APT80GP60J_B.pdf

APT80GP60J
600V
®
POWER MOS 7 IGBT
E
E
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
27
2
T-
C
G
SO
"UL Recognized"
• Low Conduction Loss
• 100 kHz operation @ 400V, 39A
• Low Gate Charge
• 50 kHz operation @ 400V, 59A
• Ultrafast Tail Current shutoff
• SSOA rated
ISOTOP ®
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
I C1
Continuous Collector Current @ TC = 25°C
151
I C2
Continuous Collector Current @ TC = 110°C
68
I CM
Pulsed Collector Current
VGEM
SSOA
PD
TJ,TSTG
TL
UNIT
APT80GP60J
1
Volts
Amps
330
@ TC = 25°C
Switching Safe Operating Area @ TJ = 150°C
330A @ 600V
462
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
MIN
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
1.0
2
Gate-Emitter Leakage Current (VGE = ±20V)
UNIT
Volts
mA
5
±100
Rev B
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
nA
11-2003
Characteristic / Test Conditions
APT Website - http://www.advancedpower.com
050-7426
Symbol
APT80GP60J
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
Total Gate Charge
3
Gate-Emitter Charge
TYP
Capacitance
9840
VGE = 0V, VCE = 25V
735
f = 1 MHz
40
Gate Charge
VGE = 15V
7.5
280
VCE = 300V
65
I C = 80A
85
Gate-Collector ("Miller ") Charge
Switching SOA
MIN
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
330
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 80A
78
4
Turn-on Switching Energy (Diode) 5
Eon1
116
µJ
1199
29
VGE = 15V
149
I C = 80A
84
Current Fall Time
Turn-off Switching Energy
1536
Inductive Switching (125°C)
VCC = 400V
Turn-off Delay Time
40
R G = 5Ω
4
Turn-on Switching Energy (Diode)
ns
795
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
40
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
29
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 400V
5
ns
795
TJ = +125°C
2153
6
µJ
1690
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.27
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
29.2
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7426
Rev B
11-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
APT80GP60J
TYPICAL PERFORMANCE CURVES
120
80
60
TC=25°C
40
TC=-55°C
TC=125°C
20
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
100
0
TC=-55°C
60
40
TC=25°C
TC=125°C
20
0
FIGURE 2, Output Characteristics (VGE = 10V)
16
TJ = -55°C
400
300
200
TJ = 25°C
100
TJ = 125°C
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
500
14
IC = 80A
TJ = 25°C
VCE=120V
12
VCE=300V
10
8
VCE=480V
6
4
2
0
1
2 3 4
5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC= 160A
3
2.5
IC= 80A
2
IC= 40A
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
300
3
IC= 160A
2.5
IC= 80A
2
IC=40A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
200
IC, DC COLLECTOR CURRENT(A)
1.10
100
150
200
250
GATE CHARGE (nC)
FIGURE 4, Gate Charge
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
1.2
1.15
50
160
120
80
11-2003
3.5
0
40
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev B
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
80
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
100
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7426
IC, COLLECTOR CURRENT (A)
120
APT80GP60J
35
VGE= 15V
30
25
20
15
10
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
60
40
VCE = 400V
RG = 5Ω
L = 100 µH
20
TJ = 25 or 125°C,VGE = 15V
50
40
30
100
80
60
20
40
10
20
3000
TJ =125°C, VGE=15V
2500
2000
1500
1000
500
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
Eoff 120A
Eon2 80A
3000
Eoff 80A
2000
Eon2 40A
1000
Eoff40A
5
3000
TJ = 125°C, VGE = 10V or 15V
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
Eon2 120A
4000
0
VCE = 400V
RG = 5Ω
L = 100 µH
4000
VCE = 400V
VGE = +15V
TJ = 125°C
5000
VCE = 400V
RG = 5Ω
L = 100 µH
0
10
15
20
25
30
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
6000
TJ = 25°C, VGE = 10V or 15V
4000
VCE = 400V
RG = 5Ω
L = 100 µH
3500
TJ = 125°C, VGE = 10V or 15V
120
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
80
140
VCE = 400V
RG = 5Ω
L = 100 µH
TJ = 25°C, VGE=15V
SWITCHING ENERGY LOSSES (µJ)
100
70
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
11-2003
120
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
4000
Rev B
140
0
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
050-7426
VGE =15V,TJ=125°C
160
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
60
tr, RISE TIME (ns)
td (OFF), TURN-OFF DELAY TIME (ns)
180
tf, FALL TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
40
VCE = 400V
VGE = +15V
RG = 5Ω
Eon2 120A
3000
Eoff 120A
Eon2 80A
2000
Eoff 80A
1000
Eon2 40A
Eoff 40A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
20,000
10,000
APT80GP60J
300
Cies
2m50
1,000
IC, COLLECTOR CURRENT (A)
5,000
Coes
500
100
50
Cres
10
0
10
20
30
40
50
200
150
100
50
0
0
100
200
300
400
500
600
700
0.25
0.9
0.20
0.7
0.15
0.5
0.10
0.3
0.05
0.1
0.05
Note:
t2
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
190
RC MODEL
Junction
temp (°C)
100
0.00119F
0.0584
0.0354F
0.185
0.463F
Case temperature(°C)
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
50
Fmax = min(f max1 , f max 2 )
10
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
1
10 20 30 40 50 60 70 80 90 100 110 130
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ − TC
R θJC
11-2003
0.0260
FMAX, OPERATING FREQUENCY (kHz)
Power
(watts)
1.0
Rev B
10-5
t1
050-7426
0
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
APT80GP60J
Gate Voltage
APT60DF60
10%
T J = 125 C
td(on)
IC
V CC
V CE
90%
Collector Current
tr
A
D.U.T.
5%
10%
5%
Switching
Energy
Collector Voltage
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125 C
A
td(off)
Collector Voltage
90%
V CE
IC
100uH
V CLAMP
tf
B
10%
Collector Current
Switching
Energy
A
0
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter
30.1 (1.185)
30.3 (1.193)
Collector
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
Rev B
11-2003
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
050-7426
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson.
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.