AKM AK2574VB

ASAHI KASEI
[AK2574]
AK2574
156M Laser Diode Driver + APC for Burst Mode
Features
- 156M Laser Diode Driver for burst mode application
- BIAS current switching
- Programmable laser BIAS and modulation current
controlled by an on-chip temperature sensor
(APC_FF)
- Two current output 8 bit DACs,
I-DAC1: 85mA sink for modulation current
I-DAC2: 54mA sink for BIAS current
- Power failure alarm (TXACT), CLK failure alarm
(CLKALM)
- I2CTM compatible digital I/F
- Duty adjustment
- Single 3.3V +/- 0.2V operation
Applications
ITU-T G.983 ATM-PON ONU
Description
The AK2574 is a 1chip LDD (Laser Diode Driver) and
an APC (Auto Power Control) for burst mode
application such as ATM-PON. It contains not only
156M LDD for modulatin current but also BIAS
current switching, programmable BIAS and
modulation currents, duty adjustment, I2CTM interface,
an EEPROM for storing LD characteristics and user
information.
The AK2574 has an APC FF (Feed-forward) function
that supplies a programmed current in response to the
temperature.
All program and operational functions can be set
through the I2CTM compatible interface and stored in the
on-chip EEPROM.
Ordering Information
Product Number
AK2574VB
I2CTM is a trademark o f Philips Corporation.
PKG
BCC++ 48 (7mm * 7mm)
Block Diagram
LD
SEL
IMODN
DATAP
data
DATA
(LVPECL)
DATAN
CLKP
FF
AND
clk
CLK
(LVPECL)
CLKN
IMOD
IBIAS
data_ff
IBIASR1
DUTY_
ADJ
MOD
DRIVER
CLK_
DET
330Ω
IBIASC1
BIAS
DRIVER
0.1uF
Imod
IBIASC2
0.1uF
BRSTP
brst
BRST
(LVPECL)
BRSTN
Ibias
brst_ff
FF
SEL
CLKALM
Monitor
PD
DAC
(TXACT)
i_pd
txact_ref
PDIN
COMP
(TXACT)
comp_out
AND
SET/
RESET
TXACT
RPD
I-DAC1
TEMPMON
TEMPSENS
APC_FF
ADC
I-DAC2
OSC
BIAS
RB (12k)
EEPROM
BIAS_
GEN
Digital I/F (I 2CTM)
SCL
<MS0266-E-00>
SDA*
TXDIS
CONTROL
*: Open Drain
**: Pull-up
WP**
-1-
2003/12
ASAHI KASEI
[AK2574]
- Contents -
Ⅰ. Pin Description ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4
Ⅱ. Absolute Maximum Rating ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
Ⅲ. Recommend Operation Conditions・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
Ⅳ. Electrical Chracteristics ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
1. Power Consumption・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
2. EEPROM ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
3. Digital Input / Output DC Characteristics ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
4. I2CTM I/F AC Characteristics・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
5. LVPECL I/F ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8
6. BRST Timing (SEL=”L”, without CLK) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8
7. BRST Timing (SEL=”H”, with CLK)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9
8. I-DAC1 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9
9. I-DAC2 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
10. Duty Cycle Adjustment・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
11. DAC (TXACT)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
12. PDIN Capacitance・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
13. BIASGEN・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
14. Temperature Sensor ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
15. ADC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
16. Power On Reset ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
17. On-chip Oscillator ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
Ⅴ. Package Information・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12
Ⅵ. Circuit Description・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13
1. Parameter Notation ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
1.1 Parameter Definition ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
1.2 Operation Overview・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
2. LD Driver ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
2.1 Driver ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
2.2 LVPECL Input (DATAP/DATAN/CLKP/CLKN/BRSTP/BRSTN) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
2.2.1 LVPECL Input Characteristics ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
2.2.2 Input Timing (SEL=”H”, in the case of the latched DATA with CLK) ・・・・・15
2.2.3 Input Timing (SEL=”L”, in the case of direct DATA) ・・・・・・・・・・・・・・・・・・・・・・16
2.3 Duty Adjustment ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・16
2.4 APC ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
2.4.1 APC_FF・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
2.4.2 I-DAC ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
2.4.3 I-DAC2 Minimum Current Output・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
2.4.4 Temperature Sensor (TEMPSENS)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
3. Alarm ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
3.1 TXACT・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
3.2 CLKALM ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21
4. Shutdown ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21
5. I2CTM I/F・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
5.1 Memory Map ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
5.2 Read / Write Operation ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.1 Byte Write・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.2 Page Write・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
<MS0266-E-00>
-2-
2003/12
ASAHI KASEI
[AK2574]
5.2.3 Current Address Read・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.4 Random Read・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.5 Sequential Read・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.6 Data Change・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
5.2.7 Start / Stop Condition ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
5.3 EEPROM ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
5.4 Register ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26
6. Operation Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.1 Self-running Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.2 Adjustment Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.3 EEPROM Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.4 MODE Control ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.5 Operation Mode Protection ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.6 Operation Mode Status ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
7. Module Adjustment Example・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・28
Ⅶ. Circuit Example・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 29
<MS0266-E-00>
-3-
2003/12
ASAHI KASEI
[AK2574]
Ⅰ. Pin Description
The symbol of I/O column shows below.
Ai: Analog input, Ai_l: LVPECL input, Ao: Analog output
Di: Digital input, Di_pu: Digital input with pulled-up resistor, Do: Digital output,
Dio_od: Digital input / output (open drain)
PWR: Power or VSS
PIN# Symbol
1
SDA
2
3
NC
SCL
4
CLKALM
5
TXDIS
6
WP
7
CLKN
8
CLKP
9
SEL
10
11
12, 13
14
15
DATAN
DATAP
NC
TEST6
BRSTN
16
BRSTP
17
18
19
20
21
22
23
24
25, 26
TEST5
TEST4
TEST3
TEST2
VSSDR
VDDDR
VDDMD
VSSMD
NC
<MS0266-E-00>
Function
Serial data input / output (Open drain). Connect to VDD with 4.7k
to 10kΩ resistor.
No Connection. Connect to the VSS (recommended) or leave open.
Serial clock input. The data (SDA) is shifted in at the rising edge of
SCL and is shifted out at the falling edge of SCL.
Sets the alarm when detects 1’s or 0’s sequential clock input.
During CLKALM detection, the AK2574 goes into “TX disable”.
The detection time is 100ns (typ). The CLKALM is reset when 1
clock is detected. The polarity can be set with EEPROM.
When SEL=”L”, CLKALM is set “non-detected” polarity.
TX Disable.
The polarity can be set with EEPROM. When set “TX disable”,
IMOD and IBIAS are Hi-Z. Use 4.7kΩ or more for externally
pulled-up or pulled-down.
Write Protect. Internally pulled-up with 20kΩ (typ).
“H” sets device address 101000 and only user area of EEPROM
can be accessed as read-only. “L” sets device address as 1010 and
full of EEPROM can be accessed as read/write.
Negative LVPECL clock input. Input Impedance >= 10kΩ.
Connect to VSS when SEL = “L”.
Positive LVPECL clock input. Input Impedance >= 10kΩ.
Connect to VDD or leave open when SEL =“L”.
“H” for latched data with clock. DATA (DATAP – DATAN) and
BRST (BRSTP – BRSTN) are shifted into the falling edge of CLK.
(CLKP – CLKN).
“L” for direct data.
Negative LVPECL data input. Input Impedance >= 10kΩ
Positive LVPECL data input. InputImpedance >= 10kΩ
No Connection. Connect to the VSS or leave open.
Test input. Leave open for normal operation.
Negative LVPECL burst control input.
Input Impedance >= 10kΩ
Positive LVPECL burst control input.
Input Impedance >= 10kΩ
Test input. Connect to VSS for normal operation
Test input. Connect to VSS for normal operation
Test input. Connect to VSS for normal operation
Test input. Connect to VSS for normal operation
VSS for MOD driver circuit.
Power supply for MOD driver circuit.
Power supply for MOD current circuit.
VSS for MOD current drive circuit.
No Connection. Connect to the VSS (recommended) or leave open.
-4-
I/O
Dio_od
Remark
AC load
≤ 100pF
Di
Do not
leave open
AC load
≤ 30pF
Do
Di
Do not
leave open
Di_pu
Ai_l
Ai_l
Di
Do not
leave open
Ai_l
Ai_l
Do
Ai_l
Leave open
Ai_l
Di
Di
Di
Di
PWR
PWR
PWR
PWR
Connect to
VSS.
2003/12
ASAHI KASEI
[AK2574]
Pin Description (Continued)
PIN# Symbol
Function
27, 28 IMODN
Negative MOD current output.
Sinks MOD current when input data is “L”.
29, 30 IMOD
Positive MOD current output.
Sinks up to 85mA (typ) MOD current when input data is “H”.
MOD current is adjusted with I-DAC1.
IMOD voltage should be (VDD – 1.8V) or more.
31
VSSMD
VSS for MOD current drive circuit.
32
VSSBI
VSS for BIAS current drive circuit.
33, 34 IBIAS
BIAS current output. Sinks up to 54mA (typ) current.
BIAS current is adjusted with I-DAC2.
IBIAS voltage should be (VDD – 1.8V) or more.
35
VSSBI
VSS for BIAS current drive circuit.
36
IBIASC1
Connect to VSS with 0.1uF ± 50% (in the operating temerature
range) capacitor.
37
NC
No Connection. Connect to the VSS (recommended) or leave open.
38
IBIASC2
Connect to VSS with 0.1uF ± 50% (in the operating temerature
range) capacitor.
39
IBIASR1
Connect to IBIASSC1 with 330Ω± 1% resistor.
40
PDIN
Monitor PD voltage input. Monitor PD current is converted to the
voltage with resistor.
TEMPMON Temperature sensor monitor output.
41
42
BIAS
43
44
45
AVDD
AVSS
TXACT
46
TEST1
BIAS reference for internal circuit. Connect to VSS with 12kΩ±
1% resistor.
Power supply for analog circuit.
VSS for analog circuit.
TXACT is set when PDIN voltage beyond the reference voltage
(DACAPC output) and is kept during BRST=”H”. TXACT is reset
when BRST is transient “H” → “L”. The polarity can be set with
EEPROM. TXACT is valid within 2ms after power-up.
Test input. Connect to VSS for normal operation
47
48
DVSS
DVDD
VSS for digital circuit.
Power supply for digital circuit.
I/O
Ao
Remark
Ao
PWR
PWR
Ao
PWR
Ao
Ao
Ao
Ai
Ao
AC load
≤ 30pF
DC load
≥ 50kΩ
Ao
PWR
PWR
Do
Di
Connect to
VSS.
PWR
PWR
Center PAD of PKG should be connected to the VSS for good electrical performance and radiation of heat.
<MS0266-E-00>
-5-
2003/12
ASAHI KASEI
[AK2574]
Ⅱ. Absolute Maximum Rating
Item
Symbol
Min
Max
Unit
Supply Voltage
VDD
-0.3
6.0
V
GND
VSS
0.0
0.0
V
Input voltage
VIN
VSS - 0.3
VDD + 0.3
V
Input Current
IIN
-10
10
mA
Storage Temperature
TSTG
-55
130
°C
Stress beyond “Absolute Maximum Range” may cause permanent damage to the device.
Note 1: Except Data retention. Data retention is prescribed at section-Ⅳ 2. EEPROM.
Remarks
Reference Voltage
Except VDD
Except VDD
Note 1
Ⅲ. Recommended Operation Conditions
Item
Operating Ambient
Power Supply
Symbol
Ta1
VDD1
VDD2
VSS
Min
-40
3.1
3.0
0.0
Typ
Max
85
3.5
3.5
0.0
3.3
3.3
0.0
Unit
°C
V
V
V
Remarks
Except AVDD
AVDD
ReferenceVoltage
Ⅳ. Electrical Characteristics
1. Power Consumption
Item
Symbol
min
typ
max
Unit
Remarks
Supply Current 1 (All VDD)
IDD1
8.5
11
mA Note 1, 2, 4
Supply Current 2 (All VDD)
IDD2
36
41
mA Note 1, 3, 5
Supply Current 3 (AVDD only)
IDD3
10.1
12.5
mA Note 1, 3, 5
Note 1: without BIAS and modulation current.
Note 2: R_DAC1 = R_DAC2 = 00h, PDIN = 1V.
Note 3: R_DAC1 = R_DAC2 = FFh (Full code), PDIN = 1V.
Note 4: DATAP = BRSTP = “L”, DATAN = BRSTP = “H”, CLKP = “H”, CLKN = “L”.
Note 5: 155.52Mbps, PN7, BRSTP=”H”, BRSTN=”L”.
2. EEPROM
Item
Endurance
Data retention
Min
10000
10
max
-
Unit
Remarks
Write Cycle Note 1
Year
Junction Temperature = 85℃
Note 1: This parameter is characterized and is not 100% tested.
Important Notice: The AKM factory adjusted data are stored in advance at address location (Device Address = A6h,
Address = 60h) for the offset of the on-chip temperature sensor. If such excess temperature stress is to be applied to
the AK2574 which exceeds a guaranteed EEPROM data retention conditions (for 10 years at 85℃), it is important to
read the pre-determined value inadvance and to re-write the same data back into EEPROM after an exposure to the
excess temperature environment. Even if the exposure time is shorter than the retention time, any accelerated
temperature stress tests (such as baking) are performed, it is recommended to read the pre-set data first and to
re-write it after the test. Access to un-used address locations is not functionally guaranteed.
Refer to section-Ⅵ 5.3 for EEPROM map.
<MS0266-E-00>
-6-
2003/12
ASAHI KASEI
[AK2574]
3. Digital Input / Output DC Characteristics
Item
Symbol
min
Input High Level
VIH
2.0
Input Low Level
VIL
Output High Level
VOH
0.9VDD
Output Low Level
VOL
max
0.8
0.4
Unit
V
V
V
V
Input Leakage Current 1
IL1
10
uA
Input Leakage Current 2
IL2
350
uA
Note 1: except DATAP, DATAN, CLKP, CLKN, BRSTP and BRSTN pins.
I2CTM I/F AC Characteristics
Symbol
Parameter
min
tSCL
Clock Frequency, SCL
tLOW
Clock Pulse Width Low
4.7
tHigh
Clock Pulse Width High
4.0
tI
Noise Suppression Time
tAA
Clock Low to Data Out Valid
0.1
tBUF
Time Before a New Transmission
4.7
tHD.STA
Start Hold Time
4.7
tSU.STA
Start Setup Time
4.0
tHD.DAT Data Hold Time
0
tSU.DAT
Data Setup Time
200
tR
Input Rise Time
tF
Input Fall Time
tSU.STO
Stop Setup Time
4.7
tDH
SDATA Hold Time
100
tWR
Write Cycle Time
Note 1: This parameter is characterized and is not 100% tested.
Conditions
Note 1
IOH = -0.2mA
IOL = 1mA (SDA)
IOL = 0.2mA (Except SDA)
except WP pin
WP pin
4.
max
100
Unit
kHz
us
us
ns
us
us
us
us
us
ns
us
us
us
ns
ms
100
4.5
1.0
0.3
10
tF
Remark
Note 1
Note 1
tR
SCL
tSU.STA
tHD.STA
tHD.DAT
tSU.DAT
tSU.STO
SDA (IN)
tBUF
tAA
tDH
SDA (OUT)
<MS0266-E-00>
-7-
2003/12
ASAHI KASEI
[AK2574]
5. LVPECL I/F (CLKP, CLKN, DATAP, DATAN, BRSTP, BRSTN)
Item
Symbol
min
typ
Single-ended Input Voltage Swing Vamp
0.1
Common Voltage
Vcom 0.5*VDD
BIAS Voltage
Vbias
0.6*VDD
Input Impedance
Zin
10
max
1.2
VDD – 1.0
Unit
V
V
V
kΩ
Remarks
Vamp
Vcom
CLKP/CLKN
DATAP/DATAN
BRSTP/BRTSTN
BRST Timing (SEL=”L”, without CLK)
Item
Symbol
Conditions
min
typ
max
Unit
Remarks
12.8
ns
Delay Time of BRST “L” → “H” Tdr-bd
to First DATA
Delay Time of Last DATA
Tdf-di
Last Data=1
2
ns
to IBIAS OFF
R_DAC2=0Fh
IBIAS Overshoot
rib1
R_DAC2=0Fh
120
150
%
Note 1
R_DAC2=2Fh
108
%
R_DAC2=FFh
98
%
IBIAS Error before 2ns
rib2
R_DAC2=0Fh
+/- 15
%
Note 1
of First DATA
Tdf-bt R_DAC2=0Fh
16
ns
Delay Time of BRST “H”→”L”
to TXACT OFF
Delay Time of First DATA
Tdr-dt
Note 2
to TXACT Detection
Note 1: This parameter is characterized and is not 100% tested.
Note 2: Depends on TXACT detection level, Monitor PD current, etc. For more information, see “VI. 3.1 TXACT”.
6.
BRSTP - BRSTN
Tdr-bd
DATAP - DATAN
100% Nominal
IBIAS Current
rib1
rib2
2ns
Tdf-di
IMOD Current
Tdf-bt
Tdr-dt
TXACT
<MS0266-E-00>
-8-
2003/12
ASAHI KASEI
[AK2574]
7. BRST Timing (SEL=”H”, with CLK)
Item
Symbol
Conditions
min
typ
max
Unit
Remarks
DATA Set-up Time
Tsu
1.5
Note 1
DATA Hold Time
Th
1.0
BRST Set-up Time
Tsu-b
1.5
BRST Hold Time
Th-b
1.0
12.8
12.86
ns
Delay Time of BRST “L” → “H” Tdr-bd
to First DATA
Delay Time of Last DATA
Tdf-di
Last Data=1
2
ns
to IBIAS OFF
R_DAC2=0Fh
IBIAS Overshoot
rib1
R_DAC2=0Fh
120
150
%
Note 1
R_DAC2=2Fh
108
%
R_DAC2=FFh
98
%
IBIAS Error before 2ns
rib2
R_DAC2=0Fh
+/- 15
%
Note 1
of First DATA
16
ns
Tdf-bt R_DAC2=0Fh
Delay Time of BRST “H”→”L”
to TXACT OFF
Delay Time of First DATA
Tdr-dt
Note 2
to TXACT Detection
Note 1: This parameter is characterized and is not 100% tested.
Note 2: Depends on TXACT detection level, Monitor PD current, etc. For more information, see “VI. 3.1 TXACT”.
Th-b
BRSTP - BRSTN
Tsu-b
Tdr-bd
CLKP- CLKN
Tsu
Th
DATAP - DATAN
100% Nominal
IBIAS Current
rib1
rib2
2ns
Tdf-di
IMOD Current
Tdf-bt
Tdr-dt
TXACT
8. I-DAC1
Item
Condition
Resolution
Output Current with IMOD = VDD – 1.8V
Full Code
Current Supply with
IMOD = VDD
Shutdown
1 LSB Current Step
IMOD = VDD – 1.8V
DNL
IMOD = VDD – 1.8V
<MS0266-E-00>
min
76
typ
8
85
max
94
Unit Remark
bit
mA
100
uA
TXDIS = “1”
+1
mA
LSB
Code 20h to FFh
0.333
-1
-9-
2003/12
ASAHI KASEI
[AK2574]
9. I-DAC2
Item
Condition
Resolution
Maximum Output
IBIAS = VDD – 1.8V
Current
R_DAC2=FFh
Minimum Output
IBIAS = VDD
Current 1
1 ≤ R_DAC2 ≤ 5
Minimum Output
IBIAS = VDD
Current 2
R_DAC2 = 0
IBIAS = VDD
Current Supply with
Shutdown
1 LSB Current Step
IBIAS = VDD – 1.8V
DNL
IBIAS = VDD – 1.8V
10. Duty Cycle Adjustment
Item
Maximum Pulse Extended
1 LSB Pulse Extended Step
Pulse Extended Stability
Condition
min
48
typ
8
54
max
60
Unit Remark
bit
mA
1.06
1.2
mA
R_DAC2 = 1 to 5
mA
R_DAC2 = 0
100
uA
TXDIS = “1”
+1
mA
LSB
Code 20h to FFh
0
0.212
-1
min
0.5
typ
0.03
0.3ns Extended
Ta=-40 to 85℃,
VDD=3.1~3.5V
Note 1: This parameter is characterized and is not 100% tested.
11. DAC (TXACT)
Item
Resolution
Output Voltage
12. PDIN Capacitance
Item
PDIN Capacitance
13. BIASGEN
Item
BIAS pin Voltage
Condition
R_CMPTH[2:0]=011
R_CMPTH[2:0]=010
R_CMPTH[2:0]=001
R_CMPTH[2:0]=000
R_CMPTH[2:0]=100
R_CMPTH[2:0]=101
R_CMPTH[2:0]=110
R_CMPTH[2:0]=111
Condition
Condition
min
0.86
0.76
0.66
0.56
0.46
0.36
0.26
0.16
0.2
typ
3
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
max
Unit
ns
ns
ns
Remarks
Note 1
32 Steps
Note 1
Remarks
0.94
0.84
0.74
0.64
0.54
0.44
0.34
0.24
Unit
bit
V
V
V
V
V
V
V
V
min
typ
14
max
26
Unit
pF
Remarks
min
typ
1.2
max
Unit
V
Remark
Unit
mV / ℃
V
Remark
Note 1
14. Temperature Sensor
Item
Condition
min
Voltage Slope
TEMPMON Voltage
-12.14
Offset Adjustment Target Ta = 35℃
Note 1: This parameter is characterized and is not 100% tested.
<MS0266-E-00>
max
-10-
typ
-11.56
1.215
max
-10.98
2003/12
ASAHI KASEI
15. ADC
Item
Resolution
Maximum Input Voltage
Minimum Input Voltage
DNL
[AK2574]
Condition
min
2.09
typ
7
2.2
0
max
Unit
bit
V
V
LSB
2.31
-1/2
+1/2
Remark
16. Power On Reset
Item
Condition
min
typ
Detect Voltage
2.3
2.5
When detects the voltage drop, the AK2574 goes into shutdown condition.
max
2.7
Unit
V
Remark
17. On-chip Oscillator
Item
Clock Frequency
max
Unit
MHz
Remark
<MS0266-E-00>
Condition
min
typ
2.15
-11-
2003/12
ASAHI KASEI
[AK2574]
Ⅴ. Package Information
(1) Package Type: 48 pin BCC++
(2) Marking Information:
(a) PIN#1 Indication: ○
(b) Logo: AKM
(c) Marking Code: AK2574VB
(d) Date Code: YYWWXXX (7 digit)
AKM
AK2574VB
YYWWXXX
(3) Package Outline
6.2
0.5
7.0±0.1
0.09MIN
0.5±0.1
37
25
25
37
5.1
5.0
6.15
6.2
7.0±0.1
5.5±0.06
"A"
1
13
13
1
"B"
"C"
5.0
6.15
0.3±0.06
<MS0266-E-00>
-12-
C0.2
0.45±0.06
0.45±0.06
0.14
MIN
0.4±0.06
0.075±0.025
0.80
MAX
0.05
"C" Part
0.45±0.06
"B" Part
"A" Part
0.45±0.06
2003/12
ASAHI KASEI
[AK2574]
Ⅵ. Circuit Description
1. Parameter Notation
1.1 Parameter Definition
In the AK2574 Circuit Description, in order to distinguish various pre-set parameter sources from EEPROM,
Registers or Device pins, “Identifier - Main name” notation is used as shown in Table 1-1. For ease of operational
description, small letters sometimes expresses internal signals.
Table 1-1 Parameter Definitions
Identifier
Register
R_
EEPROM
E_
Ether or both Register
or /and EEPROM
RE_
PIN
P_
BLOCK
None
Internal Node
None
Main Name
REGISTER name
(All Capital)
EEPROM name
(All Capital))
REGISTER /
EEPROM name
(All Capital)
PIN name
(All Capital)
BLOCK name
(All Capital))
signal name
(small letter)
Remark
Indicates register
Example
R_DAC1
Indicates EEPROM
E_DAC1
Indicates either register RE_DAC1
or EEPROM
P_PDIN
I-DAC1
txact_ref
1.2 Operation Overview
The AK2574 has 3 primary functions; 125M / 156M modulation (MOD) current switching and BIAS current
switching part, APC (Automatic Power Control) part, and the Control part to control operation modes of the AK2574
operation.
There are 3 operation modes in the AK2574. Since each adjusting function is controlled through I2CTM Interface, it
realizes an automatic parameter adjustment.
(1) Self-running Mode
Self-running mode is ready for normal operation after all adjustments are completed. In this mode, temperature
detection, EEPROM access and feeding current are automatically performed using the on-chip oscillator. The
AK2574 works in this mode after power-on.
(2) Adjustment Mode
Adjustment mode is designed for training the LD characteristics. The AK2574 operates according to the register
settings set through the I2CTM I/F.
(3) EEPROM Mode
EEPROM mode is used for storing LD characteristics into EEPROM via I2CTM I/F.
<MS0266-E-00>
-13-
2003/12
ASAHI KASEI
[AK2574]
2. LD Driver
Fig 2-1 illustrates the block diagram of LD driver function.
The AK2574 LD driver contains a Driver part, an APC part, a LVPECL I/F part and a programmable duty
adjustment.
The driver part is composed of 156M MOD current switching controlled by DATA, and BIAS current switching
controlled by BRST.
APC part is composed of a programmable BIAS and MOD currents in response to the temperature (APC_FF), an
on-chip temperature sensor, and 2 current DACS (I-DAC1 and I-DAC2).
The LVPECL I/F part is composed of LVPECL I/F for data, clock and the burst control signal (BRST).
Fig 2-1 Driver Block Diagram
LD
SEL
IMODN
DATAP
DATAN
CLKP
CLKN
DATA
(LVPECL)
data
data_ff
FF
AND
clk
CLK
(LVPECL)
IBIAS
330Ω
IBIASC1
CLKALM
SEL
IMOD
IBIASR1
DUTY_
ADJ
IBIASC2
0.1uF
Driver
0.1uF
BRSTP
BRSTN
BRST
(LVPECL)
brst
brst_ff
FF
LVPECL I/F
APC
TEMP_SENS
R_DAC1
vtemp
ADC
R_TEMP
Imod
I-DAC1
EEPEOM
R_DAC2
Ibias
I-DAC2
2.1 Driver
The 156M MOD driver iscomposed of the differential current switches, and it sinks the MOD current from IMOD pin
when DATA (DATAP – DATAN) = 1 and sinks the current from IMODN when DATA = 0. DATA is set “0” when
BRST (BRSTP – BRSTN) = 0.
The BIAS driver is composed of the single-end current switch, and it sinks the BIAS current from IBIAS when
BRTS=1. To protect the last LD current at BRST 1→0, BIAS current turned off timing is delayed for a duty extended
when the last DATA=1.
2.2 LVPECL I/F (DATAP, DATAN, CLKP, CLKN, BRSTP, BRTSN)
The AK2574 supports direct data or latched data input (see Table 2-1). Connect CLKP = VDD or leave open and
CLKN = VSS when SEL = “L”.
Table 2-1 Data input
SEL (CMOS)
“L”
“H”
Direct data
Latched data with clock
2.2.1
LVPECL Input Characteristics
Table 2-2 shows LVPECL input characteristics. The AK2574 LVPECL input, which is biased to 0.6 * VDD with 10k
Ω or more impedance respectively.
<MS0266-E-00>
-14-
2003/12
ASAHI KASEI
[AK2574]
Table 2-2 LVPEL Interface characteristics
Item
Symbol
min
typ
Single-ended Input
|Vamp|
0.1
Voltage Swing
Common Voltage
Vcom 0.5*VDD
BIAS Voltage
Vbias
0.6*VDD
Input Impedance
Zin
10
Set-up Time
tsu
1.5
Hold Time
th
1.0
Note 1: This parameter is characterized and is not 100% tested.
max
1.2
Unit
V
Reference
Fig 2-2
VDD – 1.0
V
V
kΩ
ns
ns
Fig 2-2
Fig 2-3
Fig 2-3
Fig 2-4
Fig 2-4
Remarks
Note 1
Fig 2-2 DATA / CLK / BRST Input Level
Vamp
Vcom
CLKP/CLKN
DATAP/DATAN
BRSTP/BRTSTN
Fig 2-3 LVPECL input circuit
AK2574
Zin
130Ω
82Ω
DATAP
DATAN
CLKP
CLKN
BRSTP
BRSTN
Vbias
Fig 2-4 Set-up & Hold Time
DATA
(DATAP - DATAN)
tsu
th
CLK
(CLKP - CLKN)
2.2.2
Input Timing (SEL=”H”, in the case of the latched DATA with CLK)
BRST (BRSTP – BRSTN) and DATA (DATAP – DATAN) are shifted into AK2574 at the falling edge of CLK (CLKP
– CLKN). BIAS driver is turned on within 2 clock (12.8ns max) when BRST = 1. DATA input should be 2 clock (=
12.8ns min) behind BRST = 1. Fig 2-5 illustrates the timing example.
<MS0266-E-00>
-15-
2003/12
ASAHI KASEI
[AK2574]
Fig 2-5 Input timing example with CLK
BRSTP - BRSTN
CLKP- CLKN
DATAP - DATAN
Preamble + Delimiter
(24bit include Guard Time)
2 CLK (typ)
ATM Cell (53byte)
2.2.3
Input Timing (SEL=”L”, in the case of direct DATA)
AK2574 operates without CLK when SEL=”L”. DATA input should be 12.8ns or more behind BRST = 0 → 1
transition. To protect the last DATA, BRST 1→ 0 transition should be behind the last DATA input. Fig 2-6 illustrates
the timing example.
Fig 2-6 Input timing example without CLK
BRSTP - BRSTN
12.8ns (min)
Preamble + Delimiter
(24bit included Guard Time)
ATM Cell (53byte)
DATAP - DATAN
2.3 Duty Adjustment
AK2574 supplies a programmed duty adjustment in response to the temperature from an on-chip temperature
sensor (every 6℃, Duty data is stored in E_DUTY_TC, see Table 6-3 for more information). Write same data into
E_DUTY_TC for constant duty adjustment. Table 2-3 and 2-4 show the characteristics of duty adjustment function.
Table 2-3 Duty Adjustment characteristics
Item
Symbol min
Maximum Pulse Extended
Td
0.5
1 LSB Pulse Extended Step
Tstep
Pulse Extended Stability
Tsta
typ
max
0.03
0.2
Unit
ns
ns
ns
Remarks
Note 1
32 Steps
Ta=-40 to 85℃, VDDDR=3.1~3.5V
0.3ns Extended (Note 1)
Note 1: This parameter is characterized and is not 100% tested.
Table 2-4 Pulse Extended
R_DUTY
Pulse Extended (typ) [ns]
0
0
1
0.03
2
0.06
.
.
.
.
30
0.90
31
0.93
<MS0266-E-00>
Remark
-16-
2003/12
ASAHI KASEI
[AK2574]
2.4 APC
AK2574 provides the APC (Auto Power Control) function for the burst mode application. APC is composed of a
programmable BIAS and MOD currents in response to the temperature (APC_FF), an on-chip temperature sensor,
and 2 current DACs (I-DAC1 and I-DAC2).
2.4.1
APC_FF
Fig 2-7 illustrates the APC_FF functions. The operation is as follows:
(1) Analog to digital conversion of the voltage (7 bit) that reflects the temperature for every temperature detection
period (128ms typ).
(2) Read the 8 bit current data (address is indicated by the ADC data) from EEPROM and set this value to the
I-DACs.
If the current data over temperature is set to each EEPROM address, the compensated current is supplied to the LD
automatically.
To use this function, current data should be stored in EEPROM in advance. The temperature sensor covers –40℃ to
+115℃ and EEPROM is prepared with 1.5℃ steps.
Fig 2-7 APC FF function
TEMPSENS
ADC
(7bit)
R_TEMP
R_DAC1
EEPROM
MOD
Driver
I-DAC1
LD
MOD Current
Voltage
TEMPSENS
charatcteristics
Addressing with
R_TEMP
Address
Data
R_DAC2
Memory for
I-DAC1
Temperature
BIAS
Driver
I-DAC2
BIAS Current
Memory for
I-DAC2
2.4.2
I-DAC
AK2574 has two current output 8 bit DACs; I-DAC1 and I-DAC2.
I-DAC1 is 85mA @ Full code sink type current DAC for MOD current and I-DAC2 is 54mA @ Full code sink type
current DAC for BIAS current.
Table 2-5 shows I-DAC1 characteristics and Table 2-6 shows I-DAC2 characteristics.
Table 2-5 I-DAC1 Characteristics
Item
Condition
Resolution
Output Current with IMOD = VDD – 1.8V
Full Code
1 LSB Current Step
IMOD = VDD – 1.8V
DNL
IMOD = VDD – 1.8V
<MS0266-E-00>
min
76
typ
8
85
max
94
Unit Remark
bit
mA
+1
mA
LSB
0.333
-1
-17-
Code 20h to FFh
2003/12
ASAHI KASEI
[AK2574]
Table 2-6 I-DAC2 Characteristics
Item
Condition
Resolution
Maximum Output
IBIAS = VDD – 1.8V
R_DAC2=FFh
Current
Minimum Output
IBIAS = VDD
Current 1
1 ≤ R_DAC2 ≤ 5
Minimum Output
IBIAS = VDD
Current 2
R_DAC2 = 0
1 LSB Current Step
IBIAS = VDD – 1.8V
DNL
IBIAS = VDD – 1.8V
min
48
typ
8
54
max
60
Unit Remark
bit
mA
1.06
1.2
mA
0
See 2.4.3
mA
0.212
-1
+1
mA
LSB
Code 20h to FFh
2.4.3
I-DAC2 Minimum CurrentOutput
Table 2-7 shows the relationship between EEPROM setting (E_DAC2_TC) and I-DAC2 code (R_DAC2). The data to
be set to I-DAC2 (R_DAC2) is limited to 5 or more for BIAS current circuit stability. From 1 to 5 code is changed to 5
and is set to I-DAC2. In the case of 0 code, BIAS driver is turned off and IBIAS pin is Hi-Z.
Table 2-7 I-DAC2 Code Setting
E_DAC2_TC
R_DAC2 (I-DAC2 code)
0
BIAS Driver = OFF
5
1~4
5 or more
E_DAC2_TC
Remarks
IBIAS = Hi-Z
Code 1 to 4 is forced to be 5
No modification
2.4.4
Temperature Sensor (TEMPSENS)
Fig 2-8 shows an on-chip temperature sensor characteristics and Table 2-8 shows the relationship between detected
temperature and ADC code.
Fig 2-8 On-chip Temperature Sensor Characteristics
On-chip Temperature sensor characteristics
2.5
Output voltage V [V]
2.0
1.5
1.0
0.5
0.0
-40
-20
0
20
40
60
80
100
120
Temperature t [°C]
(1)
(2)
(3)
(4)
Slope: -11.56mV/℃ (typ)
V(t) = -0.01156 * t + 1.62 [V] (typ)
AD_code = int( V(t) / 2.2 * 127 +0.5) = int(-0.667*t + 94.0)
Temperature step @ AD_code=1LSB: 1.49℃/LSB
Note: Temperature sensor detects the junction temperature, not LD or ambient temperature.
<MS0266-E-00>
-18-
2003/12
ASAHI KASEI
Table 2-8 AD code and detected temperature [typ]
AD code
AD code
Temp [℃]
Temp [℃]
0
140.1
32
92.2
1
138.6
33
90.7
2
137.1
34
89.2
3
135.6
35
87.7
4
134.1
36
86.2
5
132.6
37
84.7
6
131.1
38
83.2
7
129.6
39
81.7
8
128.2
40
80.2
9
126.7
41
78.7
10
125.2
42
77.2
11
123.7
43
75.7
12
122.2
44
74.2
13
120.7
45
72.7
14
119.2
46
71.2
15
117.7
47
69.7
16
116.2
48
68.2
17
114.7
49
66.7
18
113.2
50
65.2
19
111.7
51
63.7
20
110.2
52
62.2
21
108.7
53
60.7
22
107.2
54
59.2
23
105.7
55
57.7
24
104.2
56
56.2
25
102.7
57
54.7
26
101.2
58
53.2
27
99.7
59
51.7
28
98.2
60
50.2
29
96.7
61
48.7
30
95.2
62
47.2
31
93.7
63
45.7
<MS0266-E-00>
[AK2574]
AD code
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
-19-
Temp [℃]
44.2
42.7
41.2
39.7
38.2
36.7
35.2
33.7
32.2
30.7
29.2
27.7
26.3
24.8
23.3
21.8
20.3
18.8
17.3
15.8
14.3
12.8
11.3
9.8
8.3
6.8
5.3
3.8
2.3
0.8
-0.7
-2.2
AD code
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Temp [℃]
-3.7
-5.2
-6.7
-8.2
-9.7
-11.2
-12.7
-14.2
-15.7
-17.2
-18.7
-20.2
-21.7
-23.2
-24.7
-26.2
-27.7
-29.2
-30.7
-32.2
-33.7
-35.2
-36.7
-38.2
-39.7
-41.2
-42.7
-44.2
-45.7
-47.2
-48.7
-50.2
2003/12
ASAHI KASEI
[AK2574]
3. Alarm
AK2574 has 2 alarm functions as shown in Table 3-1.
Table 3-1 Alarm function
ALM
Detection condition
TXACT
When the PDIN voltage (monitor PD current) is
beyond the reference voltage (txact_ref). TXACT is
kept once TXACT detection until BRST=”L”.
CLKALM When the detected 0s or 1s sequential CLK input
(100ns typical). When detected CLKALM,
AK2574 goes into “Shutdwon”.
Release condition
BRST=”L”
Detected Time
Depens on the condition.
See “3.1 TXACT” for more
information
Polarity of CLK is 100ns (typ)
changed
200ns (max)
3.1 TXACT
Fig 3-1illustrates TXACT block diagram. TXACT is detected when the PDIN voltage is beyond the reference voltage
(txact_ref), and TXACT is held during BRST = “H”. The txact_ref is set with RE_DAC_TXACT. TXACT detection
time depends on the Monitor PD current (i_pd) and capacitance (CMPD), external resistor (RPD), AK2574 PDIN
capactance (CPDIN) and txact_ref voltage (see Fig 3-2 for the reference).
Table 3-2 shows the PDIN capacitance (CPDIN) and Table 3-3 shouws the relationship between txact_ref and
RE_DAC_TXACT. The polarity of TXACT can be set by RE_TXACT_POL (0: “H” at detection, 1:“L” at detection).
The TXACT detection time (t_act) is estimated under the 50% mark data input and average monitor current as
follows:
t _ act = − RPD * (CMPD + CPDIN ) * LN (1 −
txact _ ref
)
RPD * i _ pd / 2
Note: TXACT detection time varies with input data pattern.
Fig 3-1 TXACT block diagram
Monitor
PD
i_pd
BRST
PDIN
CPDIN
RPD
DAC
(TXACT)
COMP
comp_out
SET/
RESET
AND
TXACT
txact_ref
Fig 3-2 Reference figures for TXACT detection time
i_pd
i_pd @ DATA=1
0 @ DATA=0
vpd
COMP
RPD
<MS0266-E-00>
CMPD
CPDIN
comp_out
txact_ref
-20-
2003/12
ASAHI KASEI
[AK2574]
Table 3-2 PDIN capacitance (CPDIN)
Item
min
PDIN Capacitance (CPDIN)
Table 3-3 TXACT Reference Voltage
RE_DAC_TXACT
min
011
0.86
010
0.76
001
0.66
000
0.56
100
0.46
101
0.36
110
0.26
111
0.16
typ
14
txact_ref
typ
max
0.9
0.94
0.8
0.84
0.7
0.74
0.6
0.64
0.5
0.54
0.4
0.44
0.3
0.34
0.2
0.24
max
26
Unit
pF
Remark
Remarks
unit
V
V
V
V
V
V
V
V
3.2 CLKALM
CLKALM is detected when input CLK is 0’s or 1’s fixed more than 100ns (typ). The polarity of CLKALM can be set
by RE_CLKALM_POL (0: “H” at detection, 1: “L” at detection). AK2574 goes into “shutdown” (see 4. Shutdown)
when CLKALM is detected.
4. Shutdown
Table 4-1 shows the shutdown condition and Table 4-2 shows AK2574 operation at shutdown. AK2574 goes into
“Shutdown” when TXDIS request from TXDIS pin or CLKALM detection. The polarity of TXDIS can be set by
RE_TXDIS_POL (0: “H” shutdown, 1: “L” shutdown).
Table 4-1 Shutdown Condition
TXDIS (Note1) CLKALM (Note2)
Operation
1
X
Shutdown
0
0
Normal Operation
0
1
Shutdown
Note 1: 1 means shutdown request from TXDIS pin.
Note 2: 1 means CLKALM detection.
Table 4-2 AK2574 operation at shutdown
Function
Operation
I-DAC1 / 2 output High-Z (0mA output)
APC_FF
Normal Operation
MOD Driver
DATA=0
BIAS Driver
OFF (BRST=0)
CLKALM
Normal Operation
TXACT
Hold non-detected polarity
<MS0266-E-00>
Remarks
Shutdown by pin
Shutdown by CLKALM detection
Remarks
-21-
2003/12
ASAHI KASEI
[AK2574]
5. I2CTM I/F
5.1 Memory Map
Table 5-1 shows the EEPROM / Register address map. Accessto memory (EEPROM / registers) is done via the I2CTM
I/F format.
WP (Write Protect) may limit the access of memory as shown in Table 5-2.
Table 5-1 Memory map
Device Address Device Address-1
A0h
1010
Device Address-2
000
A0h
1010
000
A2h
1010
001
A4h
1010
010
A6h
1010
011
A6h
1010
011
A8h
1010
100
A8h
1010
100
A8h
1010
100
Address
00000000 to
01111111
10000000 to
11111111
00000000 to
11111111
00000000 to
11111111
00000000 to
01111111
10000000 to
11111111
00000000 to
00010011
00010011 to
11111110
11111111
Table 5-2 Memory access limitation with WP
Item
WP = “L”
Device Address
1010xxx
ACK (Note 1)
when receive device address
EEPROM / Register
Full access
Access
Operating mode
Full
Page Write
16 byte (without registers)
Sequential Read
from 00000000000 to 01111111111
Registers Access
Random access only
Note 1: During EEPROM Write operation, no ACK is generated.
<MS0266-E-00>
-22-
Data
User Area
(EEPROM, 1kbit)
No memory
No memory
Adjustment data
(EEPROM, 3kbit)
No memory
Registers
No memory
AK2574 Operation mode
change
WP = “H”
1010000
when receive device address
User area only (read only)
Self running mode only
from 00000000 to 01111111
-
2003/12
ASAHI KASEI
[AK2574]
5.2 Read/Write Operation
5.2.1
Byte Write
SDA
0 0
1 0 1 0
S
T
A
R
T
Device
Address-1
Device
R/
Address-2 W
0
Address
(MSB First)
A
C
K
0
Data
(MSB First)
A
C
K
A S
C T
K O
P
5.2.2
Page Write
AK2574 is capable of 16-byte page write.
SDA
0 0
1 0 1 0
S
T
A
R
T
Device
Address-1
Device
R/
Address-2 W
Address
(MSB First)
A
C
K
0
0
0
A
C
K
A
C
K
A
C
K
Data (Address)
Data (Address + 1)
....
0
A
C
K
0
Data (Address + n)
A S
C T
K O
P
5.2.3
Current Address Read
The internal address counter maintains the last address accessed during the last read or write operation, incremented
by one. The roll over address is changed WP setting. Refer to Table 5-2 in detail.
SDA
1 0
1 0 1 0
S
T
A
R
T
Device
Address-1
Device
R/
Address-2 W
1
N
O
A
C
K
Data
(MSB First)
A
C
K
S
T
O
P
5.2.4
Random Read
A random read requires a “dummy” byte write sequence to specified “Address”. After receive the ACK from AK2574,
perform “current address read” (see 5.2.2).
SDA
0 0
1 0 1 0
S
T
A
R
T
Device
Address-1
Device
R/
Address-2 W
0
*1
Address
(MSB First)
A
C
K
A
C
K
Dummy Write
1 0
1 0 1 0
S
T
A
R
T
Device
Address-1
Device
R/ A
Address-2 W C
K
1
N S
O T
A O
C P
K
Data
(MSB First)
*1: Don't care when WP="H"
5.2.5
Sequential Read
Sequential read can be initiated as ether“Current Address Read” or “Random Read”. After issuing either of them, the
AK2574 continues to output data for each ACK received.
SDA
....
1 0
Device
R/ A
Address-2 W C
K
<MS0266-E-00>
0
Data-1
(MSB First)
A
C
K
0
Data-2
-23-
A
C
K
....
0
A
C
K
1
Data-n
N S
O T
A O
C P
K
2003/12
ASAHI KASEI
[AK2574]
5.2.6
Data Change
The SDA pin is normally pulled high with 4.7k to 10kΩ. Data on the SDA pin may change only during SCL low time
period. Data changes during SCL high periods will indicate a start or stop condition.
SCL
SDA
Data
Stable
Data
Change
5.2.7
Start / Stop Condition
Start Condition: A high-to-low transition of SDA with SCL high is a start condition that must precede any other
command.
Stop Condition: A low-to-high transition of SDA with SCL high is a stop condition.
SCL
SDA
STOP
START
5.3 EEPROM
EEPROM memory map is shown in Table 5-3, 5-4 and 5-5.
EEPROM access islimited with WP pin and Operation mode (refer to Table 6-1, for more information).
WP = “L”: Full access
WP = “H”: User area only with read only
(Note) The AKM factory adjusted data are stored in advance at address (Device Address = A6h, Address = 60h) for
the offset of the on-chip temperature sensor. If such excess temperature stress is to be applied to this device
which exceeds a guaranteed EEPROM data retention conditions ( for 10 years at 85℃), it is important to read
the pre-determined value in advance and to re-write the same data back into EEPROM after an exposure to
the excess temperature environment. Even if the exposure time is shorter than the retention time, any
accelerated temperature stress tests (such as baking) are performed, it is recommended to read the pre-set
data first and to re-write it after the tests.
<MS0266-E-00>
-24-
2003/12
ASAHI KASEI
[AK2574]
Table 5-3 EEPROM Address MAP
Device
Address
DATA (D7-D0)
Address
A0h
User Area
00h (0) ~
(1kbit)
7Fh (127)
A0h
80h (128) ~ No Memory
FFh (255)
A2h
00h (0) ~
FFh (255)
A4h
E_DAC1_TC
00 h(0) ~
Temperature data for I-DAC1 (1kbit)
7F h(127)
A4h
80h (128) ~ E_DAC2_TC
Temperature data for I-DAC2 (1kbit)
FFh (255)
A6h
E_DUTY_TC (256bit)
00h (0) ~
Temperature data for Duty Adjustment
1Fh(31)
A6h
Reserved
20h (32) ~
5Fh (95)
A6h
Adjustment data
60h (96) ~
(256bit)
7Fh (255)
Table 5-4 Adjustment Data Area (Device Address = A6h)
Address
Function
EEPROM名
Initial
Value
00h
Remark
00h
Addressing with R_TEMP
(1.5℃ step)
Addressing with R_TEMP
(1.5℃ step)
Addressing with MSB 5bit of
R_TEMP (6℃ step)
00h
00h
00h
see Table 5-4 and 5-5
Bit
E_VREFTRIM[7:4]
E_TEMP_OFFSET
[3:0]
E_TXDIS_POL[2]
60h
60h
Oscillator Frequency
Temperature sensor offset
4
4
Initial
Value
Factory
Setting
61h
TXDIS Polarity
1
0
E_TXACT_POL[1]
61h
TXACT Polarity
1
0
E_CLKALM_POL[0]
61h
CLKALM Polarity
1
0
E_DAC_TXACT
E_AKM_SET[1:0]
62h
6Dh
TXACT Reference Voltage
AKM初期設定値
3
2
000
00
Table 5-5 EEPROM Map (Adjustment Data Area)
Address
D7
D6
D5
D4
60h
VREFTRIM
61h
D3
62h
63h-6Ch
6Dh
6Eh-FFh
Reserved
<MS0266-E-00>
-25-
Remark
0: Shutdown at “H”
1: Shutdown at “L”
0: “H” at TXACT detection
1: “L” at TXACT detection
0: “H” at CLKALM detection
1: “L” at CLKALM detection
see Table 3-2
D2
D1
D0
TEMP_OFFSET
TXDIS_ TXACT_ CLKALM_
POL
POL
POL
DAC_TXACT
AKM_SET
2003/12
ASAHI KASEI
[AK2574]
5.4 Register
Register memory map is shown in Table 5-6 and 5-7. Register access is limited with WP pin and Operation mode
(refer to Fig 6-1, for more information).
Table 5-6 Register (Device Address = A8h)
Register
Address Function
R_VREFTRIM[7:4]
R_TEMP_OFFSET
[3:0]
R_TXDIS_POL[2]
00h
00h
Oscillator Frequency
Temperature sensor offset
Bit R/W
(Note 1)
4 R/W
4 R/W
01h
TXDIS Polarity
1
R/W
R_TXACT_POL[1]
01h
TXACT Polarity
1
R/W
R_CLKALM_POL[0]
01h
CLKALM Polarity
1
R/W
R_DAC_TXACT[2:0]
R_TXACT_THRU[0]
02h
04h
DAC(TXACT)
TXACT Hold
3
1
R/W
R/W
R_DAC1[7:0]
R_DAC2[7:0]
R_DUTY[4:0]
R_MODE[3:0]
R_TEMP[6:0]
AKM Test
05h
06h
07h
08h
0Ch
0Dh 13h
I-DAC1 Current Setting
I-DAC2 Current Setting
Duty Adjustment
Operation Mode Status
Detected Temperature
Test for AKM
(Reserved)
8
8
5
4
7
R/W
R/W
R/W
R
R
NA
Remark
0: Shutdown at “H”
1: Shutdown at “L”
0: “H” at TXACT detection
1: “L” at TXACT detection
0: “H” at CLKALM detection
1: “L” at CLKALM detection
see Table 3-2
0: TXACT Hold
(Normal Operation)
1: TXACT (Real-Time)
see Table 2-5
see Table 2-6
see Table 2-4
see Table 6-3
see Table 2-8
Reserved
Note 1:
R: Read Only.
R/W: Read/Write, Write data is hold unless re-writing or operation mode changing. All adjustment would be
done by R/W registers.
Table 5-7 Register Map
Address
D7
00h
01h
D6
D5
VREFTRIM
D4
D3
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh –
13h
<MS0266-E-00>
D2
D1
D0
TEMP_OFFSET
TXDIS_ TXACT_ CLKALM_
POL
POL
POL
DAC_TXACT
TXACT_
THRU
DAC1
DAC2
DUTY
MODE
TEMP
Reserved
(AKM Test)
-26-
2003/12
ASAHI KASEI
[AK2574]
6. Operation Mode
The AK2574 has 3 operating modes: Self-running, Adjustment and EEPROM mode.
6.1 Self-running Mode
Self-running mode is ready for normal operation after all adjustments are completed. In this mode, temperature
detection, EEPROM access and feeding current are automatically performed using the on-chip oscillator. The
AK2574 works in this mode after power-on.
6.2 Adjustment Mode
Adjustment mode is designed for training the LD characteristics. The AK2574 operates according to the register
settings set through the I2CTM I/F.
6.3 EEPROM Mode
EEPROM mode is used for storing LD characteristics into EEPROM. Transition from EEPROM mode to
Adjustment mode is prohibition.
6.4 MODE Control
The AK2574 operation modes are changed through the I2CTM interface. Table 6-1 shows the access limitation of each
operation mode and Table 6-2 shows the command to change operation mode.
Note: The I2CTM interface access is prohibited for 2ms after power-on or mode transfer to self-running mode.
Table 6-1 Access limitation of each operation mode
EEPROM Access
Operation mode
Read
Write
Self-running mode
○
×
(WP=”L”)
Adjustment mode
○
×
(WP=”L”)
EEPROM mode
○
○
(WP=”L”)
WP = “H”
○
×
Self-running mode only
(User Area Only)
Table 6-2 Operation mode change
Device Address R/W
1010100
W
1010100
W
1010100
W
Address
11111111
11111111
11111111
Data
10100000
10100111
10101110
Read
○
○
○
×
Register Access
Write
×
(except mode-change command)
○
×
(except mode-change command)
×
Operation mode
Self-running mode
Adjustment mode
EEPROM mode
6.5 Operation Mode Protection
When set WP = “H”, only self-running mode is selected.
6.6 Operation Mode Status
Operation mode is stored in R_MODE register. Table 6-3 shows the relationship between the Operation mode and
R_MODE. When set WP = “H”, access to R_MODE is prohibition.
Table 6-3 R_MODE
Operation mode
Self-running mode
Adjustment mode
EEPROM mode
<MS0266-E-00>
R_MODE[3:0]
0000
0111
1110
-27-
2003/12
ASAHI KASEI
[AK2574]
7. Module Adjustment Example
Table 7-1 shows the module adjustment example.
Table 7-1 Module Adjustment Example
No. Item
Contents
1
Go to Adjustment mode
Issues “Changing to Adjustment mode command” (see Table 5-2) via I2CTM I/F.
2
Continuous operation
Set BRST=”H” to operate AK2574 as a continuous operation.
3
LD current adjustment
Adjust R_DAC1 for modulation current and R_DAC2 for BIAS current of LD.
4
Duty adjustment
Adjust R_DUTY for 50% duty of LD power, if necessary. After duty
adjustment, tune MOD and BIAS current by R_DAC1 and R_DAC2, if
necessary.
5
TXACT adjustment
Adjust LD power by R_DAC1 and R_DAC2 to 3dB down of minimum LD
power that you would like to detect TXACT. Input the burst control signal and
adjust R_DAC_TXACT for tunning TXACT detection time. For more
information, see “3.1 TXACT”.
6
Verification of TXACT
Set R_DAC1 and R_DAC2 back to normal power. Confirm TXACT detection
time.
7
Read temperature data
Read R_TEMP (on-chip temperature sensor detection temperature).
8
Estimate LD temperature (1) 2 or more temperature adjustment
characteristics
Do step 2 to 8 with different temperature and estimate LD current data of
look-up table.
9
10
(2) Single point adjustment
Calculate LD current data of look-up table with on-chip temperature sensor
gain (-1.49℃/LSB), R_TEMP and LD characteristics.
Write adjustment data to (1) Make the data for EEPROM.
EEPROM
(2) Issue mode change command to EEPROM.
(3) Write adjustment data to EEPROM.
(4) Read EEPROM data and verify it.
Self running mode
Issue mode change command to self-running. AK2574 operates temperature
detection, feed current in response to temperature, and a feedback operation
automatically according to the data in EEPROM.
<MS0266-E-00>
-28-
2003/12
ASAHI KASEI
[AK2574]
Ⅶ. Circuit Example
Fig-A illustrates circuit example of AK2574.
Fig-A Circuit Example
R1 = 330Ω +/- 1%
R2 = 12kΩ +/- 1%
R3 = 82kΩ +/- 1%
R5=R6=R7 = 4.7kΩ~10kΩ
R8 = 4.7Ω~10Ω
C1=C2=0.1uF +/- 50%
(under operating temperature)
C11=C13=C15=C17=C19=C21 = 0.1uF
C12=C14=C16=C18=C20=C22
= 0.01uF or 0.001uF
VCC = 3.3V +/- 0.2V
C19
C20
C17
PD
C18
R8
LD
C1
NC
NC
IMODN
IMOD
VCC or GND
IMODN
VSSDR
AK2574VB
TEST4
TEST5
R131
TEST6
Open
NC
NC
DATAN
DATAP
CLKP
SEL
SCL
CLKN
BRSTN
WP
BRSTP
DVSS
TXDIS
TEST1
CLKALM
C14
TEST3
TXACT
SDA
C13
TEST2
AVSS
NC
C11 C12
VSSMD
VDDDR
DVDD
R5
C16
C15
VDDMD
TESTMON
BIAS
25
VSSMD
PDIN
AVDD
C22
C21
IMOD
R2
VSSBI
R3
IBIAS
IBIASC2
IBIASR1
R1
IBIAS
VSSBI
IBIAS
C1
NC
37
C2
R132
13
1
LVPECL I/F
(see below)
VCC or GND
R7
R134
R131 = R133 = 130Ω
R132 = R134 = 82Ω
R6 Pull-up or pull down
Do not leave open
Normal Operation with Open: Pull-down
Shutdown Operation with Open: Pull-up
Do not leave open
R133
LVPECL I/F
For full access: GND
For write protection: Open or VDD
LVPECL I/F
DATA Only
DATA & CLK
R121
R111
TD +
R113
DATAP
TD +
R112
TD -
R123
DATAN
TD -
SEL
R114
DATAP
R122
DATAN
R124
SEL
R125
VDD or Open
CLKP
CLK +
CLKN
R111 = R113 = 130Ω
R112 = R114 = 82Ω
R127
CLKP
R126
CLK -
R121 = R123 = R125 = R127 = 130Ω
CLKN
R128
R122 = R124 = R126 = R128 = 82Ω
<MS0266-E-00>
-29-
2003/12
ASAHI KASEI
[AK2574]
IMPORTANT NOTICE
• These products and their specifications are subject to change without notice.
Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or
authorized distributor concerning their current status.
• AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use
of any information contained herein.
• Any export of these products, or devices or systems containing them, may require an export license or other official
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
or strategic materials.
• AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other
hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the
express written consent of the Representative Director of AKM. As used here:
(a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for
applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform
may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
(b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether
directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which
must therefore meet very high standards of performance and reliability.
• It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places
the product with a third party to notify that party in advance of the above content and conditions, and the buyer or
distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all
claims arising from the use of said product in the absence of such notification.
<MS0266-E-00>
-30-
2003/12