AD ADA4084-2ACPZ-RL

FEATURES
PIN CONFIGURATION
Rail-to-rail input/output
Low power: 625 µA typical
Gain bandwidth product: 15.9 MHz at AV =100 typical
Unity-gain crossover: 9.9 MHz typical
−3 dB closed-loop bandwidth: 13.9 MHz typical at ±15 V
Low offset voltage: 100 μV maximum (SOIC)
Unity-gain stable
High slew rate: 4.6 V/μs typical
Low noise: 3.9 nV/√Hz typical at 1 kHz
ADA4084-2
OUT A
1
8
V+
–IN A
2
7
OUT B
+IN A
3
6
–IN B
V–
4
5
+IN B
TOP VIEW
(Not to Scale)
NOTES
1. FOR THE LFSCP PACKAGE THE
EXPOSED PAD MUST BE
CONNECTED TO V–.
08237-001
Data Sheet
30 V, Low Noise, Rail-to-Rail
I/O, Low Power Operational Amplifier
ADA4084-2
Figure 1. 8-Lead MSOP (RM)
8-Lead SOIC (R)
8-Lead LFCSP (CP)
APPLICATIONS
Battery-powered instrumentation
Power supply control and protection
Telecommunications
DAC output amplifier
ADC input buffer
GENERAL DESCRIPTION
The ADA4084-2 is a dual, single-supply, 10 MHz bandwidth
amplifier featuring rail-to-rail inputs and outputs. It is guaranteed to operate from 3 V to 30 V (or ±1.5 V to ±15 V).
These amplifiers are well suited for single-supply applications
requiring both ac and precision dc performance. The combination of wide bandwidth, low noise, and precision makes the
ADA4084-2 useful in a wide variety of applications, including
filters and instrumentation.
Other applications for these amplifiers include portable telecommunications equipment, power supply control and protection,
and use as amplifiers or buffers for transducers with wide output
ranges. Sensors requiring a rail-to-rail input amplifier include
Hall effect, piezoelectric, and resistive transducers.
The ability to swing rail-to-rail at both the input and output
enables designers to build multistage filters in single-supply
systems and to maintain high signal-to-noise ratios.
The ADA4084-2 is specified over the industrial temperature
range of −40°C to +125°C. The dual ADA4084-2 is available in
the 8-lead SOIC, MSOP, and LFCSP surface-mount packages.
Rev. C
The ADA4084-2 is a member of a growing series of high voltage,
low noise op amps offered by Analog Devices, Inc., (see Table 1).
For a more complete selection table of low input voltage noise
amplifiers, see the AN-940 Application Note, Low Noise
Amplifier Selection Guide for Optimal Noise Performance,
available at www.analog.com.
Table 1. Low Noise Op Amps
Voltage Noise
1.1 nV/Hz
1.8 nV/Hz
2.8 nV/Hz RRO1
2.8 nV/Hz
3.2 nV/Hz
3.9 nV/Hz RRIO2
1
2
Single
AD8597
ADA4004-1
AD8675
AD8671
OP27/OP37
Dual
AD8599
ADA4004-2
AD8676
AD8672
Quad
ADA4004-4
AD8674
ADA4084-2
Rail-to-rail output.
Rail-to-rail input/output.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADA4084-2
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
±15 V Characteristics ................................................................ 17
Applications ....................................................................................... 1
Applications Information .............................................................. 22
General Description ......................................................................... 1
Functional Description .............................................................. 22
Pin Configuration ............................................................................. 1
Startup Characteristics .............................................................. 23
Revision History ............................................................................... 2
Input Protection ......................................................................... 23
Specifications..................................................................................... 3
Output Phase Reversal ............................................................... 23
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings............................................................ 6
Designing Low Noise Circuits in Single-Supply
Applications ................................................................................ 24
Thermal Resistance ...................................................................... 6
Comparator Operation .............................................................. 24
ESD Caution .................................................................................. 6
Outline Dimensions ....................................................................... 25
Typical Performance Characteristics ............................................. 7
Ordering Guide .......................................................................... 26
±1.5 V Characteristics.................................................................. 7
±5 V Characteristics ................................................................... 12
REVISION HISTORY
4/13—Rev. B to Rev. C
2/12—Rev. 0 to Rev. A
Changes to Figure 48 Caption........................................................15
Updated Outline Dimensions ........................................................25
Changes to Data Sheet Title .............................................................1
Changes to Voltage Range in General Description .......................1
Changes to Supply Current/Amplifier Parameter, Table 2 ..........3
Changes to Common-Mode Rejection Ratio Parameter, Table 3 .. 4
Changes to Common-Mode Rejection Ratio Parameter, Table 4 .. 5
Changes to Figure 2 ...........................................................................6
Changes to Figure 24...................................................................... 10
Changes to Figure 32...................................................................... 12
Changes to Figure 47...................................................................... 14
Changes to Figure 55...................................................................... 16
Changes to Figure 62...................................................................... 17
Changes to Figure 73...................................................................... 20
6/12—Rev. A to Rev. B
Added LFCSP Package ....................................................... Universal
Changes to Figure 1 ........................................................................... 1
Changes to Output Voltage High Parameter, Table 4 ................... 5
Added Figure 5 and Figure 7, Renumbered Sequentially ............ 7
Added Figure 30 and Figure 32......................................................12
Added Figure 55 and Figure 57......................................................17
Added Startup Characteristics Section .........................................23
Moved Figure 78 ..............................................................................23
Changes to Output Phase Reversal Section and Comparator
Operation Section ............................................................................24
Updated Outline Dimensions ........................................................25
Changes to Ordering Guide ...........................................................26
10/11—Revision 0: Initial Version
Rev. C | Page 2 of 28
Data Sheet
ADA4084-2
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VSY = 3 V, VCM =1.5 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Offset Voltage Drift
Offset Voltage Matching
Input Bias Current
Symbol
Test Conditions/Comments
VOS
SOIC package
−40°C ≤ TA ≤ +125°C
MSOP package
−40°C ≤ TA ≤ +125°C
LFCSP package
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Channel A vs. Channel B, TA = 25°C
ΔVOS/ΔT
Min
IB
Typ
Max
Unit
0.5
100
200
130
250
200
300
1.75
150
300
450
25
50
3
μV
μV
μV
μV
μV
μV
µV/°C
μV
nA
nA
nA
nA
V
dB
dB
dB
dB
kΩ||pF
MΩ||pF
140
–40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
–40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Input Impedance, Differential
Input Impedance, Common-Mode
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
0
64
60
100
97
80
104
100||1.1
80||2.9
VOH
VOL
Short-Circuit Current
POWER SUPPLY
Power Supply Rejection Ratio
ISC
Supply Current/Amplifier
ISY
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
VCM = 0 V to 3 V
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ, 0.5 V ≤ VO ≤ 2.5 V
RL = 2 kΩ, −40°C ≤ TA ≤ +125°C
PSRR
RL = 10 kΩ to VCM
–40°C ≤ TA ≤ +125°C
RL = 2 kΩ to VCM
–40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
–40°C ≤ TA ≤ +125°C
RL = 2 kΩ to VCM
–40°C ≤ TA ≤ +125°C
2.85
2.8
2.8
2.7
2.95
2.9
10
20
40
50
75
−17/+10
VSY = ±1.25 V to ±1.75 V
–40°C ≤ TA ≤ +125°C
IO = 0 mA
–40°C ≤ TA ≤ +125°C
100
90
SR
GBP
UGC
ΦM
−3 dB
RL = 2 kΩ
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
2.0
en p-p
en
in
110
565
650
950
V
V
V
V
mV
mV
mV
mV
mA
dB
dB
µA
µA
AV = 1, VIN = 5 mV p-p
2.6
15.4
8.08
86
12.3
V/µs
MHz
MHz
Degrees
MHz
0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
0.14
3.9
0.55
μV p-p
nV/√Hz
pA/√Hz
Rev. C | Page 3 of 28
ADA4084-2
Data Sheet
VSY = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Offset Voltage Drift
Offset Voltage Matching
Input Bias Current
Symbol
Conditions
VOS
SOIC package
−40°C ≤ TA ≤ +125°C
MSOP package
−40°C ≤ TA ≤ +125°C
LFCSP package
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Channel A vs. Channel B, TA = 25°C
ΔVOS/ΔT
Min
IB
Typ
Max
Unit
0.5
100
250
130
250
200
300
1.75
150
300
450
25
50
+5
μV
μV
μV
μV
μV
μV
μV/°C
μV
nA
nA
nA
nA
V
dB
dB
dB
dB
kΩ||pF
MΩ||pF
140
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Input Impedance, Differential
Input Impedance, Common-Mode
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short Circuit Current
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
VCM = ±4 V
VCM = ±5 V, −40°C ≤ TA ≤ +125°C
RL = 2 kΩ, −4 V ≤ VO ≤ 4 V
RL = 2 kΩ, −40°C ≤ TA ≤ +125°C
−5
106
76
108
103
124
112
100||1.1
200||2.5
VOH
VOL
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to VCM
−40°C ≤ TA ≤ +125°C
4.9
4.8
4.8
4.7
−4.95
−4.9
−4.8
−4.8
−4.7
−24/+17
VSY = ±2 V to ±18 V
−40°C ≤ TA ≤ +125°C
IO = 0 mA
−40°C ≤ TA ≤ +125°C
110
105
SR
GBP
UGC
ΦM
−3 dB
RL = 2 kΩ to VCM
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
2.4
en p-p
en
in
0.1 Hz to 10 Hz
f = 1 kHz
ISY
4.85
−4.95
ISC
PSRR
4.95
AV = 1, VIN = 5 mV p-p
Rev. C | Page 4 of 28
120
595
700
1000
V
V
V
V
V
V
V
V
mA
dB
dB
µA
µA
3.7
15.9
9.6
85
13.9
V/µs
MHz
MHz
Degrees
MHz
0.14
3.9
0.55
µV p-p
nV/√Hz
pA/√Hz
Data Sheet
ADA4084-2
VSY = ±15.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Offset Voltage Drift
Offset Voltage Matching
Input Bias Current
Symbol
Conditions
VOS
SOIC package
−40°C ≤ TA ≤ +125°C
MSOP package
−40°C ≤ TA ≤ +125°C
LFCSP package
−40°C ≤ TA ≤ +125°C
Min
ΔVOS/ΔT
Typ
Max
Unit
0.5
100
200
130
250
200
300
1.75
150
300
450
25
50
+15
μV
μV
μV
μV
μV
μV
μV/°C
μV
nA
nA
nA
nA
V
dB
dB
dB
dB
kΩ||pF
MΩ||pF
Channel A vs. Channel B, TA = 25°C
IB
140
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Input Impedance, Differential
Input Impedance, Common-Mode
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
−15
106
85
110
105
124
117
100||1.1
200||2.5
VOH
VOL
Short Circuit Current
POWER SUPPLY
Power Supply Rejection Ratio
ISC
Supply Current/Amplifier
ISY
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
VCM = ±14 V
VCM = ±15 V, −40°C ≤ TA ≤ +125°C
RL = 2 kΩ, −13.5 V ≤ VO ≤ +13.5 V
−40°C ≤ TA ≤ +125°C
PSRR
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to VCM
−40°C ≤ TA ≤ +125°C
14.8
14.8
14.5
14.0
14.9
14.6
−14.95
−14.9
−14.9
−14.8
−14.8
−14.7
±30
VSY = ±2 V to ±18 V
−40°C ≤ TA ≤ +125°C
IO = 0 mA
−40°C ≤ TA ≤ +125°C
110
105
SR
GBP
UGC
ΦM
−3 dB
RL = 2 kΩ
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
2.4
en p-p
en
in
0.1 Hz to 10 Hz
f = 1 kHz
AV = 1, VIN = 5 mV p-p
Rev. C | Page 5 of 28
120
625
750
1050
V
V
V
V
V
V
V
V
mA
dB
dB
µA
µA
4.6
15.9
9.9
86
13.9
V/µs
MHz
MHz
Degrees
MHz
0.1
3.9
0.55
µV p-p
nV/√Hz
pA/√Hz
ADA4084-2
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage1
Output Short-Circuit Duration to GND
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering 60 sec)
θJA is specified for the device soldered on a 4-layer JEDEC
standard printed circuit board (PCB) with zero airflow.
Table 6. Thermal Resistance
Package Type
8-Lead SOIC
8-Lead MSOP
8-Lead LFCSP1
1
For input differential voltages greater than 0.6 V, the input current should be
limited to less than 5 mA to prevent degradation or destruction of the input
devices.
θJA
121
142
55
θJC
43
45
6
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
VCC
R4
R3
R6
Q24
D2
Q1
Q23
D1
Q2
MIRROR
D100
Q4
D101
FOLDED
CASCADE
Q3
VOUT
R7 C2
Q13
D5
VBIAS
D4
R5
Q18
C1
Q19
R1
Unit
°C/W
°C/W
°C/W
Numbers are based on 4-layer JEDEC thermal boards with the exposed pad
soldered to the PCB.
R2
Q21
D20
Figure 2. Simplified Schematic
Rev. C | Page 6 of 28
VEE
08237-002
1
THERMAL RESISTANCE
Rating
±18 V
V− ≤ VIN ≤ V+
±0.6 V
Indefinite
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
Data Sheet
ADA4084-2
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted.
±1.5 V CHARACTERISTICS
60
120
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = ∞
50
80
60
40
20
40
30
20
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = ∞
–40° ≤ TA ≤ +125°C
10
–75
–50
–25
0
25
75
50
100
VOS (µV)
0
08237-003
0
–100
0
0.4
0.6
0.8
1.0
1.2
30
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = ∞
2.0
1.8
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = ∞
–40° ≤ TA ≤ +125°C
25
NUMBER OF AMPLIFIERS
40
1.6
Figure 6. TCVOS Distribution, SOIC and MSOP
50
45
1.4
TCVOS (µV/°C)
Figure 3. Input Offset Voltage Distribution, SOIC
NUMBER OF AMPLIFIERS
0.2
08237-005
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
100
35
30
25
20
15
10
20
15
10
5
–50
–25
0
50
25
75
100
VOS (µV)
0
0
0.4
0.6
0.8
1.0
1.2
1.4
2.0
500
VSY = ±1.5V
TA = 25°C
RL = ∞
INPUT OFFSET VOLTAGE (µV)
400
150
100
50
300
200
100
0
–100
–200
–300
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = ∞
–100
–50
0
50
VOS (µV)
100
08237-081
–400
–150
1.8
Figure 7. TCVOs Distribution, LFCSP
200
0
–200
1.6
TCVOS (µV/°C)
Figure 4. Input Offset Voltage Distribution, MSOP
NUMBER OF AMPLIFIERS
0.2
Figure 5. Input Offset Voltage Distribution, LFCSP
–500
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
COMMON-MODE VOLTAGE (V)
Figure 8. Input Offset Voltage vs. Common-Mode Voltage
Rev. C | Page 7 of 28
08237-006
–75
08237-004
0
–100
08237-082
5
ADA4084-2
Data Sheet
–50
1000
IB+
100
IB–
10
VOL – (V–)
–200
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
1
0.001
0.01
0.1
1
Figure 12. Dropout Voltage vs. Sink Current
Figure 9. Input Bias Current vs. Temperature
120
600
270
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = 10kΩ
100
400
80
225
180
200
GAIN (dB)
INPUT BIAS (nA)
10
LOAD CURRENT (mA)
TA = +125°C
0
TA = +85°C
60
135
40
90
20
45
0
0
–200
TA = +25°C
–400
TA = –40°C
–1.0
–0.5
0
0.5
1.0
1.5
VCM (V)
–40
0.1
08237-008
–600
–1.5
–45
–20
ADA4084-2
VSY = ±1.5V
PHASE (Degrees)
–25
08237-007
–250
–40
08237-010
ADA4084-2
VSY = ±1.5V
TA = 25°C
ADA4084-2
VSY = ±1.5V
VCM = 0V
RL = ∞
1
10
100
–90
100k
10k
1k
08237-011
–150
VDO (mV)
INPUT BIAS (nA)
–100
FREQUENCY (kHz)
Figure 13. Open-Loop Gain and Phase vs. Frequency
Figure 10. Input Bias Current vs. VCM and Temperature
60
ADA4084-2
VSY = ±1.5V
TA = 25°C
50
1000
40
AV = +100
GAIN (dB)
20
AV = +10
10
(V+) –VOH
0
ADA4084-2
VSY = ±1.5V
TA = 25°C
1
0.001
0.01
0.1
1
LOAD CURRENT (mA)
10
AV = +1
–10
–20
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 14. Closed-Loop Gain vs. Frequency
Figure 11. Dropout Voltage vs. Source Current
Rev. C | Page 8 of 28
100M
08237-012
10
08237-009
VDO (mV)
30
100
Data Sheet
ADA4084-2
1000
1.5
AV = +10
100
1.0
AV = +100
VOLTAGE (V)
ZOUT (Ω)
0.5
10
AV = +1
1
0
–0.5
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
–1.5
08237-013
0
2
10
12
14
16
18
16
18
80
ADA4084-2
VSY = ±1.5V
TA = 25°C
120
60
100
40
VOLTAGE (mV)
60
PSRR–
40
20
20
0
–20
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = 2kΩ
CL = 100pF
–40
PSRR+
–60
0
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
–80
08237-014
100
2
0
4
6
12
10
8
14
TIME (µs)
Figure 19. Small Signal Transient Response
Figure 16. PSRR vs. Frequency
2
120
ADA4084-2
VSY = ±1.5V
TA = 25°C
110
100
08237-017
80
0.08
INPUT
0
90
0.06
0.04
VOLTAGE (V)
–2
80
70
60
0.02
–4
OUTPUT
–6
0
50
40
ADA4084-2
VSY = ±1.5V
TA = 25°C
–8
20
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
10M
100M
08237-015
30
Figure 17. CMRR vs. Frequency
–10
–1
–0.02
–0.04
0
1
2
3
4
5
6
TIME (µs)
Figure 20. Settling Time
Rev. C | Page 9 of 28
7
8
9
08237-018
PSRR (dB)
8
Figure 18. Large Signal Transient Response
140
CMRR (dB)
6
TIME (µs)
Figure 15. Output Impedance vs. Frequency
–20
10
4
VOLTAGE (V)
0.01
10
ADA4084-2
VSY = ±1.5V
TA = 25°C
RL = 2kΩ
CL = 100pF
–1.0
ADA4084-2
VSY = ±1.5V
TA = 25°C
08237-016
0.10
ADA4084-2
Data Sheet
0
ADA4084-2
VSY = ±1.5V
TA = 25°C
VIN = 1V p-p
CHANNEL SEPARATION (dB)
–20
4
ADA4084-2
VSY = ±1.5V
TA = 25°C
10
100
1k
10k
–60
–80
–100
–120
100k
FREQUENCY (Hz)
–160
100
1k
Figure 21. Voltage Noise Density
100k
Figure 24. Channel Separation
60
1
ADA4084-2
VSY = ±1.5V
VIN = 100mV p-p
RL = 2kΩ
TA = 25°C
50
OS+
40
0.1
THD + N (%)
30
20
0.01
OS–
ADA4084-2
VSY = ±1.5V
TA = 25°C
f = 1kHz
10
1
10
100
0.001
0.001
08237-020
0
1000
CAPACITANCE (pF)
0.01
0.1
1
AMPLITUDE (VRMS)
Figure 22. Overshoot vs. Capacitance
08237-023
OVERSHOOT (%)
10k
FREQUENCY (Hz)
08237-022
1
1
–40
–140
08237-019
VOLTAGE NOISE DENSITY (nV/√Hz)
10
Figure 25. THD + N vs. Amplitude
0.01
80
60
THD + N (%)
20
0
–20
0.001
ADA4084-2
VSY = ±1.5V
TA = 25°C
–60
–80
0
1
2
3
4
5
6
7
8
TIME (Seconds)
9
10
Figure 23. Voltage Noise 0.1 Hz to 10 Hz
0.0001
10
100
1k
10k
FREQUENCY (Hz)
Figure 26. THD + N vs. Frequency
Rev. C | Page 10 of 28
100k
08237-024
ADA4084-2
RL = 2kΩ
VIN = 0.4VRMS
VSY = ±1.5V
TA = 25°C
500kHz FILTER
–40
08237-021
VOLTAGE NOISE (nV)
40
Data Sheet
ADA4084-2
2.0
ADA4084-2
VSY = ±1.5V
TA = 25°C
1.5
0.5
OUTPUT
0
–0.5
INPUT
–1.0
–1.5
–2.0
0
100
200
300
400
500
600
700
TIME (µs)
800
900
1000
08237-025
VOLTAGE (V)
1.0
Figure 27. No Phase Reversal
Rev. C | Page 11 of 28
ADA4084-2
Data Sheet
±5 V CHARACTERISTICS
50
120
ADA4084-2
VSY = ±5V
TA = 25°C
RL = ∞
45
40
80
60
40
35
30
25
20
15
ADA4084-2
VSY = ±5V
RL = ∞
–40° ≤ TA ≤ +125°C
10
20
5
–75
–50
–25
0
25
50
75
100
VOS (µV)
08237-026
0
–100
0
0
0.8
1.0
1.2
35
ADA4084-2
VSY = ±5V
TA = 25°C
RL = ∞
1.4
1.6
1.8
2.0
ADA4084-2
VSY = ±5V
RL = ∞
–40° ≤ TA ≤ +125°C
30
NUMBER OF AMPLIFIERS
50
40
30
20
10
25
20
15
10
–25
0
25
50
75
100
VOS (µV)
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Figure 29. Input Offset Voltage Distribution MSOP
2.0
600
500
400
INPUT OFFSET VOLTAGE (µV)
200
150
100
50
300
200
100
0
–100
–200
–300
ADA4084-2
VSY = ±5V
TA = 25°C
RL = ∞
–400
–100
–50
0
50
VOS (µV)
100
08237-080
–500
–150
1.8
Figure 32. TCVOS Distribution, LFCSP
VSY = ±5V
TA = 25°C
RL = ∞
0
–200
1.6
TCVOS (µV/°C)
Figure 30. Input Offset Voltage Distribution, LFCSP
–600
–5
–4
–3
–2
–1
0
1
2
3
4
COMMON-MODE VOLTAGE (V)
Figure 33. Input Offset Voltage vs. Common-Mode Voltage
Rev. C | Page 12 of 28
5
08237-029
–50
08237-027
–75
08237-084
5
0
–100
NUMBER OF AMPLIFIERS
0.6
Figure 31. TCVOS Distribution, SOIC and MSOP
60
250
0.4
TCVOS (µV/°C)
Figure 28. Input Offset Voltage Distribution SOIC
NUMBER OF AMPLIFIERS
0.2
08237-028
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
100
Data Sheet
ADA4084-2
–50
1000
100
VDO (mV)
IB+
–150
IB–
ADA4084-2
VSY = ±5V
VCM = 0V
RL = ∞
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
1
0.001
0.01
0.1
1
08237-033
–10
10
LOAD CURRENT (mA)
Figure 34. Input Bias Current vs. Temperature
Figure 37. Dropout Voltage vs. Sink Current
120
800
600
100
400
80
TA = +85°C
TA = +125°C
GAIN (dB)
200
0
–200
TA = +25°C
–400
TA = –40°C
ADA4084-2
VSY = ±5V
–800
–5
–4
–3
–2
–1
0
1
2
3
4
VCM (V)
225
180
60
135
40
90
20
45
0
0
–45
–20
5
08237-031
–600
270
ADA4084-2
VSY = ±5V
TA = 25°C
RL = 10kΩ
PHASE (Degrees)
–25
ADA4084-2
VSY = ±5V
TA = 25°C
–40
0.1
1
10
100
1k
–90
100k
10k
08237-034
–250
–40
INPUT BIAS (nA)
VOL – (V–)
10
–200
08237-030
INPUT BIAS (nA)
–100
FREQUENCY (kHz)
Figure 38. Open-Loop Gain and Phase vs. Frequency
Figure 35. Input Bias Current vs. VCM and Temperature
60
ADA4084-2
VSY = ±5V
TA = 25°C
1000
50
AV = +100
30
GAIN (dB)
100
20
AV = +10
10
(V+) –VOH
0
ADA4084-2
VSY = ±5V
TA = 25°C
1
0.001
0.01
0.1
1
10
LOAD CURRENT (mA)
AV = +1
–10
–20
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 39. Closed-Loop Gain vs. Frequency
Figure 36. Dropout Voltage vs. Source Current
Rev. C | Page 13 of 28
100M
08237-035
10
08237-032
VDO (mV)
40
ADA4084-2
Data Sheet
1000
5
4
100
3
AV = +10
VOLTAGE (V)
AV = +100
1
1
0
–1
–2
0.10
ADA4084-2
VSY = ±5V
TA = 25°C
100
1k
10k
100k
1M
10M
–4
100M
FREQUENCY (Hz)
–5
08237-036
0.01
10
ADA4084-2
VSY = ±5V
TA = 25°C
RL = 2kΩ
CL = 100pF
–3
0
2
8
10
12
14
16
18
9
10
Figure 43. Large Signal Transient Response
140
80
ADA4084-2
VSY = ±5V
TA = 25°C
120
60
40
VOLTAGE (mV)
100
PSRR (dB)
6
TIME (µs)
Figure 40. Output Impedance vs. Frequency
80
60
PSRR–
40
20
20
0
–20
ADA4084-2
VSY = ±5V
TA = 25°C
RL = 2kΩ
CL = 100pF
–40
PSRR+
–60
0
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
–80
08237-037
–20
10
4
08237-039
AV = +1
0
1
4
6
5
7
8
Figure 44. Small Signal Transient Response
120
ADA4084-2
VSY = ±5V
TA = 25°C
100
3
TIME (µs)
Figure 41. PSRR vs. Frequency
110
2
08237-040
ZOUT (Ω)
2
10
10
0.16
5
0.12
INPUT
60
50
0.04
–5
OUTPUT
0
–10
–15
–0.04
ADA4084-2
VSY = ±5V
TA = 25°C
40
–20
30
20
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
10M
100M
–25
–2
–0.08
–0.12
0
2
4
6
8
10
12
TIME (µs)
Figure 45. Settling Time
Figure 42. CMRR vs. Frequency
Rev. C | Page 14 of 28
VOLTAGE (V)
70
14
16
18
08237-041
VOLTAGE (V)
80
08237-038
CMRR (dB)
0.08
0
90
Data Sheet
ADA4084-2
0
ADA4084-2
VSY = ±5V
TA = 25°C
VIN = 5V p-p
CHANNEL SEPARATION (dB)
–20
4
ADA4084-2
VSY = ±5V
TA = 25°C
10
100
1k
10k
–60
–80
–100
–120
100k
FREQUENCY (Hz)
–160
100
1k
Figure 46. Voltage Noise Density
1
ADA4084-2
VSY = ±5V
VIN = 100mV p-p
RL = 2kΩ
TA = 25°C
50
OS+
0.1
40
THD + N (%)
30
20
0.01
OS–
1
10
100
0.0001
0.001
08237-043
0
1000
CAPACITANCE (pF)
ADA4084-2
VSY = ±5V
TA = 25°C
f = 1kHz
0.1
0.01
08237-046
0.001
10
1
AMPLITUDE (VRMS)
Figure 47. Overshoot vs. Load Capacitance
Figure 50. THD + N vs. Amplitude
80
1
60
40
0.1
THD + N (%)
20
0
–20
–40
ADA4084-2
RL = 2kΩ
VIN = 2.0VRMS
VSY = ±5V
TA = 25°C
500kHz FILTER
0.01
0.001
–80
0
1
2
3
4
5
6
7
8
TIME (Seconds)
9
10
08237-044
ADA4084-2
VSY = ±5V
TA = 25°C
–60
Figure 48. Voltage Noise 0.1 Hz to 10 Hz
0.0001
10
100
1k
10k
FREQUENCY (Hz)
Figure 51. THD + N vs. Frequency
Rev. C | Page 15 of 28
100k
08237-047
OVERSHOOT (%)
100k
Figure 49. Channel Separation
60
VOLTAGE NOISE (nV)
10k
FREQUENCY (Hz)
08237-045
1
1
–40
–140
08237-042
VOLTAGE NOISE DENSITY (nV/√Hz)
10
ADA4084-2
Data Sheet
6
ADA4084-2
VSY = ±5V
TA = 25°C
4
0
OUTPUT
–2
INPUT
–4
–6
0
100
200
300
400
500
600
700
TIME (µs)
800
900
1000
08237-048
VOLTAGE (V)
2
Figure 52. No Phase Reversal
Rev. C | Page 16 of 28
Data Sheet
ADA4084-2
±15 V CHARACTERISTICS
60
100
ADA4084-2
VSY = ±15V
TA = 25°C
RL = ∞
50
60
50
40
30
20
40
30
20
ADA4084-2
VSY = ±15V
RL = ∞
–40° ≤ TA ≤ +125°C
10
10
–75
–50
–25
0
25
50
75
100
VOS (µV)
0
08237-049
0
–100
0
0.8
1.0
1.2
1.4
30
ADA4084-2
VSY = ±15V
TA = 25°C
RL = ∞
1.6
1.8
2.0
ADA4084-2
VSY = ±15V
RL = ∞
–40° ≤ TA ≤ +125°C
25
NUMBER OF AMPLIFIERS
50
40
30
20
20
15
10
5
10
–75
–50
–25
0
25
50
75
100
VOS (µV)
0
08237-050
0
–100
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
TCVOS (µV/°C)
08237-085
NUMBER OF AMPLIFIERS
0.6
Figure 56. TCVOS Distribution, SOIC and MSOP
60
Figure 57. TCVOS Distribution, LFCSP
Figure 54. Input Offset Voltage Distribution, MSOP
600
VSY = ±15V
TA = 25°C
RL = ∞
500
INPUT OFFSET VOLTAGE (µV)
400
150
100
50
300
200
100
0
–100
–200
–300
ADA4084-2
VSY = ±15V
TA = 25°C
RL = ∞
–400
–500
0
–200
–150
–100
–50
0
50
VOS (µV)
100
08237-079
NUMBER OF AMPLIFIERS
0.4
TCVOS (µV/°C)
Figure 53. Input Offset Voltage Distribution, SOIC
200
0.2
08237-051
70
–600
–15
–10
–5
0
5
10
COMMON-MODE VOLTAGE (V)
Figure 58. Input Offset Voltage vs. Common-Mode Voltage
Figure 55. Input Offset Voltage Distribution, LFCSP
Rev. C | Page 17 of 28
15
08237-052
NUMBER OF AMPLIFIERS
80
NUMBER OF AMPLIFIERS
90
ADA4084-2
Data Sheet
–50
10000
IB+
–100
VDO (mV)
–250
–40
–25
–10
5
20
35
50
65
80
110
95
VOL – (V–)
10
ADA4084-2
VSY = ±15V
VCM = 0V
RL = ∞
125
TEMPERATURE (°C)
1
0.001
0.01
ADA4084-2
VSY = ±15V
TA = 25°C
0.1
1
Figure 59. Input Bias Current vs. Temperature
Figure 62. Dropout Voltage vs. Sink Current
120
1200
270
ADA4084-2
VSY = ±15V
TA = 25°C
RL = 10kΩ
100
800
80
400
INPUT BIAS (nA)
10
LOAD CURRENT (mA)
TA = +125°C
GAIN (dB)
TA = +85°C
0
TA = +25°C
–400
–800
0
–5
5
60
135
40
90
20
45
0
0
10
VCM (V)
–45
–20
15
08237-054
–10
180
TA = –40°C
ADA4084-2
VSY = ±15V
–1200
–15
225
PHASE (Degrees)
–200
100
08237-056
IB–
–40
100
1k
10k
100k
–90
100M
10M
1M
08237-057
–150
08237-053
INPUT BIAS (nA)
1000
FREQUENCY (Hz)
Figure 60. Input Bias Current vs. VCM and Temperature
Figure 63. Open-Loop Gain and Phase vs. Frequency
60
ADA4084-2
VSY = ±15V
TA = 25°C
10000
50
40
AV = +100
1000
GAIN (dB)
100
20
AV = +10
10
1
0.001
0.01
0
ADA4084-2
VSY = ±15V
TA = 25°C
10
0.1
1
10
LOAD CURRENT (mA)
AV = +1
–10
Figure 61. Dropout Voltage vs. Source Current
–20
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 64. Closed-Loop Gain vs. Frequency
Rev. C | Page 18 of 28
100M
08237-058
(V+) –VOH
08237-055
VDO (mV)
30
Data Sheet
ADA4084-2
1000
15
10
100
AV = +10
VOLTAGE (V)
ZOUT (Ω)
5
10
AV = +100
1
0
–5
AV = +1
–10
ADA4084-2
VSY = ±15V
TA = 25°C
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
–15
08237-059
0
4
32
36
60
40
VOLTAGE (mV)
100
PSRR–
40
20
0
–20
ADA4084-2
VSY = ±15V
TA = 25°C
RL = 2kΩ
CL = 100pF
–40
PSRR+
–60
0
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
–80
08237-060
100
0
1
3
2
4
5
6
7
8
9
10
TIME (µs)
Figure 69. Small Signal Transient Response
Figure 66. PSRR vs. Frequency
10
120
ADA4084-2
VSY = ±15V
TA = 25°C
110
100
0.20
0.15
5
INPUT
0.10
0
VOLTAGE (V)
90
80
70
60
50
0.05
–5
OUTPUT
0
–10
–15
–0.05
40
ADA4084-2
VSY = ±15V
TA = 25°C
–20
1k
10k
100k
1M
FREQUENCY (Hz)
10M
100M
08237-061
30
100
–25
–2
Rev. C | Page 19 of 28
–0.10
–0.15
0
2
4
6
8
10
12
TIME (µs)
Figure 70. Settling Time
Figure 67. CMRR vs. Frequency
VOLTAGE (V)
60
20
08237-063
80
20
10
28
24
80
ADA4084-2
VSY = ±15V
TA = 25°C
120
PSRR (dB)
20
16
Figure 68. Large Signal Transient Response
140
CMRR (dB)
12
TIME (µs)
Figure 65. Output Impedance vs. Frequency
–20
10
8
14
16
18
08237-064
0.01
10
ADA4084-2
VSY = ±15V
TA = 25°C
RL = 2kΩ
CL = 100pF
08237-062
0.1
ADA4084-2
Data Sheet
10
0
ADA4084-2
VSY = ±15V
TA = 25°C
VIN = 10V p-p
CHANNEL SEPARATION (dB)
4
ADA4084-2
VSY = ±15V
TA = 25°C
10
100
1k
10k
–60
–80
–100
–120
–140
100k
FREQUENCY (Hz)
–180
100
10k
100k
FREQUENCY (Hz)
Figure 71. Voltage Noise Density
Figure 74. Channel Sepatation
70
1
ADA4084-2
VSY = ±15V
VIN = 100mV p-p
RL = 2kΩ
TA = 25°C
60
OS+
0.1
THD + N (%)
50
40
30
20
OS–
0.01
0.001
ADA4084-2
VSY = ±15V
TA = 25°C
f = 1kHz
10
1
10
100
0.0001
0.001
08237-066
0
1000
CAPACITANCE (pF)
0.01
0.1
1
10
AMPLITUDE (VRMS)
08237-069
OVERSHOOT (%)
1k
08237-068
1
1
–40
–160
08237-065
VOLTAGE NOISE DENSITY (nV/√Hz)
–20
Figure 75. THD + N vs. Amplitude
Figure 72. Overshoot vs. Load Capacitance
1
60
ADA4084-2
VSY = ±15V
TA = 25°C
500kHz FILTER
40
THD + N (%)
0
0.01
–20
0.001
–60
0
2
4
6
8
TIME (Seconds)
10
Figure 73. Voltage Noise 0.1 Hz to 10 Hz
0.0001
10
100
1k
10k
FREQUENCY (Hz)
Figure 76. THD + N vs. Frequency
Rev. C | Page 20 of 28
100k
08237-070
ADA4084-2
VSY = ±15V
TA = 25°C
–40
08237-067
VOLTAGE NOISE (nV)
0.1
20
Data Sheet
ADA4084-2
20
ADA4084-2
VSY = ±15V
TA = 25°C
15
5
0
OUTPUT
–5
INPUT
–10
–15
–20
0
100
200
300
400
500
600
700
TIME (µs)
800
900
1000
08237-071
VOLTAGE (V)
10
Figure 77. No Phase Reversal
Rev. C | Page 21 of 28
ADA4084-2
Data Sheet
APPLICATIONS INFORMATION
FUNCTIONAL DESCRIPTION
The ADA4084-2 is a precision single-supply, rail-to-rail operational
amplifier. Intended for portable instrumentation, the ADA4084-2
combines the attributes of precision, wide bandwidth, and low noise
to make it an ideal choice in single-supply applications that require
both ac and precision dc performance. Other low supply voltage
applications for which the ADA4084-2 is well suited are active filters,
audio microphone preamplifiers, power supply control, and telecommunications. To combine all of these attributes with rail-to-rail
input/output operation, novel circuit design techniques are used.
To achieve rail-to-rail output, the ADA4084-2 output stage
design employs a unique topology for both sourcing and sinking
current. This circuit topology is illustrated in Figure 79. The
output stage is voltage-driven from the second gain stage. The
signal path through the output stage is inverting; that is, for
positive input signals, Q13 provides the base current drive to Q19
so that it conducts (sinks) current. For negative input signals, the
signal path via Q18 → mirror → Q24 provides the base current
drive for Q23 to conduct (source) current. Both transistors
provide output current until they are forced into saturation.
VCC
R4
R3
R6
Q24
D2
Q1
D1
Q2
MIRROR
D100
Q4
D101
Q3
VOUT
R7 C2
Q13
D5
Q23
D4
VBIAS
R5
Q18
C1
R2
Q21
D20
Figure 78. ADA4084-2 Equivalent Input Circuit
For example, Figure 78 illustrates a simplified equivalent circuit for
the input stage of the ADA4084-2. It comprises a PNP differential
pair, Q1 and Q2, and an NPN differential pair, Q3 and Q4,
operating concurrently. Diode D100 and Diode D101 serve to
clamp the applied differential input voltage to the ADA4084-2,
thereby protecting the input transistors against Zener breakdown
of the emitter-base junctions. Input stage voltage gains are kept
low for input rail-to-rail operation. The two pairs of differential
output voltages are connected to the second stage of the ADA4084-2,
which is a modified compound folded cascade gain stage. It is also
in the second gain stage, where the two pairs of differential output
voltages are combined into a single-ended output signal voltage
used to drive the output stage.
VEE
08237-074
R1
08237-073
Q19
Figure 79. ADA4084-2 Equivalent Output Circuit
Thus, the saturation voltage of the output transistors sets the
limit on the ADA4084-2 maximum output voltage swing. Output
short-circuit current limiting is determined by the maximum
signal current into the base of Q13 from the second gain stage.
The output stage also exhibits voltage gain. This is accomplished
by the use of common-emitter amplifiers, and, as a result, the
voltage gain of the output stage (thus, the open-loop gain of the
device) exhibits a dependence on the total load resistance at the
output of the ADA4084-2.
A key issue in the input stage is the behavior of the input bias
currents over the input common-mode voltage range. Input bias
currents in the ADA4084-2 are the arithmetic sum of the base
currents in Q1 and Q4 and in Q2 and Q3. As a result of this design
approach, the input bias currents in the ADA4084-2 not only
exhibit different amplitudes; they also exhibit different polarities.
This effect is best illustrated by Figure 9, Figure 10, Figure 34,
Figure 35, Figure 59, and Figure 60. It is therefore important
that the effective source impedances connected to the ADA4084-2
inputs be balanced for optimum dc and ac performance.
Rev. C | Page 22 of 28
Data Sheet
ADA4084-2
The ADA4084-2 is specified to operate from 3 V to 30 V (±1.5 V to
±15 V) under nominal power supplies. During power up as the
supply voltage increases from 0 V to the nominal power supply
voltage, the supply current (ISY) increases as well to the point at
which it stabilizes and the amplifier is ready to operate. The
stabilization varies with temperature, as shown in Figure 80,
below such that at −40°C it takes a higher voltage and stabilizes
at a lower supply current than at hot temperatures where it takes a
lower voltage but stabilizes at a higher current. In all cases, the
ADA4084-2 is specified to start up and operate at a minimum of
3 V under all temperature conditions.
1000
For example, a 1 kΩ resistor protects the ADA4084-2 against
input signals up to 5 V above and below the supplies. Note that
the thermal noise of a 1 kΩ resistor at room temperature is
4 nV/√Hz, which exceeds the voltage noise of the ADA4084-2.
For other configurations where both inputs are used, each input
should be protected against abuse with a series resistor. Again,
to ensure optimum dc and ac performance, it is recommended
that source impedance levels be balanced.
R2
1/2
ADA4084-2
VIN
R1
900
Figure 81. Resistance in Series with Input
Limits Overvoltage Currents to Safe Values
+125°C
+85°C
700
+25°C
600
–40°C
500
400
300
200
ADA4084-2
TA = 25°C
RL = ∞
100
0
0
4
8
12
16
20
24
28
VSY (V)
32
36
08237-072
ISY/AMPLIFIER (µA)
800
Figure 80. Supply Current vs. Supply Voltage
INPUT PROTECTION
As with any semiconductor device, if conditions exist where the
applied input voltages to the device exceed either supply voltage,
the input overvoltage I-to-V characteristic of the device must be
considered. When an overvoltage occurs, the amplifier may be
damaged, depending on the magnitude of the applied voltage
and the magnitude of the fault current.
The D1, D2, D4, and D5 diodes conduct when the input commonmode voltage exceeds either supply pin by a diode drop. This
varies with temperature and is in the range of 0.3 V to 0.8 V. As
illustrated in the simplified equivalent circuit shown in Figure 78,
the ADA4084-2 does not have any internal current limiting resistors; thus, fault currents can quickly rise to damaging levels.
This input current is not inherently damaging to the device,
provided that it is limited to 5 mA or less. If a fault condition
causes more than 5 mA to flow, an external series resistor should
be added at the expense of additional thermal noise. Figure 81
illustrates a typical noninverting configuration for an overvoltageprotected amplifier where the series resistance, RS, is chosen,
such that
RS =
VOUT
08237-075
STARTUP CHARACTERISTICS
To protect Q1-Q2 and Q3-Q4 from large differential voltages
that may result in Zener breakdown of the emitter-base junction,
D100 and D101 are connected between the two inputs. This
precludes operation as a comparator. For a more complete
description, see the MT-035 Tutorial, Op Amp Inputs, Outputs,
Single-Supply, and Rail-to-Rail Issues; the MT-083 Tutorial,
Comparators, the MT-084 Tutorial, Using Op Amps As
Comparators; and the AN-849 Application Note, Using Op
Amps as Comparators, at www.analog.com.
OUTPUT PHASE REVERSAL
Some operational amplifiers designed for single-supply operation
exhibit an output voltage phase reversal when their inputs are
driven beyond their useful common-mode range. Typically, for
single-supply bipolar op amps, the negative supply determines
the lower limit of their common-mode range. With these devices,
external clamping diodes, with the anode connected to ground
and the cathode to the inputs, prevent input signal excursions
from exceeding the negative supply of the device (that is, GND),
preventing a condition that causes the output voltage to change
phase. JFET input amplifiers can also exhibit phase reversal, and, if
so, a series input resistor is usually required to prevent it.
The ADA4084-2 is free from reasonable input voltage range
restrictions, provided that input voltages no greater than the supply
voltages are applied (see Figure 27, Figure 52, and Figure 77).
Although device output does not change phase, large currents can
flow through the input protection diodes. Therefore, the technique
recommended in the Input Protection section should be applied to
those applications where the likelihood of input voltages
exceeding the supply voltages is high.
VIN ( MAX ) − VSUPPLY
5 mA
Rev. C | Page 23 of 28
ADA4084-2
Data Sheet
DESIGNING LOW NOISE CIRCUITS IN SINGLESUPPLY APPLICATIONS
In single-supply applications, devices like the ADA4084-2 extend
the dynamic range of the application through the use of rail-to-rail
operation. Referring to the op amp noise model circuit configuration illustrated in Figure 82, the expression for an amplifier’s
total equivalent input noise voltage for a source resistance level,
RS, is given by

enT  2 (enR)2  (inOA RS )2 (enOA)2 , units in
V
Hz
where:
RS = 2R, the effective, or equivalent, circuit source resistance.
(enR)2 is the source resistance thermal noise voltage power (4kTR).
k is the Boltzmann’s constant, 1.38 × 10–23 J/K.
T is the ambient temperature in Kelvin of the circuit, 273.15 +
TA (°C).
(inOA)2 is the op amp equivalent input noise current spectral
power (1 Hz bandwidth).
(enOA)2 is the op amp equivalent input noise voltage spectral
power (1 Hz bandwidth).
enOA
NOISELESS
R
inOA
enR
NOISELESS
inOA
IDEAL
NOISELESS
OP AMP
RS = 2R
Figure 82. Op Amp Noise Circuit Model Used to Determine Total Circuit
Equivalent Input Noise Voltage and Noise Figure
As a design aid, Figure 83 shows the total equivalent input noise
of the ADA4084-2 and the total thermal noise of a resistor for
comparison. Note that for source resistance less than 1 kΩ, the
equivalent input noise voltage of the ADA4084-2 is dominant.
Signal levels in the application invariably increase to maximize
circuit SNR, which is not an option in low voltage, single-supply
applications.
Therefore, to achieve optimum circuit SNR in single-supply
applications, it is recommended that an operational amplifier
with the lowest equivalent input noise voltage be chosen, along
with source resistance levels that are consistent with maintaining
low total circuit noise.
COMPARATOR OPERATION
Although op amps are quite different from comparators,
occasionally an unused section of a dual or a quad op amp
can be used as a comparator; however, this is not recommended
for any rail-to-rail output op amps. For rail-to-rail output op
amps, the output stage is generally a ratioed current mirror with
bipolar or MOSFET transistors. With the part operating open
loop, the second stage increases the current drive to the ratioed
mirror to close the loop. However, it cannot, which results in an
increase in supply current. With the op amp configured as a
comparator, the supply current can be significantly higher (see
Figure 84). An unused section should be configured as a voltage
follower with the noninverting input connected to a voltage within
the input voltage range. The ADA4084-2 has unique second
stage and output stage designs that greatly reduce the excess
supply current when the op amp is operating open loop.
800
FREQUENCY = 1kHz
TA = 25°C
SUPPLY CURRENT (µA)
ADA4084-2 TOTAL
EQUIVALENT NOISE
10
RESISTOR THERMAL
NOISE ONLY
1
100
1k
COMPARATOR
OUTPUT LOW
700
08237-077
EQUIVALENT THERMAL NOISE (nV/ Hz)
100
Noise figure is generally used for RF and microwave circuit analysis
in a 50 Ω system. This is not very useful for op amp circuits where
the input and output impedances can vary greatly. For a more
complete description of noise figure, see the MT-052 Tutorial, Op
Amp Noise Figure: Don’t be Mislead, available at www.analog.com.
10k
600
BUFFER
COMPARATOR
OUTPUT HIGH
500
400
300
200
ADA4084-2
TA = 25°C
RL = ∞
100
100k
TOTAL SOURCE RESISTANCE, RS (Ω)
0
0
4
8
12
16
20
24
28
32
VSY (V)
Figure 83. ADA4084-2 Equivalent Thermal Noise vs. Total Source Resistance
Rev. C | Page 24 of 28
Figure 84. Supply Current vs. Supply Voltage
36
08237-078
enR
08237-076
R
Because circuit SNR is the critical parameter in the final analysis,
the noise behavior of a circuit is sometimes expressed in terms
of its noise figure, NF. The noise figure is defined as the ratio of
a circuit’s output signal-to-noise to its input signal-to-noise.
Data Sheet
ADA4084-2
OUTLINE DIMENSIONS
3.20
3.00
2.80
5.15
4.90
4.65
5
8
3.20
3.00
2.80
1
4
PIN 1
IDENTIFIER
0.65 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.80
0.55
0.40
0.23
0.09
6°
0°
0.40
0.25
10-07-2009-B
0.15
0.05
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 85. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
5.00 (0.1968)
4.80 (0.1890)
1
5
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
6.20 (0.2441)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 86. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
Rev. C | Page 25 of 28
012407-A
8
4.00 (0.1574)
3.80 (0.1497)
ADA4084-2
Data Sheet
3.10
3.00 SQ
2.90
0.50 BSC
8
5
1.70
1.60 SQ
1.50
EXPOSED
PAD
0.50
0.40
0.30
0.80
0.75
0.70
SEATING
PLANE
0.30
0.25
0.20
1
4
BOTTOM VIEW
TOP VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.203 REF
0.20 MIN
PIN 1
INDICATOR
(R 0.15)
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-229-WEED
02-05-2013-B
PIN 1 INDEX
AREA
Figure 87. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]
3 x 3 mm Body, Very Very Thin, Dual Lead
(CP-8-12)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
ADA4084-2ARMZ
ADA4084-2ARMZ-R7
ADA4084-2ARMZ-RL
ADA4084-2ARZ
ADA4084-2ARZ-R7
ADA4084-2ARZ-RL
ADA4084-2ACPZ-R7
ADA4084-2ACPZ-RL
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]
Z = RoHS Compliant Part.
Rev. C | Page 26 of 28
Package Option
RM-8
RM-8
RM-8
R-8
R-8
R-8
CP-8-12
CP-8-12
Branding
A2Q
A2Q
A2Q
A2Q
A2Q
Data Sheet
ADA4084-2
NOTES
Rev. C | Page 27 of 28
ADA4084-2
Data Sheet
NOTES
©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08237-0-4/13(C)
Rev. C | Page 28 of 28