Data Sheet

Document Number: AFT18S290−13S
Rev. 0, 5/2013
Freescale Semiconductor
Technical Data
RF Power LDMOS Transistor
N−Channel Enhancement−Mode Lateral MOSFET
This 63 watt RF power LDMOS transistor is designed for cellular base station
applications covering the frequency range of 1805 to 1995 MHz.
• Typical Single−Carrier W−CDMA Performance: VDD = 28 Volts,
IDQ = 2000 mA, Pout = 63 Watts Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
hD
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
1930 MHz
18.0
31.2
7.1
−36.0
−19
1960 MHz
18.2
31.2
7.1
−35.0
−19
1995 MHz
18.2
31.8
6.9
−35.0
−12
AFT18S290−13SR3
1805−1995 MHz, 63 W AVG., 28 V
1800 MHz
• Typical Single−Carrier W−CDMA Performance: VDD = 28 Volts,
IDQ = 2000 mA, Pout = 63 Watts Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
hD
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
1805 MHz
18.0
33.3
7.1
−35.0
−13
1840 MHz
18.2
32.7
7.1
−35.0
−16
1880 MHz
18.3
32.6
7.1
−34.0
−13
NI−880XS−2L4S
6 VBW(1)
N.C. 1
RFin/VGS 2
5 RFout/VDS
Features
• Greater Negative Gate−Source Voltage Range for Improved Class C
Operation
• Designed for Digital Predistortion Error Correction Systems
• Optimized for Doherty Applications
• In Tape and Reel. R3 Suffix = 250 Units, 44 mm Tape Width, 13−inch Reel.
4 VBW(1)
N.C. 3
(Top View)
Figure 1. Pin Connections
1. Device cannot operate with the VDD current
supplied through pin 4 and pin 6.
© Freescale Semiconductor, Inc., 2013. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT18S290−13SR3
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain−Source Voltage
VDSS
−0.5, +65
Vdc
Gate−Source Voltage
VGS
−6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
−65 to +150
°C
Case Operating Temperature Range
TC
−40 to +150
°C
Operating Junction Temperature Range (1,2)
TJ
−40 to +225
°C
CW
245
1.6
W
W/°C
Symbol
Value (2,3)
Unit
RθJC
0.42
°C/W
CW Operation @ TC = 25°C
Derate above 25°C
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 66 W CW, 28 Vdc, IDQ = 2000 mA, 1960 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22−A114)
2
Machine Model (per EIA/JESD22−A115)
B
Charge Device Model (per JESD22−C101)
IV
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate−Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 389 μAdc)
VGS(th)
1.5
2.0
2.5
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 2000 mAdc, Measured in Functional Test)
VGS(Q)
2.3
2.8
3.3
Vdc
Drain−Source On−Voltage
(VGS = 10 Vdc, ID = 5.0 Adc)
VDS(on)
0.1
0.2
0.3
Vdc
Off Characteristics
On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select
Documentation/Application Notes − AN1955.
(continued)
AFT18S290−13SR3
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
(1)
Functional Tests
(In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 2000 mA, Pout = 63 W Avg., f = 1960 MHz,
Single−Carrier W−CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz
Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
17.2
18.2
20.2
dB
Drain Efficiency
ηD
29.5
31.2
—
%
PAR
6.6
7.1
—
dB
ACPR
—
−35.0
−34.0
dBc
IRL
—
−19
−6
dB
Output Peak−to−Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ = 2000 mA, f = 1960 MHz
VSWR 10:1 at 32 Vdc, 363 W CW (2) Output Power
(3 dB Input Overdrive from 263 W CW (2) Rated Power)
No Device Degradation
Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 2000 mA, 1930−1995 MHz Bandwidth
P1dB
—
263 (2)
—
W
Φ
—
15
—
°
VBWres
—
85
—
MHz
Gain Flatness in 65 MHz Bandwidth @ Pout = 63 W Avg.
GF
—
0.2
—
dB
Gain Variation over Temperature
(−30°C to +85°C)
ΔG
—
0.01
—
dB/°C
ΔP1dB
—
0.003
—
dB/°C
Pout @ 1 dB Compression Point, CW
AM/PM
(Maximum value measured at the P3dB compression point across
the 1930−1995 MHz bandwidth)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(−30°C to +85°C) (2)
1. Part internally matched both on input and output.
2. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
3
VDD
C24
VGG
C19
C20
R1
C14
C18
C7
C15
C1*
C3*
C11*
C4* C5*
C2*
C17
C21
C16
C13*
C9*
C10*
CUT OUT AREA
C6*
C12*
C8
C22
R2
C23
VGG
VDD
C25
AFT18S290-13S
Rev. 0
*C1, C2, C3, C4, C5, C6, C9, C10, C11, C12 and C13 are mounted vertically.
Figure 2. AFT18S290−13SR3 Test Circuit Component Layout — 1930−1995 MHz
Table 5. AFT18S290−13SR3 Test Circuit Component Designations and Values — 1930−1995 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C7 C8
8.2 pF Chip Capacitors
ATC100B8R2BT500XT
ATC
C4
0.8 pF Chip Capacitor
ATC100B0R8BT500XT
ATC
C5
1.1 pF Chip Capacitor
ATC100B1R1BT500XT
ATC
C6
0.7 pF Chip Capacitor
ATC100B0R7BT500XT
ATC
C9, C10
8.2 pF Chip Capacitors
ATC800B8R2BT500XT
ATC
C11, C12
0.4 pF Chip Capacitors
ATC100B0R4BT500XT
ATC
C13
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
C14, C15, C16, C17, C18, C19, C20,
C21, C22, C23
10 μF Chip Capacitors
C5750X7S2A106M230KB
TDK
C24, C25
470 μF, 63 V Electrolytic Capacitors
UVZ1J471MHD
Nichicon
R1, R2
2 Ω, 1/4 W Chip Resistors
CRCW12062R00FKEA
Vishay
PCB
0.020², er = 3.5
RO4350B
Rogers
AFT18S290−13SR3
4
RF Device Data
Freescale Semiconductor, Inc.
32
ηD
19
31.5
Gps
18.5
31
18
PARC
17.5
17
-33
-4
-33.5
-8
-34
IRL
-34.5
16.5
ACPR
16
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
15.5
1880 1900 1920 1940 1960 1980 2000 2020
ACPR (dBc)
Gps, POWER GAIN (dB)
19.5
32.5
-12
-16
-20
-35
-24
-35.5
2040
-2.7
-2.9
-3.1
-3.3
PARC (dB)
33
VDD = 28 Vdc, Pout = 63 W (Avg.), IDQ = 2000 mA
Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth
20
IRL, INPUT RETURN LOSS (dB)
20.5
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS — 1930−1995 MHz
-3.5
-3.7
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single−Carrier Output Peak−to−Average Ratio Compression
(PARC) Broadband Performance @ Pout = 63 Watts Avg.
-10
VDD = 28 Vdc, Pout = 100 W (PEP), IDQ = 2000 mA
Two-Tone Measurements, (f1 + f2)/2 = Center
-20 Frequency of 1960 MHz
IM3-U
-30
IM3-L
IM5-U
-40
IM5-L
IM7-U
-50
IM7-L
-60
1
10
100
TWO-TONE SPACING (MHz)
18.5
0
18
17.5
17
16.5
16
VDD = 28 Vdc, IDQ = 2000 mA, f = 1960 MHz
Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth
ηD
Gps
-1
40
-20
35
-25
30
-2 dB = 47 W
-1 dB = 34 W
-2
ACPR 25
-3
20
-4
-3 dB = 64 W
10
25
40
55
70
-35
-40
15
-45
10
85
-50
PARC
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
-5
-30
ACPR (dBc)
1
ηD, DRAIN EFFICIENCY (%)
19
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two−Tone Spacing
Pout, OUTPUT POWER (WATTS)
Figure 5. Output Peak−to−Average Ratio
Compression (PARC) versus Output Power
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS — 1930−1995 MHz
0
50
-10
40
30
20
1930 MHz
1995 MHz
1960 MHz
ACPR
10
16
Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
15
1
10
100
-20
-30
-40
ACPR (dBc)
17
60
ηD
VDD = 28 Vdc, IDQ = 2000 mA, Single-Carrier W-CDMA
3.84 MHz Channel Bandwidth
1995 MHz
20
1960 MHz
1930 MHz
19
1930 MHz
1995 MHz
Gps
1960 MHz
18
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
21
-50
-60
0
300
Pout, OUTPUT POWER (WATTS) AVG.
Figure 6. Single−Carrier W−CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
30
21
20
Gain
17
10
15
0
IRL
13
-10
-20
11
9
1500
IRL (dB)
GAIN (dB)
19
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 2000 mA
1600
1700
1800
1900
2000
2100
2200
-30
2300
f, FREQUENCY (MHz)
Figure 7. Broadband Frequency Response
AFT18S290−13SR3
6
RF Device Data
Freescale Semiconductor, Inc.
VDD = 28 Vdc, IDQ = 2077 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
(W)
Zin
(W)
Zload (1)
(W)
Gain (dB)
(dBm)
(W)
hD
(%)
1930
4.65 − j5.42
4.26 + j5.36
1.01 − j2.59
17.2
55.4
344
53.8
−11
1960
5.36 − j4.16
6.21 + j4.97
1.07 − j2.68
17.2
55.2
334
53.5
−10
1990
8.71 − j2.52
8.15 + j2.81
1.09 − j2.82
17.2
55.3
338
53.1
−11
AM/PM
(5)
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
1.07 − j2.75
15.0
56.2
419
57.1
−15
6.63 + j5.03
1.11 − j2.85
15.0
56.1
407
55.9
−15
8.59 + j2.49
1.16 − j2.99
15.0
56.1
411
55.8
−16
f
(MHz)
Zsource
(W)
Zin
(W)
1930
4.65 − j5.42
4.49 + j5.53
1960
5.36 − j4.16
1990
8.71 − j2.52
Zload
(W)
(2)
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 8. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 2077 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
(W)
Zin
(W)
1930
4.65 − j5.42
4.89 + j5.31
1960
5.36 − j4.16
6.97 + j4.39
1990
8.71 − j2.52
8.27 + j1.78
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
1.71 − j1.45
19.7
53.5
224
65.3
−16
1.64 − j1.37
19.7
53.1
205
64.5
−15
1.57 − j1.60
19.6
53.4
220
64.0
−16
Zload
(W)
(1)
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
(W)
Zin
(W)
1930
4.65 − j5.42
5.07 + j5.44
1960
5.36 − j4.16
7.25 + j4.47
1990
8.71 − j2.52
8.62 + j1.34
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
1.72 − j1.56
17.6
54.4
275
67.3
−23
1.64 − j1.65
17.4
54.4
275
66.3
−22
1.51 − j1.63
17.6
54.2
262
65.9
−24
Zload
(W)
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 9. Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
7
P1dB − TYPICAL LOAD PULL CONTOURS — 1960 MHz
-0.5
51
52
E
-1
E
52.5
-1.5
IMAGINARY (Ω)
-1
IMAGINARY (Ω)
-0.5
51.5
53
-2
53.5
-2.5
P
-3
54
-3.5
60
-1.5
58
64
-2
62
48
-2.5
P
-3
55
54
54.5
54
52
50
-3.5
-4
56
-4
0.5
1
1.5
2
2.5
3
3.5
0.5
1
1.5
2
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 10. P1dB Load Pull Output Power Contours (dBm)
Figure 11. P1dB Load Pull Efficiency Contours (%)
-0.5
-1
-24
-1
20
E
19.5
-1.5
19
IMAGINARY (Ω)
IMAGINARY (Ω)
-0.5
20.5
-2
18.5
-2.5
P
18
16.5
-3
0.5
1
1.5
2
2.5
-18
-14
E
-1.5
-12
-2
-2.5
P
-10
-3.5
17
-4
-22
-16
-3
17.5
-3.5
-20
-8
-4
3
3.5
0.5
1
1.5
2
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 12. P1dB Load Pull Gain Contours (dB)
Figure 13. P1dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Power Gain
Drain Efficiency
Linearity
Output Power
AFT18S290−13SR3
8
RF Device Data
Freescale Semiconductor, Inc.
P3dB − TYPICAL LOAD PULL CONTOURS — 1960 MHz
-0.5
-0.5
53
-1
52
53.5
-1.5
E
IMAGINARY (Ω)
IMAGINARY (Ω)
-1
52.5
54
-2
-2.5
54.5
P
-3 55
55
60
E
58
66
-2
64
-2.5
P
-3
56
-3.5
62
-1.5
56
-3.5
55.5
54
50
-4
52
-4
0.5
1
1.5
2
2.5
3
3.5
0.5
1
1.5
2
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 14. P3dB Load Pull Output Power Contours (dBm)
Figure 15. P3dB Load Pull Efficiency Contours (%)
-0.5
-1
-1
18
-28 -26 -24 -22
17.5
-1.5
17
E
IMAGINARY (Ω)
IMAGINARY (Ω)
-0.5
18.5
-2
16.5
-2.5
14.5
-3
P
16
0.5
1
1.5
2
2.5
-18
E
-16
-2.5
-14
P
-12
-3.5
15
-4
-20
-2
-3
15.5
-3.5
-1.5
-4
3
3.5
0.5
1
1.5
2
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 16. P3dB Load Pull Gain Contours (dB)
Figure 17. P3dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Power Gain
Drain Efficiency
Linearity
Output Power
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
9
ALTERNATIVE CHARACTERIZATION — 1805−1880 MHz
VDD
C22
C17
VGG
C18
C10*
R1
C7
C16
C1
C6
C3*
C14*
CUT OUT AREA
C4*
C5*
C8
C12*
C13*
C2
C15*
C19
C9
R2
C11* C21
VGG
C20
VDD
C23
AFT18S290-13S
Rev. 0
1805-1880 MHz
*C3, C4, C5, C10, C11, C12, C13, C14 and C15 are mounted vertically.
Figure 18. AFT18S290−13SR3 Test Circuit Component Layout — 1805−1880 MHz
Table 6. AFT18S290−13SR3 Test Circuit Component Designations and Values — 1805−1880 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C10, C11
12 pF Chip Capacitors
ATC100B120JT500XT
ATC
C3
8.2 pF Chip Capacitor
ATC100B8R2CT500XT
ATC
C4
0.7 pF Chip Capacitor
ATC100B0R7BT500XT
ATC
C5
0.8 pF Chip Capacitor
ATC100B0R8BT500XT
ATC
C6, C7, C8, C9
10 μF Chip Capacitors
GRM31CR61H106KA12L
Murata
C12, C13
8.2 pF Chip Capacitors
ATC800B8R2BW500XT
ATC
C14, C15
0.4 pF Chip Capacitors
ATC100B0R4BT500XT
ATC
C16, C17, C18, C19, C20, C21
10 μF Chip Capacitors
C5750X7S2A106M230KB
TDK
C22, C23
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26−RH
Multicomp
R1, R2
2 Ω, 1/4 W Chip Resistors
CRCW12062R00FKEA
Vishay
PCB
0.020², er = 3.5
RO4350B
Rogers
AFT18S290−13SR3
10
RF Device Data
Freescale Semiconductor, Inc.
ALTERNATIVE CHARACTERIZATION — 1805−1880 MHz
33
32
Gps
18
17.5
31
Input Signal PAR = 9.9 dB @
0.01% Probability on CCDF -32.5
PARC
-8
-33
17
IRL
16.5
-33.5
-34
16
-10
-12
-14
-16
-34.5
15.5
ACPR
15
1760
1780
1800
1820
1840
1860
1880
1900
-18
-35
1920
-2.8
-2.9
-3
-3.1
PARC (dB)
ηD
ACPR (dBc)
Gps, POWER GAIN (dB)
19
18.5
ηD, DRAIN
EFFICIENCY (%)
35
VDD = 28 Vdc, Pout = 63 W (Avg.), IDQ = 2000 mA
Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth 34
IRL, INPUT RETURN LOSS (dB)
20
19.5
-3.2
-3.3
f, FREQUENCY (MHz)
Figure 19. Single−Carrier Output Peak−to−Average Ratio Compression
(PARC) Broadband Performance @ Pout = 63 Watts Avg.
Gps, POWER GAIN (dB)
20
ηD
19
1805 MHz
1840 MHz
60
0
50
-10
40
1880 MHz
Gps
ACPR
18
1805 MHz
1840 MHz
1880 MHz
17
20
1805 MHz
1840 MHz
1880 MHz
16
10
10
100
-30
-40
-50
-60
0
300
15
1
30
-20
ACPR (dBc)
VDD = 28 Vdc, IDQ = 2000 mA, Single-Carrier W-CDMA
3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
ηD, DRAIN EFFICIENCY (%)
21
Pout, OUTPUT POWER (WATTS) AVG.
Figure 20. Single−Carrier W−CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
30
21
Gain
20
10
GAIN (dB)
17
0
15
IRL
13
-10
11
-20
9
1500
1600
1700
1800
1900
2000
2100
2200
IRL (dB)
19
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 2000 mA
-30
2300
f, FREQUENCY (MHz)
Figure 21. Broadband Frequency Response
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
11
VDD = 28 Vdc, IDQ = 2078 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Output Power
P1dB
Zin
(W)
Zload (1)
(W)
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
1.17 − j3.88
1.11 + j3.95
1.04 − j2.20
17.5
55.1
325
52.8
−9.8
1.50 − j4.53
1.55 + j4.38
1.01 − j2.27
17.4
55.3
339
53.9
−11
2.48 − j5.08
2.36 + j4.86
1.02 − j2.51
17.3
55.3
341
54.2
−11
f
(MHz)
Zsource
(W)
1800
1840
1880
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
1.03 − j2.36
15.3
56.1
405
57.0
−14
1.56 + j4.47
1.03 − j2.53
15.1
56.2
417
57.3
−15
2.39 + j5.03
1.02 − j2.62
15.1
56.2
418
57.0
−15
f
(MHz)
Zsource
(W)
Zin
(W)
1800
1.17 − j3.88
1.10 + j4.01
1840
1.50 − j4.53
1880
2.48 − j5.08
Zload
(W)
(2)
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 22. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 2078 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
(W)
Zin
(W)
1800
1.17 − j3.88
1.26 + j4.14
1840
1.50 − j4.53
1.76 + j4.52
1880
2.48 − j5.08
2.70 + j4.93
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
2.57 − j1.57
20.0
53.2
210
64.5
−13
2.26 − j1.49
19.8
53.4
220
64.7
−14
2.21 − j1.55
19.7
53.4
218
65.1
−14
Zload
(W)
(1)
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
(W)
Zin
(W)
1800
1.17 − j3.88
1.26 + j4.15
1840
1.50 − j4.53
1.74 + j4.58
1880
2.48 − j5.08
2.70 + j5.11
Gain (dB)
(dBm)
(W)
hD
(%)
AM/PM
(5)
2.45 − j1.87
17.7
54.4
274
67.0
−19
2.14 − j1.76
17.5
54.6
290
67.4
−21
2.04 − j1.73
17.5
54.5
285
67.4
−21
Zload
(W)
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 23. Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT18S290−13SR3
12
RF Device Data
Freescale Semiconductor, Inc.
P1dB − TYPICAL LOAD PULL CONTOURS — 1840 MHz
51
IMAGINARY (Ω)
-1
-0.5
51.5
51.5
52
-1
52
53
53.5
E
-1.5
52.5
IMAGINARY (Ω)
-0.5
-2
P
-2.5
55
-3
64
E
-1.5
62
-2
P
-2.5
60
-3
58
54.5
-3.5
56
-3.5
54
-4
0.5
1
48
50
54
52
-4
1.5
2
2.5
3
3.5
0.5
1
1.5
2
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 24. P1dB Load Pull Output Power Contours (dBm)
Figure 25. P1dB Load Pull Efficiency Contours (%)
-0.5
-0.5
20.5
-20
-1
20
E
-1.5
IMAGINARY (Ω)
IMAGINARY (Ω)
-1
19.5
-2
P
-2.5
19
-3
17
17.5
-16
E
-14
-2
-12
P
-2.5
-3
18.5
16.5
-18
-1.5
18
-3.5
-3.5
-4
-4
-10
0.5
1
1.5
2
2.5
3
3.5
0.5
1
1.5
2
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 26. P1dB Load Pull Gain Contours (dB)
Figure 27. P1dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Power Gain
Drain Efficiency
Linearity
Output Power
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
13
P3dB − TYPICAL LOAD PULL CONTOURS — 1840 MHz
-0.5
52
-1
66
53
52.5
-1
53.5
-1.5
E
54
-2
-2.5
IMAGINARY (Ω)
IMAGINARY (Ω)
-0.5
52.5
P
54.5
56
-3
-1.5
E
-2
-2.5
64
P
62
-3
60
55.5
-3.5
-3.5
55
-4
50
-4
0.5
1
1.5
2
2.5
3
3.5
0.5
1
1.5
54
52
2
58
56
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 28. P3dB Load Pull Output Power Contours (dBm)
Figure 29. P3dB Load Pull Efficiency Contours (%)
-0.5
-0.5
18.5
-1
-28
-1
-26
-24
IMAGINARY (Ω)
IMAGINARY (Ω)
18
-1.5
E
17.5
-2
-2.5
17
P
-3
16
14.5
-20
-2.5
-18
P
-16
-3.5
15.5
15
E
-2
-3
16.5
-3.5
-22
-1.5
-14
-12
-4
-4
0.5
1
1.5
2
2.5
3
3.5
0.5
1
1.5
2
2.5
3
3.5
REAL (Ω)
REAL (Ω)
Figure 30. P3dB Load Pull Gain Contours (dB)
Figure 31. P3dB Load Pull AM/PM Contours (5)
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Power Gain
Drain Efficiency
Linearity
Output Power
AFT18S290−13SR3
14
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
15
AFT18S290−13SR3
16
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
• .s2p File
Development Tools
• Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
May 2013
Description
• Initial Release of Data Sheet
AFT18S290−13SR3
RF Device Data
Freescale Semiconductor, Inc.
17
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2013 Freescale Semiconductor, Inc.
AFT18S290−13SR3
Document Number: AFT18S290−13S
Rev. 0, 5/2013
18
RF Device Data
Freescale Semiconductor, Inc.