Ultracompact Precision 10 V/5 V/2.5 V/3.0 V Voltage References ADR01/ADR02/ADR03/ADR06 PIN CONFIGURATIONS APPLICATIONS Precision data acquisition systems High resolution converters Industrial process control systems Precision instruments PCMCIA cards SELECTION GUIDE Part Number ADR01 ADR02 ADR03 ADR06 Output Voltage 10.0 V 5.0 V 2.5 V 3.0 V TEMP 1 GND 2 VIN 3 ADR01/ ADR02/ ADR03/ ADR06 5 TRIM TOP VIEW 4 VOUT (Not to Scale) 02747-F-001 Ultracompact SC70-5/TSOT-5 Low temperature coefficient SOIC-8: 3 ppm/°C SC70-5/TSOT-5: 9 ppm/°C Initial accuracy ± 0.1% No external capacitor required Low noise 10 µV p-p (0.1 Hz to 10 Hz) Wide operating range ADR01: 12 V to 40 V ADR02: 7 V to 40 V ADR03: 4.5 V to 40 V ADR06: 5.0 V to 40 V High output current 10 mA Wide temperature range: –40°C to +125°C ADR01/ADR02/ADR03 pin compatible to industry-standard REF01/REF02/REF031 Figure 1. 5-Lead SC70/TSOT Surface-Mount Packages TP 1 VIN 2 TEMP 3 GND 4 ADR01/ ADR02/ ADR03/ ADR06 8 TP 7 NIC 6 VOUT TOP VIEW 5 TRIM (Not to Scale) NIC = NO INTERNAL CONNECT TP = TEST PIN (DO NOT CONNECT) 02747-F-002 FEATURES Figure 2. 8-Lead SOIC Surface-Mount Package GENERAL DESCRIPTION The ADR01, ADR02, ADR03, and ADR06 are precision 10 V, 5 V, 2.5 V, and 3.0 V band gap voltage references featuring high accuracy, high stability, and low power. The parts are housed in tiny SC70-5 and TSOT-5 packages, as well as the SOIC-8 versions. The SOIC-8 versions of the ADR01, ADR02, and ADR03 are drop-in replacements1 to the industry-standard REF01, REF02, and REF03. The small footprint and wide operating range make the ADR0x references ideally suited for general-purpose and space-constraint applications. With an external buffer and a simple resistor network, the TEMP terminal can be used for temperature sensing and approximation. A TRIM terminal is provided on the devices for fine adjustment of the output voltage. The ADR01, ADR02, ADR03, and ADR06 are compact, low drift voltage references that provide an extremely stable output voltage from a wide supply voltage range. They are available in SC70-5, TSOT-5, and SOIC-8 packages with A and B grade selections. All parts are specified over the extended industrial (–40°C to +125°C) temperature range. 1 ADR01, ADR02, and ADR03 are component-level compatible with REF01, REF02, and REF03, respectively. No guarantees for system-level compatibility are implied. SOIC-8 versions of ADR01/ADR02/ADR03 are pin-to-pin compatible with SOIC-8 versions of REF01/REF02/REF03, respectively, with the additional temperature monitoring function. Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. www.analog.com Tel: 781.329.4700 Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. ADR01/ADR02/ADR03/ADR06 TABLE OF CONTENTS Specifications..................................................................................... 3 Applying the ADR01/ADR02/ADR03/ADR06...................... 15 ADR01 Electrical Characteristics............................................... 3 Negative Reference..................................................................... 16 ADR02 Electrical Characteristics............................................... 4 Low Cost Current Source.......................................................... 16 ADR03 Electrical Characteristics............................................... 5 Precision Current Source with Adjustable Output ................ 16 ADR06 Electrical Characteristics............................................... 6 Programmable 4 to 20 mA Current Transmitter ................... 17 Dice Electrical Characteristics.................................................... 7 Outline Dimensions ....................................................................... 18 Absolute Maximum Ratings............................................................ 8 Ordering Guides ............................................................................. 19 Parameter Definitions ...................................................................... 9 ADR01 Ordering Guide ............................................................ 19 Notes............................................................................................... 9 ADR02 Ordering Guide ............................................................ 19 Typical Performance Characteristics ........................................... 10 ADR03 Ordering Guide ............................................................ 20 Applications..................................................................................... 15 ADR06 Ordering Guide ............................................................ 20 REVISION HISTORY 7/04—Data Sheet Changed from Rev. E to Rev. F Changes to ADR02 Electrical Characteristics, Table 2................ 4 Changes to Ordering Guide .......................................................... 19 2/04—Data Sheet Changed from Rev. D to Rev. E Added C grade ................................................................Universal Changes to Outline Dimensions............................................... 19 Updated Ordering Guide........................................................... 20 8/03—Data Sheet Changed from Rev. C to Rev D Added ADR06 Universal Change to Figure 27 13 2/03—Data Sheet Changed from Rev. A to Rev. B Added ADR03.....................................................................Universal Added TSOT-5 (UJ) Package............................................Universal Updated Outline Dimensions....................................................... 18 12/02—Data Sheet Changed from Rev. 0 to Rev. A Changes to Features Section ........................................................1 Changes to General Description .................................................1 Table I deleted................................................................................1 Changes to ADR01 Specifications ..............................................2 Changes to ADR02 Specifications ..............................................3 Changes to Absolute Maximum Ratings Section .....................4 Changes to Ordering Guide.........................................................4 Updated Outline Dimensions .................................................. 12 6/03—Data Sheet Changed from Rev. B to Rev C Changes to Features Section 1 Changes to General Description Section 1 Changes to Figure 2 1 Changes to Specifications Section 2 Addition of Dice Electrical Characteristics and Layout 6 Changes to Absolute Maximum Ratings Section 7 Updated SOIC (R-8) Outline Dimensions 19 Changes to Ordering Guide 20 Rev. F | Page 2 of 20 ADR01/ADR02/ADR03/ADR06 SPECIFICATIONS ADR01 ELECTRICAL CHARACTERISTICS VIN = 12 V to 40 V, TA = 25°C, unless otherwise noted. Table 1. Parameter Output Voltage Initial Accuracy Symbol VO VOERR Conditions A and C grades A and C grades Min 9.990 Typ 10.000 Output Voltage Initial Accuracy VO VOERR B grade B grade 9.995 10.000 Temperature Coefficient TCVO A grade, SOIC-8, –40°C < TA < +125°C A grade, TSOT-5, –40°C < TA < +125°C A grade, SC70-5, –40°C < TA < +125°C B grade, SOIC-8, –40°C < TA < +125°C B grade, TSOT-5, –40°C < TA < +125°C B grade, SC70-5, –40°C < TA < +125°C C grade, SOIC-8, –40°C < TA < +125°C Supply Voltage Headroom Line Regulation Load Regulation Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND Voltage Output at TEMP Pin Temperature Sensitivity 1 VIN – VO ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p eN tR ∆VO ∆VO_HYS RRR ISC VTEMP TCVTEMP 3 1 10 Max 10.010 10 0.1 10.005 5 0.05 10 25 25 3 9 9 40 2 VIN = 12 V to 40 V, –40°C < TA < +125°C ILOAD = 0 to 10 mA, –40°C < TA < +125°C, VIN = 15 V No load, –40°C < TA < +125°C 0.1 Hz to 10 Hz 1 kHz 1,000 hours fIN = 10 kHz 7 40 0.65 20 510 4 50 70 −75 30 550 1.96 30 70 1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period. Rev. F | Page 3 of 20 Unit V mV % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C V ppm/V ppm/mA mA µV p-p nV/√Hz µs ppm ppm dB mA mV mV/°C ADR01/ADR02/ADR03/ADR06 ADR02 ELECTRICAL CHARACTERISTICS VIN = 7 V to 40 V, TA = 25°C, unless otherwise noted. Table 2. Parameter Output Voltage Initial Accuracy Symbol VO VOERR Conditions A and C grades A and C grades Min 4.995 Typ 5.000 Output Voltage Initial Accuracy VO VOERR B grade B grade 4.997 5.000 Temperature Coefficient TCVO A grade, SOIC-8, –40°C < TA < +125°C A grade, TSOT-5, –40°C < TA < +125°C A grade, SC70-5, –40°C < TA < +125°C A grade. SC70-5, -55oC < TA < +125oC 3 B grade, SOIC-8, –40°C < TA < +125°C B grade, TSOT-5, –40°C < TA < +125°C B grade, SC70-5, –40°C < TA < +125°C C grade, SOIC-8, –40°C < TA < +125°C 1 Supply Voltage Headroom Line Regulation VIN – VO ∆VO/∆VIN Load Regulation ∆VO/∆ILOAD Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND Voltage Output at TEMP Pin Temperature Sensitivity 1 IIN eN p-p eN tR ∆VO ∆VO_HYS RRR ISC VTEMP TCVTEMP 10 Max 5.005 5 0.1 5.003 3 0.06 10 25 25 30 3 9 9 40 7 7 40 30 40 70 45 0.65 10 230 4 50 70 80 –75 30 550 1.96 80 1 2 VIN = 7 V to 40 V, –40°C < TA < +125°C VIN = 7 V to 40 V, –55°C < TA < +125°C ILOAD = 0 to 10 mA, –40°C < TA < +125°C, VIN = 10 V ILOAD = 0 to 10 mA, –55°C < TA < +125°C, VIN = 10 V No load, –40°C < TA < +125°C 0.1 Hz to 10 Hz 1 kHz 1,000 hours –55°C < TA < +125°C fIN = 10 kHz The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period. Rev. F | Page 4 of 20 Unit V mV % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C V ppm/V ppm/V ppm/mA ppm/mA mA µV p-p nV/√Hz µs ppm ppm ppm dB mA mV mV/°C ADR01/ADR02/ADR03/ADR06 ADR03 ELECTRICAL CHARACTERISTICS VIN = 4.5 V to 40 V, TA = 25°C, unless otherwise noted. Table 3. Parameter Output Voltage Initial Accuracy Symbol VO VOERR Conditions A and C grades A and C grades Min 2.495 Typ 2.500 Output Voltage Initial Accuracy VO VOERR B grades B grades 2.4975 2.5000 Temperature Coefficient TCVO A grade, SOIC-8, –40°C < TA < +125°C A grade, TSOT-5, –40°C < TA < +125°C A grade, SC70-5, –40°C < TA < +125°C A grade, SC70-5, –55°C < TA < +125°C B grade, SOIC-8, –40°C < TA < +125°C B grade, TSOT-5, –40°C < TA < +125°C B grade, SC70-5, –40°C < TA < +125°C C grade, SOIC-8, –40°C < TA < +125°C Supply Voltage Headroom Line Regulation VIN – VO ∆VO/∆VIN Load Regulation ∆VO/∆ILOAD Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis IIN eN p-p eN tR ∆VO ∆VO_HYS Ripple Rejection Ratio Short Circuit to GND Voltage Output at TEMP Pin Temperature Sensitivity RRR ISC VTEMP TCVTEMP 1 10 Max 2.505 5 0.2 2.5025 2.5 0.1 10 25 25 30 3 9 9 40 7 7 25 30 40 70 Unit V mV % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C V ppm/V ppm/V ppm/mA 45 80 ppm/mA 0.65 6 230 4 50 70 80 –75 30 550 1.96 1 mA µV p-p nV/√Hz µs ppm ppm ppm dB mA mV mV/°C 3 1 2 VIN = 7.5 V to 40 V, –40°C < TA < +125°C VIN = 7.5 V to 40 V, –55°C < TA < +125°C ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C, VIN = 7.0 V ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C, VIN = 7.0 V No load, –40°C < TA < +125°C 0.1 Hz to 10 Hz 1 kHz 1,000 hours –55°C < TA < +125°C fIN = 10 kHz The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period. Rev. F | Page 5 of 20 ADR01/ADR02/ADR03/ADR06 ADR06 ELECTRICAL CHARACTERISTICS VIN = 5.0 V to 40 V, TA = 25°C, unless otherwise noted. Table 4. Parameter Output Voltage Initial Accuracy Symbol VO VOERR Conditions A and C grades A and C grades Min 2.994 Typ 3.000 Output Voltage Initial Accuracy VO VOERR B grade B grade 2.997 3.000 Temperature Coefficient TCVO A grade, SOIC-8, –40°C < TA < +125°C A grade, TSOT-5, –40°C < TA < +125°C A grade, SC70-5, –40°C < TA < +125°C B grade, SOIC-8, –40°C < TA < +125°C B grade, TSOT-5, –40°C < TA < +125°C B grade, SC70-5, –40°C < TA < +125°C C grade, SOIC-8, –40°C < TA < +125°C Supply Voltage Headroom Line Regulation Load Regulation VIN – VO ∆VO/∆VIN ∆VO/∆ILOAD Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND Voltage Output AT TEMP Pin Temperature Sensitivity IIN eN p-p eN tR ∆VO ∆VO_HYS RRR ISC VTEMP TCVTEMP 1 10 Max 3.006 6 0.2 3.003 3 0.1 10 25 25 3 9 9 40 7 40 30 70 0.65 10 510 4 50 70 –75 30 550 1.96 1 3 1 2 VIN = 15 V to 40 V, –40°C < TA < +125°C ILOAD = 0 to 10 mA, –40°C < TA < +125°C, VIN = 7.0 V No load, –40°C < TA < +125°C 0.1 Hz to 10 Hz 1 kHz 1,000 hours fIN = 10 kHz The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period. Rev. F | Page 6 of 20 Unit V mV % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C V ppm/V ppm/mA mA µV p-p nV/√Hz µs ppm ppm dB mA mV mV/°C ADR01/ADR02/ADR03/ADR06 DICE ELECTRICAL CHARACTERISTICS VIN = up to 40 V, TA = 25°C, unless otherwise noted. Table 5. Symbol Conditions Min Typ Max Unit VO VO TCVO 25°C 25°C –40°C < TA < +125°C 9.995 4.997 10.004 5.002 10 10.005 5.003 V V ppm/°C ∆VO/∆VIN ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p VIN = 15 V to 40 V VIN = 7 V to 40 V ILOAD = 0 to 10 mA No load 0.1 Hz to 10 Hz 7 7 40 0.65 25 TEMP VIN GND TRIM VOUT (SENSE) DIE SIZE: 0.83mm × 1.01mm Figure 3. Die Layout Rev. F | Page 7 of 20 VOUT (FORCE) 02747-F-003 Parameter Output Voltage ADR01NBC ADR02NBC Temperature Coefficient Line Regulation ADR01NBC ADR02NBC Load Regulation Quiescent Current Voltage Noise ppm/V ppm/V ppm/mA mA µV p-p ADR01/ADR02/ADR03/ADR06 ABSOLUTE MAXIMUM RATINGS Ratings at 25°C, unless otherwise noted. Table 6. Parameter Supply Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range: KS, UJ, and R Packages Lead Temperature Range (Soldering, 60 Sec) Table 7. Thermal Resistance Rating 40 V Indefinite –65°C to +150°C –40°C to +125°C –65°C to +150°C 300°C Package Type SC70-5 (KS-5) TSOT-5 (UJ-5) SOIC-8 (R-8) 1 θJA1 376 230 130 θJC 189 146 43 Unit °C/W °C/W °C/W θJA is specified for the worst-case conditions, that is, θJA is specified for devices soldered in circuit boards for surface-mount packages. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these products feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. F | Page 8 of 20 ADR01/ADR02/ADR03/ADR06 PARAMETER DEFINITIONS Temperature Coefficient Thermal Hysteresis The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by the following equation: Defined as the change of output voltage after the device is cycled through temperature from +25°C to –40°C to +125°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle. TCVO [ ppm / °C ] = VO (T2 ) − VO (T1 ) × 10 6 VO ( 25°C ) × T2 − T1 VO _ HYS = VO ( 25°C ) − VO _ TC VO _ HYS [ ppm ] = where: VO(25°C) = VO at 25°C VO(T1) = VO at Temperature 1 VO(T2) = VO at Temperature 2 Line Regulation The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input voltage. Load Regulation The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance. Long-Term Stability Typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1,000 hours at 25°C: ∆VO = VO (t0 ) − VO (t1 ) ∆VO [ ppm] = VO (t0 ) − VO (t1 ) × 10 6 VO (t0 ) where: VO(t0) = VO at 25°C at Time 0 VO(t1) = VO at 25°C after 100 hours of operation at 25°C VO ( 25°C ) − VO _ TC VO ( 25°C ) × 10 6 where: VO(25°C) = VO at 25°C VO_TC = VO at 25°C after temperature cycle at +25°C to –40°C to +125°C and back to +25°C NOTES Input Capacitor Input capacitors are not required on the ADR01/ADR02/ ADR03/ADR06. There is no limit for the value of the capacitor used on the input, but a 1 µF to 10 µF capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 µF in parallel also helps to reduce noise from the supply. Output Capacitor The ADR01/ADR02/ADR03/ADR06 do not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 µF, filters out any low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can be improved with an additional 1 µF to 10 µF output capacitor in parallel. A capacitor here acts as a source of stored energy for a sudden increase in load current. The only parameter that degrades by adding an output capacitor is the turn-on time, and it depends on the size of the capacitor chosen. The majority of the shift is seen in the first 200 hours, and, as time goes by, the drift decreases significantly. So for the subsequent 1,000 hours’ time points, this drift is much smaller than the first. Rev. F | Page 9 of 20 ADR01/ADR02/ADR03/ADR06 TYPICAL PERFORMANCE CHARACTERISTICS 10.010 3.002 10.005 10.000 VOUT (V) VOUT (V) 3.001 9.995 3.000 2.999 –10 5 20 35 50 65 80 95 110 125 o TEMPERATURE ( C) 2.998 –40 5.004 0.7 SUPPLY CURRENT (mA) 5.000 20 35 50 65 80 95 110 125 TEMPERATURE (oC) 50 65 80 95 110 125 o +125 C 0.6 +25oC –40oC 0.5 12 16 20 24 28 32 INPUT VOLTAGE (V) 36 40 Figure 8. ADR01 Supply Current vs. Input Voltage Figure 5. ADR02 Typical Output Voltage vs. Temperature 0.8 2.501 0.7 INPUT CURRENT (mA) 2.502 2.500 +125oC +25oC 0.6 o –40 C 0.5 2.499 2.498 –40 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (oC) 02747-F-006 VOUT (V) 35 0.4 02747-F-005 4.996 5 20 Figure 6. ADR03 Typical Output Voltage vs. Temperature 0.4 8 12 16 20 24 28 32 36 INPUT VOLTAGE (V) Figure 9. ADR02 Supply Current vs. Input Voltage Rev. F | Page 10 of 20 40 02747-F-009 VOUT (V) 0.8 –10 5 Figure 7. ADR06 Typical Output Voltage vs. Temperature 5.008 –25 –10 TEMPERATURE (oC) Figure 4. ADR01 Typical Output Voltage vs. Temperature 4.992 –40 –25 02747-F-008 –25 02747-F-004 9.985 –40 02747-F-007 9.990 ADR01/ADR02/ADR03/ADR06 50 0.85 IL = 0mA TO 5mA 0.80 LOAD REGULATION (ppm/mA) 40 SUPPLY CURRENT (mA) 0.75 0.70 o +125 C 0.65 o +25 C 0.60 0.55 –40oC 0.50 30 VIN = 40V 20 10 0 VIN = 8V –10 5 10 20 15 30 25 40 35 INPUT VOLTAGE (V) –20 02747-F-010 0.40 –40 0 85 25 125 TEMPERATURE (oC) 02747-F-013 0.45 Figure 13. ADR02 Load Regulation vs. Temperature Figure 10. ADR03 Supply Current vs. Input Voltage 0.80 60 IL = 0mA TO 10mA 0.75 LOAD REGULATION (ppm/mA) 0.70 o +125 C 0.65 +25oC 0.60 o –40 C 0.55 0.50 VIN = 7V 40 VIN = 40V 30 20 5 10 15 20 30 25 35 40 INPUT VOLTAGE (V) 0 –40 –25 02747-F-011 0.40 –10 5 20 35 95 110 125 Figure 14. ADR03 Load Regulation vs. Temperature 40 40 IL = 0mA TO 10mA IL = 0mA TO 10mA 30 30 LOAD REGULATION (ppm/mA) VIN = 40V 20 10 0 VIN = 14V –10 –20 VIN = 40V 20 10 0 VIN = 7V –10 –20 –30 0 25 50 85 o TEMPERATURE ( C) 125 02747-F-012 LOAD REGULATION (ppm/mA) 80 o Figure 11. ADR06 Supply Current vs. Input Voltage –40 –40 65 50 TEMPERATURE ( C) 02747-F-014 10 0.45 –30 –40 –25 –10 5 20 35 50 65 80 95 110 TEMPERATURE (oC) Figure 15. ADR06 Load Regulation vs. Temperature Figure 12. ADR01 Load Regulation vs. Temperature Rev. F | Page 11 of 20 125 02747-F-015 SUPPLY CURRENT (mA) 50 ADR01/ADR02/ADR03/ADR06 2 10 VIN = 14V TO 40V VIN = 6V TO 40V 8 LINE REGULATION (ppm/V) –2 –4 –6 –8 4 2 0 –2 –25 –10 5 20 35 50 65 80 95 110 125 o TEMPERATURE ( C) –4 –40 02747-F-016 –10 –40 6 –25 –10 5 35 20 50 65 80 95 110 125 TEMPERATURE (oC) Figure 16. ADR01 Line Regulation vs. Temperature 02747-F-019 LINE REGULATION (ppm/V) 0 Figure 19. ADR06 Line Regulation vs. Temperature 8 5 0 –4 –8 –40 –25 –10 5 20 35 50 65 80 95 110 125 o TEMPERATURE ( C) 4 3 +125oC 2 o –40 C o 1 +25 C 0 0 2 4 6 8 10 LOAD CURRENT (mA) Figure 17. ADR02 Line Regulation vs. Temperature 02747-F-020 DIFFERENTIAL VOLTAGE ( V) 4 02747-F-017 LINE REGULATION (ppm/V) VIN = 8V TO 40V Figure 20. ADR01 Minimum Input-Output Voltage Differential vs. Load Current 8 4 DIFFERENTIAL VOLTAGE (V) 2 0 –2 4 +125oC –40oC 2 o –4 –40 –25 –10 5 20 35 50 65 80 95 110 o TEMPERATURE ( C) 125 0 0 2 4 6 8 LOAD CURRENT (mA) Figure 21. ADR02 Minimum Input-Output Voltage Differential vs. Load Current Figure 18. ADR03 Line Regulation vs. Temperature Rev. F | Page 12 of 20 10 02747-F-021 +25 C 02747-F-018 LINE REGULATION (ppm/mV) VIN = 5V TO 40V ADR01/ADR02/ADR03/ADR06 6 4 1µV/DIV DIFFERENTIAL VOLTAGE ( V) 5 +125oC 3 +25oC 2 o –40 C 0 2 4 6 8 10 LOAD CURRENT (mA) 02747-F-025 0 02747-F-022 1 TIME (1s/DIV) Figure 25. ADR02 Typical Noise Voltage 0.1 Hz to 10 Hz Figure 22. ADR03 Minimum Input-Output Voltage Differential vs. Load Current 4.5 3.5 +25oC +125oC 3.0 2.5 50µV/DIV DIFFERENTIAL VOLTAGE ( V) 4.0 –40oC 2.0 1.5 1.0 0 2 4 6 8 10 LOAD CURRENT (mA) TIME (1ms/DIV) 02747-F-023 0 02747-F-026 0.5 Figure 26. ADR02 Typical Noise Voltage 10 Hz to 10 KHz Figure 23. ADR06 Minimum Input-Output Voltage Differential vs. Load Current 0.70 o TA = 25 C 10V VOUT 5V/DIV 0.60 0.55 0.50 0 2 4 6 8 LOAD CURRENT (mA) 10 Figure 24. ADR01 Quiescent Current vs. Load Current TIME (2.00ms/DIV) Figure 27. ADR02 Line Transient Response Rev. F | Page 13 of 20 02747-F-027 NO LOAD CAPACITOR NO INPUT CAPACITOR 02747-F-024 QUIESCENT CURRENT (mA) 8V 0.65 ADR01/ADR02/ADR03/ADR06 CIN = 0.01µF NO LOAD CAPACITOR NO LOAD CAPACITOR VIN 5V/DIV LOAD OFF VIN 10V/DIV LOAD ON VOUT 100mV/DIV VOUT 5V/DIV TIME (1.00ms/DIV) 02747-F-031 02747-F-028 LOAD = 5mA TIME (4µs/DIV) Figure 31. ADR02 Turn-On Response Figure 28. ADR02 Load Transient Response CLOAD = 100nF VIN 5V/DIV CL = 0.01µF VIN 10V/DIV NO INPUT CAPACITOR LOAD OFF LOAD ON VOUT 100mV/DIV VOUT 5V/DIV 02747-F-032 TIME (1.00ms/DIV) 02747-F-029 LOAD = 5mA TIME (4µs/DIV) Figure 32. ADR02 Turn-Off Response Figure 29. ADR02 Load Transient Response VIN 10V/DIV VIN 10V/DIV CL = 0.01µF CIN = 0.01µF NO INPUT CAPACITOR NO LOAD CAPACITOR VOUT 5V/DIV Figure 30. ADR02 Turn-Off Response TIME (4µs/DIV) Figure 33. ADR02 Turn-On Response Rev. F | Page 14 of 20 02747-F-033 02747-F-030 TIME (4µs/DIV) VOUT 5V/DIV ADR01/ADR02/ADR03/ADR06 APPLICATIONS These devices are standard band gap references. The band gap cell contains two NPN transistors (Q18 and Q19) that differ in emitter area by 2×. The difference in their VBE produces a proportional-to-absolute temperature current (PTAT) in R14, and, when combined with the VBE of Q19, produces a band gap voltage, VBG, that is almost constant in temperature. With an internal op amp and the feedback network of R5 and R6, VO is set precisely at 10 V, 5 V, 2.5 V, and 3.0 V for the ADR01, ADR02, ADR06, and ADR03, respectively. Precision laser trimming of the resistors and other proprietary circuit techniques are used to further enhance the initial accuracy, temperature curvature, and drift performance of the ADR01/ADR02/ADR03/ADR06. VIN R2 R3 R4 Q23 Q2 Q1 Q7 Q8 Q9 Q3 D1 Q10 D2 Q4 U1 ADR01/ ADR02/ ADR03/ ADR06 C1 0.1µF R12 Q12 Q13 The ADR01/ADR02/ADR03/ADR06 trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than 10 V/5 V/2.5 V/3.0 V. For finer adjustment, a series resistor of 470 kΩ can be added. With the configuration shown in Figure 36, the ADR01 can be adjusted from 9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V to 5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and the ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of the output does not significantly affect the temperature performance of the device, provided the temperature coefficients of the resistors are relatively low. U1 R5 I1 VIN Q14 Q15 R27 TEMP R14 VBG 1X Q19 Q16 Q20 R41 VO VOUT TRIM R1 470kΩ pot 10kΩ R2 1kΩ R6 R24 R11 VIN Q17 R32 R17 ADR01/ ADR02/ ADR03/ ADR06 TEMP TRIM GND R20 R42 GND 02747-F-034 2X Q18 TEMP TRIM GND VO C2 0.1µF Figure 35. Basic Configuration C1 R13 VOUT Output Adjustment VO D3 VIN VIN 02747-F-036 R1 to the input and output pins of the device. An optional 1 µF to 10 µF bypass capacitor can also be applied at the VIN node to maintain the input under transient disturbance. 02747-F-035 The ADR01/ADR02/ADR03/ADR06 are high precision, low drift 10 V, 5 V, 2.5 V, and 3.0 V voltage references available in an ultracompact footprint. The SOIC-8 version of the devices is a drop-in replacement of the REF01/REF02/ REF03 sockets with improved cost and performance. Figure 36. Optional Trim Adjustment Temperature Monitoring As described previously, the ADR01/ADR02/ADR03/ADR06 provide a TEMP output (Pin 3) that varies linearly with temperature. This output can be used to monitor the temperature change in the system. The voltage at VTEMP is approximately 550 mV at 25°C, and the temperature coefficient is approximately 1.96 mV/°C (see Figure 37). A voltage change of 39.2 mV at the TEMP pin corresponds to a 20°C change in temperature. Figure 34. Simplified Schematic Diagram The PTAT voltage is made available at the TEMP pin of the ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C temperature coefficient, such that users can estimate the temperature change of the device by knowing the voltage change at the TEMP pin. APPLYING THE ADR01/ADR02/ADR03/ADR06 The devices can be used without any external components to achieve the specified performance. Because of the internal op amp amplifying the band gap cell to 10 V/5 V/2.5 V/3.0 V, power supply decoupling helps the transient response of the ADR01/ADR02/ADR03/ADR06. As a result, a 0.1 µF ceramic type decoupling capacitor should be applied as close as possible Rev. F | Page 15 of 20 ADR01/ADR02/ADR03/ADR06 LOW COST CURRENT SOURCE 0.80 Unlike most references, the ADR01/ADR02/ADR03/ADR06 employ an NPN Darlington in which the quiescent current remains constant with respect to the load current, as shown in Figure 24. As a result, a current source can be configured as shown in Figure 40 where ISET = (VOUT – VL)/RSET. IL is simply the sum of ISET and IQ. Although simple, IQ varies typically from 0.55 to 0.65 mA, limiting this circuit to general-purpose applications. 0.70 0.60 ∆VTEMP /∆T 1.96mV/ C o 0.55 0.50 0.45 VIN 25 0 –25 50 75 100 125 o TEMPERATURE ( C) IIN 02747-F-037 0.40 –50 ADR01/ ADR02/ ADR03/ ADR06 Figure 37. Voltage at TEMP Pin vs. Temperature The TEMP function is provided as a convenience rather than a precise feature. Because the voltage at the TEMP node is acquired from the band gap core, current pulling from this pin has a significant effect on VOUT. Care must be taken to buffer the TEMP output with a suitable low bias current op amp, such as the AD8601, AD820, or OP1177, all of which would result in less than a 100 µV change in ∆VOUT (see Figure 38). Without buffering, even tens of microamps drawn from the TEMP pin can cause VOUT to fall out of specification. VIN V+ VTEMP 1.9mV/ oC OP1177 VOUT VIN GND VL IQ 0.6mA RL Figure 40. Low Cost Current Source VO TEMP TRIM GND 02747-F-038 IL = Figure 38. Temperature Monitoring NEGATIVE REFERENCE Without using any matching resistors, a negative reference can be configured as shown in Figure 39. For the ADR01, the voltage difference between VOUT and GND is 10 V. Because VOUT is at virtual ground, U2 closes the loop by forcing the GND pin to be the negative reference node. U2 should be a precision op amp with a low offset voltage characteristic. (1) U1 ADR01/ ADR02/ ADR03/ ADR06 +12V VIN VOUT 0V TO (5V + VL) B AD5201 TEMP TRIM GND ADR01/ ADR02/ ADR03/ ADR06 5V TO 15V V REF × D R SET where D is the decimal equivalent of the digital potentiometer input code. U1 VIN IL = ISET + IQ A precision current source, on the other hand, can be implemented with the circuit shown in Figure 41. By adding a mechanical or digital potentiometer, this circuit becomes an adjustable current source. If a digital potentiometer is used, the load current is simply the voltage across terminals B to W of the digital potentiometer divided by RSET. V– U2 ISET = 10V/RSET RSET PRECISION CURRENT SOURCE WITH ADJUSTABLE OUTPUT U1 ADR01/ ADR02/ ADR03/ ADR06 15V VOUT W 100kΩ A +12V RSET 1kΩ U2 VOUT V+ TEMP TRIM GND OP1177 +15V –5V TO VL V– U2 V+ –VREF –12V VL RL 1kΩ IL OP1177 Figure 41. Programmable 0 to 5 mA Current Source –15V 02747-F-039 V– Figure 39. Negative Reference Rev. F | Page 16 of 20 02747-F-041 VTEMP (V) 0.65 02747-F-040 0.75 VIN = 15V SAMPLE SIZE = 5 ADR01/ADR02/ADR03/ADR06 To optimize the resolution of this circuit, dual-supply op amps should be used because the ground potential of ADR02 can swing from –5 V at zero scale to VL at full scale of the potentiometer setting. latter is true, oscillation may occur. For this reason, a capacitor, C1, in the range of 1 pF to 10 pF should be connected between VP and the output terminal of U4, to filter any oscillation. ZO = PROGRAMMABLE 4 TO 20 mA CURRENT TRANSMITTER Because of their precision, adequate current handling, and small footprint, the devices are suitable as the reference sources for many high performance converter circuits. One of these applications is the multichannel 16-bit 4 to 20 mA current transmitter in the industrial control market (see Figure 42). This circuit employs a Howland current pump at the output, which yields better efficiency, a lower component count, and a higher voltage compliance than the conventional design with op amps and MOSFETs. In this circuit, if the resistors are matched such that R1 = R1′, R2 = R2′, R3 = R3′, the load current is Vt R1′ = I t ⎛ R1′ R2 ⎞ − 1⎟ ⎜ ⎝ R1R2′ ⎠ (3) In this circuit, an ADR01 provides the stable 10.000 V reference for the AD5544 quad 16-bit DAC. The resolution of the adjustable current is 0.3 µA/step, and the total worst-case INL error is merely 4 LSB. Such error is equivalent to 1.2 µA or a 0.006% system error, which is well below most systems’ requirements. The result is shown in Figure 43 with measurement taken at 25°C and 70°C; total system error of 4 LSB at both 25°C and 70°C. 5 RL = 500Ω IL = 0mA TO 20mA 4 (R2 + R3) R1 VREF × D IL = × 2N R3′ (2) INL (LSB) 3 where D is similarly the decimal equivalent of the DAC input code and N is the number of bits of the DAC. 2 25oC o 70 C 1 According to Equation 2, R3′ can be used to set the sensitivity. R3′ can be made as small as necessary to achieve the current needed within U4 output current driving capability. On the other hand, other resistors can be kept high to conserve power. 0 0 8192 16384 24576 32768 40960 02747-F-043 –1 49152 57344 65536 0V TO –10V U1 15V VIN VOUT TEMP TRIM U2 VDD RF +15V IO 10V V REF AD5544 IO GND U3 CODE (Decimal) R2 15kΩ R1 150kΩ VX VP C1 –15V Figure 43. Result of Programmable 4 to 20 mA Current Transmitter R3 50Ω GND 10pF AD8512 U4 R2' 15kΩ U1 = ADR01/ADR02/ADR03/ADR06, REF01 U2 = AD5543/AD5544/AD5554 U3, U4 = AD8512 R1' 150kΩ VO R3' 50Ω VL VN LOAD 500Ω 4–20mA 02747-F-042 DIGITAL INPUT CODE 20%–100% FULL SCALE Precision Boosted Output Regulator A precision voltage output with boosted current capability can be realized with the circuit shown in Figure 44. In this circuit, U2 forces VO to be equal to VREF by regulating the turn-on of N1, thereby making the load current furnished by VIN. In this configuration, a 50 mA load is achievable at VIN of 15 V. Moderate heat is generated on the MOSFET, and higher current can be achieved with a replacement of a larger device. In addition, for a heavy capacitive load with a fast edging input signal, a buffer should be added at the output to enhance the transient response. N1 Figure 42. Programmable 4 to 20 mA Transmitter VIN In this circuit, the AD8512 is capable of delivering 20 mA of current, and the voltage compliance approaches 15 V. The Howland current pump yields a potentially infinite output impedance, which is highly desirable, but resistance matching is critical in this application. The output impedance can be determined using Equation 3. As can be seen by this equation, if the resistors are perfectly matched, ZO is infinite. On the other hand, if they are not matched, ZO is either positive or negative. If the Rev. F | Page 17 of 20 U1 ADR01/ ADR02/ ADR03/ ADR06 VIN VOUT TEMP TRIM GND 2N7002 RL 200Ω CL 1µF VO 15V V+ OP1177 V– U2 Figure 44. Precision Boosted Output Regulator 02747-F-044 5V ADR01/ADR02/ADR03/ADR06 OUTLINE DIMENSIONS 2.00 BSC 4 1.25 BSC 2.10 BSC PIN 1 0.65 BSC 1.00 0.90 0.70 1.10 MAX 0.22 0.08 0.30 0.15 0.10 MAX 0.46 0.36 0.26 SEATING PLANE 0.10 COPLANARITY COMPLIANT TO JEDEC STANDARDS MO-203AA Figure 45. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 3 PIN 1 0.95 BSC 1.90 BSC 0.90 0.87 0.84 1.00 MAX 0.10 MAX 0.50 0.30 SEATING PLANE 8° 4° 0.20 0.08 0.60 0.45 0.30 COMPLIANT TO JEDEC STANDARDS MO-193AB Figure 46. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 5 4.00 (0.1574) 3.80 (0.1497) 1 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 6.20 (0.2440) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) COPLANARITY 0.31 (0.0122) SEATING 0.10 PLANE 0.50 (0.0196) × 45° 0.25 (0.0099) 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 47. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. F | Page 18 of 20 ADR01/ADR02/ADR03/ADR06 ORDERING GUIDES ADR01 ORDERING GUIDE Model ADR01AR ADR01AR-REEL7 ADR01BR ADR01BR-REEL7 ADR01AUJ-REEL7 ADR01AUJ-R2 ADR01BUJ-REEL7 ADR01BUJ-R2 ADR01AKS-REEL7 ADR01AKS-R2 ADR01BKS-REEL7 ADR01BKS-R2 ADR01CRZ2 ADR01CRZ-REEL2 ARR01NBC 1 2 Output Voltage VO (V) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Initial Accuracy (mV) (%) 10 0.1 10 0.1 5 0.05 5 0.05 10 0.1 10 0.1 5 0.05 5 0.05 10 0.1 10 0.1 5 0.05 5 0.05 10 0.1 10 0.1 5 0.05 Temperature Coefficient (ppm/°C) 10 10 3 3 25 25 9 9 25 25 9 9 40 40 10 (Typ) Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Dice Package Option R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS-5 KS-5 KS-5 R-8 R-8 Top Mark1 ADR01 ADR01 ADR01 ADR01 R8A R8A R8B R8B R8A R8A R8B R8B ADR01 ADR01 Number of Parts per Reel/Tray 98 1,000 98 1,000 3,000 250 3,000 250 3,000 250 3,000 250 98 2,500 360 Temperature Range (°C) –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 First line shows part number ADR01; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part. ADR02 ORDERING GUIDE Model ADR02AR ADR02AR-REEL ADR02AR-REEL7 ADR02ARZ2 ADR02ARZ-REEL2 ADR02BR ADR02BR-REEL7 ADR02AUJ-REEL7 ADR02AUJ-R2 ADR02BUJ-REEL7 ADR02BUJ-R2 ADR02AKS-REEL7 ADR02AKS-R2 ADR02BKS-REEL7 ADR02BKS-R2 ADR02CRZ2 ADR02CRZ-REEL2 ARR02NBC 1 2 Output Voltage VO (V) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5.0 5.0 5 Initial Accuracy (mV) (%) 5 0.1 5 0.1 5 0.1 5 0.1 5 0.1 3 0.06 3 0.06 5 0.1 5 0.1 3 0.06 3 0.06 5 0.1 5 0.1 3 0.06 3 0.06 5 0.1 5 0.1 3 0.06 Temperature Coefficient (ppm/°C) 10 10 10 10 10 3 3 25 25 9 9 25 25 9 9 40 40 10 (Typ) Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Dice Package Option R-8 R-8 R-8 R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS-5 KS-5 KS-5 R-8 R-8 Top Mark1 ADR02 ADR02 ADR02 ADR02 ADR02 ADR02 ADR02 R9A R9A R9B R9B R9A R9A R9B R9B ADR02 ADR02 Number of Parts per Reel/Tray 98 1,000 1,000 98 2,500 98 1,000 3,000 250 3,000 250 3,000 250 3,000 250 98 2500 360 First line shows part number ADR02; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part. Rev. F | Page 19 of 20 Temperature Range (°C) –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 ADR01/ADR02/ADR03/ADR06 ADR03 ORDERING GUIDE Model ADR03AR ADR03AR-REEL7 ADR03BR ADR03BR-REEL7 ADR03AUJ-REEL7 ADR03AUJ-R2 ADR03BUJ-REEL7 ADR03BUJ-R2 ADR03AKS-REEL7 ADR03AKS-R2 ADR03BKS–REEL7 ADR03BKS–R2 ADR03BKSZ–REEL72 ADR03CRZ2 ADR03CRZ-REEL2 1 2 Output Voltage VO (V) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Initial Accuracy (mV) (%) 5 0.2 5 0.2 2.5 0.1 2.5 0.1 5 0.2 5 0.2 2.5 0.1 2.5 0.1 5 0.2 5 0.2 2.5 0.1 2.5 0.1 2.5 0.1 5 0.1 5 0.1 Temperature Coefficient (ppm/°C) 10 10 3 3 25 25 9 9 25 25 9 9 9 40 40 Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Package Option R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS–5 KS–5 KS–5 KS–5 R-8 R-8 Top Mark1 ADR03 ADR03 ADR03 ADR03 RFA RFA RFB RFB RFA RFA RFB RFB RFB ADR02 ADR02 Number of Parts per Reel/Tray 98 1,000 98 1,000 3,000 250 3,000 250 3,000 250 3,000 250 3,000 98 2500 Temperature Range (°C) –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 First line shows part number ADR03; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part. ADR06 ORDERING GUIDE Model ADR06AR ADR06AR-REEL7 ADR06BR ADR06BR-REEL7 ADR06AUJ-R2 ADR06AUJ-REEL7 ADR06BUJ–R2 ADR06BUJ-REEL7 ADR06AKS-R2 ADR06AKS-REEL7 ADR06BKS-R2 ADR06BKS–REEL7 ADR06CRZ2 ADR06CRZ-REEL2 1 2 Output Voltage VO (V) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Initial Accuracy (mV) (%) 6 0.2 3 0.2 6 01 3 0.1 6 0.2 6 0.2 3 0.1 3 0.1 6 0.2 6 0.2 3 0.1 3 0.1 6 0.2 6 0.2 Temperature Coefficient (ppm/°C) 10 10 3 3 25 25 9 9 25 25 9 9 40 40 Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Package Option R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS–5 KS-5 KS–5 R-8 R-8 Top Mark1 ADR06 ADR06 ADR06 ADR06 RWA RWA RWB RWB RWA RWA RWB RWB ADR06 ADR06 Number of Parts per Reel/Tray 98 1,000 98 1,000 250 3,000 250 3,000 250 3,000 250 3,000 98 2500 First line shows part number ADR06; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part. © 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C02747–0–7/04(F) Rev. F | Page 20 of 20 Temperature Range (°C) –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125 –40 to +125