Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS General Description Features The AZ358 consists of two independent, high gain and internally frequency compensated operational amplifiers, it is specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages. · · · · · · AZ358 Internally frequency compensation Large voltage gain Low input bias current Low input offset voltage Large output voltage swing Wide power supply voltage range: Single supply 3V to 18V or dual supplies ± 1.5V to ± 9V Low supply current drain: 500uA Compatible with industry standard 358 · · Applications DIP-8 Battery Charger Cordless Telephone Switching Power Supply · · · SOIC-8 Figure 1. Package Types of AZ358 Pin Configuration M Package/P Package (SOIC-8/DIP-8) OUTPUT 1 1 8 Vcc INPUT 1- 2 7 OUTPUT 2 INPUT 1+ 3 6 INPUT 2- GND 4 5 INPUT 2+ Top View Figure 2. Pin Configuration of AZ358 Issue Date: Jan. 2003 1 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Functional Block Diagram 6uA 4uA 100uA Q5 Q6 Q2 - Q3 Cc Q7 Q4 Q1 Rsc INPUTS + OUTPUT Q13 Q11 Q10 Q8 Q9 Q12 50uA Figure 3. Functional Block Diagram of AZ358 (Each Amplifier) Ordering Information Package SOIC-8 DIP-8 Temperature Range Issue Date: Jan. 2003 -40 oC~85 oC Part Number AZ358M AZ358P 2 Packing Type Tube/Reel Tube Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Absolute Maximum Ratings (Note 1) (Operation temperature range applies unless otherwise specified.) Parameter Symbol Value Unit Power Supply Voltage VCC 20 V Differential Input Voltage VID 20 V Input Voltage VIC -0.3 to 20 V Input Current (VIN<-0.3V) (Note 2) IIN 50 mA Output Short-Circuit to Ground (One Amplifier) (Note 3) VCC ≤ 12V an TA = 25oC Power Dissipation Continuous PD DIP-8 830 SOIC-8 550 mW Operating Temperature Range TOP -40 to 85 o C Storage Temperature Range TSTG -65 to 150 o C Lead Temperature (Soldering, 10 Seconds) 260 o C ESD (Machine Mode) 200 V Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operation Ratings" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability. Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at 25oC) Note 3: Short circuits from the output to VCC can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude of VCC. At values of supply voltage in excess of +12V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. Issue Date: Jan. 2003 3 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Electrical Characteristics Vcc=5V, GND=0, TA=25oC unless otherwise specified. Parameter Symbol Input Offset Voltage Input Bias Current (Note 4) VIO Test Conditions Min. Vo:1.4V,RS: 0Ω,VCC: 5V to 15V Typ. Max. Unit 2 5 mV IBIAS IIN+ or IIN-, VCM=0V 20 200 nA Input Offset Current IIO IIN+ or IIN-, VCM=0V 5 50 nA Input Common Mode Voltage Range (Note 5) VIR VCC=15V VCC-1.5 V Supply Current ICC RL=∞, Over full VCC=15V temperature range on all OP VCC=5V Amps Large Signal Voltage Gain GV 0 0.7 1.5 0.5 1.2 mA VCC=15V, RL≥2Κ, V0=1V to 11V 80 90 dB Common Mode Rejection Ratio CMRR VCM=0V to (VCC-1.5)V 70 90 dB Power Supply Rejection Ration PSRR VCC=5V to 15V 70 90 dB -120 dB Channel Separation (Note 6) Source CS f=1KHz to 20KHz ISOURCE V+=1V,V-=0V, VCC=15V,V0=2V 20 45 mA V+=0V,V-=1V, VCC=15V, V0=2V 10 20 mA V+=0V,V-=1V, VCC=15V,V0=200mV 12 50 uA Output Current Sink Short Circuit to Ground Output Voltage Swing ISINK ISC VOH VOL VCC=15V 45 VCC=15V, RL=2K 12 VCC=15V, RL=10K 12.5 VCC=5V, RL=10K 60 V 13.5 5 mA 20 mV Note 4: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25oC). The upper end of the common-mode voltage range is VCC - 1.5V (at 25oC), but either or both inputs can go to +18V without damages, independent of the magnitude of the VCC. Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitors between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies. Issue Date: Jan. 2003 4 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Typical Characteristics 30 7 6 NEGATIVE 5 4 POSITIVE 3 2 1 0 0 2 4 25 IB - INPUT CURRENT (nADC) ±VIN - INPUT VOLTAGE (±VDC) 8 6 VCC=15V 20 15 10 5 0 -40 8 -20 0 3.5 VCC 80 100 120 3.0 A mA ID 2.5 2.0 1.5 o 1.0 110 AVOL - VOLTAGE GAIN (dB) ID - SUPPLY CURRENT DRAIN (mADC) 60 120 4.0 o TA:0 C TO 85 C 0.5 100 80 70 60 0 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 VOUT - OUTPUT VOLTAGE (V) Figure 7. Voltage Gain 110 o 0 VCC - POWER SUPPLY VOLTAGE (V) Figure 6. Supply Current 100 RL=2KΩ RL=20KΩ 90 VCC - POWER SUPPLY VOLTAGE (VDC) o VCC: 10V TO 15VDC TA: -40 C TO 85 C 90 80 70 3 VCC =15V 2 RL = 2KΩ 1 0 3 60 R 10M 50 40 0.1uF VCC VO 30 20 VIN - INPUT VOLTAGE (V) AVOL - VOLTAGE GAIN (dB) 40 Figure 5. Input Current Figure 4. Input Voltage Range 0.0 20 TA - TEMPERATURE (oC) VCC - POWER SUPPLY VOLTAGE (±VDC) VCC/2 VIN 10 0 1HZ 10HZ 100HZ 1kHZ 10kHZ 100kHZ 1MHZ 1 0 0 f - FREQUENCY (Hz) 10 20 30 40 50 t - TIME (uS) Figure 8. Open Loop Frequency Response Issue Date: Jan. 2003 2 Figure 9. Voltage Follower Pulse Response 5 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Typical Characteristics (Continued) TA = 25oC 550 500 20 VOUT VCC = 15V VO - OUTPUT SWING (VP-P) VOUT - OUTPUT VOLTAGE (mV) 600 VIN 50pF 450 Input 400 Output 350 300 R 100K +15 VDC R 1K 15 VO +7VDC VIN R 2K 10 5 250 0 10 20 30 40 0 1K 50 10K 100K 1000K f - FREQUENCY (Hz) t - TIME (uS) Figure 10. Voltage Follower Pulse Response (Small Signal) Figure 11. Large Signal Frequency Response 10 8 6 VO - OUTPUT VOLTAGE (VDC) VO - OUTPUT VOLTAGE REFERENCE TO VCC (VDC) o 7 VCC VCC/2 VO 5 IO 4 3 INDEPENDENT OF VCC o TA = 25 C 2 1 1E-3 0.01 0.1 1 10 TA = 25 C 1 VCC = 5V IO - OUTPUT SOURCE CURRENT (mADC) VCC IO VCC/2 Vo 0.01 1E-3 100 V CC = 15V 0.1 0.01 0.1 1 10 100 IO - OUTPUT SINK CURRENT (mADC) Figure 12. Output Characteristics Current Sourcing Figure 13. Output Characteristics Current Sinking IO - OUTPUT CURRENT (mADC) 100 90 80 70 60 50 IO 40 30 20 10 0 -40 -20 0 20 40 60 80 TA - TEMPERATURE (oC) Figure 14. Current Limiting Issue Date: Jan. 2003 6 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Typical Application R1 Opto Isolator + VCC 1/2 AZ358 AC Line - SMPS Battery Pack GND R6 R5 R4 R3 R7 Current R2 Sense - VCC 1/2 AZ358 + GND AZ431 R8 Figure 15. Battery Charger R1 910K R1 100K +V1 R2 100K R3 91K VCC 1/2 AZ358 + VIN(+) +V2 R3 100K VO +V4 Figure 16. Power Amplifier R5 100K 1/2 AZ358 VO R6 100K +V3 RL Issue Date: Jan. 2003 + R2 100K R4 100K Figure 17. DC Summing Amplifier 7 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Typical Application (Continued) R2 1M R1 100K C1 0.1uF VCC - CO 1/2 AZ358 AC + 2V - R3 2K VO RB 6.2K + R3 51K + 2V RL 10K R1 2K R2 1/2 AZ358 R4 51K VCC R5 51K I1 + R4 3K AV=1+R2/R1 I2 1mA AV=11 (As shown) Figure 18. AC Coupled Non-Inverting Amplifier R1 Figure 19. Fixed Current Sources 1M C1 0.01uF 0.001uF R2 100K R1 16K 1/2 AZ358 + VO C2 0.01uF + R3 100K 1/2 AZ358 - R5 100K R3 100k V0 VCC R4 100 K 0 Figure 20. Pulse Generator Issue Date: Jan. 2003 R2 16K VIN f0 fo=1KHz Q=1 AV=2 R4 100k Figure 21. DC Coupled Low-Pass Active Filter 8 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Mechanical Dimensions DIP-8 9.2±0.10 7.62±0.25 5° 0.7 6° 6° 4° 3.30±0.30 1.46±0.31 4° φ3×0.15±0.05 0.254 0.457 0.28±0.07 2.54 10.0MAX R0.75 Issue Date: Jan. 2003 6.60±0.50 0.13MIN 9 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER DUAL OPERATIONAL AMPLIFIERS AZ358 Mechanical Dimensions (Continued) 0.2±0.10 7° 0.70±0.025 4.9±0.10 7° 0.32 0.22±0.03 1.55±0.20 SOIC-8 8° 8° D 6.00±0.20 D φ0.8 0.20 20:1 0.90 3.90±0.10 4° ±4° 1.00 R0.15 R0.15 3° ±2° 0.42±0.09 Issue Date: Jan. 2003 10 Rev. 1.0 Advanced Analog Circuits http://www.aacmicro.com USA: 1510 Montague Expressway, San Jose, CA 95131, USA Tel: 408-433-9888,Fax: 408-432-9888 China: 8th Floor, Zone B, 900 Yi Shan Road,Shanghai 200233, China Tel: 86-21-6495-9539, Fax: 86-21-6485-9673 Taiwan: 8F, No.50, Lane10, Kee Hu Road, Nei Hu, TaiPei 114, Taiwan Tel: 886-2-2657-8811, Fax: 886-2-2657-9090 IMPORTANT NOTICE Advanced Analog Circuits Corporation reserves the right to make changes to its products or specifications at any time, without notice, to improve design or performance and to supply the best possible product. Advanced Analog Circuits does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Advanced Analog Circuits' products. The company makes no representation that circuitry described herein is free from patent infringement or other rights of Advanced Analog Circuits Corporation.