BCR158.../SEMB10 PNP Silicon Digital Transistor • Switching circuit, inverter, interface circuit, driver circuit • Built in bias resistor (R1=2.2kΩ, R2=47kΩ) • For 6-PIN packages: two (galvanic) internal isolated transistors with good matching in one package BCR158/F/L3 BCR158T/W SEMB10 C C1 B2 3 6 5 E2 4 R2 R1 R1 TR2 TR1 R2 R1 R2 2 1 2 3 E E1 B1 C2 1 B EHA07183 EHA07173 Type Marking Pin Configuration BCR158 WIs 1=B 2=E 3=C - - - SOT23 BCR158L3 WI 1=B 2=E 3=C - - - TSFP-3 BCR158F WIs 1=B 2=E 3=C - - - TSFP-3 BCR158T WIs 1=B 2=E 3=C - - - SC75 BCR158W WIs 1=B 2=E 3=C - - - SOT323 SEMB10 W5 1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT666 1 Package May-18-2004 BCR158.../SEMB10 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO 50 Collector-base voltage VCBO 50 Emitter-base voltage VEBO 5 Input on voltage Vi(on) 10 Collector current IC 100 Total power dissipation- Ptot Value 200 BCR158F, TS ≤ 128°C 250 BCR158L3, TS ≤ 135°C 250 BCR158T, TS ≤ 109°C 250 BCR158W, TS ≤ 124°C 250 SEMB10, T S ≤ 75°C 250 Tj Storage temperature Tstg Thermal Resistance Parameter Junction - soldering point 1) Symbol RthJS V mA mW BCR158, TS ≤ 102°C Junction temperature Unit 150 °C -65 ... 150 Value BCR158 ≤ 240 BCR158F ≤ 90 BCR158L3 ≤ 60 BCR158T ≤ 165 BCR158W ≤ 105 SEMB10 ≤ 300 Unit K/W 1For calculation of R thJA please refer to Application Note Thermal Resistance 2 May-18-2004 BCR158.../SEMB10 Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. DC Characteristics Collector-emitter breakdown voltage V(BR)CEO 50 V IC = 100 µA, IB = 0 Collector-base breakdown voltage V(BR)CBO 50 - - I CBO - - 100 nA I EBO - - 164 µA h FE 70 - - - - - 0.3 V Vi(off) 0.4 - 0.8 Vi(on) 0.5 - 1.1 Input resistor R1 1.5 2.2 2.9 Resistor ratio R1/R 2 0.042 0.047 fT - 200 - MHz Ccb - 3 - pF IC = 10 µA, IE = 0 Collector-base cutoff current VCB = 40 V, IE = 0 Emitter-base cutoff current VEB = 5 V, IC = 0 DC current gain1) IC = 5 mA, VCE = 5 V Collector-emitter saturation voltage1) VCEsat IC = 10 mA, IB = 0.5 mA Input off voltage IC = 100 µA, VCE = 5 V Input on voltage IC = 2 mA, VCE = 0.3 V kΩ 0.052 - AC Characteristics Transition frequency IC = 10 mA, VCE = 5 V, f = 100 MHz Collector-base capacitance VCB = 10 V, f = 1 MHz 1Pulse test: t < 300µs; D < 2% 3 May-18-2004 BCR158.../SEMB10 DC current gain hFE = ƒ(IC) VCE = 5V (common emitter configuration) Collector-emitter saturation voltage VCEsat = ƒ(IC), hFE = 20 10 2 10 3 - 10 2 IC h FE mA 10 1 10 1 10 0 -1 10 10 0 10 1 mA 10 10 0 0 2 0.1 0.2 V 0.3 IC 0.5 VCEsat Input on Voltage Vi(on) = ƒ(I C) VCE = 0.3V (common emitter configuration) Input off voltage V i(off) = ƒ(IC) VCE = 5V (common emitter configuration) 10 1 10 2 mA mA 10 0 IC IC 10 1 10 -1 10 0 10 -2 10 -1 -1 10 10 0 10 1 V 10 10 -3 0.1 2 Vi(on) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 V 1 Vi(off) 4 May-18-2004 BCR158.../SEMB10 Total power dissipation Ptot = ƒ(TS) BCR158 Total power dissipation Ptot = ƒ(TS) BCR158F 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 20 40 60 80 100 TS 150 TS Total power dissipation Ptot = ƒ(TS) BCR158L3 Total power dissipation Ptot = ƒ(TS) BCR158T 300 300 mW mW 200 Ptot Ptot 120 °C 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 TS 20 40 60 80 100 120 °C 150 TS 5 May-18-2004 BCR158.../SEMB10 Total power dissipation Ptot = ƒ(TS) BCR158W Total power dissipation Ptot = ƒ(TS) SEMB10 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 120 °C 100 0 0 150 20 40 60 80 120 °C 100 TS 150 TS Permissible Pulse Load RthJS = ƒ(tp ) BCR158 Permissible Pulse Load Ptotmax/P totDC = ƒ(tp) BCR158 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 6 May-18-2004 BCR158.../SEMB10 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR158F Ptotmax/P totDC = ƒ(tp) BCR158F 10 2 10 3 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 1 10 0 10 -1 -6 10 P totmax/P totDC RthJS K/W 10 -5 10 -4 10 -3 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 10 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 s tp Permissible Pulse Load BCR158L3 Ptotmax/P totDC = ƒ(tp) BCR158L3 10 0 10 3 Ptotmax/ PtotDC RthJS 10 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -7 10 0 tp Permissible Puls Load RthJS = ƒ (tp) 10 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 2 10 1 s 10 10 0 -7 10 0 tp 10 -6 10 -5 10 -4 10 -3 10 -2 s tp 7 May-18-2004 BCR158.../SEMB10 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR158T Ptotmax/P totDC = ƒ(tp) BCR158T 10 3 10 3 P totmax / P totDC K/W RthJS 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 1 10 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 tp s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR158W Ptotmax/P totDC = ƒ(tp) BCR158W 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 8 May-18-2004 BCR158.../SEMB10 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load SEMB10 Ptotmax/P totDC = ƒ(tp) SEMB10 10 3 10 3 P totmax/ P totDC K/W RthJS 10 2 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 1 10 0 10 -1 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 s 10 10 0 -7 10 0 tp 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 9 May-18-2004