ATMEL ATMEGA3250V

Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
•
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Throughput at 20 MHz
– On-Chip 2-cycle Multiplier
High Endurance Non-volatile Memory segments
– 32K Bytes of In-System Self-programmable Flash program memory
– 1K Bytes EEPROM
– 2K Bytes Internal SRAM
– Write/Erase cyles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
I/O and Packages
– 54/69 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF, and 100-lead TQFP
Speed Grade:
– ATmega325PV/ATmega3250PV:
0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
– ATmega325P/3250P:
0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
Temperature range:
– -40°C to 85°C Industrial
Ultra-Low Power Consumption
– Active Mode:
420 µA at 1 MHz, 1.8V
– Power-down Mode:
40 nA at 1.8V
– Power-save Mode:
750 nA at 1.8V
8-bit
Microcontroller
with 32K Bytes
In-System
Programmable
Flash
ATmega325P/V
ATmega3250P/V
Preliminary
8023FS–AVR–07/09
1. Pin Configurations
Figure 1-1.
Pinout ATmega3250P
2
AVCC
AGND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
DNC
DNC
PH7 (PCINT23)
PH6 (PCINT22)
PH5 (PCINT21)
PH4 (PCINT20)
DNC
DNC
GND
VCC
DNC
PA0
PA1
PA2
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
TQFP
DNC
1
75
PA3
(RXD/PCINT0) PE0
2
74
PA4
(TXD/PCINT1) PE1
3
73
PA5
(XCK/AIN0/PCINT2) PE2
4
72
PA6
(AIN1/PCINT3) PE3
5
71
PA7
(USCK/SCL/PCINT4) PE4
6
70
PG2
(DI/SDA/PCINT5) PE5
7
69
PC7
(DO/PCINT6) PE6
8
68
PC6
(CLKO/PCINT7) PE7
9
67
DNC
VCC
10
66
PH3 (PCINT19)
GND
11
65
PH2 (PCINT18)
DNC
12
64
PH1 (PCINT17)
(PCINT24) PJ0
13
63
PH0 (PCINT16)
(PCINT25) PJ1
14
62
DNC
DNC
15
61
DNC
DNC
16
60
DNC
DNC
17
59
DNC
DNC
18
58
PC5
(SS/PCINT8) PB0
19
57
PC4
(SCK/PCINT9) PB1
20
56
PC3
(MOSI/PCINT10) PB2
21
55
PC2
(MISO/PCINT11) PB3
22
54
PC1
(OC0A/PCINT12) PB4
23
53
PC0
(OC1A/PCINT13) PB5
24
52
PG1
(OC1B/PCINT14) PB6
25
51
PG0
INDEX CORNER
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
(OC2A/PCINT15) PB7
DNC
(T1) PG3
(T0) PG4
RESET/PG5
VCC
GND
(TOSC2) XTAL2
(TOSC1) XTAL1
DNC
DNC
(PCINT26) PJ2
(PCINT27) PJ3
(PCINT28) PJ4
(PCINT29) PJ5
(PCINT30) PJ6
DNC
(ICP1) PD0
(INT0) PD1
PD2
PD3
PD4
PD5
PD6
PD7
ATmega3250
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
DNC
1
(RXD/PCINT0) PE0
2
AVCC
GND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
GND
VCC
PA0
PA1
PA2
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinout ATmega325P
64
Figure 1-2.
48 PA3
47 PA4
INDEX CORNER
(TXD/PCINT1) PE1
3
46 PA5
(XCK/AIN0/PCINT2) PE2
4
45 PA6
(AIN1/PCINT3) PE3
5
44 PA7
(USCK/SCL/PCINT4) PE4
6
43 PG2
(DI/SDA/PCINT5) PE5
7
42 PC7
(DO/PCINT6) PE6
8
(CLKO/PCINT7) PE7
9
40 PC5
(SS/PCINT8) PB0
10
39 PC4
1.1
PD7 32
29
PD4
PD6 31
28
PD3
PD5 30
27
33 PG0
PD2
16
26
(OC1B/PCINT14) PB6
25
34 PG1
(INT0) PD1
15
(ICP1) PD0
(OC1A/PCINT13) PB5
24
35 PC0
(TOSC1) XTAL1
14
23
(OC0A/PCINT12) PB4
22
36 PC1
GND
13
(TOSC2) XTAL2
(MISO/PCINT11) PB3
VCC 21
37 PC2
RESET/PG5 20
38 PC3
12
(T0) PG4 19
11
(T1) PG3 18
(SCK/PCINT9) PB1
(MOSI/PCINT10) PB2
(OC2A/PCINT15) PB7 17
Note:
41 PC6
ATmega325
The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If
the center pad is left unconnected, the package might loosen from the board.
Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.
2. Overview
The ATmega325P/3250P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By
executing powerful instructions in a single clock cycle, the ATmega325P/3250P achieves throughputs approaching 1 MIPS
per MHz allowing the system designer to optimize power consumption versus processing speed.
3
8023FS–AVR–07/09
Block Diagram
GND
Block Diagram
PF0 - PF7
VCC
PORTA DRIVERS
PORTF DRIVERS
DATA DIR.
REG. PORTF
DATA REGISTER
PORTF
PC0 - PC7
PA0 - PA7
PORTC DRIVERS
DATA DIR.
REG. PORTA
DATA REGISTER
PORTA
XTAL2
Figure 2-1.
XTAL1
2.1
DATA REGISTER
PORTC
DATA DIR.
REG. PORTC
8-BIT DATA BUS
AVCC
AGND
CALIB. OSC
ADC
INTERNAL
OSCILLATOR
AREF
WATCHDOG
TIMER
ON-CHIP DEBUG
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
BOUNDARYSCAN
INSTRUCTION
REGISTER
TIMING AND
CONTROL
TIMER/
COUNTERS
GENERAL
PURPOSE
REGISTERS
X
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
CONTROL
LINES
+
-
INTERRUPT
UNIT
ALU
EEPROM
STATUS
REGISTER
AVR CPU
ANALOG
COMPARATOR
Z
Y
RESET
DATA DIR.
REG. PORTH
DATA REGISTER
PORTH
JTAG TAP
STACK
POINTER
DATA DIR.
REG. PORTJ
DATA REGISTER
PORTJ
PORTH DRIVERS
PORTJ DRIVERS
PJ0 - PJ6
PH0 - PH7
OSCILLATOR
PROGRAM
COUNTER
USART
UNIVERSAL
SERIAL INTERFACE
DATA REGISTER
PORTE
DATA DIR.
REG. PORTE
PORTE DRIVERS
PE0 - PE7
SPI
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
PORTB DRIVERS
PB0 - PB7
DATA REGISTER
PORTD
DATA DIR.
REG. PORTD
PORTD DRIVERS
PD0 - PD7
DATA REG.
PORTG
DATA DIR.
REG. PORTG
PORTG DRIVERS
PG0 - PG4
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
4
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
The ATmega325P/3250P provides the following features: 32K bytes of In-System Programmable Flash with Read-While-Write capabilities, 1K bytes EEPROM, 2K byte SRAM, 54/69 general
purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan,
On-chip Debugging support and programming, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer
with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Powersave mode, the asynchronous timer, allowing the user to maintain a timer base while the rest of
the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules
except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In
Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping.
This allows very fast start-up combined with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip In-System re-Programmable (ISP) Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory
programmer, or by an On-chip Boot program running on the AVR core. The Boot program can
use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated,
providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System
Self-Programmable Flash on a monolithic chip, the Atmel ATmega325P/3250P is a powerful
microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega325P/3250P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit
Emulators, and Evaluation kits.
2.2
Comparison between ATmega325P and ATmega3250P
The ATmega325P and ATmega3250P differs only in memory sizes, pin count and pinout. Table
2-1 on page 5 summarizes the different configurations for the four devices.
Table 2-1.
Configuration Summary
Device
Flash
EEPROM
RAM
General Purpose
I/O Pins
ATmega325P
32K bytes
1K bytes
2K bytes
54
ATmega3250P
32K bytes
1K bytes
2K bytes
69
5
8023FS–AVR–07/09
2.3
Pin Descriptions
The following section describes the I/O-pin special functions.
2.3.1
VCC
Digital supply voltage.
2.3.2
GND
Ground.
2.3.3
Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
2.3.4
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the ATmega325P/3250P as listed
on page 71.
2.3.5
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
2.3.6
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega325P/3250P as listed
on page 74.
2.3.7
Port E (PE7..PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
6
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port E also serves the functions of various special features of the ATmega325P/3250P as listed
on page 75.
2.3.8
Port F (PF7..PF0)
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.
Port F also serves the functions of the JTAG interface.
2.3.9
Port G (PG5..PG0)
Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port G also serves the functions of various special features of the ATmega325P/3250P as listed
on page 75.
2.3.10
Port H (PH7..PH0)
Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port H output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port H pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port H also serves the functions of various special features of the ATmega3250P as listed on
page 75.
2.3.11
Port J (PJ6..PJ0)
Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port J pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port J also serves the functions of various special features of the ATmega3250P as listed on
page 75.
7
8023FS–AVR–07/09
2.3.12
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in ”System and Reset
Characterizations” on page 308. Shorter pulses are not guaranteed to generate a reset.
2.3.13
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
2.3.14
XTAL2
Output from the inverting Oscillator amplifier.
2.3.15
AVCC
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.
2.3.16
AREF
This is the analog reference pin for the A/D Converter.
8
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
9
8023FS–AVR–07/09
Note:
1.
4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
5. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
10
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
28. Register Summary
Note:
Address
Name
Registers with bold type only available in ATmega3250P.
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xFF)
Reserved
-
-
-
-
-
-
-
-
Page
(0xFE)
Reserved
-
-
-
-
-
-
-
-
(0xFD)
Reserved
-
-
-
-
-
-
-
-
(0xFC)
Reserved
-
-
-
-
-
-
-
-
(0xFB)
Reserved
-
-
-
-
-
-
-
-
(0xFA)
Reserved
-
-
-
-
-
-
-
-
(0xF9)
Reserved
-
-
-
-
-
-
-
-
(0xF8)
Reserved
-
-
-
-
-
-
-
-
(0xF7)
Reserved
-
-
-
-
-
-
-
-
(0xF6)
Reserved
-
-
-
-
-
-
-
-
(0xF5)
Reserved
-
-
-
-
-
-
-
-
(0xF4)
Reserved
-
-
-
-
-
-
-
-
(0xF3)
Reserved
-
-
-
-
-
-
-
-
(0xF2)
Reserved
-
-
-
-
-
-
-
-
(0xF1)
Reserved
-
-
-
-
-
-
-
-
(0xF0)
Reserved
-
-
-
-
-
-
-
-
(0xEF)
Reserved
-
-
-
-
-
-
-
-
(0xEE)
Reserved
-
-
-
-
-
-
-
-
(0xED)
Reserved
-
-
-
-
-
-
-
-
(0xEC)
Reserved
-
-
-
-
-
-
-
-
(0xEB)
Reserved
-
-
-
-
-
-
-
-
(0xEA)
Reserved
-
-
-
-
-
-
-
-
(0xE9)
Reserved
-
-
-
-
-
-
-
-
(0xE8)
Reserved
-
-
-
-
-
-
-
-
(0xE7)
Reserved
-
-
-
-
-
-
-
-
(0xE6)
Reserved
-
-
-
-
-
-
-
-
(0xE5)
Reserved
-
-
-
-
-
-
-
-
(0xE4)
Reserved
-
-
-
-
-
-
-
-
(0xE3)
Reserved
-
-
-
-
-
-
-
-
(0xE2)
Reserved
-
-
-
-
-
-
-
-
(0xE1)
Reserved
-
-
-
-
-
-
-
-
(0xE0)
Reserved
-
-
-
-
-
-
-
-
(0xDF)
Reserved
-
-
-
-
-
-
-
-
(0xDE)
Reserved
-
-
-
-
-
-
-
-
(0xDD)
PORTJ
-
PORTJ6
PORTJ5
PORTJ4
PORTJ3
PORTJ2
PORTJ1
PORTJ0
88
(0xDC)
DDRJ
-
DDJ6
DDJ5
DDJ4
DDJ3
DDJ2
DDJ1
DDJ0
88
(0xDB)
PINJ
-
PINJ6
PINJ5
PINJ4
PINJ3
PINJ2
PINJ1
PINJ0
88
(0xDA)
PORTH
PORTH7
PORTH6
PORTH5
PORTH4
PORTH3
PORTH2
PORTH1
PORTH0
87
(0xD9)
DDRH
DDH7
DDH6
DDH5
DDH4
DDH3
DDH2
DDH1
DDH0
88
88
(0xD8)
PINH
PINH7
PINH6
PINH5
PINH4
PINH3
PINH2
PINH1
PINH0
(0xD7)
Reserved
-
-
-
-
-
-
-
-
(0xD6)
Reserved
-
-
-
-
-
-
-
-
(0xD5)
Reserved
-
-
-
-
-
-
-
-
(0xD4)
Reserved
-
-
-
-
-
-
-
-
(0xD3)
Reserved
-
-
-
-
-
-
-
-
(0xD2)
Reserved
-
-
-
-
-
-
-
-
(0xD1)
Reserved
-
-
-
-
-
-
-
-
(0xD0)
Reserved
-
-
-
-
-
-
-
-
(0xCF)
Reserved
-
-
-
-
-
-
-
-
(0xCE)
Reserved
-
-
-
-
-
-
-
-
(0xCD)
Reserved
-
-
-
-
-
-
-
-
(0xCC)
Reserved
-
-
-
-
-
-
-
-
(0xCB)
Reserved
-
-
-
-
-
-
-
-
(0xCA)
Reserved
-
-
-
-
-
-
-
-
(0xC9)
Reserved
-
-
-
-
-
-
-
-
(0xC8)
Reserved
-
-
-
-
-
-
-
-
(0xC7)
Reserved
-
-
-
-
-
-
-
-
(0xC6)
UDR0
(0xC5)
UBRR0H
USART0 Data Register
182
USART0 Baud Rate Register High
186
342
8023FS–AVR–07/09
Address
Name
(0xC4)
UBRR0L
(0xC3)
Reserved
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
USART0 Baud Rate Register Low
-
-
-
-
-
Page
186
(0xC2)
UCSR0C
-
UMSEL0
UPM01
UPM00
USBS0
UCSZ01
UCSZ00
UCPOL0
184
(0xC1)
UCSR0B
RXCIE0
TXCIE0
UDRIE0
RXEN0
TXEN0
UCSZ02
RXB80
TXB80
183
(0xC0)
UCSR0A
RXC0
TXC0
UDRE0
FE0
DOR0
UPE0
U2X0
MPCM0
182
(0xBF)
Reserved
-
-
-
-
-
-
-
-
(0xBE)
Reserved
-
-
-
-
-
-
-
-
(0xBD)
Reserved
-
-
-
-
-
-
-
-
(0xBC)
Reserved
-
-
-
-
-
-
-
-
(0xBB)
Reserved
-
-
-
-
-
-
-
-
(0xBA)
USIDR
(0xB9)
USISR
USISIF
USIOIF
USIPF
USIDC
USICNT3
USICNT2
USICNT1
USICNT0
199
(0xB8)
USICR
USISIE
USIOIE
USIWM1
USIWM0
USICS1
USICS0
USICLK
USITC
200
(0xB7)
Reserved
-
-
-
-
-
-
-
-
(0xB6)
ASSR
-
-
-
EXCLK
AS2
TCN2UB
OCR2UB
TCR2UB
(0xB5)
Reserved
-
-
-
-
-
-
-
-
(0xB4)
Reserved
-
-
-
-
-
-
-
-
(0xB3)
OCR2A
Timer/Counter 2 Output Compare Register A
151
(0xB2)
TCNT2
Timer/Counter2
151
(0xB1)
Reserved
-
-
-
-
-
-
-
-
(0xB0)
TCCR2A
FOC2A
WGM20
COM2A1
COM2A0
WGM21
CS22
CS21
CS20
(0xAF)
Reserved
-
-
-
-
-
-
-
-
USI Data Register
199
151
149
(0xAE)
Reserved
-
-
-
-
-
-
-
-
(0xAD)
Reserved
-
-
-
-
-
-
-
-
(0xAC)
Reserved
-
-
-
-
-
-
-
-
(0xAB)
Reserved
-
-
-
-
-
-
-
-
(0xAA)
Reserved
-
-
-
-
-
-
-
-
(0xA9)
Reserved
-
-
-
-
-
-
-
-
(0xA8)
Reserved
-
-
-
-
-
-
-
-
(0xA7)
Reserved
-
-
-
-
-
-
-
-
(0xA6)
Reserved
-
-
-
-
-
-
-
-
(0xA5)
Reserved
-
-
-
-
-
-
-
-
(0xA4)
Reserved
-
-
-
-
-
-
-
-
(0xA3)
Reserved
-
-
-
-
-
-
-
-
(0xA2)
Reserved
-
-
-
-
-
-
-
-
(0xA1)
Reserved
-
-
-
-
-
-
-
-
(0xA0)
Reserved
-
-
-
-
-
-
-
-
(0x9F)
Reserved
-
-
-
-
-
-
-
-
(0x9E)
Reserved
-
-
-
-
-
-
-
-
(0x9D)
Reserved
-
-
-
-
-
-
-
-
(0x9C)
Reserved
-
-
-
-
-
-
-
-
(0x9B)
Reserved
-
-
-
-
-
-
-
-
(0x9A)
Reserved
-
-
-
-
-
-
-
-
(0x99)
Reserved
-
-
-
-
-
-
-
-
(0x98)
Reserved
-
-
-
-
-
-
-
-
(0x97)
Reserved
-
-
-
-
-
-
-
-
(0x96)
Reserved
-
-
-
-
-
-
-
-
(0x95)
Reserved
-
-
-
-
-
-
-
-
(0x94)
Reserved
-
-
-
-
-
-
-
-
(0x93)
Reserved
-
-
-
-
-
-
-
-
(0x92)
Reserved
-
-
-
-
-
-
-
-
(0x91)
Reserved
-
-
-
-
-
-
-
-
(0x90)
Reserved
-
-
-
-
-
-
-
-
(0x8F)
Reserved
-
-
-
-
-
-
-
-
(0x8E)
Reserved
-
-
-
-
-
-
-
-
(0x8D)
Reserved
-
-
-
-
-
-
-
-
(0x8C)
Reserved
-
-
-
-
-
-
-
-
(0x8B)
OCR1BH
Timer/Counter1 Output Compare Register B High
(0x8A)
OCR1BL
Timer/Counter1 Output Compare Register B Low
132
(0x89)
OCR1AH
Timer/Counter1 Output Compare Register A High
132
(0x88)
OCR1AL
Timer/Counter1 Output Compare Register A Low
132
(0x87)
ICR1H
Timer/Counter1 Input Capture Register High
133
(0x86)
ICR1L
Timer/Counter1 Input Capture Register Low
133
343
132
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
(0x85)
TCNT1H
Timer/Counter1 High
(0x84)
TCNT1L
Timer/Counter1 Low
(0x83)
Reserved
-
-
-
(0x82)
TCCR1C
FOC1A
FOC1B
-
-
-
-
-
-
131
(0x81)
TCCR1B
ICNC1
ICES1
-
WGM13
WGM12
CS12
CS11
CS10
130
128
-
-
132
132
-
-
-
(0x80)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
-
-
WGM11
WGM10
(0x7F)
DIDR1
-
-
-
-
-
-
AIN1D
AIN0D
205
(0x7E)
DIDR0
ADC7D
ADC6D
ADC5D
ADC4D
ADC3D
ADC2D
ADC1D
ADC0D
222
(0x7D)
Reserved
-
-
-
-
-
-
-
-
(0x7C)
ADMUX
REFS1
REFS0
ADLAR
MUX4
MUX3
MUX2
MUX1
MUX0
218
(0x7B)
ADCSRB
-
ACME
-
-
-
ADTS2
ADTS1
ADTS0
204/222
(0x7A)
ADCSRA
ADEN
ADSC
ADATE
ADIF
ADIE
ADPS2
ADPS1
ADPS0
(0x79)
ADCH
(0x78)
ADCL
(0x77)
Reserved
-
-
-
-
-
-
-
-
(0x76)
Reserved
-
-
-
-
-
-
-
-
(0x75)
Reserved
-
-
-
-
-
-
-
-
(0x74)
Reserved
-
-
-
-
-
-
-
-
(0x73)
PCMSK3
-
PCINT30
PCINT29
PCINT28
PCINT27
PCINT26
PCINT25
PCINT24
(0x72)
Reserved
-
-
-
-
-
-
-
-
(0x71)
Reserved
-
-
-
-
-
-
-
-
(0x70)
TIMSK2
-
-
-
-
-
-
OCIE2A
TOIE2
(0x6F)
TIMSK1
-
-
ICIE1
-
-
OCIE1B
OCIE1A
TOIE1
133
(0x6E)
TIMSK0
-
-
-
-
-
-
OCIE0A
TOIE0
104
(0x6D)
PCMSK2
PCINT23
PCINT22
PCINT21
PCINT20
PCINT19
PCINT18
PCINT17
PCINT16
62
(0x6C)
PCMSK1
PCINT15
PCINT14
PCINT13
PCINT12
PCINT11
PCINT10
PCINT9
PCINT8
62
(0x6B)
PCMSK0
PCINT7
PCINT6
PCINT5
PCINT4
PCINT3
PCINT2
PCINT1
PCINT0
62
(0x6A)
Reserved
-
-
-
-
-
-
-
-
(0x69)
EICRA
-
-
-
-
-
-
ISC01
ISC00
(0x68)
Reserved
-
-
-
-
-
-
-
-
(0x67)
Reserved
-
-
-
-
-
-
-
-
(0x66)
OSCCAL
(0x65)
Reserved
-
-
-
-
-
-
-
-
ADC Data Register High
220
221
ADC Data Register Low
221
Oscillator Calibration Register [CAL7..0]
62
152
59
36
(0x64)
PRR
-
-
-
-
PRTIM1
PRSPI
PSUSART0
PRADC
(0x63)
Reserved
-
-
-
-
-
-
-
-
44
(0x62)
Reserved
-
-
-
-
-
-
-
-
(0x61)
CLKPR
CLKPCE
-
-
-
CLKPS3
CLKPS2
CLKPS1
CLKPS0
36
(0x60)
WDTCR
-
-
-
WDCE
WDE
WDP2
WDP1
WDP0
51
I
T
H
S
V
N
Z
C
0x3F (0x5F)
SREG
0x3E (0x5E)
SPH
0x3D (0x5D)
SPL
0x3C (0x5C)
Reserved
-
-
-
-
-
-
-
-
0x3B (0x5B)
Reserved
-
-
-
-
-
-
-
-
0x3A (0x5A)
Reserved
-
-
-
-
-
-
-
-
0x39 (0x59)
Reserved
-
-
-
-
-
-
-
-
0x38 (0x58)
Reserved
-
-
-
-
-
-
-
-
0x37 (0x57)
SPMCSR
SPMIE
RWWSB
-
RWWSRE
BLBSET
PGWRT
PGERS
SPMEN
269
0x36 (0x56)
Reserved
56/85/255
Stack Pointer High
13
15
Stack Pointer Low
15
0x35 (0x55)
MCUCR
JTD
BODS
BODSE
PUD
-
-
IVSEL
IVCE
0x34 (0x54)
MCUSR
-
-
-
JTRF
WDRF
BORF
EXTRF
PORF
50
0x33 (0x53)
SMCR
-
-
-
-
SM2
SM1
SM0
SE
43
0x32 (0x52)
Reserved
-
-
-
-
-
-
-
-
0x31 (0x51)
OCDR
IDRD/OCDR7
OCDR6
OCDR5
OCDR4
OCDR3
OCDR2
OCDR1
OCDR0
228
0x30 (0x50)
ACSR
ACD
ACBG
ACO
ACI
ACIE
ACIC
ACIS1
ACIS0
204
0x2F (0x4F)
Reserved
-
-
-
-
-
-
-
-
-
-
-
-
SPI2X
162
MSTR
CPOL
CPHA
SPR1
SPR0
160
0x2E (0x4E)
SPDR
0x2D (0x4D)
SPSR
SPIF
WCOL
-
SPI Data Register
0x2C (0x4C)
SPCR
SPIE
SPE
DORD
0x2B (0x4B)
GPIOR2
General Purpose I/O Register
0x2A (0x4A)
GPIOR1
General Purpose I/O Register
0x29 (0x49)
Reserved
-
-
-
0x28 (0x48)
Reserved
-
-
-
0x27 (0x47)
OCR0A
162
27
27
-
-
-
-
-
-
-
-
-
-
Timer/Counter0 Output Compare A
104
344
8023FS–AVR–07/09
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
COM0A0
WGM01
CS02
CS01
CS00
102
-
-
-
PSR2
PSR10
105/153
-
-
0x26 (0x46)
TCNT0
Timer/Counter0
0x25 (0x45)
Reserved
-
-
-
-
0x24 (0x44)
TCCR0A
FOC0A
WGM00
COM0A1
0x23 (0x43)
GTCCR
TSM
-
-
0x22 (0x42)
EEARH
-
-
-
0x21 (0x41)
EEARL
EEPROM Address Register Low
0x20 (0x40)
EEDR
EEPROM Data Register
0x1F (0x3F)
EECR
-
-
-
-
Page
104
EERIE
EEPROM Address Register High
23
23
23
EEMWE
EEWE
EERE
24
0x1E (0x3E)
GPIOR0
0x1D (0x3D)
EIMSK
PCIE3
PCIE2
PCIE1
General Purpose I/O Register
PCIE0
-
-
-
INT0
28
60
0x1C (0x3C)
EIFR
PCIF3
PCIF2
PCIF1
PCIF0
-
-
-
INTF0
61
0x1B (0x3B)
Reserved
-
-
-
-
-
-
-
-
0x1A (0x3A)
Reserved
-
-
-
-
-
-
-
-
0x19 (0x39)
Reserved
-
-
-
-
-
-
-
-
0x18 (0x38)
Reserved
-
-
-
-
-
-
-
-
0x17 (0x37)
TIFR2
-
-
-
-
-
-
OCF2A
TOV2
153
0x16 (0x36)
TIFR1
-
-
ICF1
-
-
OCF1B
OCF1A
TOV1
133
0x15 (0x35)
TIFR0
-
-
-
-
-
-
OCF0A
TOV0
105
0x14 (0x34)
PORTG
-
-
-
PORTG4
PORTG3
PORTG2
PORTG1
PORTG0
87
0x13 (0x33)
DDRG
-
-
-
DDG4
DDG3
DDG2
DDG1
DDG0
87
0x12 (0x32)
PING
0x11 (0x31)
PORTF
-
-
PING5
PING4
PING3
PING2
PING1
PING0
87
PORTF7
PORTF6
PORTF5
PORTF4
PORTF3
PORTF2
PORTF1
PORTF0
87
0x10 (0x30)
DDRF
DDF7
DDF6
DDF5
DDF4
DDF3
DDF2
DDF1
DDF0
87
0x0F (0x2F)
PINF
PINF7
PINF6
PINF5
PINF4
PINF3
PINF2
PINF1
PINF0
87
0x0E (0x2E)
PORTE
PORTE7
PORTE6
PORTE5
PORTE4
PORTE3
PORTE2
PORTE1
PORTE0
86
0x0D (0x2D)
DDRE
DDE7
DDE6
DDE5
DDE4
DDE3
DDE2
DDE1
DDE0
86
0x0C (0x2C)
PINE
PINE7
PINE6
PINE5
PINE4
PINE3
PINE2
PINE1
PINE0
87
0x0B (0x2B)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
86
0x0A (0x2A)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
86
0x09 (0x29)
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
86
0x08 (0x28)
PORTC
PORTC7
PORTC6
PORTC5
PORTC4
PORTC3
PORTC2
PORTC1
PORTC0
86
0x07 (0x27)
DDRC
DDC7
DDC6
DDC5
DDC4
DDC3
DDC2
DDC1
DDC0
86
0x06 (0x26)
PINC
PINC7
PINC6
PINC5
PINC4
PINC3
PINC2
PINC1
PINC0
86
0x05 (0x25)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
85
0x04 (0x24)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
85
0x03 (0x23)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
85
0x02 (0x22)
PORTA
PORTA7
PORTA6
PORTA5
PORTA4
PORTA3
PORTA2
PORTA1
PORTA0
85
0x01 (0x21)
DDRA
DDA7
DDA6
DDA5
DDA4
DDA3
DDA2
DDA1
DDA0
85
0x00 (0x20)
PINA
PINA7
PINA6
PINA5
PINA4
PINA3
PINA2
PINA1
PINA0
85
Notes:
345
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega325P/3250P is
a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for
the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
29. Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
2
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) <<
1
R1:R0 ← (Rd x Rr) << 1
R1:R0 ← (Rd x Rr) << 1
Z,C
2
Z,C
2
Z,C
2
2
FMULS
Rd, Rr
Fractional Multiply Signed
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
BRANCH INSTRUCTIONS
RJMP
k
IJMP
Relative Jump
PC ← PC + k + 1
None
Indirect Jump to (Z)
PC ← Z
None
2
JMP
k
Direct Jump
PC ← k
None
3
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
Indirect Call to (Z)
PC ← Z
None
3
Direct Subroutine Call
PC ← k
None
4
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
ICALL
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
1/2/3
1
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
346
8023FS–AVR–07/09
Mnemonics
Operands
Description
Operation
Flags
#Clocks
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
IN
Rd, P
In Port
Rd ← P
None
1
OUT
P, Rr
Out Port
P ← Rr
None
1
SPM
347
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
Mnemonics
Operands
Description
Operation
Flags
#Clocks
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
POP
Rd
Pop Register from Stack
Rd ← STACK
None
2
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
348
8023FS–AVR–07/09
30. Ordering Information
30.1
ATmega325P
Speed (MHz)(3)
Power Supply
10
1.8 - 5.5V
ATmega325PV-10AU
ATmega325PV-10MU
64A
64M1
Industrial
(-40⋅C to 85⋅C)
20
2.7 - 5.5V
ATmega325P-20AU
ATmega325P-20MU
64A
64M1
Industrial
(-40⋅C to 85⋅C)
Notes:
Ordering Code(2)
Package Type(1)
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC see Figure 26-1 on page 306 and Figure 26-2 on page 306.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
349
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
30.2
ATmega3250P
Speed (MHz)(3)
Power Supply
10
1.8 - 5.5V
ATmega3250PV-10AU
100A
Industrial
(-40⋅C to 85⋅C)
20
2.7 - 5.5V
ATmega3250P-20AU
100A
Industrial
(-40⋅C to 85⋅C)
Notes:
Ordering Code(2)
Package Type(1)
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC see Figure 26-1 on page 306 and Figure 26-2 on page 306.
Package Type
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
350
8023FS–AVR–07/09
31. Packaging Information
31.1
64A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0°~7°
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1.This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
E1
13.90
14.00
14.10
B
0.30
–
0.45
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.80 TYP
10/5/2001
R
351
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
REV.
64A
B
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
31.2
64M1
D
Marked Pin# 1 ID
E
C
SEATING PLANE
A1
TOP VIEW
A
K
0.08 C
L
Pin #1 Corner
D2
1
2
3
Option A
SIDE VIEW
Pin #1
Triangle
COMMON DIMENSIONS
(Unit of Measure = mm)
E2
Option B
Pin #1
Chamfer
(C 0.30)
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
–
0.02
0.05
0.18
0.25
0.30
A1
b
K
Option C
b
e
Pin #1
Notch
(0.20 R)
BOTTOM VIEW
Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
2. Dimension and tolerance conform to ASMEY14.5M-1994.
D
8.90
9.00
9.10
D2
5.20
5.40
5.60
E
8.90
9.00
9.10
E2
5.20
5.40
5.60
e
NOTE
0.50 BSC
L
0.35
0.40
0.45
K
1.25
1.40
1.55
5/25/06
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
64M1
REV.
G
352
8023FS–AVR–07/09
31.3
100A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0˚~7˚
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1. This package conforms to JEDEC reference MS-026, Variation AED.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.08 mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
E1
13.90
14.00
14.10
B
0.17
–
0.27
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.50 TYP
10/5/2001
R
353
2325 Orchard Parkway
San Jose, CA 95131
TITLE
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
100A
REV.
C
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
32. Errata
32.1
ATmega325P rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer.
• Using BOD disable will make the chip reset.
1. Interrupts may be lost when writing the timer registers in the asynchronous timer.
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.
Problem Fix/Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
2. Using BOD disable will make the chip reset.
If the part enters sleep with the BOD turned off with the BOD disable option
enabled, a BOD reset will be generated at wakeup and the chip will reset.
Problem Fix/Workaround
Do not use BOD disable
32.2
ATmega325P rev. B
• Interrupts may be lost when writing the timer registers in the asynchronous timer.
1. Interrupts may be lost when writing the timer registers in the asynchronous timer.
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.
Problem Fix/Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
32.3
ATmega325P rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer.
1. Interrupts may be lost when writing the timer registers in the asynchronous timer.
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.
Problem Fix/Workoround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
354
8023FS–AVR–07/09
32.4
ATmega3250P rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer.
• Using BOD disable will make the chip reset.
1. Interrupts may be lost when writing the timer registers in the asynchronous timer.
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.
Problem Fix/Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
2. Using BOD disable will make the chip reset.
If the part enters sleep with the BOD turned off with the BOD disable option
enabled, a BOD reset will be generated at wakeup and the chip will reset.
Problem Fix/Workaround
Do not use BOD disable
32.5
ATmega3250P rev. B
• Interrupts may be lost when writing the timer registers in the asynchronous timer.
1. Interrupts may be lost when writing the timer registers in the asynchronous timer.
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.
Problem Fix/Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
32.6
ATmega3250P rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer.
1. Interrupts may be lost when writing the timer registers in the asynchronous timer.
The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.
Problem Fix/Workaround
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
355
ATmega325P/3250P
8023FS–AVR–07/09
ATmega325P/3250P
33. Datasheet Revision History
Please note that the referring page numbers in this section are referring to this document.The
referring revision in this section are referring to the document revision.
33.1
Rev.8023F– 07/09
1.
2.
33.2
Rev.8023E– 06/08
1.
2.
3.
4.
5.
6.
7.
33.3
Updated ”Errata” on page 354.
Rev.8023B – 08/07
1.
2.
3.
4.
33.6
Added ”Data Retention” on page 10.
Updated Device and JTAG ID in ”Signature Bytes” on page 274.
Rev.8023C – 08/07
1.
33.5
Updated description of ”Stack Pointer” on page 15.
Updated description of ”Low-frequency Crystal Oscillator” on page 32.
Added notes to the overview section of ”External Interrupts” on page 58.
Updated address of ”PORTA – Port A Data Register” on page 85.
Bullet five updated in ”Asynchronous Operation of Timer/Counter2” on page 147.
Updated ”System and Reset Characterizations” on page 308.
Added Errata for ”ATmega325P rev. C” on page 354 and ”ATmega3250P rev. C” on
page 355.
Rev.8023D – 08/07
1.
2.
33.4
Updated ”Errata” on page 354.
Updated the last page with Atmel’s new addresses.
Updated ”Features” on page 1.
Updated DEVICE and JTAG ID in Table 25-6 on page 274
Updated ”System and Reset Characterizations” on page 308.
Updated ”Typical Characteristics” on page 314
Rev.8023A – 12/06
1.
Initial version.
356
8023FS–AVR–07/09