V23990-P868-F49/F48-PM Maximum Ratings

V23990-P868-F49/F48-PM
preliminary datasheet
flowPACK 0 3rd gen
1200V/15A
Features
flow0 housing
Ɣ 2 clip housing in 12mm and 17mm height
Ɣ Trench Fieldstop IGBT4 technology
Ɣ Compact and low inductance design
Ɣ Built-in NTC
Target Applications
Schematic
Ɣ Motor Drives
Ɣ Power Generation
Ɣ UPS
Types
Ɣ V23990-P868-F49-PM: 17mm height
Ɣ V23990-P868-F48-PM: 12mm height
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Inverter Transistor
Collector-emitter voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings*
tSC
VCC
Maximum Junction Temperature
Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
22
tp limited by Tjmax
45
Th=80°C
Tc=80°C
Tj=Tjmax
64
Tj150°C
VGE=15V
A
A
W
±20
V
10
800
s
V
175
°C
1200
V
* It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
21
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tjmax
175
°C
Storage temperature
Tstg
-40…..+125
°C
Operation junction temperature
Top
-40…..+Tjmax-25
°C
30
Th=80°C
Tc=80°C
45
A
W
Thermal properties
Copyright by Vincotech
1
Revision: 1
V23990-P868-F49/F48-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
V
Creepage distance
min.12,7
mm
Clearance
min.12,7
mm
Insulation properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
V23990-P868-F49/F48-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,84
2,23
2,3
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
0,0005
VCE=VGE
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
td(off)
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
200
Rgon=32ȍ
Rgoff=32ȍ
±15
600
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
nA
ȍ
none
tr
tf
Fall time
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
86
84
17,8
23,6
201
264
81
130
0,95
1,40
0,83
1,37
ns
mWs
900
f=1MHz
0
25
15
960
pF
80
Tj=25°C
55
15
Tj=25°C
Thermal grease
thickness50um
Ȝ = 0,61 W/mK
93
nC
1,47
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
15
Rgon=32ȍ
±15
600
di(rec)max
/dt
Erec
RthJH
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,84
1,77
14,8
16,2
289
447
1,54
2,68
92
59
Tj=150°C
1,08
mWs
2,13
K/W
Thermal grease
thickness50um
Ȝ = 0,61 W/mK
2,4
V
Α
ns
μC
A/μs
Thermistor
Rated resistance
R25
Deviation of R100
ΔR/R
Power dissipation
P
B(25/100)
B-value
Copyright by Vincotech
Tol. ±5%
Tj=25°C
R100=1486ȍ
Tj=100°C
2,9
%/K
Tj=25°C
210
mW
Tj=25°C
4000
K
Tol. ±3%
3
20,9
22
23,1
Revision: 1
kȍ
V23990-P868-F49/F48-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
1
tp =
Tj =
VGE from
2
3
VCE (V)
4
0
5
0
250
ȝs
25
°C
7 V to 17 V in steps of 1 V
tp =
Tj =
VGE from
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
ȝs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
IC (A)
15
VCE (V)
4
12
40
9
30
6
20
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
3
10
Tj = 25°C
0
0
0
2
4
tp =
VCE =
250
10
ȝs
V
6
Copyright by Vincotech
8
10
V GE (V)
12
0
tp =
4
0,5
250
1
1,5
2
2,5
3
VF (V)
ȝs
Revision: 1
3,5
V23990-P868-F49/F48-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
3,5
E (mWs)
3,5
E (mWs)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon
3
2,5
Eon
3
2,5
Eoff
Eon
2
2
Eon:
1,5
1,5
Eoff
Eoff
1
1
0,5
0,5
0
Eoff
0
0
5
inductive load
Tj =
VCE =
VGE =
Rgon =
Rgoff =
25/150
600
±15
32
32
10
15
20
25
I C (A) 30
0
inductive load
Tj =
VCE =
VGE =
IC =
°C
V
V
ȍ
ȍ
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
25
50
25/150
600
±15
15
75
100
125
R G ( Ω ) 150
°C
V
V
A
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,5
E (mWs)
E (mWs)
1,8
Erec
1,5
1,2
Erec
1,2
0,9
0,9
0,6
Erec
0,6
Erec
0,3
0,3
0
0
0
inductive load
Tj =
VCE =
VGE =
Rgon =
5
10
25/150
600
±15
32
15
20
25
I C (A)
0
30
inductive load
Tj =
VCE =
VGE =
IC =
°C
V
V
ȍ
Copyright by Vincotech
5
30
25/150
600
±15
15
60
90
120
R G( Ω )
°C
V
V
A
Revision: 1
150
V23990-P868-F49/F48-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( μs)
t ( μs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
5
inductive load
Tj =
150
VCE =
600
VGE =
±15
Rgon =
32
Rgoff =
32
10
15
20
25
I C (A)
30
0
25
50
inductive load
Tj =
150
VCE =
600
VGE =
±15
IC =
15
°C
V
V
ȍ
ȍ
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
75
100
R G ( Ω ) 150
°C
V
V
A
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( μs)
0,8
t rr( μs)
0,75
125
trr
0,6
trr
0,6
0,45
trr
0,4
trr
0,3
0,2
0,15
0
0
0
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
10
15
20
25
I C (A)
30
0
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
Copyright by Vincotech
6
30
25/150
600
15
±15
60
90
120
R gon ( Ω ) 150
°C
V
A
V
Revision: 1
V23990-P868-F49/F48-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
4
4
Qrr
Qrr ( μC)
Qrr ( μC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
3,2
3,2
Qrr
2,4
2,4
Qrr
1,6
1,6
0,8
0,8
0
0
0
At
Qrr
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
10
15
20
25
I C (A)
30
0
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
30
25/150
600
15
±15
60
90
R gon ( Ω) 150
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
20
120
IrrM (A)
IrrM (A)
48
40
16
IRRM
IRRM
32
12
IRRM
24
8
16
4
8
IRRM
0
0
0
5
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
32
10
15
20
25
I C (A)
30
°C
V
V
ȍ
Copyright by Vincotech
7
0
30
Tj =
VR =
IF =
VGE =
25/150
600
15
±15
60
90
120
R gon ( Ω )
°C
V
A
V
Revision: 1
150
V23990-P868-F49/F48-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
1200
3500
dI0/dt
direc / dt (A/ μs)
direc / dt (A/ μs)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
1000
dI0/dt
dIrec/dt
3000
2500
800
2000
600
1500
400
1000
200
500
0
0
0
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
10
15
20
25
I C (A)
30
0
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
25/150
600
15
±15
60
90
120
R gon ( Ω) 150
°C
V
A
V
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter FRED
1
ZthJH (K/W)
ZthJH (K/W)
10
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
-5
10
D=
RthJH =
-4
-3
10
10
-2
10
-1
10
0
10
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
t p (s)
1
10 1
tp / T
1,47
D=
RthJH =
K/W
tp / T
2,13
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,03
0,15
0,65
0,38
0,15
0,11
R (C/W)
0,04
0,17
0,81
0,64
0,28
0,20
Tau (s)
6,2E+00
8,8E-01
1,2E-01
2,5E-02
4,5E-03
4,6E-04
Copyright by Vincotech
8
Tau (s)
8,9E+00
8,9E-01
1,2E-01
2,4E-02
3,9E-03
4,4E-04
Revision: 1
V23990-P868-F49/F48-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
30
IC (A)
Ptot (W)
120
100
25
80
20
60
15
40
10
20
5
0
0
0
Tj =
50
175
100
150
Th ( o C)
200
0
Tj =
°C
VGE =
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
Th ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
150
IF (A)
Ptot (W)
30
25
80
20
60
15
40
10
20
5
0
0
0
Tj =
50
175
100
150
Th ( o C)
200
0
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
Th ( o C)
°C
Revision: 1
200
V23990-P868-F49/F48-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
IC (A)
VGE (V)
20
17,5
102
15
240V
960V
10uS
12,5
100uS
1mS
101
DC
100m
10
10mS
7,5
5
0
10
2,5
0
-1
10
100
D=
Th =
VGE =
1
10
2
10
3
10
0
V CE (V)
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
25
15
50
75
100
Qg (nC)
A
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/ȍ
25000
20000
15000
10000
5000
0
25
50
75
Copyright by Vincotech
100
T (°C)
125
10
Revision: 1
125
V23990-P868-F49/F48-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 32 ȍ
Rgon
Rgoff
= 32 ȍ
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
240
150
Ic
tdoff
120
200
Uce
160
90
Uce 90%
Uge 90%
%60
Uce
120
%
Ic
80
tEoff
Uge
tdon
30
40
Ic 1%
Ic10%
Uge10%
0
Uce3%
0
Uge
tEon
-30
-0,1
0,05
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,35
0,5
time (us)
-15
15
600
15
0,26
0,67
0,65
0,8
-40
0,95
2,8
2,9
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
ȝs
ȝs
Output inverter IGBT
Figure 3
3,1
-15
15
600
15
0,08
0,32
3,2
time(us)
3,3
3,5
V
V
V
A
ȝs
ȝs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,4
Turn-on Switching Waveforms & definition of tr
140
240
fitted
120
200
100
Ic
Uce
Ic 90%
160
80
120
Ic 60%
% 60
Uce
%
Ic90%
80
tr
Ic 40%
40
40
20
Ic
Ic10%
tf
0
Ic10%
0
-20
-40
0,2
0,25
VC (100%) =
IC (100%) =
tf =
0,3
0,35
600
15
0,13
0,4
time (us)
0,45
0,5
0,55
0,6
2,9
VC (100%) =
IC (100%) =
tr =
V
A
ȝs
Copyright by Vincotech
11
3
3,1
time(us)
600
15
0,02
3,2
V
A
ȝs
Revision: 1
3,3
V23990-P868-F49/F48-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
240
Pon
Eoff
100
200
Poff
80
160
60
120
%
40
%
80
20
40
Eon
Uge10%
0
tEoff
Uge90%
-20
-0,1
Uce3%
0
tEon
Ic 1%
-40
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,3
9,03
1,37
0,67
time (us)
0,5
0,7
2,9
0,9
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
ȝs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
3,1
3,2
time(us)
9,03
1,40
0,32
kW
mJ
ȝs
3,3
3,4
3,5
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
Id
15
80
trr
10
40
Uge (V)
5
fitted
Ud
%
0
0
IRRM10%
-5
-40
-10
-80
IRRM90%
-15
IRRM100%
-120
-20
-30
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
30
-15
15
600
15
113
60
Qg (nC)
90
120
2,9
150
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
Copyright by Vincotech
12
3,05
3,2
600
15
-16
0,45
3,35
time(us)
3,5
3,65
V
A
A
ȝs
Revision: 1
3,8
V23990-P868-F49/F48-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Qrr
100
100
Erec
Id
80
50
tQrr
60
% 0
%
tErec
40
-50
20
Prec
-100
0
-150
-20
2,8
Id (100%) =
Qrr (100%) =
tQrr =
3
3,2
3,4
15
2,68
0,89
3,6
time(us)
3,8
4
4,2
4,4
2,8
Prec (100%) =
Erec (100%) =
tErec =
A
ȝC
ȝs
Copyright by Vincotech
13
3
3,2
3,4
9,03
1,08
0,89
3,6
time(us)
3,8
4
4,2
kW
mJ
ȝs
Revision: 1
4,4
V23990-P868-F49/F48-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
14
Revision: 1
V23990-P868-F49/F48-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 1