10-PZ12NMA030MR-M340F18Y Maximum Ratings

10-PZ12NMA030MR-M340F18Y
preliminary datasheet
1200V/ 30mΩ
flowMNPC 0-SIC
Features
flow0 12mm housing
● Rohm™ Silicon Carbide Power MOSFET
● Rohm™ Silicon Carbide Power Schottky Diode
● MNPC Topology with Splitted Output
● Ultra Low Inductance with Integrated DC-capacitors
● Extremely Fast Switching with No "Tail" Current
● Unsensitivity for Cross Through Conduction
● Solderless Press-fit Mounting Technology
Schematic
Target Applications
● High Efficient Solar Inverter
● UPS
Types
● 10-PZ12NMA030MR-M340F18Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
20
20
A
43
A
10
A²s
Half Bridge Inv. Diode
VRRM
Tj=25°C
IF
Tj=Tjmax
IFRM
tp=10ms
I2t-value
I2t
Tj=Tjmax
Power dissipation per Diode
Ptot
65
99
W
Tjmax
150
°C
VDSS
1200
V
52
60
A
120
A
149
226
W
-6 to +22
V
tbd.
tbd.
μs
V
150
°C
Repetitive Peak Reverse Voltage
Forward current per diode
Surge forward current
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Half Bridge MOSFET
Drain-source break down voltage
DC drain current
Repetitive peak drain current
ID
IDpulse
Power dissipation per IGBT
Ptot
Gate-source peak voltage
VGS
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Neutral Point FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
40
Tc=80°C
40
A
108
A
73
111
W
Tjmax
150
°C
VCE
600
V
57
75
A
200
A
126
191
W
±20
V
5
400
μs
V
175
°C
1200
V
12
19
A
12
A
40
60
W
175
°C
1200
V
19
24
A
43
A
52
79
W
150
°C
Th=80°C
Tc=80°C
Neutral Point IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Neutral Point Inv. Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tc=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Half Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
500
V
DC link Capacitor
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,44
1,67
1,05
1,06
0,04
0,06
1,7
Half Bridge Inv. Diode
Forward voltage
Vf
10
Threshold voltage (for power loss calc. only)
Vto
44
Slope resistance (for power loss calc. only)
rt
44
Reverse current
Ir
1200
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
Rds(on)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
Ω
0,2
mA
1,07
K/W
0,71
Half Bridge MOSFET
Drain-source on-state resistance
Gate threshold voltage
V(GS)th
16
60
VDS=VGS
0,0132
Total Gate Reverse Leakage
IGSS+
IGSS-
22
-6
0
Zero Gate Voltage Drain Current
IDSS
0
1200
Turn-on delay time
Rise time
Turn-off delay time
Fall time
td(on)
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge *
Qg
Rgoff=1 Ω
Rgon=1 Ω
16/-5
350
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=25°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,7
0,04
0,05
2,20
3,05
0,12
3,7
0,3
-0,3
300
36
35
14
12
102
108
29
22
0,24
0,20
0,15
0,13
Ω
V
mA
nA
ns
mWs
294
pF
Gate to source charge
Qgs
90
pF
Gate to drain charge
Qgd
90
pF
Input capacitance *
Cies
6600
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate capacitor
CGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
18
f=1MHz
600
0
30
25
Tj=25°C
Tj=25°C
pF
1143
138
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
tbd.
0,47
K/W
0,31
Neutral Point FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Rgon=1 Ω
16/-5
350
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright Vincotech
30
Thermal grease
thickness≤50um
λ = 1 W/mK
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,42
1,57
28
32
13
21
0,24
0,30
6266
6890
0,04
0,06
1,7
V
A
ns
μC
A/μs
mWs
0,95
K/W
0,63
4
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
4,1
5,1
5,7
1,81
2,03
2,3
Neutral Point IGBT
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,0008
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
tr
tf
100
none
td(on)
td(off)
0,04
Rgoff=4 Ω
Rgon=4 Ω
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
f=1MHz
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
0
±15
V
V
mA
nA
Ω
62
62
8
9
95
115
10
15
0,28
0,36
0,32
0,57
ns
mWs
2960
f=1MHz
350
±15
44
Tj=25°C
pF
116
96
25
0
Tj=25°C
nC
315
0,75
K/W
0,50
Neutral Point Inv. Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
6
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
1,25
1,72
1,70
1,95
V
2,39
K/W
1,57
Half Bridge FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Rgon=4 Ω
350
±15
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright Vincotech
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
10
Thermal grease
thickness≤50um
λ = 1 W/mK
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,45
1,77
1,7
200
29
28
25
26
0,29
0,26
4940
6243
0,04
0,03
V
μA
A
ns
μC
A/μs
mWs
1,34
K/W
0,88
5
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
DC link Capacitor
C value
C
270
nF
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tc=100°C
Tj=25°C
Power dissipation constant
Ω
22000
Tj=25°C
R100=1486 Ω
+5
-5
%
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
copyright Vincotech
B
6
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
100
IC (A)
100
IC (A)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
75
75
50
50
25
25
0
0
-25
-25
-50
-50
-75
-75
-100
-100
-5
At
tp =
Tj =
VGE from
-4
-3
-2
-1
0
1
2
3
4
V CE (V)
5
-5
-3
-2
-1
0
1
2
3
4
5
V CE (V)
At
tp =
Tj =
VGE from
250
μs
25
°C
-6 V to 20 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
-4
250
μs
125
°C
-6 V to 20 V in steps of 2 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
125
IF (A)
IC (A)
40
100
30
75
20
50
10
25
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
0
At
tp =
VCE =
Tj = 25°C
0
0
3
250
10
copyright Vincotech
6
9
V GE (V)
12
0
At
tp =
μs
V
7
1
250
2
3
V F (V)
4
μs
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
0,4
2,0
E (mWs)
Eoff Low T
E (mWs)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon Low T
Eoff High T
Eon Low T
1,5
0,3
Eon High T
Eon High T
0,2
1,0
0,1
0,5
0,0
0,0
Eoff Low T
Eoff High T
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
+16/-5
V
Rgon =
1
Ω
Rgoff =
1
Ω
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
+16/-5
V
IC =
44
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,08
E (mWs)
E (mWs)
0,06
Erec Low T
0,05
Erec High T
0,06
Erec High T
0,04
0,03
0,04
Erec Low T
0,02
0,02
0,01
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
+16/-5
V
Rgon =
1
Ω
copyright Vincotech
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
+16/-5
V
IC =
44
A
8
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge
MOSFET
MOSFET
1,00
1,00
t (ms)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t (ms)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdoff
0,10
tdon
0,10
tr
tdon
tf
tr
tf
0,01
0,01
0,00
0,00
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
+16/-5
V
Rgon =
1
Ω
Rgoff =
1
Ω
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
+16/-5
V
IC =
44
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,03
t rr(ms)
t rr(ms)
0,10
trr High T
0,03
0,08
0,02
0,06
0,02
trr High T
trr Low T
trr Low T
0,04
0,01
0,02
0,01
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
+16/-5
1
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
4
25/125
350
44
+16/-5
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge
half bridge MOSFET and neutral point FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,4
Qrr (mC)
Qrr (mC)
0,4
0,3
Qrr High T
0,3
Qrr Low T
Qrr Low T
Qrr High T
0,2
0,2
0,1
0,1
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
+16/-5
1
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
44
+16/-5
8
12
16
R gon ( Ω)
20
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
40
40
IrrM (A)
IrrM (A)
IRRM High T
IRRM Low T
30
30
20
20
10
10
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
+16/-5
1
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
10
4
25/125
350
44
+16/-5
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge
half bridge MOSFET and neutral point FWD
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
10000
10000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
di0/dtT
8000
dIrec/dt T
di0/dtT
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
+16/-5
1
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
25/125
350
44
+16/-5
8
12
16
100
100
ZthJH (K/W)
-1
20
R gon (Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
10-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-3
-3
10
10
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
101
tp / T
0,47
K/W
10-5
10-4
At
D=
RthJH =
tp / T
0,95
10-3
FWD thermal model values
R (C/W)
0,09
0,18
0,12
0,06
0,02
R (C/W)
0,02
0,12
0,18
0,29
0,17
0,18
copyright Vincotech
11
10-1
100
t p (s)
101
K/W
IGBT thermal model values
Tau (s)
1,5E+00
2,3E-01
7,4E-02
1,1E-02
2,7E-03
10-2
Tau (s)
8,7E+00
1,3E+00
2,3E-01
4,7E-02
8,7E-03
2,0E-03
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
IC (A)
Ptot (W)
350
300
60
250
200
40
150
100
20
50
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
180
150
40
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
12
50
150
100
150
T h ( o C)
200
°C
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge
half bridge MOSFET and neutral point FWD
MOSFET
IC (A)
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
10
1
3
100mS
10
100uS
1mS
102
10mS
1
DC
100
10
-1
101
100
10
2
103
V CE (V)
At
single pulse
80
ºC
15
V
Tjmax
ºC
D=
Th =
VGE =
Tj =
MOSFET
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
150
IC MAX
Ic CHIP
120
Ic
MODULE
90
VCE MAX
60
30
0
0
200
400
600
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
800
1000
1200
1400
V CE (V)
13
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
200
IC (A)
IC (A)
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
IC (A)
50
40
40
30
30
20
20
10
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
μs
V
14
1
250
2
3
4
V F (V)
5
μs
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,2
E (mWs)
E (mWs)
1,2
1
Eoff High T
Eon High T
0,8
Eon Low T
0,8
Eon Low T
0,6
Eon High T
1
Eoff High T
0,6
Eoff Low T
0,4
0,4
Eoff Low T
0,2
0,2
0
0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
44
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,05
E (mWs)
E (mWs)
0,1
0,08
Erec High T
0,04
Erec High T
Erec Low T
0,03
0,06
Erec Low T
0,04
0,02
0,02
0,01
0
0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
44
A
15
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( μs)
t ( μs)
1
tdoff
tdon
tdoff
0,1
0,1
tdon
tr
tr
tf
tf
0,01
0,01
0,001
0,001
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
44
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,04
t rr(ms)
t rr(ms)
0,04
0,03
0,03
trr Low T
trr High T
trr High T
trr Low T
0,02
0,02
0,01
0,01
0,00
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
4
25/125
350
44
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point
neutral point IGBT and half bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,5
Qrr (mC)
Qrr (mC)
0,5
Qrr High T
0,4
0,4
Qrr High T
Qrr Low T
0,3
0,3
Qrr Low T
0,2
0,2
0,1
0,1
0,0
0
0
20
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
40
60
80
I C (A)
100
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
4
8
At
Tj =
VR =
IF =
VGE =
25/125
350
44
±15
12
16
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
40
R gon ( Ω) 20
IrrM (A)
IrrM (A)
40
IRRM Low T
IRRM High T
30
IRRM Low T
30
IRRM High T
20
20
10
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
17
4
25/125
350
44
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point
neutral point IGBT and half bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
direc / dt (A/ms)
direc / dt (A/ms)
6000
dIrec/dt T
di0/dt T
5000
dIrec/dt T
dI0/dtT
6000
4000
3000
4000
2000
2000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
4
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
12
16
20
R gon (Ω)
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
101
100
100
10
25/125
350
44
±15
8
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
4
-1
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-3
10-3
10
10-5
At
D=
RthJH =
10-4
tp / T
0,75
10-3
10-2
10-1
100
t p (s)
10-5
101 10
At
D=
RthJH =
K/W
10-4
tp / T
1,34
10-3
FWD thermal model values
R (C/W)
0,08
0,12
0,18
0,25
0,07
R (C/W)
0,03
0,07
0,18
0,50
0,38
copyright Vincotech
18
10-1
100
t p (s)
101 10
K/W
IGBT thermal model values
Tau (s)
2,57
0,60
0,13
0,04
0,01
10-2
Tau (s)
4,10
0,76
0,09
0,02
0,00
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point
neutral point IGBT and half bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
250
Ptot (W)
IC (A)
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
120
200
IF (A)
Ptot (W)
40
100
30
80
20
60
40
10
20
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
19
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point
neutral point IGBT
IGBT
Figure 25
Reverse bias safe operating area
IC = f(VCE)
IC (A)
120
IC MAX
100
Ic CHIP
Ic
MODULE
80
60
VCE MAX
40
20
0
0
200
400
600
800
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
20
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point Inverse Diode
Neutral Point Inverse Diode
Figure 25
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
Neutral Point Inverse Diode
Figure 26
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25
ZthJC (K/W)
IF (A)
101
20
100
15
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
5
Tj = Tjmax-25°C
Tj = 25°C
0
-2
0
At
tp =
1
2
3
V F (V)
10
4
-5
Neutral Point Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
tp / T
2,39
-2
10
10
-1
0
10
t p (s)
1
10 10
K/W
Neutral Point Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
15
IF (A)
Ptot (W)
75
60
12
45
9
30
6
15
3
0
0
0
At
Tj =
-3
10
At
D=
RthJH =
μs
250
-4
10
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
21
50
175
100
150
Th ( o C)
200
ºC
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Half Bridge Inv. FWD
Half Bridge Inv. FWD
Figure 1
Typical FWD forward current as
a function of forward voltage
IF= f(VF)
Half Bridge Inv. FWD
Figure 2
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
ZthJC (K/W)
IF (A)
101
40
0
10
30
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = 25°C
-1
10
10
Tj = Tjmax-25°C
0
0
At
tp =
1
2
3
V F (V)
-2
10
4
μs
250
Half Bridge Inv. FWD
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
t p (s)
10-5
10-4
At
D=
RthJH =
tp / T
1,07
10-2
10-1
100
101
K/W
Half Bridge Inv. FWD
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
150
120
20
90
15
60
10
30
5
0
0
At
Tj =
10-3
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
0
At
Tj =
ºC
22
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
23
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Switching Definitions Half Bridge MOSFET
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
Half bridge MOSFET
Figure 1
Half bridge MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
200
tdoff
%
%
IC
100
VGE 90%
150
VCE 90%
IC
VGE
75
VGE
100
50
tdon
VCE
tEoff
50
25
IC 1%
VGE 10%
VCE
0
-25
0
0,05
0,1
0,15
time (us)
16
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-5
16
700
44
0,11
0,12
tEon
-50
2,95
0,2
3
3,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Half bridge MOSFET
Figure 3
VCE 5%
IC10%
0
-5
16
700
44
0,04
0,06
3,1
3,15
V
V
V
A
μs
μs
Half bridge MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
200
130
%
%
fitted
IC
Ic
150
100
IC 90%
VCE
70
100
IC 60%
IC
90%
tr
50
40
IC 40%
VCE
IC 10%
10
0
IC 10%
tf
-50
3,03
-20
0,1
0,11
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,12
700
44
0,02
0,13
0,14
time (us)
0,15
3,04
3,05
3,06
3,07
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
24
700
44
0,01
V
A
μs
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Switching Definitions Half Bridge MOSFET
Half bridge MOSFET
Figure 5
Half bridge MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
120
%
IC 1%
%
Eoff
100
Eon
100
80
75
60
50
40
25
20
VGE
90%
Pon
0
0
-20
-0,02
VCE 3%
VGE 10%
Poff
tEon
tEoff
0,02
0,06
0,1
0,14
-25
2,95
0,18
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
30,94
0,13
0,12
3
3,05
3,1
3,15
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
30,94
0,20
0,06
kW
mJ
μs
neutral point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
fitted
0
IRRM 10%
-40
IRRM 90%
IRRM 100%
-80
3,03
3,04
3,05
3,06
3,07
3,08
3,09
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
25
700
44
-32
0,02
V
A
A
μs
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Switching Definitions Half Bridge MOSFET
neutral point FWD
Figure 9
neutral point FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
%
%
Erec
Id
100
Qrr
100
tErec
tQrr
50
50
0
Prec
0
-50
-100
3,03
3,045
Id (100%) =
Qrr (100%) =
tQrr =
3,06
44
0,30
0,04
3,075
3,09
time(us)
-50
3,03
3,105
3,045
3,06
3,075
3,09
3,105
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
30,94
0,06
0,04
kW
mJ
μs
Half Bridge MOSFET switching measurement circuit
Figure 11
copyright Vincotech
26
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Switching Definitions Neutral Point IGBT
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Neutral Point IGBT
Figure 1
Neutral Point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
200
tdoff
%
%
100
VGE
150
90%
IC
75
VGE
IC
50
100
tdon
VCE 90%
tEoff
VGE
50
25
VCE
IC 1%
0
VCE
-25
-0,1
IC 10%
VGE 10%
0
VCE 3%
tEon
-50
-0,05
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,05
-15
15
700
44
0,10
0,17
0,1
0,15
time (us)
0,2
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Neutral Point IGBT
Figure 3
3,05
3,1
-15
15
700
44
0,06
0,12
3,15
3,2
V
V
V
A
μs
μs
Neutral Point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
200
125
fitted
%
%
Ic
100
IC
150
IC 90%
75
100
IC 60%
VCE
IC 90%
50
tr
VCE
IC 40%
50
25
IC 10%
IC 10%
0
-25
0,04
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0
tf
-50
0,06
0,08
700
44
0,015
0,10
time (us)
3
0,12
VC (100%) =
IC (100%) =
tr =
V
A
μs
27
3,05
3,1
700
44
0,009
3,15
time(us)
3,2
V
A
μs
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Switching Definitions Neutral Point IGBT
Neutral Point IGBT
Figure 5
Neutral Point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
100
125
%
Eon
%
Ic 1%
Eoff
100
75
75
50
50
25
25
Poff
Pon
0
0
tEon
tEoff
-25
-0,2
Uce 3%
Uge 10%
Uge 90%
-25
-0,1
0
0,1
0,2
2,8
0,3
2,9
3
3,1
3,2
Poff (100%) =
Eoff (100%) =
tEoff =
30,78
0,57
0,17
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Neutral Point IGBT
Figure 7
3,3
time(us)
time (us)
30,7818
0,38
0,12
kW
mJ
μs
Half Bridge FWD
Figure 8
Gate voltage vs Gate charge (measured)
Turn-off Switching Waveforms & definition of trr
20
UGE (V)
150
%
Id
100
10
trr
50
0
Ud
0
IRRM 10%
-10
-50
IRRM 90%
IRRM 100%
fitted
-20
-200
-100
0
200
400
600
800
3
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
700
44
3441,54
3,05
3,1
3,15
3,2
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
28
700
44
-29
0,04
V
A
A
μs
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Switching Definitions Neutral Point IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Half Bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
Half Bridge FWD
150
%
%
Erec
Id
100
100
tErec
tQint
50
50
Prec
Qrr
0
0
-50
-50
-100
3,05
3,07
3,09
3,11
-100
2,95
3,13
time(us)
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
44
0,25
0,09
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
29
3
3,05
3,1
30,78
0,03
0,09
kW
mJ
μs
3,15
3,2
time(us)
3,25
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Neutral Point IGBT switching measurement circuit
Figure 11
copyright Vincotech
30
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-PZ12NMA030MR-M340F18Y
in DataMatrix as
M340F18Y
in packaging barcode as
M340F18Y
Outline
Pinout
copyright Vincotech
31
Revision: 1
10-PZ12NMA030MR-M340F18Y
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
32
Revision: 1