INFINEON BG5412K

BG5412K
Dual N-Channel MOSFET Tetrode
• Designed for input stages of 2 band tuners
4
5
6
• Two AGC amplifiers in one single package,
with on-chip internal switch
1
2
3
• Only one switching line to control both FETs
• Integrated gate protection diodes
• Ultra low noise figure
• Excellent cross modulation at gain reduction
• Integrated ESD gate protection diodes
• Pb-free (RoHS compliant) package
• Qualified according AEC Q101
Detailed functional diagram on page 5
BG5412K
6
5
A
1
4
B
2
3
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BG5412K
Package
SOT363
Pin Configuration
1=G1* 2=G2
3=G1** 4=D**
5=S
Marking
6=D*
K2s
* For amp. A; ** for amp. B
180° rotated tape loading orientation available
1
2009-10-01
BG5412K
Maximum Ratings
Parameter
Symbol
Drain-source voltage
VDS
Continuous drain current
ID
Value
8
Unit
V
mA
amp. A
25
amp. B
25
Gate 1/ gate 2-source current
IG1S, IG2S
±1
mA
Gate 1/ gate 2-source voltage
VG1S, VG2S
±6
V
Total power dissipation
Ptot
200
mW
Storage temperature
Tstg
-55 ... 150
Channel temperature
Tch
150
TS ≤ 94 °C
°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Channel - soldering point 1)
Rthchs
≤ 280
K/W
1For
calculation of RthJA please refer to Application Note Thermal Resistance
2
2009-10-01
BG5412K
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
Unit
min.
typ.
max.
V(BR)DS
12
-
-
+V(BR)G1SS
6
-
15
+V(BR)G2SS
6
-
15
+IG1SS
-
-
50
+IG2SS
-
-
50
IDSS
-
-
100
DC Characteristics
Drain-source breakdown voltage
V
ID = 100 µA, VG1S = 0 , VG2S = 0
Gate1-source breakdown voltage
+IG1S = 10 mA, V G2S = 0 , VDS = 0
Gate2-source breakdown voltage
+IG2S = 10 mA, V G1S = 0 , VDS = 0
Gate1-source leakage current
nA
VG1S = 6 V, VG2S = 0 , VDS = 0
Gate2-source leakage current
VG2S = 8 V, VG1S = 0
Drain current
µA
VDS = 5 V, VG1S = 0 , VG2S = 4 V
Drain-source current
mA
IDSX
VDS = 5 V, VG2S = 4 V, RG1 = 120 kΩ,
amp. B
-
14
-
VDS = 5 V, VG2S= 4 V, selfbiased,
-
18
-
VG1S(p)
-
0.7
-
VG2S(p)
-
0.7
-
amp. A
Gate1-source pinch-off voltage
V
VDS = 5 V, VG2S = 4 V, ID = 100 µA
Gate2-source pinch-off voltage
VDS = 5 V, I D = 100 µA
3
2009-10-01
BG5412K
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
min.
typ.
Unit
max.
AC Characteristics V DS = 5 V, VG2 = 4 V, ID = 10 mA (verified by random sampling)
Forward transconductance
gfs
mS
amp. A
-
33
-
amp. B
-
30
-
Gate1 input capacitance
pF
Cg1ss
amp. A
-
2.2
-
amp. B
-
2
-
amp. A
-
0.9
-
amp. B
-
0.8
-
Output capacitance
Cdss
Power gain
Gp
dB
f= 800 MHz, amp. A
-
24
-
f= 800 MHz, amp. B
-
24
-
f= 45 MHz, amp. A
-
34
-
f= 45 MHz, amp. B
-
31
-
Noise figure
dB
F
f= 800 MHz, amp. A
-
1.1
-
f= 800 MHz, amp. B
-
1.2
-
f= 45 MHz, amp. A
-
0.8
-
f= 45 MHz, amp. B
-
0.9
-
-
45
-
∆G p
Gain control range
VG2S = 4...0 V, f = 800 MHz
Cross-modulation k=1%, f W=50MHz, funw=60MHz Xmod
amp. A, AGC = 0 dB
-
97
-
amp. B, AGC = 0 dB
-
96
-
amp. A, AGC = 10 dB
-
94
-
amp. B, AGC = 10 dB
-
91
-
amp. A, AGC = 40 dB
-
105
-
amp. B, AGC = 40 dB
-
103
-
4
-
2009-10-01
BG5412K
Functional diagram
shows pinning of BG5412K, switching pin at PIN 3
DA
DB
S
(RFoutA)
(Ground)
(RFoutB)
Amp. B
Amp. A
S
VGG
Amp. A
G2
G1A
(RFinA)
Int.
switch
G2
(AGC)
Amp. B
bias network partially integrated
bias network fully
integrated
Vgg = 5 V : Amp. A is OFF ; Amp. B is ON
Vgg = 0 V : Amp. A is ON ; Amp. B is OFF
Amp. A and Amp. B share
G2 and S pins
G2
G1B
(RFinB)
Rg1
VGG
5
2009-10-01
BG5412K
Total power dissipation Ptot = ƒ(TS)
Drain current ID = ƒ(IG1)
VG2S = 4V, amp. B
VDS= 5 V
30
220
mA
mA
180
20
140
ID
P tot
160
120
15
100
80
10
60
40
5
20
0
0
15
30
45
60
75
90 105 120 °C
0
0
150
10
20
30
40
50
µA
TS
Output characteristics ID = ƒ(V DS)
VG2 = 4 V, amp. A
Output characteristics ID = ƒ(V DS)
VG2 = 4 V, amp. B
VG1 = Parameter
VG1 = Parameter
20
20
mA
1.5V
16
1.6V
mA
16
1.4V
1.5V
14
12
ID
14
ID
70
IG1
1.3V
10
1.4V
12
10
1.2V
8
1.3V
8
1.2V
6
6
1.1V
4
4
2
2
0
0
2
4
6
8
V
0
0
12
VDS
2
4
6
8
10
V
14
VDS
6
2009-10-01
BG5412K
Gate 1 current IG1 = ƒ(V G1S)
Gate 1 forward transconductance
VDS = 5V
g fs = ƒ(ID); amp.A
VDS = 5V, VG2S = Parameter
VG2S = Parameter
45
150
mS
4V
µA
4V
3.5V
100
G fs
I G1
35
30
3V
25
3V
75
2.5V
20
50
2.5V
15
2V
10
2V
25
1.5V
5
0
0
0.4
0.8
1.2
1.6
2
2.4
V
0
0
3.2
5
10
15
20
25
30
35
40 mA
VG1S
50
ID
Drain current ID = ƒ(V G1S)
VDS = 5V, amp. A
Gate 1 forward transconductance
g fs = ƒ(ID), amp. B
VDS = 5V, VG2S = Parameter
VG2S = Parameter
40
36
4V
mS
4V
mA
3V
2.5V
28
3.5V
25
24
3V
20
15
20
16
2.5V
2V
10
12
5
8
0
4
-5
0
5
10
15
2V
ID
Gfs
30
20
25
30
35 mA
0
0
45
ID
1.5V
0.2 0.4 0.6 0.8
1
1.2 1.4 1.6
V
2
VG1S
7
2009-10-01
BG5412K
Drain current ID = ƒ(VG1S)
VDS = 5V, amp. B
Drain current ID = ƒ(V GG), amp. B
VDS = 5V, VG2S = 4V, RG1 = 100kΩ
VG2S = Parameter
(connected to VGG, V GG=gate1 supply voltage)
32
mA
mA
3V
2.5V
20
12
ID
24
ID
16
4V
2V
10
16
8
12
6
1.5V
8
4
4
2
0
0
0.2 0.4 0.6 0.8
1
1.2 1.4 1.6
V
0
0
2
1
2
3
V
VG1S
5
VGG
Drain current ID = ƒ(VGG ), amp. B
Drain current of FET A and FET B
VDS = 5V, VG2S = 4V
as function of Gate 1 FET B
(connected to VGG, VGG =gate1 supply voltage)
28
mA
22
56K
mA
FET A
24
68K
18
82K
16
ID
20
18
ID
22
100K
16
14
12
120K
12
150K
10
180K
10
14
8
8
FET B
6
6
4
4
2
2
0
0
1
2
3
4
V
0
0
6
0.2
0.4
0.6
0.8
1
1.2
V
1.6
VG1_B
VGG=VDS
8
2009-10-01
BG5412K
AGC characteristic AGC = ƒ(VG2S)
AGC characteristic AGC = ƒ(V G2S)
f= 45 MHz, amp. B
0
dB
0
dB
-10
-10
-15
-15
-20
-20
AGC
AGC
f= 45 MHz, amp. A
-25
-30
-25
-35
-40
-40
-45
-45
-50
-50
-55
-55
-60
-60
-65
-65
0.5
1
1.5
2
2.5
3
V
-70
0
4
82k
-30
-35
-70
0
120k
0.5
1
1.5
2
2.5
3
V
VG2S
AGC characteristic AGC = ƒ(VG2S)
AGC characteristic AGC = ƒ(V G2S)
f= 800 MHz, amp. B
f= 800MHz, amp. A
0
dB
-10
-10
-15
-15
-20
-20
AGC
AGC
0
dB
-25
-30
-35
-35
-40
-40
-45
-45
-50
-50
-55
-55
0.5
1
1.5
2
2.5
3
V
-60
0
4
VG2S
120k
82k
-25
-30
-60
0
4
VG2S
0.5
1
1.5
2
2.5
3
V
4
VG2S
9
2009-10-01
BG5412K
Crossmodulation Vunw = (AGC)
Crossmodulation Vunw = (AGC)
VDS = 5 V, Rg1 = 120 kΩ
VDS = 5 V, Rg1 = 56 kΩ
amp.A
amp.B
115
115
dBµV
V unw
V unw
dBµV
105
105
82k
120k
100
100
95
95
90
90
85
0
5
10
15
20
25
30
35
40 dB
85
0
50
AGC
5
10
15
20
25
30
35
40 dB
50
AGC
10
2009-10-01
BG5412K
Crossmodulation test circuit
VAGC
VDS
4n7
R1
10kΩ
2.2 uH
4n7
4n7
RL
50Ω
RGEN
50Ω
4n7
50 Ω
RG1
VGG
Semibiased
VAGC
VDS
4n7
R1
10kΩ
2.2 uH
4n7
4n7
RL
50Ω
RGEN
50Ω
4n7
50 Ω
fullbiased
11
2009-10-01
Package SOT363
BG5412K
Package Outline
2 ±0.2
0.9 ±0.1
+0.1
6x
0.2 -0.05
0.1
0.1 MAX.
M
0.1
Pin 1
marking
1
2
3
A
1.25 ±0.1
4
0.1 MIN.
5
2.1 ±0.1
6
0.15 +0.1
-0.05
0.65 0.65
0.2
M
A
Foot Print
1.6
0.9 0.7
0.3
0.65
0.65
Marking Layout (Example)
Small variations in positioning of
Date code, Type code and Manufacture are possible.
Manufacturer
2005, June
Date code (Year/Month)
Pin 1 marking
Laser marking
BCR108S
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.
0.2
2.3
8
4
Pin 1
marking
1.1
2.15
12
2009-10-01
BG5412K
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.
13
2009-10-01