INFINEON BF995

Silicon N Channel MOSFET Tetrode
●
BF 995
For input and mixer stages in FM and
VHF TV tuners
Type
Marking
Ordering Code
(tape and reel)
Pin Configuration
1
2
3
4
Package1)
BF 995
MB
Q62702-F936
S
SOT-143
D
G2
G1
Maximum Ratings
Parameter
Symbol
Values
Unit
Drain-source voltage
VDS
20
V
Drain current
ID
30
mA
Gate 1/gate 2 peak source current
±
10
Total power dissipation, TS < 76 ˚C
Ptot
200
Storage temperature range
Tstg
– 55 … + 150 ˚C
Channel temperature
Tch
150
Rth JS
< 370
IG1/2SM
mW
Thermal Resistance
Junction - soldering point
1)
K/W
For detailed information see chapter Package Outlines.
Semiconductor Group
1
07.94
BF 995
Electrical Characteristics
at TA = 25 ˚C, unless otherwise specified.
Parameter
Symbol
Values
Unit
min.
typ.
max.
DC Characteristics
Drain-source breakdown voltage
ID = 10 µA, – VG1S = – VG2S = 4 V
V(BR) DS
20
–
–
Gate 1 source breakdown voltage
± IG1S = 10 mA, VG2S = VDS = 0
±
V(BR) G1SS
8.5
–
14
Gate 2 source breakdown voltage
± IG2S = 10 mA, VG1S = VDS = 0
±
V(BR) G2SS
8.5
–
14
Gate 1 source leakage current
± VG1S = 5 V, VG2S = VDS = 0
±
IG1SS
–
–
50
Gate 2 source leakage current
± VG2S = 5 V, VG1S = VDS = 0
±
IG2SS
–
–
50
Drain current
VDS = 15 V, VG1S = 0, VG2S = 4 V
IDSS
4
–
20
mA
Gate 1 source pinch-off voltage
VDS = 15 V, VG2S = 4 V, ID = 20 µA
– VG1S (p)
–
–
2.5
V
Gate 2 source pinch-off voltage
VDS = 15 V, VG1S = 0, ID = 20 µA
– VG2S (p)
–
–
2.0
Semiconductor Group
2
V
nA
BF 995
Electrical Characteristics
at TA = 25 ˚C, unless otherwise specified.
Parameter
Symbol
Values
Unit
min.
typ.
max.
AC Characteristics
Forward transconductance
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 kHz
gfs
12
17
–
mS
Gate 1 input capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz
Cg1ss
–
3.6
–
pF
Gate 2 input capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz
Cg2ss
–
1.6
–
Feedback capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz
Cdg1
–
25
–
fF
Output capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz
Cdss
–
1.6
–
pF
Power gain
VDS = 15 V, ID = 10 mA
f = 200 MHz, GG = 2 mS, GL = 0.5 mS
2 ∆f = 12 MHz
(see test circuit 1)
Gps
–
23
–
dB
Noise figure
VDS = 15 V, ID = 10 mA
f = 200 MHz, GG = 2 mS, GL = 0.5 mS
(see test circuit 1)
F
–
1.1
–
Gain control range
VDS = 15 V, VG2S = 4 … – 2 V, f = 200 MHz
(see test circuit 1)
∆ Gps
–
50
–
Mixer gain (additive)
VDS = 15 V, VG2S = 6 V, RS = 220 Ω
f = 200 MHz, f IF = 36 MHz
2 ∆fIF = 5 MHz, Vosc = 0.5 V
(see test circuit 2)
Gpsc
–
16
–
Mixer gain (multiplicative)
VDS = 15 V, VG1S = 1.7 V, VG2S = 2.5 V
RS = 220 Ω, f = 200 MHz, f IF = 36 MHz
2 ∆fIF = 5 MHz, Vosc = 2 V
(see test circuit 3)
Gpsc
–
18
–
Semiconductor Group
3
BF 995
Total power dissipation Ptot = f (TA)
Output characteristics ID = f (VDS)
VG2S = 4 V
Gate 1 forward transconductance
gfs1 = f (VG1S)
VDS = 15 V, IDSS = 10 mA, f = 1 kHz
Gate 1 forward transconductance
gfs1 = f (VG2S)
VDS = 15 V, IDSS = 10 mA, f = 1 kHz
Semiconductor Group
4
BF 995
Drain current ID = f (VG1S)
VDS = 15 V
Gate 1 input capacitance Cg1ss = f (VG1S)
VG2S = 4 V, VDS = 15 V
IDSS = 10 mA, f = 1 MHz
Gate 2 input capacitance C g2ss = f (VG2S)
VG1S = 0 V, VDS = 15 V
IDSS = 10 mA, f = 1 MHz
Output capacitance Cdss = f (VDS)
VG1S = 0 V, VG2S = 4 V
IDSS = 10 mA, f = 1 MHz
Semiconductor Group
5
BF 995
Gate 1 input admittance y11s
VDS = 15 V, VG2S = 4 V
(common source)
Gate 1 forward transfer admittance y21s
VDS = 15 V, VG2S = 4 V
(common source)
Output admittance y22s
VDS = 15 V, VG2S = 4 V
(common source)
Semiconductor Group
6
BF 995
Power gain Gps = f (VG2S)
VDS = 15 V, VG1S = 0 V, IDSS = 10 mA
f = 200 MHz (see test circuit 1)
Noise figure F = f (VG2S)
VDS = 15 V, VG1S = 0 V, IDSS = 10 mA
f = 200 MHz (see test circuit 1)
Interference voltage for 1% cross
modulation Vint (1%) = f (∆Gps)1)
VDS = 15 V, VG1S = 0, f = 200 MHz
fint = 221 MHz (see test circuit 1)
Interference voltage for 1% cross
modulation Vint (1%) = f (fint)1)
VDS = 15 V, VG2S = 4 V, VG1S = 0
f = 200 MHz (see test circuit 1)
1)
For footnote refer to the last page of this data sheet.
Semiconductor Group
7
BF 995
Mixer gain (additive) Gpsc = f (Vosc)
VD = 15 V, VG1S = 0, VG2S = 6 V
RS = 220 Ω, IDSS = 10 mA, f = 200 MHz
fIF = 36 MHz (see test circuit 2)
Mixer gain (additive) Gpsc = f (VG2S)
VD = 15 V, VG1S = 0, RS = 220 Ω
Vosc = 0.5 V, IDSS = 10 mA, f = 200 MHz
fIF = 36 MHz (see test circuit 2)
Mixer gain (additive) Gpsc = f (RS)
VD = 15 V, VG1S = 0, VG2S = 6 V
Vosc = 0.5 V, f = 200 MHz
f IF = 36 MHz (see test circuit 2)
Mixer gain (multiplicative) Gpsc = f (VG2S)
VD = 15 V, VG1S = 1.7 V, RS = 200 Ω
IDSS = 10 mA, f = 200 MHz
f IF = 36 MHz (see test circuit 3)
Semiconductor Group
8
BF 995
Test circuit 1 for power gain, noise figure and cross modulation
f = 200 MHz, GG = 2 mS, GL = 0.5 mS
Test circuit 2 for mixer gain (additive)
f = 200 MHz, fosc = 236 MHz, 2 ∆f FI = 5 MHz
Semiconductor Group
9
BF 995
Test circuit 3 for mixer gain (multiplicative)
f = 200 MHz, fosc = 236 MHz, 2 ∆fIF = 5 MHz
1)
Vint (1%) is the rms value of half the emf (terminal voltage at matching) of a 100 % sine modulated TV carrier at
an internal generator resistance of 60 Ω, causing 1 % amplitude modulation on the active carrier.
Semiconductor Group
10