AP4563GH Pb Free Plating Product Advanced Power Electronics Corp. N AND P-CHANNEL ENHANCEMENT MODE POWER MOSFET ▼ Simple Drive Requirement N-CH D1/D2 ▼ Good Thermal Performance ▼ Fast Switching Performance ▼ RoHS Compliant S1 G1 S2 P-CH G2 TO-252-4L Description S1 The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and costeffectiveness. BVDSS 40V RDS(ON) 30mΩ ID BVDSS RDS(ON) ID 30A -40V 36mΩ -27A D1 D2 G2 G1 S1 S2 Absolute Maximum Ratings Symbol Parameter Rating N-channel VDS Drain-Source Voltage VGS Gate-Source Voltage ID@TC=25℃ ID@TC=100℃ Units P-channel 40 -40 V ±20 ±20 V Continuous Drain Current 3 30 -27 A Continuous Drain Current 3 19 -17 A 100 -100 A 1 IDM Pulsed Drain Current PD@TC=25℃ Total Power Dissipation 39 -41.7 W Linear Derating Factor 0.31 -0.34 W/℃ TSTG Storage Temperature Range -55 to 150 ℃ TJ Operating Junction Temperature Range -55 to 150 ℃ Thermal Data Symbol Rthj-c (N-CH) Rthj-c (P-CH) Rthj-a Value Units Max. 3.2 ℃/W Max. 3 ℃/W Max. 110 ℃/W Parameter Thermal Resistance Junction-case 3 Thermal Resistance Junction-case 3 Thermal Resistance Junction-ambient Data and specifications subject to change without notice 3 200617051-1/7 AP4563GH o N-CH Electrical Characteristics@Tj=25 C(unless otherwise specified) Symbol Parameter Test Conditions Typ. Max. Units 40 - - V BVDSS Drain-Source Breakdown Voltage ΔBVDSS/ΔTj Breakdown Voltage Temperature Coefficient Reference to 25℃, ID=1mA - 0.04 - V/℃ RDS(ON) Static Drain-Source On-Resistance 2 VGS=10V, ID=20A - - 30 mΩ VGS=4.5V, ID=15A - - 40 mΩ VDS=VGS, ID=250uA 1 - 3 V VDS=10V, ID=20A - 22 - S VDS=40V, VGS=0V - - 1 uA Drain-Source Leakage Current (Tj=150 C) VDS=32V, VGS=0V - - 25 uA Gate-Source Leakage VGS=±20V - - ±100 nA ID=20A - 10 16 nC VGS(th) Gate Threshold Voltage gfs Forward Transconductance o IDSS Drain-Source Leakage Current (Tj=25 C) o IGSS 2 VGS=0V, ID=250uA Min. Qg Total Gate Charge Qgs Gate-Source Charge VDS=30V - 4 - nC Qgd Gate-Drain ("Miller") Charge VGS=4.5V - 5 - nC 2 td(on) Turn-on Delay Time VDS=20V - 10 - ns tr Rise Time ID=1A - 5 - ns td(off) Turn-off Delay Time RG=3.3Ω,VGS=10V - 23 - ns tf Fall Time RD=20Ω - 7 - ns Ciss Input Capacitance VGS=0V - 1100 1760 pF Coss Output Capacitance VDS=25V - 170 - pF Crss Reverse Transfer Capacitance f=1.0MHz - 95 - pF Rg Gate Resistance f=1.0MHz - 1.8 2.7 Ω Min. Typ. IS=20A, VGS=0V - - 1.3 V Source-Drain Diode Symbol Parameter 2 Test Conditions Max. Units VSD Forward On Voltage trr Reverse Recovery Time IS=20A, VGS=0V - 26 - ns Qrr Reverse Recovery Charge dI/dt=100A/µs - 17 - nC 2/7 AP4563GH P-CH Electrical Characteristics@Tj=25oC(unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. -40 - - V - -0.03 - V/℃ VGS=-10V, ID=-18A - - 36 mΩ VGS=-4.5V, ID=-13A - - 48 mΩ VDS=VGS, ID=-250uA -1 - -3 V VDS=-10V, ID=-18A - 19 - S VDS=-40V, VGS=0V - - -1 uA Drain-Source Leakage Current (Tj=150 C) VDS=-32V, VGS=0V - - -25 uA Gate-Source Leakage VGS=±20V - - ±100 nA BVDSS Drain-Source Breakdown Voltage ΔBVDSS/ΔTj Breakdown Voltage Temperature Coefficient Reference to 25℃,ID=-1mA RDS(ON) 2 Static Drain-Source On-Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS VGS=0V, ID=-250uA o Drain-Source Leakage Current (Tj=25 C) o IGSS 2 Max. Units Qg Total Gate Charge ID=-18A - 18 30 nC Qgs Gate-Source Charge VDS=-30V - 4 - nC Qgd Gate-Drain ("Miller") Charge VGS=-4.5V - 11 - nC VDS=-20V - 12 - ns 2 td(on) Turn-on Delay Time tr Rise Time ID=-1A - 6 - ns td(off) Turn-off Delay Time RG=3.3Ω,VGS=-10V - 68 - ns tf Fall Time RD=20Ω - 36 - ns Ciss Input Capacitance VGS=0V - 1570 2500 pF Coss Output Capacitance VDS=-25V - 250 - pF Crss Reverse Transfer Capacitance f=1.0MHz - 200 - pF Rg Gate Resistance f=1.0MHz - 8.5 13 Ω Min. Typ. Source-Drain Diode Symbol Parameter 2 Test Conditions Max. Units VSD Forward On Voltage IS=-18A, VGS=0V - - -1.3 V trr Reverse Recovery Time IS=-18A, VGS=0V - 33 - ns Qrr Reverse Recovery Charge dI/dt=-100A/µs - 26 - nC Notes: 1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.N-CH , P-CH are same . 3/7 AP4563GH N-Channel 80 80 o 10V 7.0V T C = 25 C 10V T C =150 o C 7.0V 60 ID , Drain Current (A) ID , Drain Current (A) 60 5.0V 40 4.5V 20 5.0V 40 4.5V 20 V G =3.0V V G =3.0V 0 0 0 2 4 6 8 10 0 2 V DS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 6 8 10 Fig 2. Typical Output Characteristics 80 1.8 I D = 15 A I D =20A V G =10V Normalized RDS(ON) T C =25 o C RDS(ON) (mΩ ) 4 V DS , Drain-to-Source Voltage (V) 60 40 20 1.4 -6.3 -5 1.0 0.6 2 4 6 8 10 -50 0 50 100 150 T j , Junction Temperature ( o C) V GS , Gate-to-Source Voltage (V) Fig 3. On-Resistance v.s. Gate Voltage Fig 4. Normalized On-Resistance v.s. Junction Temperature 10 1.5 Normalized VGS(th) (V) 8 IS(A) 6 T j =150 o C T j =25 o C 4 1.1 0.7 2 0.3 0 0 0.2 0.4 0.6 0.8 1 V SD , Source-to-Drain Voltage (V) Fig 5. Forward Characteristic of Reverse Diode 1.2 -50 0 50 100 150 o T j , Junction Temperature ( C) Fig 6. Gate Threshold Voltage v.s. Junction Temperature 4/7 AP4563GH N-Channel f=1.0MHz VGS , Gate to Source Voltage (V) 12 10000 I D = 20 A V DS = 30 V 9 C iss C (pF) 1000 6 C oss C rss 100 3 10 0 0 5 10 15 1 20 5 Q G , Total Gate Charge (nC) Fig 7. Gate Charge Characteristics 13 17 21 25 29 Fig 8. Typical Capacitance Characteristics 1 Normalized Thermal Response (Rthjc) 100 ID (A) 9 V DS , Drain-to-Source Voltage (V) 10 1ms 10ms 100ms 1s DC o T C =25 C Single Pulse 1 10 100 0.2 0.1 0.1 0.05 PDM 0.02 t T 0.01 Duty factor = t/T Peak Tj = PDM x Rthjc + TC Single Pulse 0.01 1 0.1 Duty factor=0.5 1000 0.00001 0.0001 V DS , Drain-to-Source Voltage (V) 0.001 0.01 0.1 1 t , Pulse Width (s) Fig 9. Maximum Safe Operating Area Fig 10. Effective Transient Thermal Impedance 50 VG V DS =5V ID , Drain Current (A) 40 QG T j =25 o C 30 T j =150 o C 4.5V QGS QGD 20 10 Charge Q 0 0 2 4 6 8 V GS , Gate-to-Source Voltage (V) Fig 11. Transfer Characteristics Fig 12. Gate Charge Waveform 5/7 AP4563GH P-Channel 80 80 -10V -7.0V 60 -5.0V -4.5V 40 20 -10V -7.0V o T C =150 C -ID , Drain Current (A) -ID , Drain Current (A) T C = 25 o C 60 -5.0V 40 -4.5V 20 V G = - 3.0V V G = - 3.0V 0 0 0 2 4 6 8 10 0 2 -V DS , Drain-to-Source Voltage (V) 4 6 8 10 -V DS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 1.8 I D = -18 A V G = - 10V I D = -13 A o T C =25 C 80 Normalized RDS(ON) RDS(ON) (mΩ) 1.4 60 40 1.0 0.6 20 2 4 6 8 -50 10 0 50 100 150 T j , Junction Temperature ( o C) -V GS , Gate-to-Source Voltage (V) Fig 3. On-Resistance v.s. Gate Voltage Fig 4. Normalized On-Resistance v.s. Junction Temperature 1.5 Normalized -VGS(th) (V) 6 -IS(A) 4 T j =25 o C T j =150 o C 2 0 1.1 0.7 0.3 0 0.2 0.4 0.6 0.8 1 -V SD , Source-to-Drain Voltage (V) Fig 5. Forward Characteristic of Reverse Diode 1.2 -50 0 50 100 150 T j , Junction Temperature ( o C) Fig 6. Gate Threshold Voltage v.s. Junction Temperature 6/7 AP4563GH P-Channel f=1.0MHz 12 10000 -VGS , Gate to Source Voltage (V) I D =-18A V DS =-30V C (pF) 9 6 C iss 1000 3 C oss C rss 0 100 0 10 20 30 40 1 5 9 Q G , Total Gate Charge (nC) Fig 7. Gate Charge Characteristics 17 21 25 29 Fig 8. Typical Capacitance Characteristics 100 1 Normalized Thermal Response (Rthjc) -ID (A) 13 -V DS , Drain-to-Source Voltage (V) 10 1ms 10ms 100ms 1s DC o T C =25 C Single Pulse 1 Duty factor=0.5 0.2 0.1 0.1 0.05 PDM t 0.02 T 0.01 Duty factor = t/T Peak Tj = PDM x Rthjc + T C Single Pulse 0.01 0.1 1 10 100 1000 0.00001 0.0001 -V DS , Drain-to-Source Voltage (V) 0.001 0.01 0.1 1 t , Pulse Width (s) Fig 9. Maximum Safe Operating Area Fig 10. Effective Transient Thermal Impedance 50 VG V DS =-5V -ID , Drain Current (A) 40 T j =25 o C QG T j =150 o C -4.5V 30 QGS QGD 20 10 Charge Q 0 0 2 4 6 8 -V GS , Gate-to-Source Voltage (V) Fig 11. Transfer Characteristics Fig 12. Gate Charge Waveform 7/7