ADPOW APT15GT60BRDQ1

APT15GT60BRDQ1(G)
600V
TYPICAL PERFORMANCE CURVES
APT15GT60BRDQ1
APT15GT60BRDQ1G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
47
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 150KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GT60BRDQ1(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
42
I C2
Continuous Collector Current @ TC = 110°C
20
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
45
Switching Safe Operating Area @ TJ = 150°C
45A @ 600V
Total Power Dissipation
Watts
184
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 700µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
TYP
MAX
3
4
5
1.6
2.0
2.5
Gate-Emitter Leakage Current (VGE = ±20V)
µA
1500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
2.8
50
2
Units
nA
12-2005
MIN
Rev A
Characteristic / Test Conditions
052-6284
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT15GT60BRDQ1(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
Eon1
f = 1 MHz
50
Gate Charge
7.5
VGE = 15V
75
15V, L = 100µH,VCE = 600V
150
TJ = +25°C
215
6
VCC = 400V
8
VGE = 15V
Turn-off Delay Time
100
TJ = +125°C
150
325
RG = 10Ω
44
55
ns
125
I C = 15A
Current Fall Time
Turn-off Switching Energy
µJ
195
Inductive Switching (125°C)
Current Rise Time
Eoff
ns
55
6
Turn-on Switching Energy (Diode)
nC
105
RG = 10Ω
Turn-on Delay Time
Turn-on Switching Energy
V
A
8
I C = 15A
Eon2
pF
45
6
5
UNIT
34
VCC = 400V
4
MAX
6
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
120
TJ = 150°C, R G = 10Ω, VGE =
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
830
I C = 15A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
6
µJ
325
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
WT
Package Weight
MIN
TYP
MAX
.68
1.35
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6284
Rev A
12-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TJ = -55°C
35
30
TJ = 25°C
25
TJ = 125°C
20
15
10
60
30
25
20
15
TJ = 25°C
10
TJ = 125°C
5
0
0
7V
20
6V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
35
8V
30
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
TJ = -55°C
9V
40
0
250µs PULSE
TEST<0.5 % DUTY
CYCLE
10V
50
0
40
13V
70
10
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
80
5
45
15V
90
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
= 15V
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 15A
C
T = 25°C
14
0
10
IC = 30A
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.0
2.5
IC = 15A
2.0
1.5
IC = 7.5A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.15
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
80
3.5
IC = 30A
3.0
2.5
IC = 15A
2.0
IC = 7.5A
1.5
1.0
0.5
0
25
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
70
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.0
20 30 40 50 60
GATE CHARGE (nC)
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
12-2005
GE
Rev A
V
40
APT15GT60BRDQ1(G)
100
052-6284
45
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
8
VGE = 15V
6
4
2 VCE = 400V
TJ = 25°C, or 125°C
0
RG = 10Ω
L = 100µH
30
tf, FALL TIME (ns)
tr, RISE TIME (ns)
20
TJ = 25 or 125°C,VGE = 15V
15
10
VGE =15V,TJ=25°C
60
40
V = 400V
20 RCE= 10Ω
G
L = 100µH
0
RG = 10Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 15V
150
100
50
1000
TJ = 25°C, VGE = 15V
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
600
V
= 400V
CE
V
= +15V
GE
R = 10Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=125°C
80
200
0
G
800
TJ = 125°C
600
400
200
TJ = 25°C
V
= 400V
CE
V
= +15V
GE
R = 10Ω
G
500
TJ = 125°C
400
300
200
TJ = 25°C
100
0
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1200
1000
V
= 400V
CE
V
= +15V
GE
T = 125°C
Eon2,30A
J
1000
800
Eoff,30A
600
Eon2,15A
400
Eoff,15A
Eoff,7.5A
200
0
Eon2,7.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
100
250
RG = 10Ω, L = 100µH, VCE = 400V
5
12-2005
120
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
25
Rev A
140
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
052-6284
APT15GT60BRDQ1(G)
160
10
V
= 400V
CE
V
= +15V
GE
R = 10Ω
Eon2,30A
G
800
600
Eoff,30A
400
Eoff,15A
200
0
Eon2,15A
Eoff,7.5A
Eon2,7.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
Coes
100
50
APT15GT60BRDQ1(G)
50
2,000
Cres
45
40
35
30
25
20
15
10
5
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.60
0.7
0.50
0.40
0.5
0.30
Note:
0.3
0.20
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
t2
SINGLE PULSE
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.271
0.0013
0.00675
0.0969
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 10Ω
G
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
0
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
12-2005
0.165
F
50
Rev A
0.243
Dissipated Power
(Watts)
100
052-6284
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
180
APT15GT60BRDQ1(G)
10%
APT15DQ60
Gate Voltage
TJ = 125°C
IC
V CC
td(on)
V CE
tr
Collector Current
90%
A
Switching Energy
D.U.T.
90%
TJ = 125°C
td(off)
tf
90%
Collector Voltage
10%
Switching Energy
0
Collector Current
Rev A
12-2005
Figure 23, Turn-off Switching Waveforms and Definitions
052-6284
Collector Voltage
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
Gate Voltage
5%
10%
TYPICAL PERFORMANCE CURVES
APT15GT60BRDQ1(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
All Ratings: TC = 25°C unless otherwise specified.
APT15GT60BRDQ1(G)
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
30
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
UNIT
Amps
110
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
Forward Voltage
VF
MIN
TYP
IF = 15A
2.0
IF = 30A
2.5
IF = 15A, TJ = 125°C
1.5
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
15
trr
Reverse Recovery Time
-
19
Qrr
Reverse Recovery Charge
-
21
-
2
-
105
ns
-
250
nC
-
5
-
55
ns
-
420
nC
-
15
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 15A, diF/dt = -200A/µs
IF = 15A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
D = 0.9
1.20
1.00
0.7
0.80
0.5
Note:
0.3
0.40
t1
t2
0.20
t
0.1
SINGLE PULSE
0.05
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TJ (°C)
12-2005
10-4
TC (°C)
0.583
0.767
Dissipated Power
(Watts)
0.0022
0.060
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
Rev A
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
052-6284
0
PDM
0.60
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
1.40
50
120
trr, REVERSE RECOVERY TIME
(ns)
140
TJ = 175°C
40
TJ = 125°C
30
20
10
0
TJ = 25°C
TJ = -55°C
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
700
R
30A
500
400
15A
300
7.5A
200
100
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
CJ, JUNCTION CAPACITANCE
(pF)
40
20
T =125°C
J
V =400V
R
20
30A
15
10
15A
7.5A
5
Duty cycle = 0.5
T =175°C
J
30
25
IRRM
0.6
trr
0.4
Qrr
20
15
10
5
0
90
12-2005
7.5A
60
35
0.8
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
Rev A
15A
80
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
trr
0.2
052-6284
30A
100
0
Qrr
1.0
80
70
60
50
40
30
20
10
0
R
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
0.0
T =125°C
J
V =400V
25
T =125°C
J
V =400V
600
APT15GT60BRDQ1(G)
0
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
60
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT15GT60BRDQ1(G)
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.55 (.138)
3.81 (.150)
2.21 (.087)
2.59 (.102)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
(Cathode)
Emitter
(Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
12-2005
19.81 (.780)
20.32 (.800)
Rev A
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
052-6284
4.50 (.177) Max.