ± 0.15 (0.039 ± 0.006) 1.37 ± 0.15 (0.054 ± 0.006) 0.66 (0.026) 10 16 25 Reflow/Wave All Paper 1.30 ± 0.15 (0.051 ± 0.006) 2.10 ± 0.15 (0.083 ± 0.006) 0.94 (0.037) Reflow/Wave Paper/Embossed 1.30 ± 0.15 (0.051 ± 0.006) 2.10 ± 0.15 (0.083 ± 0.006) 0.94 (0.037) Reflow/Wave Paper/Embossed 1.60 ± 0.150 (0.063 ± 0.006) 3.20 ± 0.20 (0.126 ± 0.008) 1.35 (0.053) 50 6 10 16 25 50 100 6 10 16 25 50 100 6 10 16 25 50 100 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.10 0.12 0.15 0.18 0.22 0.27 0.33 0.47 0.56 0.68 0.82 1.0 1.2 1.5 1.8 2.2 3.3 4.7 10 22 47 100 = Currently available X7R = Currently available X5R = Under development X7R, contact factory for advance samples = Under development X5R, contact factory for advance samples 55 Automotive Capacitor Array (IPC) As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications. AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002. 0508 - 4 Element 0612 - 4 Element HOW TO ORDER 3 W Style W = RoHS L = SnPb A Y 4 C Case Array Number Voltage Dielectric A = NP0 Size of Caps Z = 10V Y = 16V C = X7R 1 = 0405 3 = 25V F = X8R 2 = 0508 5 = 50V 3 = 0612 1 = 100V 104 K 4 Capacitance Code (In pF) Significant Digits + Number of Zeros e.g. 10µF=106 Capacitance Tolerance *J = ±5% *K = ±10% M = ±20% T 2A Failure Rate Packaging Terminations 4 = Automotive T = Plated Ni and Sn** & Quantity Code Z = FLEXITERM®** 2A = 7" Reel B = 5% min lead (4000) X = FLEXITERM® with 4A = 13" Reel 5% min lead (10000) 2F = 7" Reel (1000) **RoHS compliant *Contact factory for availability by part number for K = ±10% and J = ±5% tolerance. NP0/C0G SIZE No. of Elements WVDC 1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800 822 8200 0405 0508 2 50 = NPO/COG = Under development 56 2 50 16 X7R X8R 0508 0612 SIZE 0508 0508 0612 4 4 No. of Elements WVDC 101 Cap 100 121 (pF) 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800 822 8200 103 Cap 0.010 123 (µF) 0.012 153 0.015 183 0.018 223 0.022 273 0.027 333 0.033 393 0.039 473 0.047 563 0.056 683 0.068 823 0.082 104 0.10 124 0.12 154 0.15 224 0.22 2 25 4 4 25 25 50 100 16 25 50 100 10 = X7R = X8R = Under development 16 50 100 16 25 50 100 10 16 0405 50 100 2 16 Capacitor Array Multi-Value Capacitor Array (IPC) GENERAL DESCRIPTION ADVANTAGES OF THE MULTI-VALUE CAPACITOR ARRAYS A recent addition to the array product range is the MultiValue Capacitor Array. These devices combine two different capacitance values in standard ‘Cap Array’ packages and are available with a maximum ratio between the two capacitance values of 100:1. The multi-value array is currently available in the 0405 and 0508 2-element styles and also in the 0612 4-element style. Whereas to date AVX capacitor arrays have been suited to applications where multiple capacitors of the same value are used, the multi-value array introduces a new flexibility to the range. The multi-value array can replace discrete capacitors of different values and can be used for broadband decoupling applications. The 0508 x 2 element multi-value array would be particularly recommended in this application. Another application is filtering the 900/1800 or 1900MHz noise in mobile phones. The 0405 2-element, low capacitance value NP0, (C0G) device would be suited to this application, in view of the space saving requirements of mobile phone manufacturers. Enhanced Performance Due to Reduced Parasitic Inductance When connected in parallel, not only do discrete capacitors of different values give the desired self-resonance, but an additional unwanted parallel resonance also results. This parallel resonance is induced between each capacitor’s selfresonant frequencies and produces a peak in impedance response. For decoupling and bypassing applications this peak will result in a frequency band of reduced decoupling and in filtering applications reduced attenuation. The multi-value capacitor array, combining capacitors in one unit, virtually eliminates the problematic parallel resonance, by minimizing parasitic inductance between the capacitors, thus enhancing the broadband decoupling/filtering performance of the part. Reduced ESR An advantage of connecting two capacitors in parallel is a significant reduction in ESR. However, as stated above, using discrete components brings with it the unwanted side effect of parallel resonance. The multi-value cap array is an excellent alternative as not only does it perform the same function as parallel capacitors but also it reduces the uncertainty of the frequency response. HOW TO ORDER (Multi-Value Capacitor Array - IPC) W Style 2 Case Size 1 = 0405 2 = 0508 3 = 0612 A Array 2 Y C 102M 104M 1st Value 2nd Value Number of Caps Voltage Dielectric Capacitance Capacitance Z = 10V A = NP0 Code (In pF) Tolerance Y = 16V C = X7R 2 Sig. Digits + K = ±10% 3 = 25V D = X5R No. of Zeros M = ±20% 5 = 50V 1 = 100V NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. A T 2A Failure Rate Terminations T = Plated Ni and Sn** Z = FLEXITERM®** B = 5% min lead X = FLEXITERM® with 5% min lead Packaging & Quantity Code 2A = 7" Reel (4000) 4A = 13" Reel (10000) 2F = 7" Reel (1000) **RoHS compliant IMPEDANCE VS FREQUENCY Cap (Min/Max) NP0 X5R/X7R 0612 4-element 100/471 221/104 0508 2-element 100/471 221/104 0405 2-element 100/101 101/103 1 • Max. ratio between the two cap values is 1:100. • The voltage of the higher capacitance value dictates the voltage of the multi-value part. • Only combinations of values within a specific dielectric range are possible. Impedance (Ohms) 2xDiscrete Caps (0603) 0.8 0.6 0.4 Multi Value Cap (0508) 0.2 0 1 10 100 1000 Frequency (MHz) 57 Capacitor Array PART & PAD LAYOUT DIMENSIONS 0405 - 2 Element PAD LAYOUT millimeters (inches) 0612 - 4 Element PAD LAYOUT W W E E X X P D S P S S D S A A B T C C C/L OF CHIP BW B T BW C/L OF CHIP C L C L BL L BL L 0508 - 2 Element PAD LAYOUT 0508 - 4 Element PAD LAYOUT E E W P S D W S D X X A P S S A B B C T T BW BW C/L OF CHIP C C/L OF CHIP C L C L BL L BL L PART DIMENSIONS PAD LAYOUT DIMENSIONS 0405 - 2 Element L W 1.00 ± 0.15 1.37 ± 0.15 (0.039 ± 0.006) (0.054 ± 0.006) 0405 - 2 Element T 0.66 MAX (0.026 MAX) BW BL 0.36 ± 0.10 0.20 ± 0.10 (0.014 ± 0.004) (0.008 ± 0.004) P S 0.64 REF 0.32 ± 0.10 (0.025 REF) (0.013 ± 0.004) 0508 - 2 Element L W 1.30 ± 0.15 2.10 ± 0.15 (0.051 ± 0.006) (0.083 ± 0.006) W 1.30 ± 0.15 2.10 ± 0.15 (0.051 ± 0.006) (0.083 ± 0.006) 0.94 MAX (0.037 MAX) BW BL 0.43 ± 0.10 0.33 ± 0.08 (0.017 ± 0.004) (0.013 ± 0.003) P S 1.00 REF 0.50 ± 0.10 (0.039 REF) (0.020 ± 0.004) L W 58 C D E 1.20 (0.047) 0.30 (0.012) 0.64 (0.025) A B C D E 0.68 (0.027) 1.32 (0.052) 2.00 (0.079) 0.46 (0.018) 1.00 (0.039) 0508 - 4 Element T 0.94 MAX (0.037 MAX) BW BL 0.25 ± 0.06 0.20 ± 0.08 (0.010 ± 0.003) (0.008 ± 0.003) P X S 0.50 REF 0.75 ± 0.10 0.25 ± 0.10 (0.020 REF) (0.030 ± 0.004) (0.010 ± 0.004) 0612 - 4 Element 1.60 ± 0.20 3.20 ± 0.20 (0.063 ± 0.008) (0.126 ± 0.008) B 0.74 (0.029) 0508 - 2 Element T 0508 - 4 Element L A 0.46 (0.018) A B C D E 0.56 (0.022) 1.32 (0.052) 1.88 (0.074) 0.30 (0.012) 0.50 (0.020) 0612 - 4 Element T 1.35 MAX (0.053 MAX) BW BL +0.25 0.41 ± 0.10 0.18 -0.08 (0.016 ± 0.004) (0.007+0.010 ) -0.003 P X S 0.76 REF 1.14 ± 0.10 0.38 ± 0.10 (0.030 REF) (0.045 ± 0.004) (0.015 ± 0.004) A B C D E 0.89 (0.035) 1.65 (0.065) 2.54 (0.100) 0.46 (0.018) 0.76 (0.030) Low Inductance Capacitors Introduction The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts. The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages. An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor’s stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL). The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load. Slowest Capacitors Fastest Capacitors Semiconductor Product VR Bulk Board-Level Package-Level Die-Level Low Inductance Decoupling Capacitors Figure 1 Classic Power Delivery Network (PDN) Architecture LOW INDUCTANCE CHIP CAPACITORS INTERDIGITATED CAPACITORS The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape. When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC. The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops. An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC. 59 Low Inductance Capacitors Introduction LAND GRID ARRAY (LGA) CAPACITORS LOW INDUCTANCE CHIP ARRAYS (LICA®) Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance. The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC. LGA technology is also used in a 4 terminal family of products that AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers. The LICA® product family is the result of a joint development effort between AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications. LICA® products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9’s use LICA®. LICA® products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA® devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages. When high reliability decoupling applications require the very lowest ESL capacitors, LICA® products are the best option. 470 nF 0306 Impedance Comparison 1 0306 2T-LGA 0306 LICC 0306 8T-IDC Impedance (ohms) 0603 MLCC 0.1 0.01 0.001 1 10 100 1000 Frequency (MHz) Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL). 60 Low Inductance Capacitors (RoHS) 0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors) GENERAL DESCRIPTION The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC. When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC. AVX LICC products are available with a lead-free finish of plated Nickel/Tin. LICC MLCC PERFORMANCE CHARACTERISTICS Capacitance Tolerances Operation Temperature Range K = ±10%; M = ±20% X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C X7R, X5R = ±15%; X7S = ±22% 4, 6.3, 10, 16, 25 VDC 4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max 100,000MΩ min, or 1,000MΩ per µF min.,whichever is less Temperature Coefficient Voltage Ratings Dissipation Factor Insulation Resistance (@+25°C, RVDC) HOW TO ORDER 0612 Z D 105 M A T 2 A* Size 0204 0306 0508 0612 Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V Dielectric C = X7R D = X5R W = X6S Z = X7S Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% Failure Rate A = N/A Terminations T = Plated Ni and Sn Packaging Available 2 = 7" Reel 4 = 13" Reel Thickness Thickness mm (in) 0.35 (0.014) 0.56 (0.022) 0.61 (0.024) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. TYPICAL IMPEDANCE CHARACTERISTICS 10 MLCC_0805 Impedance (Ohms) Impedance (Ohms) 10 1 0.1 LICC_0508 0.01 0.001 1 10 Frequency (MHz) 100 1000 MLCC_1206 1 0.1 LICC_0612 0.01 0.001 1 10 100 1000 Frequency (MHz) 61 Low Inductance Capacitors (RoHS) 0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors) SIZE 0204 Packaging Length Width mm (in.) mm (in.) WVDC CAP (µF) 4 6.3 10 16 0306 0508 0612 Embossed Embossed Embossed 0.81 ± 0.15 (0.032 ± 0.006) 1.60 ± 0.15 (0.063 ± 0.006) 1.27 ± 0.25 (0.050 ± 0.010) 2.00 ± 0.25 (0.080 ± 0.010) 1.60 ± 0.25 (0.063 ± 0.010) 3.20 ± 0.25 (0.126 ± 0.010) 4 6.3 10 PHYSICAL DIMENSIONS AND PAD LAYOUT 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 t W 0.001 0.0022 T 0.0047 0.010 L 0.015 0.022 0.047 PHYSICAL CHIP DIMENSIONS 0.068 0.10 0612 0.15 0.22 0508 0.47 0306 0.68 1.0 0204 1.5 L W 1.60 ± 0.25 (0.063 ± 0.010) 1.27 ± 0.25 (0.050 ± 0.010) 0.81 ± 0.15 (0.032 ± 0.006) 0.50 ± 0.05 (0.020 ± 0.002) 3.20 ± 0.25 (0.126 ± 0.010) 2.00 ± 0.25 (0.080 ± 0.010) 1.60 ± 0.15 (0.063 ± 0.006) 1.00 ± 0.05 (0.040 ± 0.002) mm (in) t 0.13 min. (0.005 min.) 0.13 min. (0.005 min.) 0.13 min. (0.005 min.) 0.18 ± 0.08 (0.007 ± 0.003) T - See Range Chart for Thickness and Codes 2.2 3.3 PAD LAYOUT DIMENSIONS 4.7 10 Solid = X7R = X5R mm (in.) = X6S = X7S mm (in.) mm (in.) mm (in.) 0204 0306 0508 0612 Code Thickness Code Thickness Code Thickness Code Thickness C 0.35 (0.014) A 0.61 (0.024) S 0.56 (0.022) S V 0.76 (0.030) V 0.76 (0.030) A 1.02 (0.040) W 1.02 (0.040) A 1.27 (0.050) 0612 0508 0306 0204 mm (in) C A B 0.76 (0.030) 3.05 (0.120) .635 (0.025) 0.51 (0.020) 2.03 (0.080) 0.51 (0.020) 0.31 (0.012) 1.52 (0.060) 0.51 (0.020) 0.56 (0.022) “B” C 62 “A” C Low Inductance Capacitors (SnPb) 0612/0508/0306/0204 Tin Lead Termination “B” GENERAL DESCRIPTION The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC. When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC. AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues. LICC MLCC PERFORMANCE CHARACTERISTICS Capacitance Tolerances Operation Temperature Range Temperature Coefficient Voltage Ratings Dissipation Factor Insulation Resistance (@+25°C, RVDC) K = ±10%; M = ±20% X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C X7R, X5R = ±15%; X7S = ±22% 4, 6.3, 10, 16, 25 VDC 4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max 100,000MΩ min, or 1,000MΩ per µF min.,whichever is less HOW TO ORDER LD18 Z D 105 M A Size LD15 = 0204 LD16 = 0306 LD17 = 0508 LD18 = 0612 Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V Dielectric C = X7R D = X5R W = X6S Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% B Failure Rate Terminations A = N/A B = 5% min lead 2 A* Packaging Available 2 = 7" Reel 4 = 13" Reel Thickness Thickness mm (in) 0.35 (0.014) 0.56 (0.022) 0.61 (0.024) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. TYPICAL IMPEDANCE CHARACTERISTICS 10 MLCC_0805 Impedance (Ohms) Impedance (Ohms) 10 1 0.1 LICC_0508 0.01 0.001 1 10 Frequency (MHz) 100 1000 MLCC_1206 1 0.1 LICC_0612 0.01 0.001 1 10 100 1000 Frequency (MHz) 63 Low Inductance Capacitors (SnPb) 0612/0508/0306/0204 Tin Lead Termination “B” PHYSICAL DIMENSIONS AND PAD LAYOUT PREFERRED SIZES ARE SHADED SIZE LD15 Soldering Packaging (L) Length mm (in.) (W) Width mm (in.) WVDC Cap 1000 (pF) 2200 4700 Cap 0.010 (µF) 0.015 0.022 0.047 0.068 0.10 0.15 0.22 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 WVDC 4 C 4 6.3 10 16 C 6.3 SIZE 10 16 0204 6.3 A A A A A A A A A A A 6.3 LD16 LD17 LD18 Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed 0.81 ± 0.15 (0.032 ± 0.006) 1.60 ± 0.15 (0.063 ± 0.006) 10 16 25 50 A A A A A A A A A A A A A A A A A A A A A A A A A A 1.27 ± 0.25 (0.050 ± 0.010) 2.00 ± 0.25 (0.080 ± 0.010) 10 16 25 S S S S S S S S S S S S S S S S S S S S V S S A S V A S V S A V A A A 10 16 25 50 6.3 S S S S S S S S S S S V A A A 6.3 0306 10 16 25 50 V V V V V V A A A 50 1.60 ± 0.25 (0.063 ± 0.010) 3.20 ± 0.25 (0.126 ± 0.010) 6.3 10 16 25 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S V S S S V S S S W S S V S S V V V W V V A W W A A A 6.3 10 0508 16 25 50 V V V V W W W W W W T L PHYSICAL CHIP DIMENSIONS 0612 0508 50 0612 0306 0204 Solid = X7R = X5R mm (in.) = X6S = X7S mm (in.) LD16 - 0306 LD17 - 0508 LD18 - 0612 Code Thickness Code Thickness Code Thickness A 0.61 (0.024) W 3.20 ± 0.25 (0.126 ± 0.010) 2.00 ± 0.25 (0.080 ± 0.010) 1.60 ± 0.15 (0.063 ± 0.006) 1.00 ± 0.05 (0.040 ± 0.002) 0.13 min. (0.005 min.) 0.13 min. (0.005 min.) 0.13 min. (0.005 min.) 0.18 ± 0.08 (0.007 ± 0.003) mm (in.) LD15 - 0204 0.35 (0.014) L 1.60 ± 0.25 (0.063 ± 0.010) 1.27 ± 0.25 (0.050 ± 0.010) 0.81 ± 0.15 (0.032 ± 0.006) 0.50 ± 0.05 (0.020 ± 0.002) mm (in) t T - See Range Chart for Thickness and Codes mm (in.) Code Thickness C t W S 0.56 (0.022) S V 0.76 (0.030) V 0.76 (0.030) A 1.02 (0.040) W 1.02 (0.040) A PAD LAYOUT DIMENSIONS 0.56 (0.022) 1.27 (0.050) 0612 0508 0306 0204 mm (in) C A B 0.76 (0.030) 3.05 (0.120) .635 (0.025) 0.51 (0.020) 2.03 (0.080) 0.51 (0.020) 0.31 (0.012) 1.52 (0.060) 0.51 (0.020) “B” C 64 “A” C IDC Low Inductance Capacitors (RoHS) 0612/0508 IDC (InterDigitated Capacitors) GENERAL DESCRIPTION 0612 0508 – + – + + – + – TYPICAL IMPEDANCE 10 Impedance (Ohms) Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm. IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader. IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors. The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX’s first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array). AVX IDC products are available with a lead-free finish of plated Nickel/Tin. MLCC_1206 1 LICC_0612 0.1 IDC_0612 0.01 0.001 1 10 100 1000 Frequency (MHz) HOW TO ORDER W Style 3 L 1 6 IDC Low Number Voltage Case Inductance of 4 = 4V Size Terminals 6 = 6.3V 2 = 0508 1 = 8 Terminals Z = 10V 3 = 0612 Y = 16V 3 = 25V D 225 M T A 3 Dielectric Capacitance Capacitance Failure Termination Packaging Tolerance Rate T = Plated Ni C = X7R Code (In pF) Available D = X5R 2 Sig. Digits + M = ±20% A = N/A and Sn 1=7" Reel Number of Z = X7S 3=13" Reel Zeros A Thickness Max. Thickness mm (in.) A=0.95 (0.037) S=0.55 (0.022) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. PERFORMANCE CHARACTERISTICS Capacitance Tolerance Operation Temperature Range Temperature Coefficient Voltage Ratings Dissipation Factor Insulation Resistance (@+25°C, RVDC) ±20% Preferred X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C ±15% (0VDC) 4, 6.3, 10, 16 VDC 4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max 100,000MΩ min, or 1,000MΩ per µF min.,whichever is less Dielectric Strength No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current CTE (ppm/C) 12.0 Thermal Conductivity 4-5W/M K Terminations Available Max. Thickness Plated Nickel and Solder 0.037" (0.95mm) 65 IDC Low Inductance Capacitors (RoHS) 0612/0508 IDC (InterDigitated Capacitors) SIZE Length Width Terminal Pitch Thickness WVDC Cap (µF) mm (in.) mm (in.) mm (in.) mm (in.) 4 Thin 0508 0508 Thin 0612 0612 2.03 ± 0.20 (0.080 ± 0.008) 1.27 ± 0.20 (0.050 ± 0.008) 0.50 ± 0.05 (0.020 ± 0.002) 0.55 MAX. (0.022) MAX. 6.3 10 16 2.03 ± 0.20 (0.080 ± 0.008) 1.27 ± 0.20 (0.050 ± 0.008) 0.50 ± 0.05 (0.020 ± 0.002) 0.95 MAX. (0.037) MAX. 6.3 10 16 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.80 ± 0.10 (0.031 ± 0.004) 0.55 MAX. (0.022) MAX. 4 6.3 10 16 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.80 ± 0.10 (0.031 ± 0.004) 0.95 MAX. (0.037) MAX. 4 6.3 10 16 25 4 25 0.01 0.033 0.047 0.068 0.10 0.22 0.33 Consult factory for additional requirements 0.47 0.68 1.0 = X7R 1.5 = X5R 2.2 = X7S 3.3 PHYSICAL DIMENSIONS AND PAD LAYOUT L P T E D BW A B C BL W PHYSICAL CHIP DIMENSIONS 0612 L W BW 3.20 ± 0.20 1.60 ± 0.20 0.41 ± 0.10 (0.126 ± 0.008) (0.063 ± 0.008) (0.016 ± 0.004) BL millimeters (inches) P 0.18 +0.25 0.80 ± 0.10 -0.08 (0.007 +0.010 ) (0.031 ± 0.004) -0.003 L 66 A B C D E 0.89 1.65 2.54 0.46 0.80 (0.035) (0.065) (0.100) (0.018) (0.031) 0508 0508 2.03±0.20 (0.080±0.008) PAD LAYOUT DIMENSIONS 0612 W BW 1.27±0.20 (0.050±0.008) 0.25 +0.15 -0.10 (0.010 +0.006 ) -0.004 BL P 0.18 +0.25 0.50 ± 0.05 -0.08 (0.007 +0.010 ) (0.020 ± 0.002) -0.003 A B C D E 0.64 1.27 1.91 0.28 0.50 (0.025) (0.050) (0.075) (0.011) (0.020) IDC Low Inductance Capacitors (SnPb) 0612/0508 IDC with Sn/Pb Termination GENERAL DESCRIPTION 0612 0508 – + – + + – + – TYPICAL IMPEDANCE 10 Impedance (Ohms) Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm. IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader. IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors. The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX’s first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array). AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues. MLCC_1206 1 LICC_0612 0.1 IDC_0612 0.01 0.001 1 10 100 1000 Frequency (MHz) HOW TO ORDER L 3 L 1 6 D 225 M B A 3 Voltage Dielectric Capacitance Capacitance Failure Termination Packaging Tolerance Rate B = 5% min. C = X7R Code (In pF) Available 4 = 4V Lead 1=7" Reel 6 = 6.3V D = X5R 2 Sig. Digits + M = ±20% A = N/A Number of 3=13" Reel Z = 10V Z = X7S Zeros Y = 16V 3 = 25V NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Style IDC Low Number Case Inductance of Size Terminals 2 = 0508 1 = 8 Terminals 3 = 0612 A Thickness Max. Thickness mm (in.) A=0.95 (0.037) S=0.55 (0.022) PERFORMANCE CHARACTERISTICS Capacitance Tolerance Operation Temperature Range Temperature Coefficient Voltage Ratings Dissipation Factor Insulation Resistance (@+25°C, RVDC) ±20% Preferred X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C ±15% (0VDC) 4, 6.3, 10, 16 VDC 4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max 100,000MΩ min, or 1,000MΩ per µF min.,whichever is less Dielectric Strength No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current CTE (ppm/C) 12.0 Thermal Conductivity 4-5W/M K Terminations Available Max. Thickness Plated Nickel and 5% min. Lead 0.037" (0.95mm) 67 IDC Low Inductance Capacitors (SnPb) 0612/0508 IDC with Sn/Pb Termination SIZE Length Width Terminal Pitch Thickness WVDC Cap (µF) mm (in.) mm (in.) mm (in.) mm (in.) 4 Thin 0508 0508 Thin 0612 0612 2.03 ± 0.20 (0.080 ± 0.008) 1.27 ± 0.20 (0.050 ± 0.008) 0.50 ± 0.05 (0.020 ± 0.002) 0.55 MAX. (0.022) MAX. 6.3 10 16 2.03 ± 0.20 (0.080 ± 0.008) 1.27 ± 0.20 (0.050 ± 0.008) 0.50 ± 0.05 (0.020 ± 0.002) 0.95 MAX. (0.037) MAX. 6.3 10 16 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.80 ± 0.10 (0.031 ± 0.004) 0.55 MAX. (0.022) MAX. 4 6.3 10 16 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 0.80 ± 0.10 (0.031 ± 0.004) 0.95 MAX. (0.037) MAX. 4 6.3 10 16 25 4 25 0.01 0.033 0.047 0.068 0.10 0.22 0.33 Consult factory for additional requirements 0.47 0.68 1.0 = X7R 1.5 = X5R 2.2 = X7S 3.3 PHYSICAL DIMENSIONS AND PAD LAYOUT L P T E D BW A B C BL W PHYSICAL CHIP DIMENSIONS 0612 L W BW 3.20 ± 0.20 1.60 ± 0.20 0.41 ± 0.10 (0.126 ± 0.008) (0.063 ± 0.008) (0.016 ± 0.004) BL millimeters (inches) P 0.18 +0.25 0.80 ± 0.10 -0.08 (0.007 +0.010 ) (0.031 ± 0.004) -0.003 L 68 A B C D E 0.89 1.65 2.54 0.46 0.80 (0.035) (0.065) (0.100) (0.018) (0.031) 0508 0508 2.03±0.20 (0.080±0.008) PAD LAYOUT DIMENSIONS 0612 W BW 1.27±0.20 (0.050±0.008) 0.254±0.10 (0.010±0.004) BL P 0.18 +0.25 0.50 ± 0.05 -0.08 (0.007 +0.010 ) (0.020 ± 0.002) -0.003 A B C D E 0.64 1.27 1.91 0.28 0.50 (0.025) (0.050) (0.075) (0.011) (0.020) LGA Low Inductance Capacitors 0204/0306/0805 Land Grid Arrays Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX. These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance. Electronic Products awarded its 2006 Product of the Year Award to the LGA Decoupling capacitor. Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including: • Simplified layout of 2 large solder pads compared to 8 small pads for IDCs • Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads • Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist “tombstoning” • Better solder joint reliability APPLICATIONS Semiconductor Packages • Microprocessors/CPUs • Graphics Processors/GPUs • Chipsets • FPGAs • ASICs Board Level Device Decoupling • Frequencies of 300 MHz or more • ICs drawing 15W or more • Low voltages • High speed buses 0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC Impedance (Ω) 1 0.1 0.01 0.001 1 10 100 1000 Frequency (MHz) 69 LGA Low Inductance Capacitors 0204/0306/0805 Land Grid Arrays SIZE LG12 (0204) LG22 (0306) LGC2 (0805) Length mm (in.) Width mm (in.) Temp. Char. Working Voltage 0.50 (0.020) 1.00 (0.039) X7S (Z) 6.3 4 (6) (4) 0.76 (0.030) 1.60 (0.063) X5R (D) X7S (Z) 4 6.3 4 6.3 4 (4) (6) (4) (6) (4) 2.06 (0.081) 1.32 (0.052) X5R (D) X7S (Z) 6.3 4 6.3 4 (6) (4) (6) (4) Cap (µF) X5R (D) 6.3 4 (6) (4) X6S (W) 6.3 4 (6) (4) X7R (C) 10 6.3 (Z) (6) X6S (W) 6.3 4 (6) (4) X7R (C) 6.3 4 (6) (4) 0.010 (103) 0.022 (223) 0.047 (473) 0.100 (104) 0.220 (224) 0.330 (334) 0.470 (474) 1.000 (105) 2.200 (225) X6S (W) 6.3 4 (6) (4) Please contact AVX for values = X7R = X5R = X7S = X6S HOW TO ORDER LG Style 1 2 6 Case Number of Size Terminals 1 = 0204 2 2 = 0306 C = 0805 Z 104 M A T 2 Working Temperature Coded Cap Termination Termination Voltage Characteristic Cap Tolerance Style 100% Sn* 4 = 4V C = X7R M = 20% A = “U” Land *Contact factory for 6 = 6.3V D = X5R other termination Z = 10V Z = X7S finishes W = X6S L T iew pV BL Top T Sid e2 e1 Sid Sid e1 BL BW L W mm (inches) Series L W T BW BL LG12 (0204) 0.5 ± 0.05 (0.020±0.002) 0.76 ± 0.10 (0.030 ± 0.004) 2.06 ± 0.10 (0.081 ± 0.004) 1.00 ± 0.10 (0.039 ± 0.004) 1.60 ± 0.10 (0.063 ± 0.004) 1.32 ± 0.10 (0.052 ± 0.004) 0.50 ± 0.05 (0.020 ± 0.002) 0.50 ± 0.05 (0.020 ± 0.002) 0.50 ± 0.05 (0.020 ± 0.002) 0.8 ± 0.10 (0.031 ± 0.004) 1.50 ±0.10 (0.059 ± 0.004) 1.14 ± 0.10 (0.045 ± 0.004) 0.13 ± 0.08 (0.005 ± 0.003) 0.28 ± 0.08 (0.011 ± 0.003) 0.90 ±0.08 (0.035 ± 0.003) RECOMMENDED SOLDER PAD DIMENSIONS PL G PW1 e2 Sid BL L PART DIMENSIONS 70 w Vie To W LGC2 (0805) Standard Geometry LGA LGC2 BL BW LG22 (0306) 1 Packaging Thickness Tape & Reel S = 0.55mm 2 = 7" Reel max 4 = 13" Reel Reverse Geometry LGA LG12, LG22 L S mm (inches) Series PL PW1 G LG12 (0204) LG22 (0306) LGC2 (0805) 0.50 (0.020) 0.65 (0.026) 1.25 (0.049) 1.00 (0.039) 1.50 (0.059) 1.40 (0.055) 0.20 (0.008) 0.20 (0.008) 0.20 (0.008) Number of Capacitors Low Inductance Capacitors LICA® (Low Inductance Decoupling Capacitor Arrays) LICA® arrays utilize up to four separate capacitor sections in one ceramic body (see Configurations and Capacitance Options). These designs exhibit a number of technical advancements: Low Inductance features– Low resistance platinum electrodes in a low aspect ratio pattern Double electrode pickup and perpendicular current paths C4 “flip-chip” technology for minimal interconnect inductance HOW TO ORDER LICA 3 T Style & Size Voltage 5V = 9 10V = Z 25V = 3 102 M F 3 Dielectric Cap/Section Capacitance Height D = X5R (EIA Code) Tolerance Code T = T55T 102 = 1000 pF M = ±20% 6 = 0.500mm S = High K 103 = 10 nF P = GMV 3 = 0.650mm T55T 104 = 100 nF 1 = 0.875mm 5 = 1.100mm 7 = 1.600mm TABLE 1 Typical Parameters T55T/S55S Termination F = C4 Solder Balls- 97Pb/3Sn H = C4 Solder Balls Low ESR G = Lead Free SAC R = Cr-Cu-Au N = Cr-Ni-Au V = Eutectic LeadTin Bump37%Pb/63%Sn X = None Units Capacitance, 25°C Co Capacitance, 55°C 1.45 x Co Capacitance, 85°C 0.7 x Co Dissipation Factor 25° 15 ESR (Nominal) 20 DC Resistance 0.2 IR (Minimum @25°) (Design Dependent) 300 Dielectric Breakdown, Min 500 Thermal Coefficient of Expansion 8.5 Inductance: (Design Dependent) (Nominal) 30 Frequency of Operation DC to 5 Gigahertz Ambient Temp Range -55° to 125°C Nanofarads Nanofarads Nanofarads Percent Milliohms Ohms Megaohms Volts ppm/°C 25-100° Pico-Henries 4 A A # of Inspection Code Reel Packaging Caps/Part Code Face M = 7" Reel 1 = one A = Standard A = Bar R = 13" Reel B = No Bar 6 = 2"x2" Waffle Pack 2 = two B = COTS+ 8 = 2"x2" Black Waffle 4 = four X = MIL-PRF-123 C = Dot, S55S Dielectrics Pack D = Triangle 7 = 2"x2" Waffle Pack w/ termination facing up A = 2"x2" Black Waffle Pack w/ termination NOTE: Contact factory for facing up availability of Termination and C = 4"x4" Waffle Pack Tolerance Options for Specific w/ clear lid Part Numbers. TERMINATION OPTIONS SOLDER BALLS TERMINATION OPTION F, H, G OR V SOLDER BALL AND PAD DIMENSIONS 0.8 ±.03 (2 pics) 0.6 ±.100mm C } “Centrality”* 0.925 ±0.03mm L = ±.06mm 0.925 ±0.03mm Vertical and Horizontal Pitch=0.4 ±.02mm Code Face to Denote Orientation (Optional) C4 Ball diameter: .164 ±.03mm "Ht" = (Hb +.096 ±.02mm typ) "Hb" ±.06 "W" = ±.06mm Pin A1 is the lower left hand ball. *NOTE: The C4 pattern will be within 0.1mm of the center of the LICA body, in both axes. Code (Body Height) Width (W) Length (L) Height Body (Hb) 1 3 5 6 7 1.600mm 1.600mm 1.600mm 1.600mm 1.600mm 1.850mm 1.850mm 1.850mm 1.850mm 1.850mm 0.875mm 0.650mm 1.100mm 0.500mm 1.600mm TERMINATION OPTION R OR N 71 Low Inductance Capacitors LICA® (Low Inductance Decoupling Capacitor Arrays) TEMPERATURE VS CAPACITANCE CHANGE TYPICAL S21 FOR LICA AT SINGLE VIA Maximum +45% 0 LICA T55T/S55S CERAMIC linear1.sch1.DB[S21] Capacitance Change -14 0% -28 -42 Maximum -30% -56 -70 25°C 50°C 60°C 3 85°C 30 300 3000 Freq (MHz) LICA COMMON PART NUMBER LIST Part Number LICA3T193M3FC4AA LICA3T153P3FC4AA LICA3T134M1FC1AA LICA3T104P1FC1AA LICA3T333M1FC4AA LICA3T263P3FC4AA LICA3T244M5FC1AA LICA3T194P5FC1AA LICA3T394M7FC1AB LICA3T314P7FC1AB Extended Range LICAZT623M3FC4AB LICA3T104M3FC1A LICA3T803P3FC1A LICA3T423M3FC2A LICA3T333P3FC2A LICA3S253M3FC4A LICAZD753M3FC4AD LICAZD504M3FC1AB LICAZD604M7FC1AB LICA3D193M3FC4AB Voltage Thickness (mm) 25 25 25 25 25 25 25 25 25 25 0.650 0.650 0.875 0.875 0.875 0.650 1.100 1.100 1.600 1.600 10 25 25 25 25 25 10 10 10 25 CONFIGURATION Capacitors per Package 4 4 1 1 4 4 1 1 1 1 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 1.600 0.650 4 1 1 2 2 4 4 1 1 4 Schematic D D CAP C B1 A1 B1 D1 C1 B1 A1 D2 C2 B2 A2 CAP 2 A2 C2 D2 CAP 1 Code Face B2 CAP 2 C1 A1 C2 A2 D3 B3 D4 B4 CAP 3 A3 A Code Face Schematic D1 B B2 D2 CAP 1 C1 C A Schematic D1 C3 WAFFLE PACK OPTIONS FOR LICA® Code Face B D1 C1 B1 A1 D2 C2 B2 A2 D3 C3 B3 A3 D4 C4 B4 A4 CAP 4 C4 A4 LICA® PACKAGING SCHEME “M” AND “R” 8mm conductive plastic tape on reel: “M”=7" reel max. qty. 3,000, “R”=13" reel max. qty. 8,000 FLUOROWARE® Code Face to Denote Orientation Code Face to Denote Orientation Wells for LICA® part, C4 side down 76 pieces/foot 1.75mm x 2.01mm x 1.27mm deep on 4mm centers 0.64mm Push Holes H20-080 Option "6" 100 pcs. per 2" x 2" package Note: Standard configuration is Termination side down 72 Option "C" 400 pcs. per 4" x 4" package Code Face to Denote Orientation (Typical) 1.75mm Sprocket Holes: 1.55mm, 4mm pitch High Voltage MLC Chips For 600V to 5000V Application High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies. Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4ºC per second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing. NEW 630V RANGE HOW TO ORDER 1808 AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 3640 A A 271 K A 1 1 A Voltage Temperature Capacitance Code Capacitance Test Level Termination* Packaging Special 600V/630V = C Coefficient (2 significant digits Tolerance A = Standard 1 = Pd/Ag 1 = 7" Reel Code 1000V = A C0G = A + no. of zeros) C0G:J = ±5% T = Plated 3 = 13" Reel A = Standard 1500V = S X7R = C Examples: K = ±10% Ni and Sn 9 = Bulk (RoHS Compliant) 2000V = G 10 pF = 100 M = ±20% 2500V = W 100 pF = 101 X7R: K = ±10% 1,000 pF = 102 M = ±20% 3000V = H 22,000 pF = 223 Z = +80%, 4000V = J 220,000 pF = 224 -20% 5000V = K 1 µF = 105 *Note: Terminations with 5% minimum lead (Pb) is available, see pages 75 and 76 for LD style. Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. W L T t DIMENSIONS millimeters (inches) SIZE (L) Length 0805 1206 1210* 1808* 1812* 1825* 2220* 2225* 3640* 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010) (W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25 (0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010) (T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) *Reflow Soldering Only 73 High Voltage MLC Chips For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range 10 pF to 0.047 µF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - µF min., whichever is less 10K MΩ min. or 100 MΩ - µF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 600/630 min. max. min. 1000 max. min. 1500 max. min. 2000 max. min. 2500 max. min. 3000 max. min. 4000 max. min. 5000 max. 0805 10pF 330pF 10pF 180pF — — — — — — — — — — — — 1206 1210 1808 1812 1825 2220 2225 3640 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 10 pF 120 pF — — — — — — — — 100 pF 2700 pF 10 pF 1500 pF 10 pF 680 pF 10 pF 270 pF — — — — — — — — 100 pF 3300 pF 100 pF 2200 pF 10 pF 820 pF 10 pF 330 pF 10 pF 180 pF 10 pF 120 pF 10 pF 47 pF — — 100 pF 5600 pF 100 pF 3300 pF 10 pF 1800 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 330 pF 10 pF 150 pF — — 1000 pF 0.012 µF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 820 pF 10 pF 330 pF — — 1000 pF 0.012 µF 1000 pF 0.010 µF 100 pF 4700 pF 100 pF 2200 pF 100 pF 1500 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 220 pF 1000 pF 0.018 µF 1000 pF 0.010 µF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 1000 pF 0.047 µF 1000 pF 0.022 µF 100 pF 0.010 µF 100 pF 6800 pF 100 pF 3900 pF 100 pF 2700 pF 100 pF 1200 pF 10 pF 820 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.56 µF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - µF min., whichever is less 10K MΩ min. or 100 MΩ - µF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 0805 1206 1210 1808 1812 1825 2220 2225 3640 600/630 min. max. min. 1000 max. min. 1500 max. Development min. 2000 max. Development min. 2500 max. Development min. 3000 max. Development min. 4000 max. min. 5000 max. 100pF 6800pF 100pF 1500pF — — 1000 pF 0.022 µF 100 pF 6800 pF 100 pF 2700 pF 1000 pF 0.056 µF 1000 pF 0.015 µF 100 pF 4700 pF 6800 pF 100 pF 3000 pF 3900 pF — — 1000 pF 0.056 µF 1000 pF 0.018 µF 100 pF 6800 pF 1000 pF 0.100 µF 1000 pF 0.027 µF 100 pF 0.012 µF 0.015 µF 100 pF 4700 pF 8200 pF 10 pF 3300 pF 5600 pF 10 pF 2200 pF 4700 pF — — — — 0.010 µF 0.180 µF 1000 pF 0.100 µF 1000 pF 0.033 µF 0.056 µF 100 pF 0.010 µF 0.027 µF 100 pF 6800 pF 0.015 µF 100 pF 4700 pF 0.012 µF — — — — 0.010 µF 0.220 µF 1000 pF 0.100 µF 1000 pF 0.039 µF 0.056 µF 1000 pF 0.010 µF 0.027 µF 100 pF 8200 pF 0.018 µF 100 pF 4700 µF 0.012 µF — — — — 0.010 µF 0.220 µF 1000 pF 0.100 µF 1000 pF 0.047 µF 0.068 µF 1000 pF 0.022 µF 0.033 µF 100 pF 0.010 µF 0.022 µF 100 pF 6800 pF 0.015 µF — — — — 0.010 µF 0.560 µF 0.010 µF 0.220 µF 1000 pF 0.100 µF 74 — — 10 pF 1500 pF — — — — — — — — — — — — — — — — — — — — — — 100 pF 2700 pF 3900 pF 10 pF 1800 pF 2200 pF 10 pF 1500 pF 1800 pF — — — — 1000 pF 0.027 µF 1000 pF 0.022 µF 1000 pF 0.018 µF 100 pF 6800 pF 100 pF 3300 pF High Voltage MLC Chips Tin/Lead Termination “B” For 600V to 5000V Application AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a “B” in the 12th position of the AVX Catalog Part Number. This fulfills AVX’s commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this “B” termination. Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4ºC per second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing. NEW 630V RANGE HOW TO ORDER LD08 A A 271 K A B 1 A AVX Style LD05 - 0805 LD06 - 1206 LD10 - 1210 LD08 - 1808 LD12 - 1812 LD13 - 1825 LD20 - 2220 LD14 - 2225 LD40 - 3640 Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K Temperature Coefficient C0G = A X7R = C Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF = 105 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20% Test Level A = Standard Termination B = 5% Min Pb Packaging 1 = 7" Reel 3 = 13" Reel 9 = Bulk Special Code A = Standard Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. W L T DIMENSIONS t millimeters (inches) SIZE (L) Length LD05 (0805) LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD25* (2225) LD40* (3640) 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010) (W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25 (0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010) (T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) * Reflow soldering only. 75 High Voltage MLC Chips Tin/Lead Termination “B” For 600V to 5000V Application C0G Dielectric Performance Characteristics Capacitance Range 10 pF to 0.047 µF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - µF min., whichever is less 10K MΩ min. or 100 MΩ - µF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640) 10pF 330pF 10pF 180pF — — — — — — — — — — — — 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 10 pF 120 pF — — — — — — — — 100 pF 2700 pF 10 pF 1500 pF 10 pF 680 pF 10 pF 270 pF — — — — — — — — 100 pF 3300 pF 100 pF 2200 pF 10 pF 820 pF 10 pF 330 pF 10 pF 180 pF 10 pF 120 pF 10 pF 47 pF — — 100 pF 5600 pF 100 pF 3300 pF 10 pF 1800 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 330 pF 10 pF 150 pF — — 1000 pF 0.012 µF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 820 pF 10 pF 330 pF — — 1000 pF 0.012 µF 1000 pF 0.010 µF 100 pF 4700 pF 100 pF 2200 pF 100 pF 1500 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 220 pF 1000 pF 0.018 µF 1000 pF 0.010 µF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 1000 pF 0.047 µF 1000 pF 0.022 µF 100 pF 0.010 µF 100 pF 6800 pF 100 pF 3900 pF 100 pF 2700 pF 100 pF 1200 pF 10 pF 820 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.56 µF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - µF min., whichever is less 10K MΩ min. or 100 MΩ - µF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600/630 min. max. min. 1000 max. min. 1500 max. Development min. 2000 max. Development min. 2500 max. Development min. 3000 max. Development min. 4000 max. min. 5000 max. 76 LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640) 100pF 6800pF 100pF 1500pF — — — — 1000 pF 0.022 µF 100 pF 6800 pF 100 pF 2700 pF 10 pF 1500 pF 1000 pF 0.056 µF 1000 pF 0.015 µF 100 pF 4700 pF 6800 pF 100 pF 3300 pF 3900 pF — — — — — — — — — — — — — — — — — — — — — — — — 1000 pF 0.056 µF 1000 pF 0.018 µF 100 pF 6800 pF 100 pF 2700 pF 3900 pF 10 pF 1800 pF 2200 pF 10 pF 1500 pF 1800 pF — — — — 1000 pF 0.100 µF 1000 pF 0.027 µF 100 pF 0.012 µF 0.015 µF 100 pF 4700 pF 8200 pF 10 pF 3300 pF 5600 pF 10 pF 2200 pF 4700 pF — — — — 0.010 µF 0.180 µF 1000 pF 0.100 µF 1000 pF 0.033 µF 0.056 µF 100 pF 0.010 µF 0.027 µF 100 pF 6800 pF 0.015 µF 100 pF 4700 pF 0.012 µF — — — — 0.010 µF 0.220 µF 1000 pF 0.100 µF 1000 pF 0.039 µF 0.056 µF 1000 pF 0.010 µF 0.027 µF 100 pF 8200 pF 0.018 µF 100 pF 4700 µF 0.012 µF — — — — 0.010 µF 0.220 µF 1000 pF 0.100 µF 1000 pF 0.047 µF 0.068 µF 1000 pF 0.022 µF 0.033 µF 100 pF 0.010 µF 0.022 µF 100 pF 6800 pF 0.015 µF — — — — 0.010 µF 0.560 µF 0.010 µF 0.220 µF 1000 pF 0.100 µF 1000 pF 0.027 µF 1000 pF 0.022 µF 1000 pF 0.018 µF 100 pF 6800 pF 100 pF 3300 pF MIL-PRF-55681/Chips Part Number Example CDR01 thru CDR06 MILITARY DESIGNATION PER MIL-PRF-55681 Part Number Example CDR01 L W D t BP 101 B K S M MIL Style Voltage-temperature Limits Capacitance T Rated Voltage Capacitance Tolerance Termination Finish Failure Rate NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06 Voltage Temperature Limits: BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C BX = ±15% without voltage; +15 –25% with rated voltage from -55°C to +125°C Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF Termination Finish: M = Palladium Silver N = Silver Nickel Gold S = Solder-coated U = Base Metallization/Barrier Metal/Solder Coated* W = Base Metallization/Barrier Metal/Tinned (Tin or Tin/ Lead Alloy) *Solder shall have a melting point of 200°C or less. Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001% Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request. Rated Voltage: A = 50V, B = 100V Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20% CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06* Per MIL-PRF-55681 AVX Style CDR01 CDR02 CDR03 CDR04 0805 1805 1808 1812 CDR05 1825 CDR06 2225 Length (L) Width (W) .080 ± .015 .180 ± .015 .180 ± .015 .180 ± .015 .180 +.020 -.015 .225 ± .020 .050 ± .015 .050 ± .015 .080 ± .018 .125 ± .015 .250 +.020 -.015 .250 ± .020 Thickness (T) Max. Min. .055 .020 .055 .020 .080 .020 .080 .020 D Max. — — — — Min. .030 — — — Termination Band (t) Max. Min. — .010 .030 .010 .030 .010 .030 .010 .080 .020 — — .030 .010 .080 .020 — — .030 .010 *For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog 77 MIL-PRF-55681/Chips Military Part Number Identification CDR01 thru CDR06 CDR01 thru CDR06 to MIL-PRF-55681 Military Type Designation Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 0805/CDR01 Military Type Designation Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1808/CDR03 CDR01BP100B--CDR01BP120B--CDR01BP150B--CDR01BP180B--CDR01BP220B--- 10 12 15 18 22 J,K J J,K J J,K BP BP BP BP BP 100 100 100 100 100 CDR03BP331B--CDR03BP391B--CDR03BP471B--CDR03BP561B--CDR03BP681B--- 330 390 470 560 680 J,K J J,K J J,K BP BP BP BP BP 100 100 100 100 100 CDR01BP270B--CDR01BP330B--CDR01BP390B--CDR01BP470B--CDR01BP560B--- 27 33 39 47 56 J J,K J J,K J BP BP BP BP BP 100 100 100 100 100 CDR03BP821B-CDR03BP102B--CDR03BX123B-CDR03BX153B--CDR03BX183B--- 820 1000 12,000 15,000 18,000 J J,K K K,M K BP BP BX BX BX 100 100 100 100 100 CDR01BP680B--CDR01BP820B--CDR01BP101B--CDR01B--121B--CDR01B--151B--- 68 82 100 120 150 J,K J J,K J,K J,K BP BP BP BP,BX BP,BX 100 100 100 100 100 CDR03BX223B--CDR03BX273B--CDR03BX333B--CDR03BX393A--CDR03BX473A--- 22,000 27,000 33,000 39,000 47,000 K,M K K,M K K,M BX BX BX BX BX 100 100 100 50 50 CDR01B--181B--CDR01BX221B--CDR01BX271B--CDR01BX331B--CDR01BX391B--- 180 220 270 330 390 J,K K,M K K,M K BP,BX BX BX BX BX 100 100 100 100 100 CDR03BX563A--CDR03BX683A--- 56,000 68,000 K K,M BX BX 50 50 CDR01BX471B--CDR01BX561B--CDR01BX681B--CDR01BX821B--CDR01BX102B--- 470 560 680 820 1000 K,M K K,M K K,M BX BX BX BX BX 100 100 100 100 100 CDR04BP122B--CDR04BP152B--CDR04BP182B--CDR04BP222B--CDR04BP272B--- 1200 1500 1800 2200 2700 J J,K J J,K J BP BP BP BP BP 100 100 100 100 100 CDR01BX122B--CDR01BX152B--CDR01BX182B--CDR01BX222B--CDR01BX272B--- 1200 1500 1800 2200 2700 K K,M K K,M K BX BX BX BX BX 100 100 100 100 100 CDR04BP332B--CDR04BX393B--CDR04BX473B--CDR04BX563B--CDR04BX823A--- 3300 39,000 47,000 56,000 82,000 J,K K K,M K K BP BX BX BX BX 100 100 100 100 50 CDR01BX332B--CDR01BX392A--CDR01BX472A--- 3300 3900 4700 K,M K K,M BX BX BX 100 50 50 CDR04BX104A--CDR04BX124A--CDR04BX154A--CDR04BX184A--- 100,000 120,000 150,000 180,000 K,M K K,M K BX BX BX BX 50 50 50 50 AVX Style 1812/CDR04 AVX Style 1805/CDR02 CDR02BP221B--CDR02BP271B--CDR02BX392B--CDR02BX472B--CDR02BX562B--- 220 270 3900 4700 5600 J,K J K K,M K BP BP BX BX BX 100 100 100 100 100 CDR02BX682B--CDR02BX822B--CDR02BX103B--CDR02BX123A--CDR02BX153A--- 6800 8200 10,000 12,000 15,000 K,M K K,M K K,M BX BX BX BX BX 100 100 100 50 50 CDR02BX183A--CDR02BX223A--- 18,000 22,000 K K,M BX BX 50 50 AVX Style 1825/CDR05 CDR05BP392B--CDR05BP472B--CDR05BP562B--CDR05BX683B--CDR05BX823B--- 3900 4700 5600 68,000 82,000 J,K J,K J,K K,M K BP BP BP BX BX 100 100 100 100 100 CDR05BX104B--CDR05BX124B--CDR05BX154B--CDR05BX224A--CDR05BX274A--- 100,000 120,000 150,000 220,000 270,000 K,M K K,M K,M K BX BX BX BX BX 100 100 100 50 50 CDR05BX334A--- 330,000 K,M BX 50 J,K J,K J,K K K,M BP BP BP BX BX 100 100 100 50 50 Add appropriate failure rate AVX Style 2225/CDR06 Add appropriate termination finish CDR06BP682B--CDR06BP822B--CDR06BP103B--CDR06BX394A--CDR06BX474A--- Capacitance Tolerance 6800 8200 10,000 390,000 470,000 Add appropriate failure rate Add appropriate termination finish Capacitance Tolerance 78 MIL-PRF-55681/Chips Part Number Example CDR31 thru CDR35 MILITARY DESIGNATION PER MIL-PRF-55681 Part Number Example (example) L W t D CDR31 BP 101 B K S M MIL Style Voltage-temperature Limits Capacitance T Rated Voltage Capacitance Tolerance Termination Finish Failure Rate NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35 Voltage Temperature Limits: BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C Termination Finish: M = Palladium Silver N = Silver Nickel Gold S = Solder-coated Y = 100% Tin BX = ±15% without voltage; +15 –25% with rated voltage from -55°C to +125°C *Solder shall have a melting point of 200°C or less. Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001% Rated Voltage: A = 50V, B = 100V Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request. Capacitance Tolerance: B ± .10 pF, C ± .25 pF, D ± .5 pF, F ± 1%, J ± 5%, K ± 10%, M ± 20% U = Base Metallization/Barrier Metal/Solder Coated* W = Base Metallization/Barrier Metal/Tinned (Tin or Tin/ Lead Alloy) CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35 Per MIL-PRF-55681 (Metric Sizes) AVX Style Length (L) (mm) Width (W) (mm) CDR31 CDR32 CDR33 CDR34 CDR35 0805 1206 1210 1812 1825 2.00 3.20 3.20 4.50 4.50 1.25 1.60 2.50 3.20 6.40 Thickness (T) D Max. (mm) 1.3 1.3 1.5 1.5 1.5 Min. (mm) .50 — — — — Termination Band (t) Max. (mm) .70 .70 .70 .70 .70 Min. (mm) .30 .30 .30 .30 .30 79 MIL-PRF-55681/Chips Military Part Number Identification CDR31 CDR31 to MIL-PRF-55681/7 Military Type Designation 1/ Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 0805/CDR31 (BP) Military Type Designation 1/ Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 0805/CDR31 (BP) cont’d CDR31BP1R0B--CDR31BP1R1B--CDR31BP1R2B--CDR31BP1R3B--CDR31BP1R5B--- 1.0 1.1 1.2 1.3 1.5 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR31BP101B--CDR31BP111B--CDR31BP121B--CDR31BP131B--CDR31BP151B--- 100 110 120 130 150 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP1R6B--CDR31BP1R8B--CDR31BP2R0B--CDR31BP2R2B--CDR31BP2R4B--- 1.6 1.8 2.0 2.2 2.4 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR31BP161B--CDR31BP181B--CDR31BP201B--CDR31BP221B--CDR31BP241B--- 160 180 200 220 240 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP2R7B--CDR31BP3R0B--CDR31BP3R3B--CDR31BP3R6B--CDR31BP3R9B--- 2.7 3.0 3.3 3.6 3.9 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR31BP271B--CDR31BP301B--CDR31BP331B--CDR31BP361B--CDR31BP391B--- 270 300 330 360 390 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP4R3B--CDR31BP4R7B--CDR31BP5R1B--CDR31BP5R6B--CDR31BP6R2B--- 4.3 4.7 5.1 5.6 6.2 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR31BP431B--CDR31BP471B--CDR31BP511A--CDR31BP561A--CDR31BP621A--- 430 470 510 560 620 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 50 50 50 CDR31BP6R8B--CDR31BP7R5B--CDR31BP8R2B--CDR31BP9R1B--CDR31BP100B--- 6.8 7.5 8.2 9.1 10 B,C,D B,C,D B,C,D B,C,D F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP681A--- 680 F,J,K BP 50 CDR31BP110B--CDR31BP120B--CDR31BP130B--CDR31BP150B--CDR31BP160B--- 11 12 13 15 16 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP180B--CDR31BP200B--CDR31BP220B--CDR31BP240B--CDR31BP270B--- 18 20 22 24 27 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP300B--CDR31BP330B--CDR31BP360B--CDR31BP390B--CDR31BP430B--- 30 33 36 39 43 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP470B--CDR31BP510B--CDR31BP560B--CDR31BP620B--CDR31BP680B--- 47 51 56 62 68 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP750B--CDR31BP820B--CDR31BP910B--- 75 82 91 F,J,K F,J,K F,J,K BP BP BP 100 100 100 Add appropriate failure rate Add appropriate termination finish Capacitance Tolerance 80 AVX Style 0805/CDR31 (BX) CDR31BX471B--CDR31BX561B--CDR31BX681B--CDR31BX821B--CDR31BX102B--- 470 560 680 820 1,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR31BX122B--CDR31BX152B--CDR31BX182B--CDR31BX222B--CDR31BX272B--- 1,200 1,500 1,800 2,200 2,700 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR31BX332B--CDR31BX392B--CDR31BX472B--CDR31BX562A--CDR31BX682A--- 3,300 3,900 4,700 5,600 6,800 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 50 50 CDR31BX822A--CDR31BX103A--CDR31BX123A--CDR31BX153A--CDR31BX183A--- 8,200 10,000 12,000 15,000 18,000 K,M K,M K,M K,M K,M BX BX BX BX BX 50 50 50 50 50 Add appropriate failure rate Add appropriate termination finish Capacitance Tolerance 1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. MIL-PRF-55681/Chips Military Part Number Identification CDR32 CDR32 to MIL-PRF-55681/8 Military Type Designation 1/ Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1206/CDR32 (BP) Military Type Designation 1/ Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1206/CDR32 (BP) cont’d CDR32BP1R0B--CDR32BP1R1B--CDR32BP1R2B--CDR32BP1R3B--CDR32BP1R5B--- 1.0 1.1 1.2 1.3 1.5 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR32BP101B--CDR32BP111B--CDR32BP121B--CDR32BP131B--CDR32BP151B--- 100 110 120 130 150 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP1R6B--CDR32BP1R8B--CDR32BP2R0B--CDR32BP2R2B--CDR32BP2R4B--- 1.6 1.8 2.0 2.2 2.4 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR32BP161B--CDR32BP181B--CDR32BP201B--CDR32BP221B--CDR32BP241B--- 160 180 200 220 240 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP2R7B--CDR32BP3R0B--CDR32BP3R3B--CDR32BP3R6B--CDR32BP3R9B--- 2.7 3.0 3.3 3.6 3.9 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR32BP271B--CDR32BP301B--CDR32BP331B--CDR32BP361B--CDR32BP391B--- 270 300 330 360 390 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP4R3B--CDR32BP4R7B--CDR32BP5R1B--CDR32BP5R6B--CDR32BP6R2B--- 4.3 4.7 5.1 5.6 6.2 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR32BP431B--CDR32BP471B--CDR32BP511B--CDR32BP561B--CDR32BP621B--- 430 470 510 560 620 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP6R8B--CDR32BP7R5B--CDR32BP8R2B--CDR32BP9R1B--CDR32BP100B--- 6.8 7.5 8.2 9.1 10 B,C,D B,C,D B,C,D B,C,D F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP681B--CDR32BP751B--CDR32BP821B--CDR32BP911B--CDR32BP102B--- 680 750 820 910 1,000 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP110B--CDR32BP120B--CDR32BP130B--CDR32BP150B--CDR32BP160B--- 11 12 13 15 16 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP112A--CDR32BP122A--CDR32BP132A--CDR32BP152A--CDR32BP162A--- 1,100 1,200 1,300 1,500 1,600 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 50 50 50 50 50 CDR32BP180B--CDR32BP200B--CDR32BP220B--CDR32BP240B--CDR32BP270B--- 18 20 22 24 27 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP182A--CDR32BP202A--CDR32BP222A--- 1,800 2,000 2,200 F,J,K F,J,K F,J,K BP BP BP 50 50 50 CDR32BP300B--CDR32BP330B--CDR32BP360B--CDR32BP390B--CDR32BP430B--- 30 33 36 39 43 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP470B--CDR32BP510B--CDR32BP560B--CDR32BP620B--CDR32BP680B--- 47 51 56 62 68 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP750B--CDR32BP820B--CDR32BP910B--- 75 82 91 F,J,K F,J,K F,J,K BP BP BP 100 100 100 AVX Style 1206/CDR32 (BX) CDR32BX472B--CDR32BX562B--CDR32BX682B--CDR32BX822B--CDR32BX103B--- 4,700 5,600 6,800 8,200 10,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR32BX123B--CDR32BX153B--CDR32BX183A--CDR32BX223A--CDR32BX273A--- 12,000 15,000 18,000 22,000 27,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 50 50 50 CDR32BX333A--CDR32BX393A--- 33,000 39,000 K,M K,M BX BX 50 50 Add appropriate failure rate Add appropriate failure rate Add appropriate termination finish Add appropriate termination finish Capacitance Tolerance Capacitance Tolerance 1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. 81 MIL-PRF-55681/Chips Military Part Number Identification CDR33/34/35 CDR33/34/35 to MIL-PRF-55681/9/10/11 Military Type Designation 1/ Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1210/CDR33 (BP) Military Type Designation 1/ Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1812/CDR34 (BX) CDR33BP102B--CDR33BP112B--CDR33BP122B--CDR33BP132B--CDR33BP152B--- 1,000 1,100 1,200 1,300 1,500 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR34BX273B--CDR34BX333B--CDR34BX393B--CDR34BX473B--CDR34BX563B--- 27,000 33,000 39,000 47,000 56,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR33BP162B--CDR33BP182B--CDR33BP202B--CDR33BP222B--CDR33BP242A--- 1,600 1,800 2,000 2,200 2,400 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 50 CDR34BX104A--CDR34BX124A--CDR34BX154A--CDR34BX184A--- 100,000 120,000 150,000 180,000 K,M K,M K,M K,M BX BX BX BX 50 50 50 50 CDR33BP272A--CDR33BP302A--CDR33BP332A--- 2,700 3,000 3,300 F,J,K F,J,K F,J,K BP BP BP 50 50 50 AVX Style 1825/CDR35 (BP) AVX Style 1210/CDR33 (BX) CDR33BX153B--CDR33BX183B--CDR33BX223B--CDR33BX273B--CDR33BX393A--- 15,000 18,000 22,000 27,000 39,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 50 CDR33BX473A--CDR33BX563A--CDR33BX683A--CDR33BX823A--CDR33BX104A--- 47,000 56,000 68,000 82,000 100,000 K,M K,M K,M K,M K,M BX BX BX BX BX 50 50 50 50 50 AVX Style 1812/CDR34 (BP) CDR34BP222B--CDR34BP242B--CDR34BP272B--CDR34BP302B--CDR34BP332B--- 2,200 2,400 2,700 3,000 3,300 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR34BP362B--CDR34BP392B--CDR34BP432B--CDR34BP472B--CDR34BP512A--- 3,600 3,900 4,300 4,700 5,100 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 50 CDR34BP562A--CDR34BP622A--CDR34BP682A--CDR34BP752A--CDR34BP822A--- 5,600 6,200 6,800 7,500 8,200 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 50 50 50 50 50 CDR34BP912A--CDR34BP103A--- 9,100 10,000 F,J,K F,J,K BP BP 50 50 CDR35BP472B--CDR35BP512B--CDR35BP562B--CDR35BP622B--CDR35BP682B--- 4,700 5,100 5,600 6,200 6,800 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR35BP752B--CDR35BP822B--CDR35BP912B--CDR35BP103B--CDR35BP113A--- 7,500 8,200 9,100 10,000 11,000 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 50 CDR35BP123A--CDR35BP133A--CDR35BP153A--CDR35BP163A--CDR35BP183A--- 12,000 13,000 15,000 16,000 18,000 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 50 50 50 50 50 CDR35BP203A--CDR35BP223A--- 20,000 22,000 F,J,K F,J,K BP BP 50 50 AVX Style 1825/CDR35 (BX) CDR35BX563B--CDR35BX683B--CDR35BX823B--CDR35BX104B--CDR35BX124B--- 56,000 68,000 82,000 100,000 120,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR35BX154B--CDR35BX184A--CDR35BX224A--CDR35BX274A--CDR35BX334A--- 150,000 180,000 220,000 270,000 330,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 50 50 50 50 CDR35BX394A--CDR35BX474A--- 390,000 470,000 K,M K,M BX BX 50 50 Add appropriate failure rate Add appropriate failure rate Add appropriate termination finish Add appropriate termination finish Capacitance Tolerance Capacitance Tolerance 1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. 82 Packaging of Chip Components Automatic Insertion Packaging TAPE & REEL QUANTITIES All tape and reel specifications are in compliance with RS481. 8mm Paper or Embossed Carrier 12mm 0612, 0508, 0805, 1206, 1210 Embossed Only 1812, 1825 2220, 2225 1808 Paper Only 0201, 0306, 0402, 0603 Qty. per Reel/7" Reel 2,000, 3,000 or 4,000, 10,000, 15,000 3,000 500, 1,000 Contact factory for exact quantity Qty. per Reel/13" Reel Contact factory for exact quantity 5,000, 10,000, 50,000 10,000 4,000 Contact factory for exact quantity REEL DIMENSIONS Tape Size (1) A Max. B* Min. C D* Min. N Min. 8mm 330 (12.992) 1.5 (0.059) -0.20 13.0 +0.50 (0.512 +0.020 -0.008 ) 20.2 (0.795) W2 Max. W3 -0.0 8.40 +1.5 (0.331 +0.059 -0.0 ) 14.4 (0.567) 7.90 Min. (0.311) 10.9 Max. (0.429) 12.4 +2.0 -0.0 (0.488 +0.079 -0.0 ) 18.4 (0.724) 11.9 Min. (0.469) 15.4 Max. (0.607) W1 50.0 (1.969) 12mm Metric dimensions will govern. English measurements rounded and for reference only. (1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision. 83 Embossed Carrier Configuration 8 & 12mm Tape Only 10 PITCHES CUMULATIVE TOLERANCE ON TAPE ±0.2mm (±0.008) EMBOSSMENT P0 T2 T D0 P2 DEFORMATION BETWEEN EMBOSSMENTS Chip Orientation E1 A0 F TOP COVER TAPE B1 T1 W B0 K0 S1 E2 P1 MAX. CAVITY SIZE - SEE NOTE 1 CENTER LINES OF CAVITY B1 IS FOR TAPE READER REFERENCE ONLY INCLUDING DRAFT CONCENTRIC AROUND B0 D1 FOR COMPONENTS 2.00 mm x 1.20 mm AND LARGER (0.079 x 0.047) User Direction of Feed 8 & 12mm Embossed Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size 8mm and 12mm D0 1.50 (0.059 E +0.10 -0.0 +0.004 -0.0 ) P0 P2 1.75 ± 0.10 4.0 ± 0.10 2.0 ± 0.05 (0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002) S1 Min. T Max. T1 0.60 (0.024) 0.60 (0.024) 0.10 (0.004) Max. VARIABLE DIMENSIONS Tape Size B1 Max. D1 Min. E2 Min. F P1 See Note 5 R Min. See Note 2 T2 W Max. A0 B0 K0 8mm 4.35 (0.171) 1.00 (0.039) 6.25 (0.246) 3.50 ± 0.05 4.00 ± 0.10 (0.138 ± 0.002) (0.157 ± 0.004) 25.0 (0.984) 2.50 Max. (0.098) 8.30 (0.327) See Note 1 12mm 8.20 (0.323) 1.50 (0.059) 10.25 (0.404) 5.50 ± 0.05 4.00 ± 0.10 (0.217 ± 0.002) (0.157 ± 0.004) 30.0 (1.181) 6.50 Max. (0.256) 12.3 (0.484) See Note 1 8mm 1/2 Pitch 4.35 (0.171) 1.00 (0.039) 6.25 (0.246) 3.50 ± 0.05 2.00 ± 0.10 (0.138 ± 0.002) (0.079 ± 0.004) 25.0 (0.984) 2.50 Max. (0.098) 8.30 (0.327) See Note 1 12mm Double Pitch 8.20 (0.323) 1.50 (0.059) 10.25 (0.404) 5.50 ± 0.05 8.00 ± 0.10 (0.217 ± 0.002) (0.315 ± 0.004) 30.0 (1.181) 6.50 Max. (0.256) 12.3 (0.484) See Note 1 NOTES: 1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that: a) the component does not protrude beyond the sealing plane of the cover tape. b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed. c) rotation of the component is limited to 20º maximum (see Sketches D & E). d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F). 2. Tape with or without components shall pass around radius “R” without damage. 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556. 4. B1 dimension is a reference dimension for tape feeder clearance only. 5. If P1 = 2.0mm, the tape may not properly index in all tape feeders. Top View, Sketch "F" Component Lateral Movements 0.50mm (0.020) Maximum 0.50mm (0.020) Maximum 84 Paper Carrier Configuration 8 & 12mm Tape Only 10 PITCHES CUMULATIVE TOLERANCE ON TAPE ±0.20mm (±0.008) P0 D0 T P2 E1 BOTTOM COVER TAPE TOP COVER TAPE F W E2 B0 G T1 T1 A0 CENTER LINES OF CAVITY CAVITY SIZE SEE NOTE 1 P1 User Direction of Feed 8 & 12mm Paper Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size 8mm and 12mm D0 1.50 (0.059 +0.10 -0.0 +0.004 -0.0 E ) P0 P2 1.75 ± 0.10 4.00 ± 0.10 2.00 ± 0.05 (0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002) T1 G. Min. R Min. 0.10 (0.004) Max. 0.75 (0.030) Min. 25.0 (0.984) See Note 2 Min. VARIABLE DIMENSIONS P1 See Note 4 E2 Min. F W A0 B0 4.00 ± 0.10 (0.157 ± 0.004) 6.25 (0.246) 3.50 ± 0.05 (0.138 ± 0.002) 8.00 +0.30 -0.10 (0.315 +0.012 -0.004 ) See Note 1 12mm 4.00 ± 0.010 (0.157 ± 0.004) 10.25 (0.404) 5.50 ± 0.05 (0.217 ± 0.002) 12.0 ± 0.30 (0.472 ± 0.012) 8mm 1/2 Pitch 2.00 ± 0.05 (0.079 ± 0.002) 6.25 (0.246) 3.50 ± 0.05 (0.138 ± 0.002) -0.10 8.00 +0.30 (0.315 +0.012 -0.004 ) 12mm Double Pitch 8.00 ± 0.10 (0.315 ± 0.004) 10.25 (0.404) 5.50 ± 0.05 (0.217 ± 0.002) 12.0 ± 0.30 (0.472 ± 0.012) Tape Size 8mm NOTES: 1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that: a) the component does not protrude beyond either surface of the carrier tape; b) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed; c) rotation of the component is limited to 20º maximum (see Sketches A & B); d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C). T 1.10mm (0.043) Max. for Paper Base Tape and 1.60mm (0.063) Max. for Non-Paper Base Compositions 2. Tape with or without components shall pass around radius “R” without damage. 3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556. 4. If P1 = 2.0mm, the tape may not properly index in all tape feeders. Top View, Sketch "C" Component Lateral 0.50mm (0.020) Maximum 0.50mm (0.020) Maximum Bar Code Labeling Standard AVX bar code labeling is available and follows latest version of EIA-556 85 Bulk Case Packaging BENEFITS BULK FEEDER • Easier handling • Smaller packaging volume (1/20 of T/R packaging) • Easier inventory control Case • Flexibility • Recyclable Cassette Gate Shooter CASE DIMENSIONS Shutter Slider 12mm 36mm Mounter Head Expanded Drawing 110mm Chips Attachment Base CASE QUANTITIES Part Size Qty. (pcs / cassette) 86 0402 80,000 0603 15,000 0805 10,000 (T=.023") 8,000 (T=.031") 6,000 (T=.043") 1206 5,000 (T=.023") 4,000 (T=.032") 3,000 (T=.044") Basic Capacitor Formulas I. Capacitance (farads) English: C = .224 K A TD Metric: C = .0884 K A TD XI. Equivalent Series Resistance (ohms) E.S.R. = (D.F.) (Xc) = (D.F.) / (2 π fC) XII. Power Loss (watts) Power Loss = (2 π fCV2) (D.F.) XIII. KVA (Kilowatts) KVA = 2 π fCV2 x 10 -3 II. Energy stored in capacitors (Joules, watt - sec) E = 1⁄2 CV2 XIV. Temperature Characteristic (ppm/°C) T.C. = Ct – C25 x 106 C25 (Tt – 25) III. Linear charge of a capacitor (Amperes) dV I=C dt XV. Cap Drift (%) C1 – C2 C.D. = C1 IV. Total Impedance of a capacitor (ohms) Z = 冑 R2S + (XC - XL )2 V. Capacitive Reactance (ohms) 1 xc = 2 π fC XVI. Reliability of Ceramic Capacitors Vt L0 X Tt Y = Lt Vo To ( ) ( ) VI. Inductive Reactance (ohms) xL = 2 π fL XVII. Capacitors in Series (current the same) VII. Phase Angles: Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage Any Number: VIII. Dissipation Factor (%) Two: CT = D.F.= tan ␦ (loss angle) = E.S.R. = (2 πfC) (E.S.R.) Xc IX. Power Factor (%) P.F. = Sine ␦ (loss angle) = Cos (phase angle) f P.F. = (when less than 10%) = DF X 10-12 X 10-9 X 10-6 X 10-3 X 10-1 X 10+1 X 10+3 X 10+6 X 10+9 X 10+12 C1 + C2 XIX. Aging Rate D C/decade of time A.R. = % XX. Decibels db = 20 log V1 V2 D.F. Pico Nano Micro Milli Deci Deca Kilo Mega Giga Tera 1 = 1 + 1 --- 1 CT C1 C2 CN C1 C2 XVIII. Capacitors in Parallel (voltage the same) CT = C1 + C2 --- + CN X. Quality Factor (dimensionless) Q = Cotan ␦ (loss angle) = 1 METRIC PREFIXES x 100 SYMBOLS K = Dielectric Constant f = frequency Lt = Test life A = Area L = Inductance Vt = Test voltage TD = Dielectric thickness ␦ = Loss angle Vo = Operating voltage V = Voltage f = Phase angle Tt = Test temperature t = time X&Y = exponent effect of voltage and temp. To = Operating temperature Rs = Series Resistance Lo = Operating life 87 General Description Basic Construction – A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple Ceramic Layer structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in today’s electronic equipment. Electrode End Terminations Terminated Edge Terminated Edge Margin Electrodes Multilayer Ceramic Capacitor Figure 1 Formulations – Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2. Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are C0G (NP0) temperature compensating capacitors (negative-positive 0 ppm/°C). 88 Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required. The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range. All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX’s software, SpiCap. General Description EIA CODE Percent Capacity Change Over Temperature Range RS198 Temperature Range X7 X6 X5 Y5 Z5 -55°C to +125°C -55°C to +105°C -55°C to +85°C -30°C to +85°C +10°C to +85°C Code Percent Capacity Change D E F P R S T U V ±3.3% ±4.7% ±7.5% ±10% ±15% ±22% +22%, -33% +22%, - 56% +22%, -82% Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation |factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage. Cap. Change vs. A.C. Volts X7R Capacitance Change Percent Table 1: EIA and MIL Temperature Stable and General Application Codes 50 40 30 20 10 0 12.5 EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F. Symbol Temperature Range A B C -55°C to +85°C -55°C to +125°C -55°C to +150°C Symbol R S W X Y Z Cap. Change Zero Volts Cap. Change Rated Volts +15%, -15% +22%, -22% +22%, -56% +15%, -15% +30%, -70% +20%, -20% +15%, -40% +22%, -56% +22%, -66% +15%, -25% +30%, -80% +20%, -30% Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor. 50 Figure 2 Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages. D.F. vs. A.C. Measurement Volts X7R 10.0 Dissipation Factor Percent MIL CODE 25 37.5 Volts AC at 1.0 KHz Curve 1 - 100 VDC Rated Capacitor 8.0 Curve 2 - 50 VDC Rated Capacitor Curve 3 - 25 VDC Rated Capacitor 6.0 Curve 3 Curve 2 4.0 Curve 1 2.0 0 .5 In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system. 1.0 1.5 2.0 2.5 AC Measurement Volts at 1.0 KHz Figure 3 Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic. 89 General Description capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed. 5 Typical Curve of Aging Rate X7R 0 +1.5 -5 -10 0 -15 -20 25% 50% 75% Percent Rated Volts 100% Figure 4 Capacitance Change Percent Typical Cap. Change vs. Temperature X7R -1.5 -3.0 -4.5 -6.0 -7.5 +20 1 10 100 +10 0VDC 0 -10 -30 -55 -35 Characteristic C0G (NP0) X7R, X5R Y5V 1000 10,000 100,000 Hours Max. Aging Rate %/Decade None 2 7 Figure 6 -20 -15 +5 +25 +45 +65 +85 +105 +125 Temperature Degrees Centigrade Figure 5 Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6. If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1⁄2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after “last heat.” Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age 90 Capacitance Change Percent Capacitance Change Percent Typical Cap. Change vs. D.C. Volts X7R Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX’s SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com. General Description Effects of Mechanical Stress – High “K” dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high “K” dielectrics as coupling capacitors in extremely low level applications. Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is: Lo = Lt 共共共共 Vt Vo where Lo = operating life Lt = test life Vt = test voltage Vo = operating voltage X Tt To Y Tt = test temperature and To = operating temperature in °C X,Y = see text Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8. A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is: Energy Stored – The energy which can be stored in a capacitor is given by the formula: E = 1⁄2CV2 E = energy in joules (watts-sec) V = applied voltage C = capacitance in farads Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor: I ideal = C dV dt where I = Current C = Capacitance dV/dt = Slope of voltage transition across capacitor Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can “sink” is determined by the above equation. Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is: C = Capacitance L = Inductance Rp = Parallel Resistance Rs = Series Resistance C = .224 KA t C = capacitance (picofarads) K = dielectric constant (Vacuum = 1) A = area in square inches t = separation between the plates in inches (thickness of dielectric) .224 = conversion constant (.0884 for metric system in cm) Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10-9) or pico (10-12) farad level. Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum. Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume. Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group. RP L RS C Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is: Z= where 冑 RS2 + (XC - XL )2 Z = Total Impedance Rs = Series Resistance XC = Capacitive Reactance = XL = Inductive Reactance 1 2 π fC = 2 π fL The variation of a capacitor’s impedance with frequency determines its effectiveness in many applications. Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a “perfect” capacitor the current in the capacitor will lead the voltage by 90°. 91 General Description di I (Ideal) I (Actual) Loss Angle Phase Angle ␦ f V IR s In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and: Power Factor (P.F.) = Cos f or Sine ␦ Dissipation Factor (D.F.) = tan ␦ for small values of ␦ the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry. Equivalent Series Resistance – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection. E.S.R. C Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor. Dissipation Factor = E.S.R. = (2 π fC) (E.S.R.) XC The watts loss are: Watts loss = (2 π fCV2 ) (D.F.) Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the “Q” or Quality factor of capacitors. Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today’s high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation: V = L di dt 92 The dt seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage. Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation: 1 fres = 2冑 LC Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance R P shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm’s Law). Dielectric Strength – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil. Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the “reappearing voltage” which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions. Corona – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures. Surface Mounting Guide MLC Chip Capacitors REFLOW SOLDERING D2 D1 D3 D4 D5 Dimensions in millimeters (inches) Case Size 0201 0402 0603 0805 1206 1210 1808 1812 1825 2220 2225 D1 D2 D3 D4 D5 0.85 (0.033) 1.70 (0.067) 2.30 (0.091) 3.00 (0.118) 4.00 (0.157) 4.00 (0.157) 5.60 (0.220) 5.60 (0.220) 5.60 (0.220) 6.60 (0.260) 6.60 (0.260) 0.30 (0.012) 0.60 (0.024) 0.80 (0.031) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 0.25 (0.010) 0.50 (0.020) 0.70 (0.028) 1.00 (0.039) 2.00 (0.079) 2.00 (0.079) 3.60 (0.142) 3.60 (0.142) 3.60 (0.142) 4.60 (0.181) 4.60 (0.181) 0.30 (0.012) 0.60 (0.024) 0.80 (0.031) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 0.35 (0.014) 0.50 (0.020) 0.75 (0.030) 1.25 (0.049) 1.60 (0.063) 2.50 (0.098) 2.00 (0.079) 3.00 (0.118) 6.35 (0.250) 5.00 (0.197) 6.35 (0.250) Component Pad Design Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is: • Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this. • Pad overlap 0.5mm beneath component. • Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering. WAVE SOLDERING D2 D1 Case Size 0603 0805 1206 D3 D4 D1 D2 D3 D4 D5 3.10 (0.12) 4.00 (0.15) 5.00 (0.19) 1.20 (0.05) 1.50 (0.06) 1.50 (0.06) 0.70 (0.03) 1.00 (0.04) 2.00 (0.09) 1.20 (0.05) 1.50 (0.06) 1.50 (0.06) 0.75 (0.03) 1.25 (0.05) 1.60 (0.06) Dimensions in millimeters (inches) D5 Component Spacing Preheat & Soldering For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required. The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second. For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C. For further specific application or process advice, please consult AVX. Cleaning ≥1.5mm (0.06) ≥1mm (0.04) ≥1mm (0.04) Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor. Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse. 93 Surface Mounting Guide Recommended Soldering Profiles REFLOW SOLDER PROFILES Recommended Reflow Profiles AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/JEDECJSTD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260ºC max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems. Component Temperature / ºC 275 Pb Free Recommended 250 Pb Free Max with care Reflow CoolCool Down Reflow Down Preheat Preheat Sn Pb Recommended 225 200 175 150 125 100 75 50 25 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 Time / secs Preheat: Wetting Force at 2nd Sec. (higher is better) 0.40 0.30 0.20 F [mN] The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125ºC may be rapid, but from that point (2-3)ºC/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180ºC). SnPb - Sn60Pb40 0.10 Sn - Sn60Pb40 0.00 Sn-Sn3.5Ag0.7Cu -0.10 Sn-Sn2.5Ag1Bi0.5Cu Reflow: -0.20 Sn-Sn0.7Cu In the reflow phase, the maximum recommended time > 230ºC is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250ºC, (see wetting balance chart opposite) but products are qualified to 260ºC max. Please reference individual product datasheets for maximum limits -0.30 Cool Down: Cool down should not be forced and 6ºC/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet. -0.40 200 210 220 230 240 250 260 270 Temperature of Solder [C] IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint. WAVE SOLDER PROFILES Preheat: This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated. Recommended Soldering Profiles 275 Component Temperature / ºC For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260ºC max recommended for SnPb systems. 225 Wave 175 Preheat 125 Wave 75 Preheat Wave: 250ºC – 260ºC recommended for optimum solderability. Cool Down: As with reflow solder, cool down should not be forced and 6ºC/sec is recommended. Any air knives at the end of the 2nd wave should be heated. 94 Cool Down Cool Down 25 0 50 100 150 200 250 Time / seconds 300 350 400 Surface Mounting Guide MLC Chip Capacitors APPLICATION NOTES Handling Storage The components should be stored in their “as received packaging” where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas. Solderability Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds. Leaching Terminations will resist leaching for at least the immersion times and conditions shown below. Termination Type Nickel Barrier Solder Solder Tin/Lead/Silver Temp. °C 60/40/0 260 ± 5 Immersion Time Seconds 30 ± 1 Lead-Free Wave Soldering The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above. The following should be noted by customers changing from lead based systems to the new lead free pastes. a) The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large. b) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified. General Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods. Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors. Preheat It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temper-ature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases. Soldering Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. Cooling Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above. Cleaning Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors. 95 Surface Mounting Guide MLC Chip Capacitors POST SOLDER HANDLING Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don’t result in problems unless the stress is large enough to fracture the soldered connection. Ceramic capacitors are more susceptible to such stress because they don’t have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes. Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms: Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping. 96 Type A: Angled crack between bottom of device to top of solder joint. Type B: Fracture from top of device to bottom of device. Surface Mounting Guide MLC Chip Capacitors COMMON CAUSES OF MECHANICAL CRACKING REWORKING OF MLCs The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, vcutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken. A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components. Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards. Solder Tip Preferred Method - No Direct Part Contact Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow. However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300ºC. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor. Solder Tip Poor Method - Direct Contact with Part PCB BOARD DESIGN To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located. No Stress Relief for MLCs Routed Cut Line Relieves Stress on MLC 97 AMERICAS EUROPE ASIA-PACIFIC ASIA-KED (KYOCERA Electronic Devices) AVX Myrtle Beach, SC AVX Limited, England Tel: 843-448-9411 Tel: +44-1252-770000 AVX Northwest, WA AVX S.A.S., France Tel: 360-699-8746 Tel: +33-1-69-18-46-00 AVX/Kyocera, Asia, Ltd., Hong Kong AVX Midwest, IN AVX GmbH, Germany Tel: +852-2363-3303 Tel: 317-861-9184 Tel: +49-8131-9004-0 AVX/Kyocera (S) Pte Ltd., Singapore KED Hong Kong Ltd. Tel: +852-2305-1080/1223 Tel: +65-6286-7555 AVX Mid/Pacific, CA AVX SRL, Italy AVX/Kyocera Yuhan Hoesa, South Korea Tel: 408-988-4900 Tel: +39-02-614-571 Tel: +82-2785-6504 AVX Northeast, MA AVX Czech Republic Tel: 617-479-0345 Tel: +420-57-57-57-521 AVX/Kyocera HK Ltd., Taiwan KED Hong Kong Ltd. Shenzen Tel: +86-755-3398-9600 KED Company Ltd. Shanghai Tel: +86-21-6217-1201 KED Hong Kong Ltd. Beijing Tel: +86-10-5869-4655 Tel: +886-2-2698-8778 AVX Southwest, CA AVX/ELCO UK Tel: 949-859-9509 Tel: +44-1638-675000 AVX/Kyocera (M) Sdn Bhd, Malaysia AVX Canada ELCO Europe GmbH Tel: +60-4228-1190 Tel: 905-238-3151 Tel: +49-2741-299-0 AVX South America AVX S.A., Spain AVX/Kyocera International Trading Co. Ltd., Shanghai Tel: +55-11-4688-1960 Tel: +34-91-63-97-197 Tel: +86-21-6215-5588 AVX Benelux AVX/Kyocera Asia Ltd., Shenzen Tel: +65-6509-0328 Tel: +86-755-3336-0615 Kyocera Corporation Japan AVX/Kyocera International Trading Co. Ltd., Beijing Tel: +81-75-604-3449 Tel: +31-187-489-337 KED Taiwan Ltd. Tel: +886-2-2950-0268 KED Korea Yuhan Hoesa, South Korea Tel: +82-2-783-3604/6126 KED (S) Pte Ltd. Singapore Tel: +86-10-6588-3528 AVX/Kyocera India Liaison Office Tel: +91-80-6450-0715 Contact: A KYOCERA GROUP COMPANY http://www.avx.com S-MLCC0M409-C