INFINEON BSS83P

BSS 83 P
SIPMOS  Small-Signal-Transistor
Features
Product Summary
· P-Channel
Drain source voltage
VDS
·
Drain-source on-state resistance
RDS(on)
Continuous drain current
ID
Enhancement mode
· Avalanche rated
· Logic Level
-60
V
2
W
-0.33
A
3
· dv/dt rated
2
1
Type
Package
Tape and Reel
BSS 83 P
PG-SOT-23
L6327: 3000pcs/r. YAs
Marking
Maximum Ratings,at T j = 25 °C, unless otherwise specified
Parameter
Symbol
Pin 1
PIN 2
PIN 3
G
S
D
Value
ID
Continuous drain current
-0.33
T A = 70 °C
-0.27
I D puls
Unit
A
T A = 25 °C
Pulsed drain current
VPS05161
-1.32
T A = 25 °C
Avalanche energy, single pulse
EAS
9.5
Avalanche energy, periodic limited by Tjmax
Reverse diode dv/dt
EAR
0.036
dv/dt
6
Gate source voltage
VGS
±20
V
Power dissipation
Ptot
0.36
W
-55...+150
°C
I D = -0.33 A , V DD = -25 V, RGS = 25 W
mJ
kV/µs
I S = -0.33 A, V DS = -48 V, di/dt = 200 A/µs,
T jmax = 150 °C
T A = 25 °C
T j , T stg
Operating and storage temperature
IEC climatic category; DIN IEC 68-1
Rev. 1.2
55/150/56
Page 1
2006-12-05
BSS 83 P
Thermal Characteristics
Parameter
Symbol
Values
Unit
min.
typ.
max.
-
-
150
@ min. footprint
-
-
350
@ 6 cm 2 cooling area 1)
-
-
300
Characteristics
Thermal resistance, junction - soldering point
RthJS
K/W
( Pin 3 )
RthJA
SMD version, device on PCB:
Electrical Characteristics, at T j = 25 °C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
V(BR)DSS
-60
-
-
Gate threshold voltage, VGS = VDS
I D = -80 µA
VGS(th)
-1
-1.5
-2
Zero gate voltage drain current
IDSS
Static Characteristics
Drain- source breakdown voltage
V
VGS = 0 V, I D = -250 µA
µA
VDS = -60 V, V GS = 0 V, T j = 25 °C
-
-0.1
-1
VDS = -60 V, V GS = 0 V, T j = 125 °C
-
-10
-100
IGSS
-
-10
-100
nA
RDS(on)
-
2
3
W
RDS(on)
-
1.4
2
Gate-source leakage current
VGS = -20 V, VDS = 0 V
Drain-source on-state resistance
VGS = -4.5 V, I D = -0.27 A
Drain-source on-state resistance
VGS = -10 V, I D = -0.33 A
1Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
Rev. 1.2
Page 2
2006-12-05
BSS 83 P
Electrical Characteristics, at T j = 25 °C, unless otherwise specified
Symbol
Parameter
Values
Unit
min.
typ.
max.
Dynamic Characteristics
Transconductance
gfs
0.24
0.47
-
S
Input capacitance
Ciss
-
62
78
pF
Coss
-
19
24
Crss
-
7
9
t d(on)
-
23
35
tr
-
71
106
t d(off)
-
56
70
tf
-
61
76
VDS³2*I D*RDS(on)max , ID = -0.27 A
VGS = 0 V, V DS = -25 V, f = 1 MHz
Output capacitance
VGS = 0 V, V DS = -25 V, f = 1 MHz
Reverse transfer capacitance
VGS = 0 V, V DS = -25 V, f = 1 MHz
Turn-on delay time
ns
VDD = -30 V, V GS = -4.5 V, I D = -0.27 A,
RG = 43 W
Rise time
VDD = -30 V, V GS = -4.5 V, I D = -0.27 A,
RG = 43 W
Turn-off delay time
VDD = -30 V, V GS = -4.5 V, I D = -0.27 A,
RG = 43 W
Fall time
VDD = -30 V, V GS = -4.5 V, I D = -0.27 A,
RG = 43 W
Rev. 1.2
Page 3
2006-12-05
BSS 83 P
Electrical Characteristics, at T j = 25 °C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
Q gs
-
0.12
0.18
Q gd
-
1.1
1.65
Qg
-
2.38
3.57
V(plateau)
-
-2.94
-
Dynamic Characteristics
Gate to source charge
nC
VDD = -48 V, ID = -0.33 A
Gate to drain charge
VDD = -48 , ID = -0.33 A
Gate charge total
VDD = -48 V, ID = -0.33 A, V GS = 0 to -10 V
Gate plateau voltage
V
VDD = -48 V , I D = -0.33 A
Parameter
Symbol
Values
Unit
min.
typ.
max.
IS
-
-
-0.33
ISM
-
-
-1.32
VSD
-
-0.84
-1.1
V
trr
-
59.4
89
ns
Qrr
-
37.5
56
nC
Reverse Diode
Inverse diode continuous forward current
A
T A = 25 °C
Inverse diode direct current,pulsed
T A = 25 °C
Inverse diode forward voltage
VGS = 0 V, I F = -0.33
Reverse recovery time
VR = -30 V, IF=I S , di F/dt = 80 A/µs
Reverse recovery charge
VR = -30 V, IF=l S , diF/dt = 80 A/µs
Rev. 1.2
Page 4
2006-12-05
BSS 83 P
Power Dissipation
Drain current
Ptot = f (TA)
ID = f (TA )
parameter: VGS ³ 10 V
BSS 83 P
BSS 83 P
0.38
-0.36
W
A
0.32
-0.28
-0.24
0.24
ID
Ptot
0.28
-0.20
0.20
-0.16
0.16
0.12
-0.12
0.08
-0.08
0.04
-0.04
0.00
0
20
40
60
80
100
120
°C
0.00
0
160
20
40
60
80
100
120
°C
TA
TA
Safe operating area
Transient thermal impedance
I D = f ( VDS )
ZthJC = f (tp )
parameter : D = 0 , T A = 25 °C
parameter : D = tp /T
-10
1
160
BSS 83 P
10 3
A
BSS 83 P
K/W
tp = 88.0µs
ID
=
RD
-10
100 µs
/I D
S(
VD
10 2
S
Z thJC
-10
0
)
on
1 ms
-1
10 1
D = 0.50
10 ms
0.20
0.10
-10 -2
10 0
0.05
single pulse
0.02
DC
-10 -3 -1
-10
-10
0
-10
1
V
0.01
-10
2
VDS
Rev. 1.2
10 -1 -5
-4
-3
-2
-1
0
1
2
10 10 10 10 10 10 10 10
s 10 4
tp
Page 5
2006-12-05
BSS 83 P
Typ. output characteristic
Typ. drain-source-on-resistance
I D = f (VDS); T j=25°C
parameter: tp = 80 µs
RDS(on) = f (ID )
parameter: VGS
BSS 83 P
A
BSS 83 P
6.5
Ptot = 0W
W
jik
hglf e d
VGS [V]
a
-2.5
-0.60
ID
c
-0.50
-0.40
-0.30
b
-3.0
c
-3.5
d
-4.0
e
-4.5
f
-5.0
g
-5.5
h
-6.0
i
-6.5
j
-7.0
b k
-8.0
l
-10.0
a
b
c
5.5
5.0
RDS(on)
-0.80
4.5
4.0
3.5
3.0
2.5
2.0
-0.20
d
e
l f g
j h ki
1.5
1.0
-0.10
a
VGS [V] =
0.5
0.00
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 V
0.0
0.00
-5.0
a
b
c
d
e
f
-2.5 -3.0 -3.5 -4.0 -4.5 -5.0
-0.10
-0.20
-0.30
g
h
i
j
-5.5 -6.0 -6.5 -7.0
-0.40
k
l
-8.0 -10.0
-0.50 A
VDS
-0.65
ID
Typ. transfer characteristics I D= f ( V GS )
VDS³ 2 x I D x RDS(on)max
Typ. forward transconductance
gfs = f(ID); Tj=25°C
parameter: tp = 80 µs
parameter: gfs
-1.2
0.70
A
S
0.60
-1.0
0.55
-0.9
0.50
0.45
gfs
ID
-0.8
-0.7
0.40
-0.6
0.35
-0.5
0.30
0.25
-0.4
0.20
-0.3
0.15
-0.2
0.10
-0.1
0.0
0.0
0.05
-1.0
-2.0
-3.0
-4.0
V
-6.0
VGS
Rev. 1.2
0.00
0.00
-0.10
-0.20
-0.30
-0.40
-0.50
A
-0.70
ID
Page 6
2006-12-05
BSS 83 P
Drain-source on-state resistance
Gate threshold voltage
RDS(on) = f (Tj)
VGS(th) = f (Tj)
parameter : I D = -0.33 A, VGS = -10 V
parameter: VGS = VDS , ID = -80 µA
BSS 83 P
-3.0
5.5
W
V
V GS(th)
RDS(on)
4.5
4.0
3.5
98%
-2.0
typ
3.0
-1.5
98%
2.5
2.0
typ
2%
-1.0
1.5
1.0
-0.5
0.5
0.0
-60
-20
20
60
100
°C
0.0
-60
180
-20
20
60
100
Tj
160
°C
Tj
Typ. capacitances
Forward characteristics of reverse diode
C = f (VDS)
IF = f (VSD )
parameter: VGS=0V, f=1 MHz
parameter: Tj , tp = 80 µs
10
3
-10 1
pF
BSS 83 P
A
-10 0
C
Ciss
IF
10 2
Coss
10 1
-10 -1
Crss
Tj = 25 °C typ
Tj = 150 °C typ
Tj = 25 °C (98%)
Tj = 150 °C (98%)
10 0
0
-5
-10
-15
-20
-25
V
-10 -2
0.0
-35
-0.8
-1.2
-1.6
-2.0
-2.4 V
-3.0
VSD
VDS
Rev. 1.2
-0.4
Page 7
2006-12-05
BSS 83 P
Avalanche energy
Typ. gate charge
EAS = f (Tj)
VGS = f (QGate )
parameter: ID = -0.33 A pulsed
para.: I D = -0.33 A , VDD = -25 V, RGS = 25
BSS 83 P
10
-16
mJ
V
8
-12
VGS
E AS
7
6
5
-10
-8
4
0,2 VDS max
-6
0,8 VDS max
3
-4
2
-2
1
0
25
45
65
85
105
125
165
°C
0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8 nC
3.4
QGate
Tj
Drain-source breakdown voltage
V(BR)DSS = f (Tj)
BSS 83 P
-72
V(BR)DSS
V
-68
-66
-64
-62
-60
-58
-56
-54
-60
-20
20
60
100
°C
180
Tj
Rev. 1.2
Page 8
2006-12-05
BSS 83 P
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Rev. 1.2
Page 9
2006-12-05