Features • Fast Read Access Time - 55ns • Dual Voltage Range Operation • • • • • • • • – Low-voltage Power Supply Range, 3.0V to 3.6V or Standard 5V ± 10% Supply Range Pin Compatible with JEDEC Standard AT27C256R Low-power CMOS Operation – 20 µA max. (less than 1 µA typical) Standby for VCC = 3.6V – 29 mW max. Active at 5 MHz for VCC = 3.6V JEDEC Standard Packages – 32-lead PLCC – 28-lead 330-mil SOIC – 28-lead TSOP High-reliability CMOS Technology – 2,000V ESD Protection – 200 mA Latchup Immunity Rapid™ Programming Algorithm - 100 µs/byte (typical) CMOS and TTL Compatible Inputs and Outputs – JEDEC Standard for LVTTL Integrated Product Identification Code Commercial and Industrial Temperature Ranges 256K (32K x 8) Low-voltage OTP EPROM AT27LV256A Description The AT27LV256A is a high performance, low power, low voltage 262,144-bit one-time programmable read only memory (OTP EPROM) organized as 32K by 8 bits. It requires only one supply in the range of 3.0V to 3.6V in normal read mode operation, (continued) SOIC Top View Pin Configurations Pin Name Function A0 - A14 Addresses O0 - O7 Outputs CE Chip Enable OE Output Enable NC No Connect VPP A12 A7 A6 A5 A4 A3 A2 A1 A0 O0 O1 O2 GND 4 3 2 1 32 31 30 29 28 27 26 25 24 23 22 21 14 15 16 17 18 19 20 5 6 7 8 9 10 11 12 13 A8 A9 A11 NC OE A10 CE O7 O6 O1 O2 GND NC O3 O4 O5 A6 A5 A4 A3 A2 A1 A0 NC O0 28 27 26 25 24 23 22 21 20 19 18 17 16 15 VCC A14 A13 A8 A9 A11 OE A10 CE O7 O6 O5 O4 O3 TSOP Top View Type 1 A7 A12 VPP NC VCC A14 A13 PLCC Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Note: PLCC Package Pins 1 and 17 are DON’T CONNECT. OE A11 A9 A8 A13 A14 VCC VPP A12 A7 A6 A5 A4 A3 22 23 24 25 26 27 28 1 2 3 4 5 6 7 21 20 19 18 17 16 15 14 13 12 11 10 9 8 A10 CE O7 O6 O5 O4 O3 GND O2 O1 O0 A0 A1 A2 Rev. 0547C–05/00 1 Powered by ICminer.com Electronic-Library Service CopyRight 2003 making it ideal for fast, portable systems using battery power. Atmel’s innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3.3V supply. At V CC = 3.0V, any byte can be accessed in less than 55 ns. With a typical power dissipation of only 18 mW at 5 MHz and V C C = 3.3V, the AT27LV256A consumes less than one fifth the power of a standard 5V EPROM. Standby mode supply current is typically less than 1 µA at 3.3V. The AT27LV256A is available in industry standard JEDECapproved one-time programmable (OTP) plastic PLCC, SOIC and TSOP packages. All devices feature two-line control (CE, OE) to give designers the flexibility to prevent bus contention. The AT27LV256A operating with VCC at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at VCC = 5.0V. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts. Atmel’s AT27LV256A has additional features to ensure high quality and efficient production use. The Rapid™ Programming Algorithm reduces the time required to program Block Diagram 2 AT27LV256A Powered by ICminer.com Electronic-Library Service CopyRight 2003 the part and guarantees reliable programming. Programming time is typically only 100 µ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages. The AT27LV256A programs exactly the same way as a standard 5V AT27C256R and uses the same programming equipment. System Considerations Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 µF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V CC and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 µF bulk electrolytic capacitor should be utilized, again connected between the VCC and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array. AT27LV256A Absolute Maximum Ratings* *NOTICE: Temperature Under Bias.................................. -40°C to +85°C Storage Temperature ..................................... -65°C to +125°C Voltage on Any Pin with Respect to Ground .........................................-2.0V to +7.0V(1) Voltage on A9 with Respect to Ground ......................................-2.0V to +14.0V(1) Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability VPP Supply Voltage with Respect to Ground .......................................-2.0V to +14.0V(1) Note: 1. Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is VCC + 0.75V DC which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0V for pulses of less than 20 ns. Operating Modes Mode \ Pin Read CE (2) VIL Output Disable (2) Standby(2) (3) Rapid Program PGM Verify Optional PGM Verify Product Identification(3)(5) Notes: (1) VCC VCC Outputs VCC (2) DOUT (2) High Z High Z X VCC VCC VIH X(1) X(1) VCC VCC(2) VPP VCC (3) DIN VCC (3) DOUT (3) DOUT X PGM Inhibit(3) Ai VPP VIH (1) (3) VIL Ai VIL VIL (3) OE VIH VIL Ai Ai VPP VIL VIL Ai VCC VCC VIH VIH X(1) VPP VCC(3) High Z VCC VCC(3) Identification Code VH(4) VIL VIL A9 = A0 = VIH or VIL A1 - A14 = VIL 1. X can be VIL or VIH. 2. Read, output disable, and standby modes require, 3.0V ≤ VCC ≤ 3.6V, or 4.5V ≤ VCC ≤ 5.5V. 3. Refer to Programming Characteristics. Programming modes require VCC = 6.5V. 4. VH = 12.0 ± 0.5V. 5. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (VIL) to select the Manufacturer’s Identification byte and high (VIH) to select the Device Code byte. 3 Powered by ICminer.com Electronic-Library Service CopyRight 2003 DC and AC Operating Conditions for Read Operation AT27LV256A Operating Temperature (Case) Com. Ind. VCC Power Supply -55 -70 -90 -12 -15 0°C - 70°C 0°C - 70°C 0°C - 70°C 0°C - 70°C 0°C - 70°C -40°C - 85°C -40°C - 85°C -40°C - 85°C -40°C - 85°C -40°C - 85°C 3.0V to 3.6V 3.0V to 3.6V 3.0V to 3.6V 3.0V to 3.6V 3.0V to 3.6V 5V ± 10% 5V ± 10% 5V ± 10% 5V ± 10% 5V ± 10% DC and Operating Characteristics for Read Operation Symbol Parameter Condition Min Max Units VCC = 3.0V to 3.6V ILI ILO IPP1 (2) Input Load Current VIN = 0V to VCC ±1 µA Output Leakage Current VOUT = 0V to VCC ±5 µA VPP = VCC 10 µA ISB1 (CMOS), CE = VCC=± 0.3V 20 µA ISB2 (TTL), CE = 2.0 to VCC + 0.5V 100 µA 8 mA VPP (1) Read/Standby Current ISB VCC(1) Standby Current ICC VCC Active Current VIL Input Low Voltage -0.6 0.8 V VIH Input High Voltage 2.0 VCC + 0.5 V VOL Output Low Voltage IOL = 2.0 mA 0.4 V VOH Output High Voltage IOH = -2.0=mA f = 5 MHz, IOUT = 0 mA, CE = VIL 2.4 V VCC = 4.5V to 5.5V ILI ILO IPP1 (2) Input Load Current VIN = 0V to VCC ±1 µA Output Leakage Current VOUT = 0V to VCC ±5 µA VPP = VCC 10 µA ISB1 (CMOS), CE = VCC ± 0.3V 100 µA ISB2 (TTL), CE = 2.0 to VCC + 0.5V 1 mA f = 5 MHz, IOUT = 0 mA, CE = VIL 20 mA VPP (1) Read/Standby Current ISB VCC(1) Standby Current ICC VCC Active Current VIL Input Low Voltage -0.6 0.8 V VIH Input High Voltage 2.0 VCC + 0.5 V VOL Output Low Voltage IOL = 2.1 mA 0.4 V VOH Output High Voltage IOH = -400 µA Notes: 2.4 V 1. VCC must be applied simultaneously with or before VPP, and removed simultaneously with or after VPP. 2. VPP may be connected directly to VCC, except during programming. The supply current would then be the sum of ICC and IPP. 4 AT27LV256A Powered by ICminer.com Electronic-Library Service CopyRight 2003 AT27LV256A AC Characteristics for Read Operation VCC = 3.0V to 3.6V and 4.5V to 5.5V AT27LV256A -55 -70 -90 -12 Symbol Parameter Condition tACC(3) Address to Output Delay CE = OE = VIL 55 70 90 tCE(2) CE to Output Delay OE = VIL 55 70 tOE(2)(3) OE to Output Delay CE = VIL 35 tDF(4)(5) OE or CE High to Output Float, whichever occurred first 30 tOH Output Hold from Address, CE or OE, whichever occurred first Max Min 0 Min 0 -15 Max Units 120 150 ns 90 120 150 ns 50 50 50 60 ns 40 40 40 50 ns Max Min Max 0 Min 0 Max Min 0 ns AC Waveforms for Read Operation(1) Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified. 2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE. 3. OE may be delayed up to tACC - tOE after the address is valid without impact on tACC. 4. This parameter is only sampled and is not 100% tested. 5. Output float is defined as the point when data is no longer driven. 5 Powered by ICminer.com Electronic-Library Service CopyRight 2003 Input Test Waveforms and Measurement Levels Output Test Load tR, tF < 20 ns (10% to 90%) Note: CL = 100 pF including jig capacitance. Pin Capacitance f = 1 MHz, T = 25°C(1) Symbol Typ Max Units Conditions CIN 4 8 pF VIN = 0V COUT 8 12 pF VOUT = 0V Note: 6 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. AT27LV256A Powered by ICminer.com Electronic-Library Service CopyRight 2003 AT27LV256A Programming Waveforms(1) Notes: 1. The Input Timing Reference is 0.8V for VIL and 2.0V for VIH. 2. tOE and tDFP are characteristics of the device but must be accommodated by the programmer. 3. When programming the AT27LV256A a 0.1 µF capacitor is required across VPP and ground to suppress spurious voltage transients. DC Programming Characteristics TA = 25 ± 5°C, VCC = 6.5 ± 0.25V, VPP = 13.0 ± 0.25V Limits Symbol Parameter Test Conditions ILI Input Load Current VIN = VIL, VIH VIL Input Low Level VIH Input High Level VOL Output Low Voltage IOL = 2.1 mA VOH Output High Voltage IOH = -400 =µA ICC2 VCC Supply Current (Program and Verify) IPP2 VPP Current VID A9 Product Identification Voltage Min Max Units ±10 µA -0.6 0.8 V 2.0 VCC + 0.5 V 0.4 V 2.4 CE = VIL 11.5 V 25 mA 25 mA 12.5 V 7 Powered by ICminer.com Electronic-Library Service CopyRight 2003 AC Programming Characteristics TA = 25 ± 5°C, VCC = 6.5 ± 0.25V, VPP = 13.0 ± 0.25V Limits (1) Symbol Parameter Test Conditions tAS Address Setup Time tOES OE Setup Time tDS Data Setup Time tAH Address Hold Time Input Rise and Fall Times: (10% to 90%) 20 ns Input Pulse Levels: tDH Data Hold Time tDFP OE High to Output Float Delay(2) tVPS VPP Setup Time tVCS VCC Setup Time 0.45V to 2.4V Input Timing Reference Level: 0.8V to 2.0V (3) tPW CE Program Pulse Width tOE Data Valid from OE(2) tPRT VPP Pulse Rise Time During Programming Notes: Min Output Timing Reference Level: 0.8V to 2.0V Max Units 2 µs 2 µs 2 µs 0 µs 2 µs 0 130 ns 2 µs 2 µs 95 105 µs 150 ns 50 ns 1. VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP. 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven— see timing diagram. 3. Program Pulse width tolerance is 100 ∫µsec=±=5%. Atmel’s 27LV256A Integrated Product Identification Code(1) Pins A0 O7 O6 O5 O4 O3 O2 O1 O0 Hex Data Manufacturer 0 0 0 0 1 1 1 1 0 1E Device Type 1 1 0 0 0 1 1 0 0 8C Codes Note: 8 1. The AT27LV256A has the same Product Identification Code as the AT27C256R. Both are programming compatible. AT27LV256A Powered by ICminer.com Electronic-Library Service CopyRight 2003 AT27LV256A Rapid Programming Algorithm A 100 µs CE pulse width is used to program. The address is set to the first location. VCC is raised to 6.5V and VPP is raised to 13.0V. Each address is first programmed with one 100 µs CE pulse without verification. Then a verification / reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 µ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. VPP is then lowered to 5.0V and VCC to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails. 9 Powered by ICminer.com Electronic-Library Service CopyRight 2003 Ordering Information ICC (mA) tACC (ns) Active Standby Ordering Code Package 55 8 0.02 AT27LV256A-55JC AT27LV256A-55RC AT27LV256A-55TC 32J 28R 28T Commercial (0°C to 70°C) 8 0.02 AT27LV256A-55JI AT27LV256A-55RI AT27LV256A-55TI 32J 28R 28T Industrial (-40°C to 85°C) 8 0.02 AT27LV256A-70JC AT27LV256A-70RC AT27LV256A-70TC 32J 28R 28T Commercial (0°C to 70°C) 8 0.02 AT27LV256A-70JI AT27LV256A-70RI AT27LV256A-70TI 32J 28R 28T Industrial (-40°C to 85°C) 8 0.02 AT27LV256A-90JC AT27LV256A-90RC AT27LV256A-90TC 32J 28R 28T Commercial (0°C to 70°C) 8 0.02 AT27LV256A-90JI AT27LV256A-90RI AT27LV256A-90TI 32J 28R 28T Industrial (-40°C to 85°C) 8 0.02 AT27LV256A-12JC AT27LV256A-12RC AT27LV256A-12TC 32J 28R 28T Commercial (0°C to 70°C) 8 0.02 AT27LV256A-12JI AT27LV256A-12RI AT27LV256A-12TI 32J 28R 28T Industrial (-40°C to 85°C) 8 0.02 AT27LV256A-15JC AT27LV256A-15RC AT27LV256A-15TC 32J 28R 28T Commercial (0°C to 70°C) 8 0.02 AT27LV256A-15JI AT27LV256A-15RI AT27LV256A-15TI 32J 28R 28T Industrial (-40°C to 85°C) 70 90 120 150 Package Type 32J 32-lead, Plastic J-Leaded Chip Carrier (PLCC) 28R 28-lead, 0.330" Wide, Plastic Gull Wing Small Outline (SOIC) 28T 28-lead, Thin Small Outline Package (TSOP) 10 AT27LV256A Powered by ICminer.com Electronic-Library Service CopyRight 2003 Operation Range AT27LV256A Packaging Information 32J, 32-lead, Plastic J-Leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-016 AE .045(1.14) X 45˚ .025(.635) X 30˚ - 45˚ .012(.305) .008(.203) PIN NO. 1 IDENTIFY .530(13.5) .490(12.4) .553(14.0) .547(13.9) .595(15.1) .585(14.9) .032(.813) .026(.660) .050(1.27) TYP 28R, 28-lead, 0.330" Wide, Plastic Gull Wing Small Outline (SOIC) Dimensions in Inches and (Millimeters) .021(.533) .013(.330) .030(.762) .015(.381) .095(2.41) .060(1.52) .140(3.56) .120(3.05) .300(7.62) REF .430(10.9) .390(9.90) AT CONTACT POINTS .022(.559) X 45˚ MAX (3X) .453(11.5) .447(11.4) .495(12.6) .485(12.3) 28T, 28-lead, Plastic Thin Small Outline Package (TSOP) Dimensions in Millimeters and (Inches)* INDEX MARK AREA 11.9 (0.469) 11.7 (0.461) 13.7 (0.539) 13.1 (0.516) 0.27 (0.011) 0.18 (0.007) 0.55 (0.022) BSC 7.15 (0.281) REF 8.10 (0.319) 7.90 (0.311) 1.25 (0.049) 1.05 (0.041) 0.20 (0.008) 0.10 (0.004) 0 5 REF 0.20 (0.008) 0.15 (0.006) 0.70 (0.028) 0.30 (0.012) *Controlling dimension: millimeters 11 Powered by ICminer.com Electronic-Library Service CopyRight 2003 Atmel Headquarters Atmel Operations Corporate Headquarters Atmel Colorado Springs 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600 Europe 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759 Atmel Rousset Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697 Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001 Asia Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369 Japan Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581 Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732 e-mail [email protected] Web Site http://www.atmel.com BBS 1-(408) 436-4309 © Atmel Corporation 2000. Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life suppor t devices or systems. Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation. Terms and product names in this document may be trademarks of others. Printed on recycled paper. 0547B–05/98/xM Powered by ICminer.com Electronic-Library Service CopyRight 2003