ATMEL AT93C46-10PU-2.7

Features
• Low-voltage and Standard-voltage Operation
•
•
•
•
•
•
•
– 2.7 (VCC = 2.7V to 5.5V)
– 1.8 (VCC = 1.8V to 5.5V)
User-selectable Internal Organization
– 1K: 128 x 8 or 64 x 16
– 2K: 256 x 8 or 128 x 16
– 4K: 512 x 8 or 256 x 16
Three-wire Serial Interface
2 MHz Clock Rate (5V)
Self-timed Write Cycle (10 ms max)
High Reliability
– Endurance: 1 Million Write Cycles
– Data Retention: 100 Years
Automotive Grade, Extended Temperature and Lead-Free/Halogen-Free
Devices Available
8-lead PDIP, 8-lead JEDEC SOIC, 8-lead EIAJ SOIC, 8-lead MAP, 8-lead TSSOP,
and 8-ball dBGA2 Packages
Three-wire
Serial
EEPROMs
1K (128 x 8 or 64 x 16)
2K (256 x 8 or 128 x 16)
Description
The AT93C46/56/66 provides 1024/2048/4096 bits of serial electrically erasable programmable read-only memory (EEPROM), organized as 64/128/256 words of 16 bits
each (when the ORG pin is connected to VCC), and 128/256/512 words of 8 bits each
(when the ORG pin is tied to ground). The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operations are
essential. The AT93C46/56/66 is available in space-saving 8-lead PDIP, 8-lead
JEDEC SOIC, 8-lead EIAJ SOIC, 8-lead MAP, 8-lead TSSOP, and 8-lead dBGA2
packages.
The AT93C46/56/66 is enabled through the Chip Select pin (CS) and accessed via a
three-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift
Clock (SK). Upon receiving a Read instruction at DI, the address is decoded and the
data is clocked out serially on the DO pin. The Write cycle is completely self-timed,
and no separate Erase cycle is required before Write. The Write cycle is only enabled
when the part is in the Erase/Write Enable state. When CS is brought high following
the initiation of a Write cycle, the DO pin outputs the Ready/Busy status of the part.
The AT93C46/56/66 is available in 2.7V to 5.5V and 1.8V to 5.5V versions.
4K (512 x 8 or 256 x 16)
AT93C46
AT93C56(1)
AT93C66(2)
Note: 1. This device is not recommended for new designs.
Please refer to AT93C56A.
2. This device is not recommended for new designs.
Please refer to AT93C66A.
Table 1. Pin Configurations
Pin Name
Function
CS
Chip Select
SK
Serial Data Clock
DI
Serial Data Input
8-lead SOIC
CS
SK
DI
DO
1
2
3
4
8
7
6
5
8-lead dBGA2
VCC
DC
ORG
GND
VCC
DC
ORG
GND
Serial Data Output
GND
Ground
VCC
Power Supply
ORG
Internal Organization
DC
Don’t Connect
CS
SK
DI
DO
1
2
3
4
8
7
6
5
VCC
DC
ORG
GND
DC
VCC
CS
SK
8-lead MAP
VCC
DC
ORG
GND
8
1
7
2
6
3
5
4
1
7
2
6
3
5
4
CS
SK
D1
D0
8-lead SOIC
Rotated (R)
(1K JEDEC Only)
8-lead PDIP
DO
8
1
2
3
4
ORG
GND
DO
DI
8
7
6
5
8-lead TSSOP
CS
SK
DI
DO
CS
SK
DI
DO
1
2
3
4
8
7
6
5
VCC
DC
ORG
GND
0172Z–SEEPR–9/05
1
Absolute Maximum Ratings*
Operating Temperature......................................−55°C to +125°C
Storage Temperature .........................................−65°C to +150°C
Voltage on Any Pin
with Respect to Ground ........................................ −1.0V to +7.0V
Maximum Operating Voltage .......................................... 6.25V
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability
DC Output Current........................................................ 5.0 mA
Figure 1. Block Diagram
Note:
When the ORG pin is connected to VCC, the “x 16” organization is selected. When it is
connected to ground, the “x 8” organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal 1
Meg ohm pullup, then the “x 16” organization is selected. The feature is not available on
the 1.8V devices.
For the AT93C46, if “x 16” organization is the mode of choice and Pin 6 (ORG) is left
unconnected, Atmel recommends using the AT93C46A device. For more details, see the
AT93C46A datasheet.
2
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
Table 2. Pin Capacitance(1)
Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, VCC = +5.0V (unless otherwise noted)
Symbol
Test Conditions
COUT
CIN
Note:
Max
Units
Conditions
Output Capacitance (DO)
5
pF
VOUT = 0V
Input Capacitance (CS, SK, DI)
5
pF
VIN = 0V
1. This parameter is characterized and is not 100% tested.
Table 3. DC Characteristics
Applicable over recommended operating range from: TAI = −40°C to +85°C, VCC = +1.8V to +5.5V,
TAE = -40°C to +125°C, VCC = +1.8V to +5.5V (unless otherwise noted)
Symbol
Parameter
VCC1
Supply Voltage
VCC2
Test Condition
Min
Typ
Max
Unit
1.8
5.5
V
Supply Voltage
2.7
5.5
V
VCC3
Supply Voltage
4.5
5.5
V
ICC
Supply Current
ISB1
Standby Current
VCC = 1.8V
ISB2
Standby Current
ISB3
READ at 1.0 MHz
0.5
2.0
mA
WRITE at 1.0 MHz
0.5
2.0
mA
CS = 0V
0
0.1
µA
VCC = 2.7V
CS = 0V
6.0
10.0
µA
Standby Current
VCC = 5.0V
CS = 0V
17
30
µA
IIL
Input Leakage
VIN = 0V to VCC
0.1
1.0
µA
IOL
Output Leakage
VIN = 0V to VCC
0.1
1.0
µA
VIL1(1)
Input Low Voltage
VIH1(1)
Input High Voltage
VIL2(1)
Input Low Voltage
VIH2(1)
Input High Voltage
VOL1
Output Low Voltage
VOH1
Output High Voltage
VOL2
Output Low Voltage
VOH2
Output High Voltage
Note:
VCC = 5.0V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 2.7V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 2.7V
−0.6
0.8
2.0
VCC + 1
−0.6
VCC x 0.3
VCC x 0.7
VCC + 1
IOL = 2.1 mA
IOH = −0.4 mA
0.4
2.4
IOL = 0.15 mA
IOH = −100 µA
V
V
V
0.2
VCC – 0.2
V
V
V
1. VIL min and VIH max are reference only and are not tested.
3
0172Z–SEEPR–9/05
Table 4. AC Characteristics
Applicable over recommended operating range from TAI = −40°C to + 85°C, VCC = As Specified,
CL = 1 TTL Gate and 100 pF (unless otherwise noted)
Symbol
Parameter
Test Condition
fSK
SK Clock
Frequency
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
0
0
0
tSKH
SK High Time
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
250
250
1000
ns
tSKL
SK Low Time
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
250
250
1000
ns
tCS
Minimum CS
Low Time
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
250
250
1000
ns
tCSS
CS Setup Time
Relative to SK
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
50
50
200
ns
tDIS
DI Setup Time
Relative to SK
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
100
100
400
ns
tCSH
CS Hold Time
Relative to SK
0
ns
tDIH
DI Hold Time
Relative to SK
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
100
100
400
ns
tPD1
Output Delay to
“1”
AC Test
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
250
250
1000
ns
tPD0
Output Delay to
“0”
AC Test
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
250
250
1000
ns
tSV
CS to Status
Valid
AC Test
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
250
250
1000
ns
tDF
CS to DO in High
Impedance
AC Test
CS = VIL
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
1.8V ≤ VCC ≤ 5.5V
100
100
400
ns
10
ms
tWP
Write Cycle Time
(1)
Endurance
Note:
4
Min
4.5V ≤ VCC ≤ 5.5V
5.0V, 25°C
0.1
1M
Typ
3
Max
Units
2
1
0.25
MHz
ms
Write Cycles
1. This parameter is characterized and is not 100% tested.
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
Table 5. Instruction Set for the AT93C46
Address
Data
SB
Op
Code
x8
x 16
READ
1
10
A6 – A0
A5 – A0
EWEN
1
00
11XXXXX
11XXXX
ERASE
1
11
A6 – A0
A5 – A0
WRITE
1
01
A6 – A0
A5 – A0
ERAL
1
00
10XXXXX
10XXXX
WRAL
1
00
01XXXXX
01XXXX
1
00
00XXXXX
00XXXX
Instruction
EWDS
Note:
x8
x 16
Comments
Reads data stored in memory, at
specified address
Write enable must precede all
programming modes
Erases memory location An – A0
D7 – D0
D15 – D0
Writes memory location An – A0
Erases all memory locations. Valid
only at VCC = 4.5V to 5.5V
D7 – D0
D15 – D0
Writes all memory locations. Valid
only at VCC = 4.5V to 5.5V
Disables all programming instructions
The Xs in the address field represent DON’T CARE values and must be clocked.
Table 6. Instruction Set for the AT93C56(1) and AT93C66(2)
Address
Data
SB
Op
Code
x8
x 16
READ
1
10
A8 – A0
A7 – A0
EWEN
1
00
11XXXXXXX
11XXXXXX
ERASE
1
11
A8 – A0
A7 – A0
WRITE
1
01
A8 – A0
A7 – A0
ERAL
1
00
10XXXXXXX
10XXXXXX
WRAL
1
00
01XXXXXXX
01XXXXXX
EWDS
1
00
00XXXXXXX
00XXXXXX
Instruction
Notes:
x8
x 16
Comments
Reads data stored in memory, at
specified address
Write enable must precede all
programming modes
Erases memory location An – A0
D7 – D0
D15 – D0
Writes memory location An– A0
Erases all memory locations. Valid
only at VCC = 4.5V to 5.5V
D7 – D0
D15 – D0
Writes all memory locations. Valid
only at VCC = 5.0V ±10% and Disable
Register cleared
Disables all programming instructions
1. This device is not recommended for new designs. Please refer to AT93C56A.
2. This device is not recommended for new designs. Please refer to AT93C66A.
5
0172Z–SEEPR–9/05
Functional
Description
The AT93C46/56/66 is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host
processor. A valid instruction starts with a rising edge of CS and consists of a start bit
(logic “1”) followed by the appropriate op code and the desired memory address
location.
READ (READ): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the
selected memory location is available at the serial output pin DO. Output data changes
are synchronized with the rising edges of serial clock SK. It should be noted that a
dummy bit (logic “0”) precedes the 8- or 16-bit data output string.
ERASE/WRITE ENABLE (EWEN): To assure data integrity, the part automatically goes
into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write
Enable (EWEN) instruction must be executed first before any programming instructions
can be carried out. Please note that once in the EWEN state, programming remains
enabled until an EWDS instruction is executed or VCC power is removed from the part.
ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified
memory location to the logical “1” state. The self-timed erase cycle starts once the
Erase instruction and address are decoded. The DO pin outputs the Ready/Busy status
of the part if CS is brought high after being kept low for a minimum of 250 ns (tCS). A
logic “1” at pin DO indicates that the selected memory location has been erased and the
part is ready for another instruction.
WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be
written into the specified memory location. The self-timed programming cycle tWP starts
after the last bit of data is received at serial data input pin DI. The DO pin outputs the
Read/Busy status of the part if CS is brought high after being kept low for a minimum of
250 ns (tCS). A logic “0” at DO indicates that programming is still in progress. A logic “1”
indicates that the memory location at the specified address has been written with the
data pattern contained in the instruction and the part is ready for further instructions. A
Ready/Busy status cannot be obtained if the CS is brought high after the end of the selftimed programming cycle tWP.
ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic “1” state and is primarily used for testing purposes. The DO pin
outputs the Ready/Busy status of the part if CS is brought high after being kept low for a
minimum of 250 ns (tCS). The ERAL instruction is valid only at VCC = 5.0V ± 10%.
WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations
with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy
status of the part if CS is brought high after being kept low for a minimum of 250 ns (tCS).
The WRAL instruction is valid only at VCC = 5.0V ± 10%.
ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the
Erase/Write Disable (EWDS) instruction disables all programming modes and should be
executed after all programming operations. The operation of the Read instruction is
independent of both the EWEN and EWDS instructions and can be executed at any
time.
6
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
Timing Diagrams
Figure 2. Synchronous Data Timing
µs
Note:
1. This is the minimum SK period.
Table 7. Organization Key for Timing Diagrams
AT93C56 (2K)(1)
AT93C46 (1K)
I/O
Notes:
1.
2.
3.
4.
x8
AT93C66 (4K)(2)
x 16
x8
x 16
x8
x 16
A7(4)
A8
A7
D15
D7
D15
AN
A6
A5
A8(3)
DN
D7
D15
D7
This device is not recommended for new designs. Please refer to AT93C56A.
This device is not recommended for new designs. Please refer to AT93C66A.
A8 is a don’t care value, but the extra clock is required.
A7 is a don’t care value, but the extra clock is required.
7
0172Z–SEEPR–9/05
Figure 3. READ Timing
tCS
High Impedance
Figure 4. EWEN Timing
tCS
CS
SK
DI
1
0
0
1
1
...
Figure 5. EWDS Timing
tCS
CS
SK
DI
8
1
0
0
0
0
...
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
Figure 6. WRITE Timing
tCS
CS
SK
DI
1
0
1
AN
...
A0
DN
...
D0
HIGH IMPEDANCE
DO
BUSY
READY
tWP
Figure 7. WRAL Timing(1)
tCS
CS
SK
DI
DO
1
0
0
0
1
...
DN
...
D0
BUSY
HIGH IMPEDANCE
READY
tWP
Note:
1. Valid only at VCC = 4.5V to 5.5V.
Figure 8. ERASE Timing
tCS
CS
STANDBY
CHECK
STATUS
SK
DI
1
1
1
AN AN-1 AN-2
...
A0
tDF
tSV
DO
HIGH IMPEDANCE
HIGH IMPEDANCE
BUSY
READY
tWP
9
0172Z–SEEPR–9/05
Figure 9. ERAL Timing(1)
tCS
CS
CHECK
STATUS
STANDBY
tSV
tDF
SK
DI
DO
1
0
0
1
0
BUSY
HIGH IMPEDANCE
HIGH IMPEDANCE
READY
tWP
Note:
10
1. Valid only at VCC = 4.5V to 5.5V.
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
AT93C46 Ordering Information(1)
Ordering Code
Package
Operation Range
AT93C46-10PI-2.7
AT93C46-10SI-2.7
AT93C46R-10SI-2.7
AT93C46W-10SI-2.7
AT93C46-10TI-2.7
8P3
8S1
8S1
8S2
8A2
Industrial
(−40°C to 85°C)
AT93C46-10PI-1.8
AT93C46-10SI-1.8
AT93C46R-10SI-1.8
AT93C46W-10SI-1.8
AT93C46-10TI-1.8
8P3
8S1
8S1
8S2
8A2
Industrial
(−40°C to 85°C)
8P3
8P3
8S1
8S1
8S2
8S2
8A2
8A2
8Y1
8Y1
8Y5
8Y5
8U3-1
8U3-1
Lead-free/Halogen-free/
Industrial Temperature
(−40°C to 85°C)
Die Sale
Die Sale
Industrial
(−40°C to 85°C)
AT93C46-10PU-2.7
AT93C46-10PU-1.8
AT93C46-10SU-2.7
AT93C46-10SU-1.8
AT93C46W-10SU-2.7
AT93C46W-10SU-1.8
AT93C46-10TU-2.7
AT93C46-10TU-1.8
AT93C46Y1-10YU-2.7
AT93C46Y1-10YU-1.8
AT93C46Y5-10YU-2.7
AT93C46Y5-10YU-1.8
AT93C46U3-10UU-2.7
AT93C46U3-10UU-1.8
AT93C46-W2.7-11(2)
AT93C46-W1.8-11(2)
Notes:
1. For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the Table 3 on page 3 and Table 4 on
page 4.
2. Available in waffle pack and wafer form, order as SL719 for wafer form. Bumped die available upon request.
Package Type
8P3
8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
8S2
8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)
8A2
8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
8U3-1
8-ball, Die Ball Grid Array Package (dBGA2)
8Y1
8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)
8Y5
8-lead, 2.00 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)
Options
−2.7
Low Voltage (2.7V to 5.5V)
−1.8
Low Voltage (1.8V to 5.5V)
R
Rotated Pinout
11
0172Z–SEEPR–9/05
AT93C56(1) Ordering Information
Ordering Code(2)
Package
Operation Range
AT93C56-10PI-2.7
AT93C56-10SI-2.7
AT93C56W-10SI-2.7
AT93C56-10TI-2.7
AT93C56Y1-10YI-2.7
8P3
8S1
8S2
8A2
8Y1
Industrial
(−40°C to 85°C)
AT93C56-10PI-1.8
AT93C56-10SI-1.8
AT93C56W-10SI-1.8
AT93C56-10TI-1.8
AT93C56Y1-10YI-1.8
8P3
8S1
8S2
8A2
8Y1
Industrial
(−40°C to 85°C)
Notes:
1. This device is not recommended for new designs. Please refer to AT93C56A.
2. For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in Table 3 on page 3 and Table 4 on
page 4.
Package Type
8P3
8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
8S2
8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)
8A2
8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
8Y1
8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)
Options
−2.7
Low Voltage (2.7V to 5.5V)
1.8
Low Voltage (1.8V to 5.5V)
12
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
AT93C66(1) Ordering Information
Ordering Code(2)
Package
Operation Range
AT93C66-10PI-2.7
AT93C66-10SI-2.7
AT93C66W-10SI-2.7
AT93C66-10TI-2.7
AT93C66Y1-10YI-2.7
8P3
8S1
8S2
8A2
8Y1
Industrial
(−40°C to 85°C)
AT93C66-10PI-1.8
AT93C66-10SI-1.8
AT93C66W-10SI-1.8
AT93C66-10TI-1.8
AT93C66Y1-10YI-1.8
8P3
8S1
8S2
8A2
8Y1
Industrial
(−40°C to 85°C)
Notes:
1. This device is not recommended for new designs. Please refer to AT93C66A.
2. For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in Table 3 on page 3 and Table 4 on
page 4.
Package Type
8P3
8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
8S2
8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)
8A2
8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
8Y1
8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)
Options
−2.7
Low Voltage (2.7V to 5.5V)
−1.8
Low Voltage (1.8V to 5.5V)
13
0172Z–SEEPR–9/05
Packaging Information
8P3 – PDIP
E
1
E1
N
Top View
c
eA
End View
COMMON DIMENSIONS
(Unit of Measure = inches)
D
e
D1
A2 A
MIN
NOM
A2
0.115
0.130
0.195
b
0.014
0.018
0.022
5
b2
0.045
0.060
0.070
6
b3
0.030
0.039
0.045
6
c
0.008
0.010
0.014
D
0.355
0.365
0.400
D1
0.005
E
0.300
0.310
0.325
4
E1
0.240
0.250
0.280
3
SYMBOL
A
b2
b3
b
4 PLCS
Side View
L
Notes:
NOTE
0.210
0.100 BSC
eA
0.300 BSC
0.115
2
3
3
e
L
MAX
0.130
4
0.150
2
1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).
01/09/02
R
14
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8P3, 8-lead, 0.300" Wide Body, Plastic Dual
In-line Package (PDIP)
DRAWING NO.
REV.
8P3
B
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
8S1 – JEDEC SOIC
C
1
E
E1
L
N
∅
Top View
End View
e
B
COMMON DIMENSIONS
(Unit of Measure = mm)
A
SYMBOL
A1
D
Side View
MIN
NOM
MAX
A
1.35
–
1.75
A1
0.10
–
0.25
b
0.31
–
0.51
C
0.17
–
0.25
D
4.80
–
5.00
E1
3.81
–
3.99
E
5.79
–
6.20
e
NOTE
1.27 BSC
L
0.40
–
1.27
∅
0˚
–
8˚
Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.
10/7/03
R
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing
Small Outline (JEDEC SOIC)
DRAWING NO.
8S1
REV.
B
15
0172Z–SEEPR–9/05
8S2 – EIAJ SOIC
C
1
E
E1
L
N
Top View
∅
End View
e
b
COMMON DIMENSIONS
(Unit of Measure = mm)
A
SYMBOL
A1
D
Side View
NOM
MAX
NOTE
A
1.70
2.16
A1
0.05
0.25
b
0.35
0.48
5
C
0.15
0.35
5
D
5.13
5.35
E1
5.18
5.40
E
7.70
8.26
L
0.51
0.85
∅
0˚
8˚
e
Notes: 1.
2.
3.
4.
5.
MIN
2, 3
1.27 BSC
4
This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.
Mismatch of the upper and lower dies and resin burrs are not included.
It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.
Determines the true geometric position.
Values b and C apply to pb/Sn solder plated terminal. The standard thickness of the solder layer shall be 0.010 +0.010/−0.005 mm.
10/7/03
R
16
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8S2, 8-lead, 0.209" Body, Plastic Small
Outline Package (EIAJ)
DRAWING NO.
8S2
REV.
C
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
8A2 – TSSOP
3
2 1
Pin 1 indicator
this corner
E1
E
L1
N
L
Top View
End View
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
A
b
D
MIN
NOM
MAX
NOTE
2.90
3.00
3.10
2, 5
3, 5
E
e
D
A2
6.40 BSC
E1
4.30
4.40
4.50
A
–
–
1.20
A2
0.80
1.00
1.05
b
0.19
–
0.30
e
Side View
L
0.65 BSC
0.45
L1
Notes:
4
0.60
0.75
1.00 REF
1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances,
datums, etc.
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed
0.15 mm (0.006 in) per side.
3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm
(0.010 in) per side.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the
b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between
protrusion and adjacent lead is 0.07 mm.
5. Dimension D and E1 to be determined at Datum Plane H.
5/30/02
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8A2, 8-lead, 4.4 mm Body, Plastic
Thin Shrink Small Outline Package (TSSOP)
DRAWING NO.
8A2
REV.
B
17
0172Z–SEEPR–9/05
8U3-1 – dBGA2
E
D
1.
b
A1
PIN 1 BALL PAD CORNER
A2
Top View
A
Side View
PIN 1 BALL PAD CORNER
1
2
3
4
8
7
6
5
(d1)
d
e
COMMON DIMENSIONS
(Unit of Measure = mm)
(e1)
Bottom View
8 SOLDER BALLS
1. Dimension “b” is measured at the maximum solder ball diameter.
This drawing is for general information only.
SYMBOL
MIN
NOM
MAX
A
0.71
0.81
0.91
A1
0.10
0.15
0.20
A2
0.40
0.45
0.50
b
0.20
0.25
0.30
D
NOTE
1.50 BSC
E
2.00 BSC
e
0.50 BSC
e1
0.25 REF
d
1.00 BSC
d1
0.25 REF
6/24/03
R
18
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8U3-1, 8-ball, 1.50 x 2.00 mm Body, 0.50 mm pitch,
Small Die Ball Grid Array Package (dBGA2)
DRAWING NO.
REV.
PO8U3-1
A
AT93C46/56/66
0172Z–SEEPR–9/05
AT93C46/56/66
8Y1 – MAP
PIN 1 INDEX AREA
A
1
3
2
4
PIN 1 INDEX AREA
E1
D1
D
L
8
Bottom View
COMMON DIMENSIONS
(Unit of Measure = mm)
A
Side View
5
e
End View
Top View
6
b
A1
E
7
SYMBOL
MIN
NOM
MAX
A
–
–
0.90
A1
0.00
–
0.05
D
4.70
4.90
5.10
E
2.80
3.00
3.20
D1
0.85
1.00
1.15
E1
0.85
1.00
1.15
b
0.25
0.30
0.35
e
L
NOTE
0.65 TYP
0.50
0.60
0.70
2/28/03
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8Y1, 8-lead (4.90 x 3.00 mm Body) MSOP Array Package
(MAP) Y1
DRAWING NO.
REV.
8Y1
C
19
0172Z–SEEPR–9/05
8Y5 – MAP
b
(8x)
D2
E2
E
Pin 1
Index
Area
Pin 1 ID
L (8x)
D
e (6x)
A3
1.50 REF.
Bottom View
Top View
A
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
MIN
2.00 BSC
E
3.00 BSC
D2
1.40
1.50
1.60
1.75
1.85
1.95
–
–
0.90
A1
0.0
0.02
0.05
A2
–
–
0.85
A3
L
b
NOTE
0.20 REF
0.20
e
A1
MAX
E2
A
A2
NOM
D
0.30
0.40
0.50 BSC
0.20
0.25
0.30
2
Side View
Notes:
1. This drawing is for general information only. Refer to JEDEC Drawing MO-229, for proper dimensions,
tolerances, datums, etc.
2. Dimension b applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the
terminal has the optional radius on the other end of the terminal, the dimension should not be measured in that radius area.
R
20
TITLE
2325 Orchard Parkway
8Y5, 8-lead 2.0 x 3.0 mm Body, 0.50 mm Pitch, Mini-Map, Dual
San Jose, CA 95131
No Lead Package (DFN)
11/12/03
DRAWING NO. REV.
8Y5
A
AT93C46/56/66
0172Z–SEEPR–9/05
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© Atmel Corporation 2005. All rights reserved. Atmel ®, logo and combinations thereof, Everywhere You Are® and others, are registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Printed on recycled paper.
0172Z–SEEPR–9/05