APT75GT120JRDQ3_F.pdf

TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
APT75GT120JRDQ3
1200V
E
E
Thunderbolt IGBT®
C
G
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
S
• High Freq. Switching to 20KHz
• Low Tail Current
• Ultra Low Leakage Current
22
7
"UL Recognized"
IS OT OP ®
• Low Forward Voltage Drop
OT
file # E145592
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT75GT120JRDQ3
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
97
I C2
Continuous Collector Current @ TC = 110°C
42
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
225
@ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
225
Total Power Dissipation
480
Operating and Storage Junction Temperature Range
Watts
-55 to 150
°C
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
MIN
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
1200
VGE(TH)
Gate Threshold Voltage (VCE = VGE, I C = 3mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C)
VCE(ON)
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C)
I CES
I GES
RG(int)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
MAX
4.5
5.5
6.5
2.7
3.2
3.7
200
2
480
5
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
μA
2000
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Volts
3.9
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Units
nA
Ω
052-6276 Rev F 3-2012
Symbol
APT75GT120JRDQ3
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Total Gate Charge
Qge
Gate-Emitter Charge
5100
VGE = 0V, VCE = 25V
720
f = 1 MHz
380
Gate Charge
10
VGE = 15V
500
VCE = 600V
32
516
Qgc
Gate-Collector ("Miller ") Charge
I C = 75A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 4.3Ω, VGE =
td(on)
Turn-on Delay Time
tr
td(off )
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off )
tf
Eon1
Eon2
Eoff
TYP
Capacitance
3
Qg
MIN
15V, L = 100μH,VCE = 1200V
Current Rise Time
VCC = 800V
65
Turn-off Delay Time
VGE = 15V
375
I C = 75A
25
RG = 1.0Ω
8045
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
TJ = +25°C
5
50
Current Rise Time
VCC = 800V
65
Turn-off Delay Time
VGE = 15V
415
I C = 75A
29
RG = 1.0Ω
8050
Current Fall Time
Turn-off Switching Energy
ns
μJ
2970
Turn-on Delay Time
44
Turn-on Switching Energy (Diode)
nC
8845
6
Inductive Switching (125°C)
Turn-on Switching Energy
V
A
50
4
UNIT
pF
225
Inductive Switching (25°C)
Current Fall Time
MAX
55
TJ = +125°C
ns
μJ
12660
66
4215
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.26
RθJC
Junction to Case (DIODE)
.56
WT
Package Weight
VIsolation
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.)
29.2
2500
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
052-6276 Rev F 3-2012
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
Microsemi Reserves the right to change, without notice, the specifications and information contained herein.
UNIT
°C/W
gm
Volts
TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
140
200
V
GE
120
IC, COLLECTOR CURRENT (A)
140
TC = 25°C
120
TC = 125°C
100
80
60
40
13V
100
12V
80
11V
60
40
10V
20
20
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
7
9V
8V
0
FIGURE 1, Output Characteristics(VGE = 15V)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
180
FIGURE 2, Output Characteristics (TJ = 125°C)
16
IC, COLLECTOR CURRENT (A)
140
120
100
80
TJ = 25°C
TJ = 125°C
40
20
0
0
I = 75A
C
T = 25°C
TJ = -55°C
160
60
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
J
VCE = 240V
14
VCE = 600V
12
10
VCE = 960V
8
6
4
2
0
14
0
50
FIGURE 3, Transfer Characteristics
IC = 150A
6.0
5.0
IC = 75A
4.0
IC = 37.5A
3.0
2.0
1.0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
7.0
350
IC = 150A
5
4
IC = 75A
3
IC = 37.5A
2
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
8
0
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
1.05
120
IC, DC COLLECTOR CURRENT(A)
1.10
1.00
(NORMALIZED)
300
FIGURE 4, Gate Charge
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
VGS(TH), THRESHOLD VOLTAGE
100 150 200 250
GATE CHARGE (nC)
6
8.0
0
20
18
VGE, GATE-TO-EMITTER VOLTAGE (V)
200
7V
5
10
15
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0.95
0.90
0.85
0.80
0.75
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
25
100
80
60
40
20
0
-50 -25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6276 Rev F 3-2012
IC, COLLECTOR CURRENT (A)
160
0
15V
= 15V
180
APT75GT120JRDQ3
500
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
60
50
VGE = 15V
40
30
20
VCE = 400V
10 T = 25°C, or 125°C
J
0
RG = 1.0Ω
L = 100μH
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
100
VCE = 400V
RG = 1.0Ω
L = 100μH
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
RG = 1.0Ω, L = 100μH, VCE = 800V
50
tf, FALL TIME (ns)
tr, RISE TIME (ns)
200
60
120
100
80
60
TJ = 125°C, VGE = 15V
40
30
20
40
TJ = 25°C, VGE = 15V
TJ = 25 or 125°C,VGE = 15V
10
20
0
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
50000
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
10000
V = 800V
CE
V = +15V
GE
R = 1.0Ω
G
EOFF, TURN OFF ENERGY LOSS (μJ)
EON2, TURN ON ENERGY LOSS (μJ)
VGE =15V,TJ=125°C
70
RG = 1.0Ω, L = 100μH, VCE = 800V
140
0
VGE =15V,TJ=25°C
300
0
10
160
400
40000
TJ = 125°C
30000
20000
10000
V = 800V
CE
V = +15V
GE
R = 1.0Ω
G
8000
TJ = 125°C
6000
4000
2000
TJ = 25°C
TJ = 25°C
0
0
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
100000
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
45000
V = 800V
CE
V = +15V
GE
T = 125°C
V = 800V
CE
V = +15V
GE
R = 1.0Ω
40000
80000
Eon2,150A
60000
40000
Eoff,150A
Eon2,75A
20000
Eoff,75A
0
Eon2,37.5A
Eoff,37.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6276 Rev F 3-2012
J
Eon2,150A
G
35000
30000
25000
20000
15000
Eon2,75A
Eoff,150A
10000
Eon2,37.5A
5000
Eoff,37.5A
0
0
Eoff,75A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
4,000
250
IC, COLLECTOR CURRENT (A)
1,000
P
C, CAPACITANCE ( F)
Cies
500
Coes
200
150
100
50
Cres
100
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
D = 0.9
0.20
0.7
0.15
0.5
0.10
P DM
Note:
0.3
t1
t2
0.05
t
0.1
SINGLE PULSE
0.05
0
10-5
10-4
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
5
T = 125°C
J
T = 75°C
C
D = 50 %
V = 400V
CE
R = 5Ω
3
G
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
15
25
35
45
55
65
75
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6276 Rev F 3-2012
FMAX, OPERATING FREQUENCY (kHz)
50
APT75GT120JRDQ3
Gate Voltage
APT60DQ120
10%
TJ = 125°C
td(on)
V CE
IC
V CC
tr
Collector Current
90%
5%
5%
10%
A
CollectorVoltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circui
t
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
td(off )
CollectorVoltage
90%
tf
10%
0
Collector Current
Switching Energy
052-6276 Rev F 3-2012
Figure 23, Turn-off Switching Waveforms and Definitions
TJ = 125°C
TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT75GN120JRDQ3
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 85°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
73
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
540
UNIT
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 75A
2.8
IF = 150A
3.48
IF = 75A, TJ = 125°C
2.17
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
trr
IF = 1A, diF/dt = -100A/μs, VR = 30V, TJ = 25°C
VR = 800V, TC = 25°C
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
trr
IF = 60A, diF/dt = -200A/μs
IF = 60A, diF/dt = -200A/μs
VR = 800V, TC = 125°C
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
IF = 60A, diF/dt = -1000A/μs
VR = 800V, TC = 125°C
MIN
TYP
MAX-
UNIT
-
60
-
265
-
560
-
5
-
350
ns
-
2890
nC
-
13
-
150
-
4720
-
40
ns
nC
-
Amps
-
Amps
ns
-
nC
Amps
D = 0.9
0.50
0.40
0.7
0.30
0.5
0.20
Note:
P DM
0.3
t1
t2
0.10
t
0.1
SINGLE PULSE
0.05
0
10-5
10-4
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
1.0
052-6276 Rev F 3-2012
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
APT75GT120JRDQ3
200
400
120A
180
trr, REVERSE RECOVERY TIME
(ns)
IF, FORWARD CURRENT
(A)
140
TJ = 175°C
120
100
TJ = 125°C
80
60
TJ = 25°C
40
TJ = -55°C
20
1
2
3
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
0
300
60A
250
30A
200
150
100
50
0
4
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/μs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
7000
0
50
R
6000
120A
5000
4000
60A
3000
30A
2000
IRRM, REVERSE RECOVERY CURRENT
(A)
T = 125°C
J
V = 800V
Qrr, REVERSE RECOVERY CHARGE
(nC)
R
350
160
0
T = 125°C
J
V = 800V
T = 125°C
J
V = 800V
45
120A
R
40
35
30
25
60A
20
15
30A
10
1000
5
0
0
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/μs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
1.2
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/μs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
90
Qrr
trr
Duty cycle = 0.5
T = 175°C
J
80
70
trr
0.8
60
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/μs)
1.0
IRRM
0.6
0.4
50
40
30
Qrr
20
0.2
10
0.0
0
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
350
CJ, JUNCTION CAPACITANCE
(pF)
052-6276 Rev F 3-2012
300
250
200
150
100
50
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
Vr
diF /dt Adjus t
+18V
APT10035LLL
0V
D.U.T.
30μH
trr/Q rr
Wavefor m
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circui
1
I F - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
I RRM - Maximum Reverse Recovery Current
4
e diode
trr - Revers e R ecovery Time, measured from zero crossing wher
current goes from positive to negative, to the point at which the straight
line through I RRM and 0.25 I RRM passes through zero .
1
Q rr - Area Under the Curve Defined by I
RRM
4
Zer o
.
5
0.25 I RRM
3
2
and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M 4
(4 places )
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
Collector/Cathode
30.1 (1.185)
30.3 (1.193)
* Emitter/Anode terminals ar e
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal .
38.0 (1.496)
38.2 (1.504)
Gate
* Emitter/Anode
Dimensions in Millimeters and (Inches
)
052-6276 Rev F 3-2012
5
t