800 MHz, 4:1 Analog Multiplexer ADV3221/ADV3222 CS A0 A1 D Q D LATCH D D Q Q LATCH LATCH D D Q LATCH ENABLE Q LATCH IN0 IN1 IN2 IN3 G = +1 (G = +2) OUT Q LATCH CK1 CK2 100kΩ 08652-001 Excellent ac performance −3 dB bandwidth 800 MHz (200 mV p-p) 750 MHz (2 V p-p) Slew rate: 2400 V/μs Low power: 75 mW, VS = ±5 V Excellent video performance 100 MHz, 0.1 dB gain flatness 0.02% differential gain error/0.02° differential phase error (RL = 150 Ω) ADV3221 is a pin-for-pin upgrade to the HA4344 Gain = +1 (ADV3221) or gain = +2 (ADV3222) Low all hostile crosstalk of −85 dB @ 5 MHz, and −58 dB @ 100 MHz Latched control lines for synchronous switching High impedance output disable allows connection of multiple devices without loading the output bus 16-lead SOIC FUNCTIONAL BLOCK DIAGRAM DECODE FEATURES 100kΩ Figure 1. APPLICATIONS Routing of high speed signals including Video (NTSC, PAL, S, SECAM, YUV, RGB) Compressed video (MPEG, wavelet) 3-level digital video (HDB3) Data communications Telecommunications GENERAL DESCRIPTION The ADV3221 and ADV3222 are high speed, high slew rate, buffered 4:1 analog multiplexers. They offer a −3 dB signal bandwidth greater than 800 MHz and channel switch times of less than 20 ns with 1% settling. With lower than −58 dB of crosstalk and −67 dB isolation (at 100 MHz), the ADV3221 and ADV3222 are useful in many high speed applications. The differential gain error of less than 0.02% and differential phase error of less than 0.02°, together with 0.1 dB gain flatness out to 100 MHz while driving a 75 Ω back terminated load, make the ADV3221 and ADV3222 ideal for all types of signal switching. to be connected together for cascading stages without the off channels loading the output bus. The ADV3221 has a gain of +1, and the ADV3222 has a gain of +2; they both operate on ±5 V supplies while consuming less than 7.5 mA of idle current. The channel switching is performed via latched control lines, allowing synchronous updating in a multiple ADV3221/ADV3222 environment. The ADV3221/ADV3222 are offered in a 16-lead SOIC package and are available over the extended industrial temperature range of −40°C to +85°C. The ADV3221/ADV3222 include an output buffer that can be placed into a high impedance state. This allows multiple outputs Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved. ADV3221/ADV3222 TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................8 Applications ....................................................................................... 1 Circuit Diagrams ............................................................................ 16 Functional Block Diagram .............................................................. 1 Theory of Operation ...................................................................... 17 General Description ......................................................................... 1 Applications Information .............................................................. 18 Revision History ............................................................................... 2 CK1/CK2 Operation .................................................................. 18 Specifications..................................................................................... 3 Circuit Layout ............................................................................. 18 Timing and Logic Characteristics .............................................. 4 Termination................................................................................. 18 Absolute Maximum Ratings............................................................ 6 Capacitive Load .......................................................................... 18 Thermal Resistance ...................................................................... 6 Outline Dimensions ....................................................................... 19 Power Dissipation ......................................................................... 6 Ordering Guide .......................................................................... 19 ESD Caution .................................................................................. 6 Pin Configuration and Function Descriptions ............................. 7 REVISION HISTORY 3/10—Revision 0: Initial Version Rev. 0 | Page 2 of 20 ADV3221/ADV3222 SPECIFICATIONS VS = ±5 V, TA = 25°C, RL = 150 Ω, CL = 2 pF, ADV3221 at G = +1, ADV3222 at G = +2, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Gain Flatness Propagation Delay Settling Time Slew Rate NOISE/DISTORTION PERFORMANCE Differential Gain Error Differential Phase Error Crosstalk, All Hostile Off Isolation, Input to Output Input Second-Order Intercept (ADV3222 Only) Input Third-Order Intercept (ADV3222 Only) Output 1 dB Compression Point (ADV3222 Only) Input Voltage Noise DC PERFORMANCE Gain Error Gain Matching OUTPUT CHARACTERISTICS Output Impedance Output Disable Capacitance Output Leakage Current Output Voltage Range Short-Circuit Current INPUT CHARACTERISTICS Input Offset Voltage Input Offset Voltage Drift Input Voltage Range Input Capacitance Input Resistance Input Bias Current SWITCHING CHARACTERISTICS Enable On Time Switching Time, 2 V Step Switching Transient (Glitch) Test Conditions/Comments Min ADV3221 Typ Max Min ADV3222 Typ Max Unit 200 mV p-p 2 V p-p 0.1 dB, 200 mV p-p 0.1 dB, 2 V p-p 2 V p-p 1%, 2 V step 2 V step, peak 1000 750 100 100 700 5 2400 800 750 100 100 650 5 2700 MHz MHz MHz MHz ps ns V/μs NTSC or PAL NTSC or PAL f = 100 MHz f = 5 MHz f = 100 MHz, one channel f = 70 MHz, RL = 100 Ω f = 70 MHz, RL = 100 Ω f = 70 MHz, RL = 100 Ω 10 MHz to 100 MHz 0.01 0.01 −87 −100 −67 0.02 0.02 −58 −85 −72 54 17 18.5 17 % Degrees dB dB dB dBm dBm dBm nV/√Hz 16 No load RL = 150 Ω Channel-to-channel, no load DC, enabled Disabled Disabled Disabled No load RL = 150 Ω 1 0.75 1 50% A0 to 1% settling IN0 to IN1 switching Rev. 0 | Page 3 of 20 0.75 1 0.02 0.04 1 ±2.9 ±2.8 Worst case (all configurations) Any switch configuration Output enabled Output enabled 1 1 Ω MΩ pF μA V V mA 1 2.8 2 ±3 ±3 50 ±5 ±10 ±3 1.8 10 5 15 20 28 ±2.9 ±2.75 ±21 1 12 3 2 ±3 ±3 50 ±5 ±10 ±1.5 1.8 10 6 15 20 55 % % % ±21 12 mV μV/°C V pF MΩ μA ns ns mV p-p ADV3221/ADV3222 Parameter POWER SUPPLIES Supply Current Test Conditions/Comments Supply Voltage Range Power Supply Rejection (PSR) Min ADV3221 Typ Max ADV3222 Typ Max Unit V+, output enabled, no load V+, output disabled (CS high) 7 1.6 8 2.0 7.5 1.8 9 2.2 mA mA V−, output enabled, no load V−, output disabled (CS high) 7 1.6 8 2.0 7.5 1.8 9 2.2 mA mA ±5.5 V dB dB +85 °C °C/W ±4.5 f = 100 kHz f = 1 MHz TEMPERATURE Operating Temperature Range Junction-to-Ambient Thermal Impedance (θJA) Min ±5.5 ±4.5 −70 −60 −65 −55 Still air Operating (still air) −40 +85 −40 Symbol t1 Min 20 CK1 Pulse Width t2 40 ns CK1 to CK2 Pulse Separation t3 40 ns CK2 Pulse Width t4 40 ns A0, A1, CS Hold Time t5 20 ns 81 81 TIMING AND LOGIC CHARACTERISTICS Table 2. Parameter A0, A1, CS Setup Time Typ Max Unit ns Table 3. Logic Levels VIH A0, A1, CK1, CK2, CS VIL A0, A1, CK1, CK2, CS IIH A0, A1, CS IIL A0, A1, CS IIH IIL CK1, CK2 CK1, CK2 +2.0 V min +0.8 V max ±2 μA max ±2 μA max +60 μA max +10 μA max Rev. 0 | Page 4 of 20 ADV3221/ADV3222 Timing and Programming Diagrams t1 t2 1 t3 CK1 0 t4 1 CK2 0 t5 08652-002 1 A0, A1, CS 0 Figure 2. Timing Diagram CK1 CK2 A0 A1 OUTPUT XX IN0 IN1 Figure 3. Programming Example Rev. 0 | Page 5 of 20 HIGH-Z 08652-003 CS ADV3221/ADV3222 ABSOLUTE MAXIMUM RATINGS POWER DISSIPATION Table 4. Rating 12 V V− to V+ 0 V to V+ (V+ − 1 V) to (V− + 1 V) Momentary 50 mA −65°C to +150°C −40°C to +85°C 300°C 150°C THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5. Thermal Resistance Package Type 16-Lead Narrow-Body SOIC θJA 81 θJC 43 Unit °C/W Packaged in a 16-lead narrow-body SOIC, the ADV3221 and ADV3222 junction-to-ambient thermal impedance (θJA) is 81°C/W. For long-term reliability, the maximum allowed junction temperature of the die, TJ, should not exceed 125°C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in stresses exerted on the die by the package. Figure 4 shows the range of the allowed internal die power dissipations that meet these conditions over the −40°C to +85°C ambient temperature range. When using Figure 4, do not include the external load power in the maximum power calculation, but do include the load current through the die output transistors. 1.50 MAXIMUM POWER (W) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The ADV3221/ADV3222 are operated with ±5 V supplies and can drive loads down to 150 Ω, resulting in a wide range of possible power dissipations. For this reason, extra care must be taken to adjust the operating conditions based on ambient temperature. TJ = 125°C 1.25 1.00 0.75 0.50 15 25 35 45 55 65 AMBIENT TEMPERATURE (°C) 75 85 08652-004 Parameter Supply Voltage (V+ − V−) Analog Input Voltage Digital Input Voltage Output Voltage (Disabled Output) Output Short-Circuit Duration Output Short-Circuit Current Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) Junction Temperature Figure 4. Maximum Die Power Dissipation vs. Ambient Temperature ESD CAUTION Rev. 0 | Page 6 of 20 ADV3221/ADV3222 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS IN0 1 16 V+ GND 2 15 A0 14 A1 IN1 3 CS TOP VIEW IN2 5 (Not to Scale) 12 OUT 11 CK2 GND 6 13 IN3 7 10 CK1 GND 8 9 V– 08652-005 GND 4 ADV3221/ ADV3222 Figure 5. Pin Configuration Table 6. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 Mnemonic IN0 GND IN1 GND IN2 GND IN3 GND V− CK1 Description Analog Input Ground Analog Input Ground Analog Input Ground Analog Input Ground Negative Power Supply First Rank Clock 11 CK2 Second Rank Clock 12 13 OUT CS Analog Output Chip Select (Output Enable) 14 15 16 A1 A0 V+ Select Address Most Significant Bit Select Address Least Significant Bit Positive Power Supply Table 7. Truth Table CS 0 0 0 0 1 1 A1 0 0 1 1 X1 A0 0 1 0 1 X1 CK1 CK2 0 0 0 0 0 0 0 0 0 0 X is don’t care. Rev. 0 | Page 7 of 20 Output IN0 IN1 IN2 IN3 High-Z ADV3221/ADV3222 0pF 2pF 4.7pF 10pF 1 10 100 1k 10k FREQUENCY (MHz) 10 100 1k 10k FREQUENCY (MHz) Figure 7. ADV3221 Large Signal Response vs. Capacitive Load, 2 V p-p 0.2 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1k 10k 0pF 2pF 4.7pF 10pF 1 10 100 1k 10k FREQUENCY (MHz) Figure 10. ADV3222 Large Signal Response vs. Capacitive Load, 2 V p-p 0.2 0pF 2pF 4.7pF 10pF 0pF 2pF 4.7pF 10pF 0.1 VOUT (V) 0.1 0 –0.1 0 –0.1 0 5 10 TIME (ns) 15 20 –0.2 08652-014 –0.2 0 5 10 TIME (ns) Figure 8. ADV3221 Small Signal Pulse Response vs. Capacitive Load, 200 mV p-p 15 20 08652-017 VOUT (V) 100 Figure 9. ADV3222 Small Signal Response vs. Capacitive Load, 200 mV p-p 0pF 2pF 4.7pF 10pF 1 10 FREQUENCY (MHz) GAIN (dB) 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 0pF 2pF 4.7pF 10pF 1 08652-013 GAIN (dB) Figure 6. ADV3221 Small Signal Response vs. Capacitive Load, 200 mV p-p –5 –6 –7 –8 –9 –10 –11 –12 08652-016 –5 –6 –7 –8 –9 –10 –11 –12 4 3 2 1 0 –1 –2 –3 –4 08652-015 GAIN (dB) 4 3 2 1 0 –1 –2 –3 –4 08652-012 GAIN (dB) TYPICAL PERFORMANCE CHARACTERISTICS Figure 11. ADV3222 Small Signal Pulse Response vs. Capacitive Load, 200 mV p-p Rev. 0 | Page 8 of 20 ADV3221/ADV3222 2 2 0pF 2pF 4.7pF 10pF 1 VOUT (V) 0 0 –1 –1 0 5 10 15 20 TIME (ns) –2 08652-018 –2 0 1.5 2000 1.0 10 15 20 TIME (ns) Figure 12. ADV3221 Large Signal Pulse Response vs. Capacitive Load, 2 V p-p 3000 5 08652-021 VOUT (V) 1 0pF 2pF 4.7pF 10pF Figure 15. ADV3222 Large Signal Pulse Response vs. Capacitive Load, 2 V p-p 1.5 4000 3000 1.0 0.5 dv/dt 0 0 –1000 –0.5 0.5 1000 dv/dt 0 0 VOUT (V) SLEW RATE (V/µs) 1000 VOUT (V) SLEW RATE (V/µs) 2000 –1000 –0.5 –2000 VOUT –2000 VOUT –1.0 –1.0 –3000 1 2 3 4 TIME (ns) 0 VOUT 2 3 4 Figure 16. ADV3222 Large Signal Rising Slew Rate with 3 pF Load, 2 V p-p 1.5 4000 1.5 2000 1 TIME (ns) Figure 13. ADV3221 Large Signal Rising Slew Rate with 3 pF Load, 2 V p-p 3000 –1.5 –4000 08652-019 –1.5 0 08652-022 –3000 3000 1.0 1.0 VOUT dv/dt 0 0 –1000 –0.5 0.5 1000 dv/dt 0 0 VOUT (V) 0.5 SLEW RATE (V/µs) 1000 VOUT (V) SLEW RATE (V/µs) 2000 –1000 –0.5 –2000 –2000 –1.0 –1.0 –1.5 0 1 2 TIME (ns) 3 4 Figure 14. ADV3221 Large Signal Falling Slew Rate with 3 pF Load, 2 V p-p –1.5 –4000 0 1 2 3 4 TIME (ns) Figure 17. ADV3222 Large Signal Falling Slew Rate with 3 pF Load, 2 V p-p Rev. 0 | Page 9 of 20 08652-023 –3000 08652-020 –3000 ADV3221/ADV3222 1.5 1.5 2.1 VOUT FALLING EDGE 1.0 1.9 1.0 2.1 VOUT FALLING EDGE 1.9 1.7 1.7 1.3 A0 VOUT (V) 1.5 A0 0 –0.5 1.5 0 1.3 A0 (V) 0.5 A0 (V) –0.5 1.1 1.1 VOUT RISING EDGE –1.0 –1.0 0.9 0.7 0 10 20 30 TIME (ns) 0.9 –1.5 08652-024 –1.5 VOUT RISING EDGE 0.7 0 10 20 08652-027 VOUT (V) 0.5 30 TIME (ns) Figure 18. ADV3221 Switching Time Figure 21. ADV3222 Switching Time 100 100 6 80 6 80 5 5 OUTPUT 60 60 4 40 4 40 0 2 –20 –40 20 3 0 2 –20 –40 1 1 –60 0 CS –1 10 20 30 40 50 –100 TIME (ns) –1 0 1.9 2 50 2.1 1.9 2 CS 1.7 INPUT +1V VOUT (V) 1.3 CS (V) 1.5 0 INPUT –1V 1.7 INPUT +0.5V 1 1.5 0 1.3 INPUT –0.5V –1 1.1 –2 1.1 –2 0.9 –3 0.7 0 10 20 30 TIME (ns) 40 08652-026 VOUT (V) 40 3 2.1 –1 30 Figure 22. ADV3222 Enable Glitch 3 CS 20 TIME (ns) Figure 19. ADV3221 Enable Glitch 1 10 CS (V) 0 08652-025 –100 0 CS –80 Figure 20. ADV3221 Enable On Timing 0.9 –3 0.7 0 10 20 30 TIME (ns) Figure 23. ADV3222 Enable On Timing Rev. 0 | Page 10 of 20 40 08652-029 –80 08652-028 –60 CS (V) 3 VOUT (mV) 20 CS (V) VOUT (mV) OUTPUT ADV3221/ADV3222 1.5 1.9 1.0 2.1 1.5 2.1 1.9 1.0 INPUT +1V INPUT +0.5V 1.7 1.7 VOUT (V) 1.3 CS (V) 1.3 –0.5 1.1 INPUT –1V –1.0 –1.0 0.9 0.7 0 10 20 30 40 TIME (ns) 0.9 0.7 –1.5 08652-030 –1.5 1.1 INPUT –0.5V 0 10 20 30 40 TIME (ns) Figure 24. ADV3221 Disable Timing Figure 27. ADV3222 Disable Timing 100 6 100 6 80 5 A0 60 4 3 OUTPUT 0 2 –20 –40 VOUT (mV) 20 4 40 A0 (V) 40 5 A0 60 20 3 OUTPUT 0 2 –20 –40 1 A0 (V) 80 1 –60 –60 0 0 –80 –1 0 10 20 30 40 50 TIME (ns) –1 –100 08652-031 –100 0 10 30 20 40 08652-034 –80 50 TIME (ns) Figure 25. ADV3221 Switching Glitch Rising Edge Figure 28. ADV3222 Switching Glitch Rising Edge 100 6 100 6 80 80 5 5 60 4 3 0 OUTPUT 2 –20 –40 VOUT (mV) 20 4 40 A0 (V) 40 20 3 0 OUTPUT 2 –20 –40 1 A0 (V) 60 1 –60 –60 0 A0 –80 –100 –1 0 10 20 30 40 TIME (ns) 50 0 A0 –80 08652-032 VOUT (mV) 08652-033 –0.5 VOUT (mV) 1.5 CS 0 –1 –100 0 10 20 30 40 TIME (ns) Figure 29. ADV3222 Switching Glitch Falling Edge Figure 26. ADV3221 Switching Glitch Falling Edge Rev. 0 | Page 11 of 20 50 08652-035 VOUT (V) 1.5 CS 0 CS (V) 0.5 0.5 ADV3221/ADV3222 1.25 5 1.25 5 OUTPUT 4 0.75 3 2 0.50 2 ERROR 0 0 –0.25 ERROR (%) 0.25 1 1.00 0.75 INPUT 0.50 0.25 1 ERROR 0 0 –1 –0.25 –2 –0.50 –2 –0.50 –3 –0.75 –3 –0.75 –4 –1.00 –4 –1.00 –5 –1.25 –5 –1 OUTPUT (V) 1.00 3 OUTPUT (V) 4 3 4 5 6 7 8 9 10 TIME (ns) –1.25 0 1 0 0 –10 –10 –20 –20 PSR (dB) –30 PSR (V–) –40 PSR (V+) –50 –80 10k FREQUENCY (MHz) –90 0.1 1 10 100 1k 10k 10M 100M Figure 34. ADV3222 PSR 200 180 180 160 160 140 140 NOISE (nV/ Hz) 200 120 100 80 120 100 80 60 40 40 20 20 10M FREQUENCY (Hz) 100M 08652-038 60 1M 10 FREQUENCY (MHz) Figure 31. ADV3221 PSR 100k 9 PSR (V+) –80 10k 8 –50 –70 0 1k 7 PSR (V–) –60 1k 6 –40 –70 100 5 –30 –60 08652-037 PSR (dB) 10 10 4 Figure 33. ADV3222 Settling Time, 2 V Step 10 1 3 TIME (ns) Figure 30. ADV3221 Settling Time, 2 V Step –90 0.1 2 08652-039 2 08652-040 1 0 1k 10k 100k 1M FREQUENCY (Hz) Figure 35. ADV3222 Output Noise vs. Frequency Figure 32. ADV3221 Output Noise vs. Frequency Rev. 0 | Page 12 of 20 08652-041 0 08652-036 OUTPUT NOISE (nV/ Hz) ERROR (%) INPUT ADV3221/ADV3222 –20 –20 –30 –30 –40 –50 CROSSTALK (dB) –60 –70 –80 –50 –60 –70 –80 –90 10 100 1k 10k FREQUENCY (MHz) –100 1 –30 –40 –40 –50 –50 CROSSTALK (dB) –30 –60 –70 –80 –70 –80 –90 –100 –100 –110 1k 10k FREQUENCY (MHz) –110 1 10 100 1k 10k FREQUENCY (MHz) Figure 37. ADV3221 Crosstalk, Adjacent Channel Figure 40. ADV3222 Crosstalk, Adjacent Channel 0 –10 –20 –20 –30 –30 FEEDTHROUGH (dB) 0 –10 –40 –50 –60 –70 –80 –40 –50 –60 –70 –80 –90 –90 –100 –100 1 10 100 1k FREQUENCY (MHz) 10k 08652-044 FEEDTHROUGH (dB) 10k –60 –90 08652-043 CROSSTALK (dB) –20 100 1k Figure 39. ADV3222 All Hostile Crosstalk –20 10 100 FREQUENCY (MHz) Figure 36. ADV3221 All Hostile Crosstalk 1 10 08652-046 1 08652-042 –110 08652-045 –90 –100 Figure 38. ADV3221 Off Isolation 1 10 100 1k FREQUENCY (MHz) Figure 41. ADV3222 Off Isolation Rev. 0 | Page 13 of 20 10k 08652-047 CROSSTALK (dB) –40 ADV3221/ADV3222 1M 0 100k –10 –15 INPUT S11 (dB) INPUT IMPEDANCE (Ω) –5 10k 1k –20 –25 –30 –35 100 –40 10 100 –50 0.1 08652-048 1 1k FREQUENCY (MHz) 1k 10k 100k 10k 1k 100 10 1 0.1 1 10 100 1k FREQUENCY (MHz) 100k 10k 1k 100 10 1 0.1 1 10 100 08652-052 DISABLED OUTPUT IMPEDANCE (Ω) 1M 08652-049 1k FREQUENCY (MHz) Figure 43. ADV3221 Disabled Output Impedance Figure 46. ADV3222 Disabled Output Impedance 10k ENABLED OUTPUT IMPEDANCE (Ω) 10k 1k 100 10 1 1 10 100 1k FREQUENCY (MHz) 10k 08652-050 0.1 Figure 44. ADV3221 Enabled Output Impedance 1k 100 10 1 0.1 0.01 0.1 1 10 100 1k FREQUENCY (MHz) Figure 47. ADV3222 Enabled Output Impedance Rev. 0 | Page 14 of 20 10k 08652-053 DISABLED OUTPUT IMPEDANCE (Ω) 100 Figure 45. ADV3221/ADV3222 S11 (Including Evaluation Board) 1M ENABLED OUTPUT IMPEDANCE (Ω) 10 FREQUENCY (MHz) Figure 42. ADV3221/ADV3222 Input Impedance 0.01 0.1 1 08652-051 –45 10 0.1 ADV3221/ADV3222 5 5 5 2.5 4 2.0 3 3 1.5 1 1 0 0 –1 –1 –2 –2 –3 –4 120 140 160 180 1 0.5 0 0 –1 –0.5 –2 –1.0 –3 –3 –1.5 –4 –4 –2.0 –5 200 –5 TIME (ns) 0 20 60 80 –2.5 100 Figure 51. ADV3222 Overdrive Recovery 0 70 SECOND-ORDER INTERCEPT (dBm) –10 HD3 10dBm HARMONIC DISTORTION (dBc) 40 TIME (ns) Figure 48. ADV3221 Overdrive Recovery –20 HD2 10dBm –30 –40 HD2 0dBm –50 HD3 0dBm –60 –70 –80 100 1k INPUT FREQUENCY (MHz) 60 50 40 30 20 10 0 10 08652-055 –90 10 1.0 OUTPUT 100 1k INPUT FREQUENCY (MHz) Figure 49. ADV3222 Harmonic Distortion, RL = 100 Ω, CL = 4 pF 08652-058 –5 100 2 08652-057 2 OUTPUT INPUT VOLTAGE (V) 2 OUTPUT VOLTAGE (V) 4 3 08652-054 OUTPUT VOLTAGE (V) 4 INPUT VOLTAGE (V) INPUT INPUT Figure 52. ADV3222 Input Second-Order Intercept, RL = 100 Ω, CL = 4 pF 30 20 P1dB GAIN COMPRESSION (dBm) THIRD-ORDER INTERCEPT (dBm) 18 25 20 15 10 5 16 14 12 10 8 6 4 INPUT FREQUENCY (MHz) 1k 0 10 08652-056 100 100 FREQUENCY (MHz) Figure 50. ADV3222 Input Third-Order Intercept, RL = 100 Ω, CL = 4 pF Rev. 0 | Page 15 of 20 Figure 53. ADV3222 Output P1dB, RL = 100 Ω, CL = 4 pF 1k 08652-059 2 0 10 ADV3221/ADV3222 CIRCUIT DIAGRAMS V+ OUT 2.8pF (ADV3221) 3.0pF (ADV3222) 08652-006 V– 08652-009 IN 1.8pF Figure 57. ADV3221/ADV3222 Disabled Output Figure 54. ADV3221/ADV3222 Analog Input V+ 08652-007 100kΩ (CK1, CK2 ONLY) V– GND 08652-010 1kΩ A0, A1, CS CK1, CK2 OUT Figure 58. ADV3221/ADV3222 Logic Input Figure 55. ADV3221 Enabled Analog Output V+ OUT GND 08652-008 1kΩ A0, A1, CK1, CK2, CS IN, OUT V– GND 08652-011 1kΩ Figure 59. ADV3221/ADV3222 ESD Schematic Figure 56. ADV3222 Enabled Analog Output Rev. 0 | Page 16 of 20 ADV3221/ADV3222 THEORY OF OPERATION The ADV3221/ADV3222 are dual-supply, high performance 4:1 analog multiplexers, optimized for switching between multiple video sources. High peak slew rates enable wide bandwidth operation for large input signals. Internal compensation provides for high phase margin, allowing low overshoot and fast settling for pulsed inputs. Low enabled and disabled power consumption make the ADV3221 and ADV3222 ideal for constructing larger arrays. The ADV3221/ADV3222 are organized as four input transconductance stages tied in parallel with a single output transimpedance stage followed by a unity-gain buffer. Internal voltage feedback sets the gain. The ADV3221 is configured as a gain of 1, while the ADV3222 uses a resistive feedback network and ground buffer to realize gain-of-two operation (see Figure 60). V+ IN0 ×1 OUT When not in use, the output can be placed in a low power, high impedance disabled mode via the CS logic input. This is useful when paralleling multiple ADV3221/ADV3222 devices in a system to create larger switching arrays. Switching between the inputs is controlled with the A0, A1, and CS logic inputs, which are latched through two stages of asynchronous latches. CK1 controls the first stage latch, and CK2 controls the second stage latch. The latch state is dependent on the level of the CK1 and CK2 signals, and it is not edge triggered. When using multiple ADV3221/ADV3222 devices in a switch design, this double buffered logic allows the use of the CK2 signal to simultaneously update all ADV3221/ADV3222 devices in a system. The A0 and A1 logic inputs select which input is connected to the output (A1 is the most significant bit, A0 is the least significant bit), and the CS logic input determines whether the output is enabled or disabled. V– V+ IN1 V– (2 MORE INPUTS) 1kΩ V+ V– 08652-060 1kΩ GND Figure 60. Conceptual Diagram of ADV3222 Rev. 0 | Page 17 of 20 ADV3221/ADV3222 APPLICATIONS INFORMATION The ADV3221 and ADV3222 are high speed multiplexers used to switch video or RF signals. The low output impedance of the ADV3221/ADV3222 allows the output environment to be optimized for use in 75 Ω or 50 Ω systems by choosing the appropriate series termination resistor. For composite video applications, the ADV3222 (gain of +2) is typically used to provide compensation for the loss of the output termination. CK1/CK2 OPERATION The ADV3221/ADV3222 provide a double latched architecture for the A0, A1 (channel selection) and CS (output enable) logic. This allows for simultaneous update of multiple devices in bank switching applications or large multiplexer systems consisting of multiple devices connected to common output busses. TERMINATION For a controlled impedance situation, termination resistors are required at the inputs and output of the device. The input termination should be a shunt resistor to ground with a value matching the characteristic impedance of the input trace. To reduce reflections, place the input termination resistor as close to the device input pin as possible. To minimize the input-toinput crosstalk, it is important to utilize a low inductance shield between input traces to isolate each input. Consideration of ground current paths must be taken to minimize loop currents in the shields to prevent them from providing a coupling medium for crosstalk. Holding CK1 and CK2 low places the ADV3221/ADV3222 in a transparent mode. In transparent mode, all logic changes to A0, A1, and CS immediately affects the input selection and output enable/disable. For proper matching, the output series termination resistor should be the same value as the characteristic impedance of the output trace and placed as close to the output of the device as possible. This placement reduces the high frequency effect of series parasitic inductance, which can affect gain flatness and −3 dB bandwidth. CIRCUIT LAYOUT CAPACITIVE LOAD Use of proper high speed design techniques is important to ensure optimum performance. Use a low inductance ground plane for power supply bypassing and to provide high quality return paths for the input and output signals. For best performance, it is recommended that power supplies be bypassed with 0.1 μF ceramic capacitors as close to the body of the device as possible. To provide stored energy for lower frequency, high current output driving, place 10 μF tantalum capacitors farther from the device. A high frequency output can have difficulties when driving a large capacitive load, usually resulting in peaking in the frequency domain or overshoot in the time domain. If these effects become too large, oscillation can result. The input and output signal paths should be stripline or microstrip controlled impedance. Video systems typically use 75 Ω characteristic impedance, whereas RF systems typically use 50 Ω. Various calculators are available to calculate the trace geometry required to produce the proper characteristic impedance. The response of the device under various capacitive loads is shown in Figure 6 through Figure 12, and in Figure 15. If a condition arises where excessive load capacitance is encountered and the overshoot is too great or the device oscillates, a small series resistor of a few tens of ohms can be used to improve the performance. Rev. 0 | Page 18 of 20 ADV3221/ADV3222 OUTLINE DIMENSIONS 10.00 (0.3937) 9.80 (0.3858) 4.00 (0.1575) 3.80 (0.1496) 9 16 1 8 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 0.50 (0.0197) 0.25 (0.0098) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 060606-A COMPLIANT TO JEDEC STANDARDS MS-012-AC CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 61. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body [R-16] Dimensions shown in millimeters and (inches) ORDERING GUIDE Model 1 ADV3221ARZ ADV3221ARZ-RL ADV3221ARZ-R7 ADV3222ARZ ADV3222ARZ-RL ADV3222ARZ-R7 ADV3221-EVALZ ADV3222-EVALZ 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 16-Lead SOIC_N 16-Lead SOIC_N, 13” Reel 16-Lead SOIC_N, 7” Reel 16-Lead SOIC_N 16-Lead SOIC_N, 13” Reel 16-Lead SOIC_N, 7” Reel Evaluation Board Evaluation Board Z = RoHS Compliant Part. Rev. 0 | Page 19 of 20 Package Option R-16 R-16 R-16 R-16 R-16 R-16 ADV3221/ADV3222 NOTES ©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08652-0-3/10(0) Rev. 0 | Page 20 of 20