FREESCALE MRF7S35015HSR3

Freescale Semiconductor
Technical Data
Document Number: MRF7S35015HS
Rev. 2, 4/2011
RF Power Field Effect Transistor
N--Channel Enhancement--Mode Lateral MOSFET
MRF7S35015HSR3
Designed for pulsed wideband applications operating at frequencies
between 3100 and 3500 MHz.
• Typical Pulsed Performance: VDD = 32 Volts, IDQ = 50 mA,
Pout = 15 Watts Peak (3 Watts Avg.), Pulsed Signal, f = 3500 MHz,
Pulse Width = 100 μsec, Duty Cycle = 20%
Power Gain — 16 dB
Drain Efficiency — 41%
• Typical WiMAX Performance: VDD = 32 Volts, IDQ = 150 mA,
Pout = 1.8 Watts Avg., f = 3500 MHz, 802.16d, 64 QAM 3/4, 4 Bursts,
10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF
Power Gain — 18 dB
Drain Efficiency — 16%
RCE — --33 dB (EVM — 2.2% rms)
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 3300 MHz, 15 Watts Peak
Power
• Capable of Handling 3 dB Overdrive @ 32 Vdc
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters
• Internally Matched for Ease of Use
• Integrated ESD Protection
• Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units, 32 mm Tape Width, 13 inch Reel.
3100--3500 MHz, 15 W PEAK, 32 V
PULSED
LATERAL N--CHANNEL
RF POWER MOSFET
CASE 465J--02, STYLE 1
NI--400S--240
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
°C
Case Operating Temperature
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Unit
RθJC
0.60
0.73
°C/W
Operating Junction
Temperature (1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 15 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle
Case Temperature 81°C, 15 W Pulsed, 500 μsec Pulse Width, 10% Duty Cycle
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
© Freescale Semiconductor, Inc., 2008, 2011. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF7S35015HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1B (Minimum)
Machine Model (per EIA/JESD22--A115)
A (Minimum)
Charge Device Model (per JESD22--C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
2
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 33.5 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 32 Vdc, ID = 50 mAdc, Measured in Functional Test)
VGS(Q)
1.8
2.5
3.3
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 300 mAdc)
VDS(on)
0.1
1.7
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.12
—
pF
Output Capacitance
(VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
92
—
pF
Input Capacitance
(VDS = 32 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
46
—
pF
Characteristic
Off Characteristics
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W Peak (3 W Avg.), f = 3100 MHz and
f = 3500 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle, 25 ns Input Rise Time
Power Gain
Gps
13
16
19
dB
Drain Efficiency
ηD
38
41
—
%
Input Return Loss
IRL
—
--12
--7
dB
Pulsed RF Performance (In Freescale Application Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W Peak (3 W Avg.),
f = 3100 MHz and f = 3500 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle, 25 ns Input Rise Time
Output Pulse Droop
(500 μsec Pulse Width, 10% Duty Cycle)
Load Mismatch Tolerance
(VSWR = 10:1 at all Phase Angles)
DRPout
VSWR--T
—
0.2
—
dB
No Degradation in Output Power
1. Part internally matched both on input and output.
MRF7S35015HSR3
2
RF Device Data
Freescale Semiconductor
B3
VBIAS
RF
INPUT
+
+
C9
C8
B2
C7
C6
Z15
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10 Z11
Z12 Z13
Z14
C10
B1
+
+
+
C3
C2
C1
C4
VSUPPLY
Z17
Z16
Z18 Z19 Z20 Z21 Z22 Z23 Z24 Z25 Z26 Z27
Z28 Z29 Z30 Z31
RF
OUTPUT
C5
DUT
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12
Z13
Z14
Z15*
Z16
Z17*
0.375″ x 0.071″ Microstrip
0.126″ x 0.524″ Microstrip
0.079″ x 0.016″ Microstrip
0.153″ x 0.071″ Microstrip
0.076” x 0.520″ Microstrip
0.037″ x 0.252″ Microstrip
0.322″ x 0.073″ Microstrip
0.123″ x 0.440″ Microstrip
0.048″ x 0.073″ Microstrip
0.081″ x 0.184″ Microstrip
0.030″ x 0.262″ Microstrip
0.525″ x 0.336″ Microstrip
0.182″ x 0.466″ Microstrip
0.077″ x 0.466″ Microstrip
0.603″ x 0.048″ Microstrip
0.063″ x 0.618″ Microstrip
0.534″ x 0.040″ Microstrip
Z18
Z19
Z20
Z21
Z22
Z23
Z24
Z25
Z26
Z27
Z28
Z29
Z30
Z31
PCB
0.078″ x 0.454″ Microstrip
0.055″ x 0.244″ Microstrip
0.630″ x 0.073″ Microstrip
0.218″ x 0.038″ Microstrip
0.060″ x 0.552″ Microstrip
0.079″ x 0.038″ Microstrip
0.062″ x 0.526″ Microstrip
0.032″ x 0.070″ Microstrip
0.110″ x 0.526″ Microstrip
0.053″ x 0.072″ Microstrip
0.028″ x 0.070″ Microstrip
0.098″ x 0.148″ Microstrip
0.062″ x 0.526″ Microstrip
0.529″ x 0.070″ Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55
* Line length includes microstrip bends
Figure 1. MRF7S35015HSR3 Test Circuit Schematic
Table 5. MRF7S35015HSR3 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1*
Long Ferrite Bead
2743021447
Fair--Rite
B2, B3
Short Ferrite Beads
2743019447
Fair--Rite
C1
470 μF, 63 V Electrolytic Capacitor
477KXM063M
Illinois Cap
C2
47 μF, 50 V Electrolytic Capacitor
476KXM050M
Illinois Cap
C3, C9
22 μF, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C4, C5, C10
2.7 pF Chip Capacitors
ATC100B2R7BT500XT
ATC
C6
0.8 pF Chip Capacitor
ATC100B0R8BT500XT
ATC
C7
0.1 μF Chip Capacitor
CDR33BX104AKYS
AVX
C8
22 μF, 25 V Tantalum Capacitor
T491D226K025AT
Kemet
* B1 is removed for WiMAX circuit performance.
MRF7S35015HSR3
RF Device Data
Freescale Semiconductor
3
C8
C3
B3
B2
C7
B1
C1
C2
C4
C6
C9
C5
CUT OUT AREA
C10
MRF7S35015H
Rev. 1
Figure 2. MRF7S35015HSR3 Test Circuit Component Layout
MRF7S35015HSR3
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
10
Coss
100
Ciss
10
TJ = 200°C
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
1000
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
1
TJ = 175°C
TJ = 150°C
1
Crss
5
0
15
10
30
100
10
1
35
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Figure 3. Capacitance versus Drain--Source Voltage
Figure 4. DC Safe Operating Area
Gps
3300 MHz 45
46
3500 MHz
16
3300 MHz
15.5
40
35
30
15
3100 MHz
14.5
ηD
14
25
20
VDD = 32 Vdc, IDQ = 50 mA
Pulse Width = 100 μsec
Duty Cycle = 20%
13.5
13
2
10
15
Pout, OUTPUT POWER (dBm) PULSED
47
ηD, DRAIN EFFICIENCY (%)
50
3100 MHz
f = 3500 MHz
16.5
Gps, POWER GAIN (dB)
25
20
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
17
10
Ideal
P3dB = 43 dBm (19.8 W)
P2dB = 42.7 dBm (19 W)
45
44
P1dB = 42.2 dBm (16.7 W)
43
Actual
42
41
40
VDD = 32 Vdc, IDQ = 50 mA, f = 3500 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
39
38
30
21
22
23
24
25
26
28
27
29
Pout, OUTPUT POWER (WATTS) PULSED
Pin, INPUT POWER (dBm) PULSED
Figure 5. Pulsed Power Gain and Drain Efficiency
versus Output Power
Figure 6. Pulsed Output Power versus
Input Power
30
17
20
IDQ = 300 mA
18
16
Gps, POWER GAIN (dB)
19
Gps, POWER GAIN (dB)
TC = 25°C
0.1
0.1
150 mA
17
100 mA
16
50 mA
15
VDD = 32 Vdc, f = 3500 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
14
14
13
32 V
10
30
30 V
28 V
12
IDQ = 50 mA, f = 3500 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
11
13
1
15
10
1
26 V
VDD = 24 V
10
Pout, OUTPUT POWER (WATTS) PULSED
Pout, OUTPUT POWER (WATTS) PULSED
Figure 7. Pulsed Power Gain versus
Output Power
Figure 8. Pulsed Power Gain versus
Output Power
30
MRF7S35015HSR3
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
16
3500 MHz --30_C
3300 MHz 85_C
15
3500 MHz 85_C
3100 MHz 85_C
3500 MHz 25_C
10
5
0
0
0.2
0.6
0.4
0.8
50
Gps
15
40
TC = --30_C
14
30
25_C
13
10
1
Pin, INPUT POWER (WATTS) PULSED
10
0
30
Pout, OUTPUT POWER (WATTS) PULSED
Figure 9. Pulsed Output Power versus
Input Power
Figure 10. Pulsed Power Gain and Drain Efficiency
versus Output Power — 3100 MHz
18
--30_C
Gps
17
Gps, POWER GAIN (dB)
20
VDD = 32 Vdc, IDQ = 50 mA, f = 3100 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
11
1
85_C
ηD
85_C
12
VDD = 32 Vdc, IDQ = 50 mA
Pulse Width = 100 μsec, Duty Cycle = 20%
60
ηD, DRAIN EFFICIENCY (%)
3100 MHz 25_C
20
--30_C
60
50
TC = --30_C
40
16
85_C
25_C
15
14
30
85_C
20
ηD
13
10
VDD = 32 Vdc, IDQ = 50 mA, f = 3300 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
12
1
10
ηD, DRAIN EFFICIENCY (%)
3300 MHz 25_C
25
17
3100 MHz --30_C 3300 MHz --30_C
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) PULSED
30
0
30
Pout, OUTPUT POWER (WATTS) PULSED
Figure 11. Pulsed Power Gain and Drain Efficiency
versus Output Power — 3300 MHz
18
Gps, POWER GAIN (dB)
50
Gps
--30_C
45
TC = --30_C
17
40
85_C
16
35
25_C
30
15
14
85_C
13
12
25
ηD
20
15
VDD = 32 Vdc, IDQ = 50 mA, f = 3500 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
11
1
10
ηD, DRAIN EFFICIENCY (%)
19
10
30
Pout, OUTPUT POWER (WATTS) PULSED
Figure 12. Pulsed Power Gain and Drain Efficiency
versus Output Power — 3500 MHz
MRF7S35015HSR3
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
44
ηD
43
42
16.75
Gps
16.5
41
16.25
IRL
16
--9
--18
15.75
15.5
15.25
3100
--27
VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W
Pulse Width = 100 μsec, Duty Cycle = 20%
3150
3200
3250
3300
3350
3400
3450
--36
3500
IRL, INPUT
RETURN LOSS (dB)
Gps, POWER GAIN (dB)
17
ηD, DRAIN
EFFICIENCY (%)
17.25
f, FREQUENCY (MHz)
--25
24
VDD = 32 Vdc, IDQ = 150 mA, f = 3500 MHz, Single--Carrier
--27 OFDM 802.16d, 64 QAM 3/ , 4 Bursts, 10 MHz
4
--29 Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability on CCDF
--31
20
18
16
ηD
--35
14
12
RCE
--37
10
Gps
--39
18.3
18.2
18.1
--41
8
--43
6
17.9
4
17.8
--45
28
29
30
31
32
33
34
35
36
18
GAIN (dB)
--33
22
ηD, DRAIN EFFICIENCY (%)
RCE (RELATIVE CONSTELLATION ERROR (dB)
Figure 13. Pulsed Power Gain, Drain Efficiency
and IRL versus Frequency
Pout, OUTPUT POWER (dBm)
Figure 14. Single--Channel OFDM Relative Constellation Error,
Drain Efficiency and Gain versus Output Power
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 32 Vdc, Pout = 15 W Peak, Pulse Width = 100 μsec,
Duty Cycle = 20%, and ηD = 41%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 15. MTTF versus Junction Temperature
MRF7S35015HSR3
RF Device Data
Freescale Semiconductor
7
f = 3100 MHz
Zsource
f = 3100 MHz
f = 3500 MHz
Zo = 50 Ω
Zload
f = 3500 MHz
VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W Peak
f
MHz
Zsource
Ω
3100
48.6 + j16.1
5.6 -- j5.2
3300
11.8 + j3.15
6.36 -- j6.83
3500
6.43 -- j6.79
7.41 -- j15.5
Zload
Ω
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 16. Series Equivalent Source and Load Impedance
MRF7S35015HSR3
8
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MRF7S35015HSR3
RF Device Data
Freescale Semiconductor
9
MRF7S35015HSR3
10
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
June 2008
• Initial Release of Data Sheet
1
Aug. 2008
• Added p. 1 of Case 465J--02 Mechanical Outline drawing, p. 9
2
Apr. 2011
• Fig. 1, Test Circuit Schematic, Z--list, changed Z7 from 0.084″ x 0.73″ Microstrip to 0.322″ x 0.073″
Microstrip and moved footnote reference from Z2 and Z3 to Z15 and Z17, p. 3
MRF7S35015HSR3
RF Device Data
Freescale Semiconductor
11
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008, 2011. All rights reserved.
MRF7S35015HSR3
Document Number: MRF7S35015HS
Rev. 2, 4/2011
12
RF Device Data
Freescale Semiconductor