MOTOROLA MJD112

Order this document
by MJD112/D
SEMICONDUCTOR TECHNICAL DATA
DPAK For Surface Mount Applications
*Motorola Preferred Device
Designed for general purpose power and switching such as output or driver stages
in applications such as switching regulators, converters, and power amplifiers.
•
•
•
•
•
•
•
Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
Straight Lead Version in Plastic Sleeves (“1” Suffix)
Lead Formed Version in 16 mm Tape and Reel (“T4” Suffix)
Surface Mount Replacements for TIP110–TIP117 Series
Monolithic Construction With Built–in Base–Emitter Shunt Resistors
High DC Current Gain — hFE = 2500 (Typ) @ IC = 2.0 Adc
Complementary Pairs Simplifies Designs
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
v
v
SILICON
POWER TRANSISTORS
2 AMPERES
100 VOLTS
20 WATTS
MAXIMUM RATINGS
Unit
VCEO
VCB
100
Vdc
100
Vdc
VEB
IC
5
Vdc
2
4
Adc
IB
PD
50
mAdc
20
0.16
Watts
W/_C
PD
1.75
0.014
Watts
W/_C
TJ, Tstg
– 65 to + 150
_C
Symbol
Max
Unit
Thermal Resistance, Junction to Case
RθJC
6.25
_C/W
Thermal Resistance, Junction to Ambient*
RθJA
71.4
_C/W
Symbol
Collector–Emitter Voltage
Collector–Base Voltage
Emitter–Base Voltage
Collector Current — Continuous
Peak
Base Current
Total Power Dissipation @ TC = 25_C
Derate above 25_C
Total Power Dissipation* @ TA = 25_C
Derate above 25_C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
CASE 369A–13
CASE 369–07
MINIMUM PAD SIZES
RECOMMENDED FOR
SURFACE MOUNTED
APPLICATIONS
0.190
4.826
MJD112
MJD117
Rating
Characteristic
Symbol
Min
Max
Unit
VCEO(sus)
100
—
Vdc
Collector Cutoff Current
(VCE = 50 Vdc, IB = 0)
ICEO
—
20
µAdc
Collector Cutoff Current
(VCB = 100 Vdc, IE = 0)
ICBO
—
20
µAdc
Emitter Cutoff Current
(VBE = 5 Vdc, IC = 0)
IEBO
—
2
mAdc
0.165
4.191
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
* These ratings are applicable when surface mounted on the minimum pad sizes recommended.
(1) Pulse Test: Pulse Width
300 µs, Duty Cycle
2%.
(continued)
0.118
3.0
0.063
1.6
0.243
6.172
Collector–Emitter Sustaining Voltage (1)
(IC = 30 mAdc, IB = 0)
0.07
1.8
OFF CHARACTERISTICS
inches
mm
Preferred devices are Motorola recommended choices for future use and best overall value.
REV 1
 Motorola, Inc. 1995
Motorola Bipolar Power Transistor Device Data
1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
*ELECTRICAL CHARACTERISTICS — continued (TC = 25_C unless otherwise noted)
Characteristic
Symbol
Min
Max
—
—
10
500
Unit
OFF CHARACTERISTICS – continued
µAdc
Collector–Cutoff Current
(VCE = 80 Vdc, VBE(off) = 1.5 Vdc)
(VCE = 80 Vdc, VBE(off) = 1.5 Vdc, TC = 125_C)
ICEX
Collector–Cutoff Current (VCB = 80 Vdc, IE = 0)
ICBO
—
10
µAdc
Emitter–Cutoff Current (VBE = 5 Vdc, IC = 0)
IEBO
—
2
mAdc
500
1000
200
—
12,000
—
—
—
2
3
ON CHARACTERISTICS
DC Current Gain
(IC = 0.5 Adc, VCE = 3 Vdc)
(IC = 2 Adc, VCE = 3 Vdc)
(IC = 4 Adc, VCE = 3 Vdc)
hFE
—
Collector–Emitter Saturation Voltage
(IC = 2 Adc, IB = 8 mAdc)
(IC = 4 Adc, IB = 40 mAdc)
VCE(sat)
Vdc
Base–Emitter Saturation Voltage (IC = 4 Adc, IB = 40 mAdc)
VBE(sat)
—
4
Vdc
Base–Emitter On Voltage (IC = 2 Adc, VCE = 3 Vdc)
VBE(on)
—
2.8
Vdc
fT
25
—
MHz
—
—
200
100
DYNAMIC CHARACTERISTICS
Current–Gain — Bandwidth Product
(IC = 0.75 Adc, VCE = 10 Vdc, f = 1 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
Cob
MJD117
MJD112
2%.
RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1, MUST BE FAST RECOVERY TYPE, e.g.:
1N5825 USED ABOVE IB ≈ 100 mA
MSD6100 USED BELOW IB ≈ 100 mA
TUT
V2
APPROX
+8 V
0
V1
APPROX
–12 V
25 µs
tr, tf ≤ 10 ns
DUTY CYCLE = 1%
D1
≈8k
ts
≈ 60
+4V
FOR td AND tr, D1 IS DISCONNECTED
AND V2 = 0
FOR NPN TEST CIRCUIT REVERSE ALL POLARITIES.
Figure 1. Switching Times Test Circuit
VCC = 30 V
IC/IB = 250
IB1 = IB2
TJ = 25°C
2
RC SCOPE
RB
51
4
VCC
– 30 V
t, TIME ( µs)
300 µs, Duty Cycle
* Pulse Test: Pulse Width
pF
tf
1
0.8
tr
0.6
0.4
0.2
0.04 0.06
PNP
NPN
0.1
td @ VBE(off) = 0 V
0.4 0.6
0.2
1
IC, COLLECTOR CURRENT (AMP)
2
Figure 2. Switching Times
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
2
Motorola Bipolar Power Transistor Device Data
4
r(t), EFFECTIVE TRANSIENT
THERMAL RESISTANCE (NORMALIZED)
1
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
RθJC(t) = r(t) RθJC
RθJC = 6.25°C/W
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) θJC(t)
0.05
0.1
0.07
0.05
0.01
0.03
SINGLE PULSE
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
0.02
0.01
0.01
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1
2 3
5
10
t, TIME OR PULSE WIDTH (ms)
20
30
50
100
200 300
1000
500
Figure 3. Thermal Response
TA TC
2.5 25
10
7
5
3
2
500 µs
1
0.7
0.5
0.3
0.2
100 µs
PD, POWER DISSIPATION (WATTS)
IC, COLLECTOR CURRENT (AMP)
ACTIVE–REGION SAFE–OPERATING AREA
5 ms
1 ms
dc
BONDING WIRE LIMITED
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
0.1
TJ = 150°C
CURVES APPLY BELOW RATED VCEO
2
3
5
7
10
20
30
50
70 100
200
2 20
1.5 15
TA
SURFACE
MOUNT
1 10
0.5
5
0
0
25
50
75
100
T, TEMPERATURE (°C)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 4. Maximum Rated Forward Biased
Safe Operating Area
125
150
Figure 5. Power Derating
200
TC = 25°C
C, CAPACITANCE (pF)
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figures 5 and 6 is based on T J(pk) = 150_C; TC
is variable depending on conditions. Second breakdown
pulse limits are valid for duty cycles to 10% provided T J(pk)
< 150_C. T J(pk) may be calculated from the data in Figure 4.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
TC
100
70
50
Cob
30
Cib
20
PNP
NPN
10
0.04 0.06 0.1
0.2
0.4 0.6
1
2
4
6
10
40
20
VR, REVERSE VOLTAGE (VOLTS)
Figure 6. Capacitance
Motorola Bipolar Power Transistor Device Data
3
TYPICAL ELECTRICAL CHARACTERISTICS
NPN MJD112
PNP MJD117
6k
6k
VCE = 3 V
4k
4k
3k
3k
2k
hFE , DC CURRENT GAIN
hFE , DC CURRENT GAIN
TJ = 125°C
25°C
1k
800
– 55°C
600
400
300
0.04 0.06
0.1
0.4 0.6
1
0.2
IC, COLLECTOR CURRENT (AMP)
2
25°C
2k
1k
800
– 55°C
600
400
300
0.04 0.06
4
VCE = 3 V
TC = 125°C
0.1
2
0.2
0.4 0.6
1
IC, COLLECTOR CURRENT (AMP)
4
3.4
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 7. DC Current Gain
TJ = 125°C
3 IC =
0.5 A
2.6
1A
2A
4A
2.2
1.8
1.4
1
0.6
0.1
0.2
0.5
1
2
5
10
20
50
100
3.4
TJ = 125°C
3
IC =
0.5 A
2.6
1A
2A
4A
2.2
1.8
1.4
1
0.6
0.1
0.2
0.5
IB, BASE CURRENT (mA)
1
2
5
10
20
50
100
IB, BASE CURRENT (mA)
Figure 8. Collector Saturation Region
2.2
2.2
TJ = 25°C
TJ = 25°C
1.4
1.8
VBE(sat) @ IC/IB = 250
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
1.8
VBE @ VCE = 3 V
1
VCE(sat) @ IC/IB = 250
0.6
0.2
0.04 0.06
VBE(sat) @ IC/IB = 250
1.4
VBE @ VCE = 3 V
1
VCE(sat) @ IC/IB = 250
0.6
0.1
0.2
0.4
0.6
1
2
4
0.2
0.04 0.06
0.1
0.2
0.4
0.6
1
2
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
Figure 9. “On Voltages
4
Motorola Bipolar Power Transistor Device Data
4
PNP MJD117
+ 0.8
0
θV, TEMPERATURE COEFFICIENTS (mV/°C)
θV, TEMPERATURE COEFFICIENTS (mV/°C)
NPN MJD112
*APPLIED FOR IC/IB < hFE/3
– 0.8
25°C TO 150°C
– 1.6
– 2.4
*θVC FOR VCE(sat)
– 55°C TO 25°C
– 3.2
–4
25°C TO 150°C
θVC FOR VBE
– 4.8
0.04 0.06
0.1
– 55°C TO 25°C
0.2
0.4 0.6
1
IC, COLLECTOR CURRENT (AMP)
2
+ 0.8
0
*APPLIES FOR IC/IB < hFE/3
25°C TO 150°C
– 0.8
– 1.6
*θVC FOR VCE(sat)
– 55°C TO 25°C
– 2.4
25°C TO 150°C
– 3.2
–4
– 4.8
0.04 0.06
4
– 55°C TO 25°C
θVB FOR VBE
0.1
0.2
0.4 0.6
1
IC, COLLECTOR CURRENT (AMP)
2
4
Figure 10. Temperature Coefficients
105
104
103
REVERSE
FORWARD
IC, COLLECTOR CURRENT ( µ A)
IC, COLLECTOR CURRENT ( µ A)
105
VCE = 30 V
102
TJ = 150°C
101
100
100°C
25°C
10–1
– 0.6 – 0.4 – 0.2
0 + 0.2 + 0.4 + 0.6 + 0.8 + 1
VBE, BASE–EMITTER VOLTAGE (VOLTS)
+ 1.2 + 1.4
104
103
REVERSE
FORWARD
VCE = 30 V
102
101
TJ = 150°C
100°C
100
25°C
10–1
0 – 0.2 – 0.4 – 0.6 – 0.8 – 1
+ 0.6 + 0.4 + 0.2
VBE, BASE–EMITTER VOLTAGE (VOLTS)
– 1.2 – 1.4
Figure 11. Collector Cut–Off Region
COLLECTOR
PNP
BASE
COLLECTOR
NPN
BASE
≈8k
≈ 120
EMITTER
≈8k
≈ 120
EMITTER
Figure 12. Darlington Schematic
Motorola Bipolar Power Transistor Device Data
5
PACKAGE DIMENSIONS
C
B
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
SEATING
PLANE
–T–
E
R
4
Z
A
S
1
2
DIM
A
B
C
D
E
F
G
H
J
K
L
R
S
U
V
Z
3
U
K
F
J
L
H
D
2 PL
G
0.13 (0.005)
M
T
INCHES
MIN
MAX
0.235
0.250
0.250
0.265
0.086
0.094
0.027
0.035
0.033
0.040
0.037
0.047
0.180 BSC
0.034
0.040
0.018
0.023
0.102
0.114
0.090 BSC
0.175
0.215
0.020
0.050
0.020
–––
0.030
0.050
0.138
–––
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
5.97
6.35
6.35
6.73
2.19
2.38
0.69
0.88
0.84
1.01
0.94
1.19
4.58 BSC
0.87
1.01
0.46
0.58
2.60
2.89
2.29 BSC
4.45
5.46
0.51
1.27
0.51
–––
0.77
1.27
3.51
–––
BASE
COLLECTOR
EMITTER
COLLECTOR
CASE 369A–13
ISSUE W
C
B
V
E
R
4
A
1
2
3
S
–T–
K
SEATING
PLANE
J
F
H
D
G
3 PL
0.13 (0.005)
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM
A
B
C
D
E
F
G
H
J
K
R
S
V
INCHES
MIN
MAX
0.235
0.250
0.250
0.265
0.086
0.094
0.027
0.035
0.033
0.040
0.037
0.047
0.090 BSC
0.034
0.040
0.018
0.023
0.350
0.380
0.175
0.215
0.050
0.090
0.030
0.050
STYLE 1:
PIN 1.
2.
3.
4.
T
MILLIMETERS
MIN
MAX
5.97
6.35
6.35
6.73
2.19
2.38
0.69
0.88
0.84
1.01
0.94
1.19
2.29 BSC
0.87
1.01
0.46
0.58
8.89
9.65
4.45
5.46
1.27
2.28
0.77
1.27
BASE
COLLECTOR
EMITTER
COLLECTOR
CASE 369–07
ISSUE K
How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
6
◊
Motorola Bipolar Power Transistor Device Data
*MJD112/D*
MJD112/D