RF2643 Preliminary 6 3V DUAL-BAND UPCONVERTER AND DRIVER AMPLIFIER Typical Applications • TDMA/AMPS Cellular Systems • PCS Systems • CDMA/AMPS Cellular Systems • Portable Battery-Powered Equipment Product Description 1.00 0.90 0.60 0.24 typ 0.65 0.30 4 PLCS 2.10 sq. 3 0.20 6 0.75 0.50 12° MAX 0.05 0.23 0.13 0.50 MIXERS The RF2643 is a complete upconverter, dual-power amplifier driver and attenuator designed for Cellular and PCS systems. It is designed to upconverter and amplifies RF signals while providing 22dB of linear gain control range. It features digital control for the mixer and drivers. The device features balanced IF inputs, single-ended LO input and dual RF output for Cellular and PCS Systems respectively. The IC is manufactured on an advanced Silicon Bi-CMOS process and packaged in a 20-pin, 4mmx4mm, leadless chip carrier with an exposed die flag. 4.00 sq. 4 PLCS Dimensions in mm. Note orientation of package. NOTES: 1 Shaded lead is Pin 1. 2 Pin 1 identifier must exist on top surface of package by identification mark or feature on the package body. Exact shape and size is optional. 3 Dimension applies to plated terminal: to be measured between 0.02 mm and 0.25 mm from terminal end. 4 Package Warpage: 0.05 mm max. 5 Die Thickness Allowable: 0.305 mm max. Optimum Technology Matching® Applied * 20 SiGe HBT Si CMOS 19 18 17 16 CELL ATT GND 14 CELL OUT 13 VGC 4 12 PCS OUT 5 11 PCS ATT GND IF- * 6 7 8 9 10 PCS IN IF+ PCS VCC 3 VCC BYPASS Bias Circuit 2 VCC MIX LO Logic PCS MIXOUT 1 * • Gain Control Range of 22dB • Driver Amplifier Select Pin (RF Output Select) • High Linearity in Mixer and Driver Amp Ordering Information RF2643 RF2643 PCBA 3V Dual-Band Upconverter and Driver Amplifier Fully Assembled Evaluation Board * Represents "GND". Functional Block Diagram Rev A1 010717 Features • Power Down Control * 15 PD Package Style: LCC, 20-Pin, 4x4 • Single Supply 3.0V Operation CELL IN CELL GND GaAs MESFET CELL VCC CELL MIXOUT üSi Bi-CMOS GaAs HBT SEL Si BJT RF Micro Devices, Inc. 7628 Thorndike Road Greensboro, NC 27409, USA Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com 6-37 RF2643 Preliminary Absolute Maximum Ratings Parameter Supply Voltage Input RF Power Operating Ambient Temperature Storage Temperature Parameter Rating Unit -0.5 to +3.6 +3 -30 to +80 -30 to +150 VDC dBm °C °C Specification Min. Typ. Max. Caution! ESD sensitive device. RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s). Unit Condition Upconverter Unless stated otherwise, all data in this section is for both Cellular and PCS bands. T=25°C, VCC =2.75V. Both Bands MIXERS 6 IF Frequency Range LO Input Level RF to LO Isolation IF to RF Isolation IF to LO Isolation IF Input Impedance Differential IF Input Return Loss Differential LO Input Impedance Single-Ended LO Input Return Loss Single-Ended RF Output Impedance Single-Ended RF Output Return Loss Single-Ended 100 -9 20 40 34 -6 30 250 -2 260 10 50 10 MHz dBm dBm dBm dBm Ω dB Ω dB Ω 50 10 dB Cellular Band RF=835MHz, LO=990MHz @-3dBm RF Output Frequency LO Frequency Range IF-RF Conversion Gain Noise Figure 824 909 -2 Output IP3 (Linearity) Output P1dB LO to RF Output Leakage 10.5 -3 0 12 13 13.0 -1 -30 849 1099 2 13 14 MHz MHz dB dB dBm dBm dBm PCS Band RF Output Frequency LO Frequency Range IF-RF Conversion Gain Noise Figure Output IP3 (Linearity) Output P1dB LO to RF Output Leakage 6-38 Room Temp. Over Temp. See Note 1 (end of parameter table). RF=1880MHz, LO =2030MHz@-3dBm 1850 1950 -2 8.5 -4 0 14.0 15.0 12.0 -2 -17 1910 2160 2 14.5 16.5 MHz MHz dB dB dBm dBm dBm Room Temp. Over Temp. See Note 1 (end of parameter table). Rev A1 010717 RF2643 Preliminary Parameter Specification Min. Typ. Max. Unit Condition Amplifiers/Attenuators Unless stated otherwise, all data in this section is for both Cellular and PCS bands. T=25°C, VCC =2.75V. Both Bands Gain Control Range Gain Control Voltage Gain Control Slope Input Impedance Single-Ended Input Return Loss Single-Ended Output Impedance Single-Ended Output Return Loss Single-Ended RF Output Collector Current Consumption Upconverter Output to Amplifier Input 17 0.8 20 15 50 1.9 35 10 dB V dB/V Ω dB Ω 50 10 dB 10 mA 35 40 dB 824 5 7 -1 1 1850 4 6 -1 0 6 Any load. RF Frequency Range Maximum Gain Noise Figure at Maximum Gain Noise Figure Increase with Attenuation Input IP3 (Linearity) 849 9 2.5 0.75 MHz dB dB dB/dB dBm MIXERS Cellular Band Amplifier + Attenuator Amplifier + Attenuator @ all gain levels See Note 1 (end of parameter table). PCS Band RF Frequency Range Maximum Gain Noise Figure at Maximum Gain Noise Figure Increase with Attenuation Input IP3 (Linearity) 1910 8 3.5 0.75 MHz dB dB dB/dB dBm Control and Power Consumption Operating Voltage Power Down Control 2.7 3.0 2.1 0.5 Power Down Pin Impedance Band-Select Control (BS) 20 2.1 0.5 Band Select Pin Impedance Device OFF Current Total Current (PD =HIGH) 20 30 33 10 37 42 Amplifier + Attenuator Amplifier + Attenuator See Cellular Band Input IP3 Conditions. Unless otherwise stated, all data in this section is for both Cellular and PCS bands. V V V kΩ V V kΩ uA mA mA HIGH (Device ON) LOW (Device OFF) PCS (HIGH) Cellular (LOW) PD =LOW Cellular, BS=LOW PCS, BS=HIGH NOTE 1: OIP3 was measured using a two-tone test. Each injected tone had an input power (at the RF output of the upconverter) of -18dBm with a frequency spacing of 100kHz. Rev A1 010717 6-39 RF2643 Pin 1 Function PD 2 LO Preliminary Description Interface Schematic Power Down Control. When Logic “high” (greater than 2.1V) the device is active and all circuits are operating. When logic “low” (less than 0.5V) the device is inactive and all circuits are turned off. VCC Single-ended LO input pin. This pin is internally DC biased and should be DC blocked if it is connected to a device with a DC level present. The single-ended input impedance is 50Ω. Bias Bias LO+ 3 4 BYPASS IF+ MIXERS 6 5 6 IFPCS MIXOUT LO- Bypass pin for internal bias circuitry. Bypass with 10nF capacitor. Balanced IF input pin. This pin is internally DC biased and should be DC blocked if connected to a device with a DC level present. The differential input impedance is 260Ω. For single ended input operation, one pin is used as an input and the other IF input is AC coupled to ground. IF+ IF- Bypass Same as pin 4, except complementary input. RF mixer output pin for the PCS system. PCS Mixout output impedance depends on the LC match and it is influenced by the bypass capacitor at VCC2. VCC MIX PCS MIXOUT 7 VCC MIX 8 VCC 9 PCS VCC Supply voltage pin for the mixer. External bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. Supply voltage pin for all the control and bias circuitry. A bias choke inductor and RF bypass capacitor is required. Supply voltage pin for the PCS driver. This pin is an open collector and it will need a bias choke inductor and RF bypass. A parallel resistor to the inductor improves stability of the driver amplifier. PCS VCC PCS IN 10 PCS IN 11 PCS ATT GND 12 6-40 PCS OUT Single-ended input for the PCS driver and attenuator. External matching is required. This pin is internally DC biased and should be DC blocked if it is connected to a device with a DC level present. PCS attenuator ground pin. This pin should be AC ground. The trace length between the pin and the bypass capacitors should be minimized. The value of the capacitor is chosen to resonate in the PCS band. PCS Attenuator PCS OUT PCS ATT-GND PCS RF output pin. External matching is required. This pin is internally DC biased and should be DC blocked if it is connected to a device with a DC level present. Rev A1 010717 RF2643 Preliminary Pin 13 Function VGC 14 CELL OUT 15 CELL ATT GND Description Analog gain control for the driver amplifier. Valid control voltage ranges from 0.8VDC to 1.9VDC. Cellular RF output pin. External matching is required. External matching is required. This pin is internally DC biased and should be DC blocked if it is connected to a device with a DC level present. Cell attenuator ground pin. This pin should be AC ground. The trace length between the pin and the bypass capacitors should be minimized. The value of the capacitor is chosen to resonate in the PCS band. 16 CELL IN Singled end input for the cellular driver and attenuator. External matching is required. This pin is internally DC biased and should be DC blocked if it is connected to a device with a DC level present. 17 CELL GND 18 CELL VCC 19 SEL This pin should be choke to ground. The inductor is used to adjust the linearity of the cellular driver. Supply voltage pin for the cell driver. This pin is an open collector and it will need a bias choke inductor and RF bypass. A parallel resistor to the inductor improves stability of the driver amplifier. Band select control pin for the drivers. When Logic "high" (greater than 2.1V) the PCS band is active. When logic "low" (less than 0.5V) the Cellular Band is active. Interface Schematic VGC Cell Attenuator CELL OUT CELL ATT-GND CELL VCC 6 20 CELL MIXOUT RF mixer output pin for the PCS system. PCS Mixout output impedance depends on the LC match and it is influenced by the bypass capacitor at VCC2. MIXERS CELL GND SEL VCC MIX CELL MIXOUT Pkg Base GND Rev A1 010717 Ground connection. The backside of the package should be soldered to a top side ground pad, which is connected to the ground plane. Additional ground connections are offered at each corner of the package for flexibility in layout design. 6-41 RF2643 Preliminary Application Schematic Cell RF Filter SEL VCC1 2 pF 1.5 nH 10 nF R* 390 Ω VCC2 15 nH 12 nH R* 91 Ω 0.1 uF Die Flag 10 nF * PD 20 19 18 17 16 Logic 1 * 13 pF 15 100 pF 3.3 nH LO Bias Circuit 6 2 10 nF MIXERS 3 IF Filter 1 nF 14 CELL OUT 13 VGC 4.7 nH 4 12 5 11 1 nF PCS OUT C* IF+ IF- * 6 7 8 9 10 3 pF * C* 0.5 pF * Represents "GND". 3 pF 10 nF VCC2 3.9 nH CC 0.1 uF 2.2 nH R* R* 240 Ω 33 nF VCC MIX 10 nH VCC1 33 nF VCC 10 nF PCS RF Filter NOTES: 1. All components marked with "R*" are De-Q resistors. 2. All components marked with "C*" should be present, if IF SAW filter has a direct path to ground. 6-42 Rev A1 010717 RF2643 Preliminary Evaluation Board Schematic IF=155MHz (Download Bill of Materials from www.rfmd.com.) P1-1 P1-3 C19 + 1 uF C20 33 nF P1 1 VCC 2 GND 3 VCC MIX P2-1 J8 CELL MIXOUT P2-3 C21 33 nF CON3 50 Ω µstrip C24 DNI P2 1 PD 2 GND 3 SEL P3-1 CON3 SEL C22 + 1 uF P3 1 VGC 2 GND 3 GND P4-1 P4-3 C23 + 1 uF CON3 P4 1 VCC1 2 GND 3 VCC2 CON3 VCC1 C15 2 pF L6 1.5 nH C16 10 nF R5 390 Ω L7 15 nH R1 91 Ω C14 0.1 uF 50 Ω µstrip VCC2 * PD 50 Ω µstrip J1 LO C1 100 pF 20 19 1 T1 16 13 C13 1 nF 50 Ω µstrip L4 4.7 nH C11 1 nF 50 Ω µstrip C9 0.1 uF 50 Ω µstrip 7 8 R4 DNI R3 0Ω 9 10 * C10 3 pF 2643400- L8 2.2 nH C26 33 nF R2 240 Ω C25 33 nF C7 10 nF J5 PCS OUT 11 6 C27 0.5 pF L2 3.9 nH CC VGC 12 C4 10 nF C6 3 pF L5 3.3 nH 14 5 50 Ω µstrip J6 CELL OUT C12 13 pF * 15 4 C3 10 nF * J3 PCS MIXOUT 17 2 C2 10 nF 50 Ω µstrip 18 Logic 3 J2 IF 6 Die Flag Bias Circuit C17 10 nF L1 12 nH J7 CELL IN MIXERS C18 + 1 uF J4 PCS IN L3 10 nH VCC1 C8 10 nF VCC2 * Represents "GND". VCC MIX Rev A1 010717 VCC 6-43 RF2643 Preliminary Evaluation Board Layout Board Size 2.0” x 2.0” Board Thickness 0.064”, Board Material FR-4, Multi-Layer Assembly Top Inner 1 - Ground Plane 1 Inner 2 - Power Plane 1 MIXERS 6 6-44 Rev A1 010717 RF2643 Preliminary Inner 3 - Ground Plane 2 Inner 4 - Power Plane 2 6 MIXERS Back Rev A1 010717 6-45 RF2643 Preliminary Power Down Current Cellular Current 1.4 32.0 Icc, -30º 31.8 Icc, 25º 1.2 Icc, 85º 31.6 31.4 Current (mA) ICC (uA) 1.0 0.8 Icc, -30º 0.6 Icc, 25º 31.2 31.0 30.8 Icc, 85º 30.6 0.4 30.4 0.2 30.2 0.0 30.0 2.7 2.8 2.9 3.0 3.1 3.2 3.3 2.7 2.8 2.9 VCC (V) 6 Cellular Mixer Conversion Gain @ LO = -10 dBm 3.1 3.2 3.3 3.2 3.3 Cellular Mixer Conversion Gain @ LO = -3 dBm 1.5 1.5 Gain, -30º Gain, -30º MIXERS 3.0 VCC (V) Gain, 25º Gain, 25º 1.0 1.0 Gain, 85º Gain, 85º Conversion Gain (dB) Conversion Gain (dB) 0.5 0.0 -0.5 0.5 0.0 -0.5 -1.0 -1.0 -1.5 -2.0 -1.5 2.7 2.8 2.9 3.0 3.1 3.2 3.3 2.7 2.8 2.9 VCC (V) Cellular LO to RF Leakage @ LO = -10 dBm -32.5 -26.6 -33.0 -26.8 -27.0 -34.0 LO to RF Leakage (dBm) LO to RF Leakage (dBm) 3.1 Cellular LO to RF Leakage @ LO = -3 dBm -33.5 -34.5 -35.0 -35.5 LO2RF, -30º -36.0 LO2RF, 25º -36.5 -27.2 -27.4 LO2RF, -30º -27.6 LO2RF, 25º -27.8 LO2RF, 85º -28.0 LO2RF, 85º -28.2 -37.0 -28.4 -37.5 -38.0 -28.6 2.7 2.8 2.9 3.0 VCC (V) 6-46 3.0 VCC (V) 3.1 3.2 3.3 2.7 2.8 2.9 3.0 3.1 3.2 3.3 VCC (V) Rev A1 010717 RF2643 Preliminary Cellular Mixer OIP3 @ LO = -10 dBm Cellular Mixer OIP3 @ LO = -3 dBm 14.5 14.5 OIP3, -30º 14.0 14.0 OIP3, 25º OIP3, 85º 13.5 13.5 13.0 OIP3 (dBm) OIP3 (dBm) 13.0 12.5 12.0 12.5 12.0 11.5 11.5 11.0 11.0 10.5 10.5 10.0 10.0 OIP3, -30º OIP3, 25º OIP3, 85º 2.7 2.8 2.9 3.0 3.1 3.2 3.3 2.7 2.8 2.9 VCC (V) 3.0 3.1 3.2 3.3 VCC (V) Cellular Mixer Noise Figure @ LO = -10 dBm 6 Cellular Mixer Noise Figure @ LO = -3 dBm 14.0 MIXERS 13.0 13.5 12.5 13.0 NF, 25º 12.5 Noise Figure (dB) NF, 25º Noise Figure (dB) NF, -30º NF, -30º NF, 85º 12.0 11.5 NF, 85º 12.0 11.5 11.0 11.0 10.5 10.5 10.0 10.0 2.7 2.8 2.9 3.0 3.1 3.2 3.3 2.7 2.8 2.9 VCC (V) Cellular Mixer Gain @ 25°C 3.1 3.2 3.3 Cellular Mixer OIP3 @ 25°C 0.5 14.0 0.0 13.5 -0.5 13.0 -1.0 12.5 OIP3 (dBm) Conversion Gain (dB) 3.0 VCC (V) -1.5 -2.0 12.0 11.5 -2.5 11.0 -3.0 2.7 V 2.7 V 3V -3.5 3V 10.5 3.3 V -4.0 -10.0 -9.0 -8.0 -7.0 -6.0 VCC (V) Rev A1 010717 -5.0 -4.0 -3.0 3.3 V -2.0 10.0 -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 LO (dBm) 6-47 RF2643 Preliminary Cellular Mixer Noise Figure @ 25°C Cellular Gain Driver @ 25°C 12.2 10.0 2.7 V 2.7 V 3V 3V 5.0 3.3 V 12.0 3.3 V 0.0 Gain (dB) Noise Figure (dB) 12.1 11.9 -5.0 11.8 -10.0 11.7 -15.0 11.6 -10.0 -20.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 0.7 0.9 1.1 1.3 LO (dBm) 6 1.5 1.7 Cellular Driver IIP3 @ 25°C Cellular Noise Figure Driver @ 25°C 9.0 18.0 2.7 V 2.7 V MIXERS 8.0 16.0 3V 3.3 V 7.0 Noise Figure (dB) IIP3 (dBm) 3V 3.3 V 14.0 6.0 5.0 4.0 3.0 12.0 10.0 8.0 6.0 2.0 4.0 1.0 2.0 0.0 0.0 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 0.7 0.9 1.1 1.3 VGC (V) 1.5 1.7 1.9 2.1 1.7 1.9 2.1 VGC (V) Cellular Gain Driver @ 2.7 V Cellular Driver IIP3 @ 2.7 V 10.0 9.0 Gain, -30º IIP3, -30º 8.0 Gain, 25º 5.0 IIP3, 25º Gain, 85º IIP3, 85º 7.0 0.0 6.0 IIP3 (dBm) Gain (dB) 1.9 VGC (V) -5.0 -10.0 5.0 4.0 3.0 2.0 -15.0 1.0 -20.0 0.0 0.5 1.0 1.5 VGC (V) 6-48 2.0 0.7 0.9 1.1 1.3 1.5 VGC (V) Rev A1 010717 RF2643 Preliminary Cellular Driver Noise Figure @ 2.7 V PCS Current 18.0 33.5 Icc, -30º NF, -30º 16.0 33.3 NF, 25º Icc, 85º 33.1 NF, 85º 14.0 Icc, 25º Current (mA) Noise Figure (dB) 32.9 12.0 10.0 8.0 32.7 32.5 32.3 6.0 32.1 4.0 31.9 2.0 31.7 0.0 31.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.7 2.8 2.9 VGC (V) 3.0 3.1 3.2 3.3 VCC (V) PCS Mixer Conversion Gain @ LO = -10 dBm 6 PCS Mixer Conversion @ LO = -3 dBm 1.0 MIXERS 1.5 1.5 1.0 0.5 Conversion Gain (dB) Conversion Gain (dB) 0.5 0.0 -0.5 Gain, -30º -1.0 Gain, 25º Gain, 85º 0.0 -0.5 Gain, -30º Gain, 25º Gain, 85º -1.0 -1.5 -1.5 -2.0 -2.5 -2.0 2.7 2.8 2.9 3.0 3.1 3.2 2.7 3.3 2.8 2.9 VCC (V) 3.0 3.1 3.2 3.3 3.20 3.30 VCC (V) PCS LO to RF Leakage @ LO = -10 dBm PCS LO to RF Leakage @ LO = -3 dBm -21.3 -17.65 -21.4 -17.70 -21.5 -17.75 -21.6 LO to RF Leakage (dBm) LO to RF Leakage (dBm) LO2RF, -30º LO2RF, -30º -21.7 LO2RF, 25º -21.8 LO2RF, 85º -21.9 -22.0 -22.1 -17.85 -17.90 -17.95 -18.00 -18.05 -18.10 -22.3 -18.15 2.7 2.8 2.9 3.0 VCC (V) Rev A1 010717 3.1 3.2 3.3 LO2RF, 85º -17.80 -22.2 -22.4 LO2RF, 25º -18.20 2.70 2.80 2.90 3.00 3.10 VCC (V) 6-49 RF2643 Preliminary PCS Mixer OIP3 @ LO = -10 dBm PCS Mixer OIP3 @ LO = -3 dBm 13.0 13.0 12.5 12.5 12.0 12.0 11.5 11.0 10.5 OIP3 (dBm) OIP3 (dBm) 11.5 OIP3, -30º OIP3, 25º 10.0 OIP3, -30º 11.0 OIP3, 25º OIP3, 85º 10.5 OIP3, 85º 9.5 10.0 9.0 9.5 8.5 8.0 9.0 2.7 2.8 2.9 3.0 3.1 3.2 2.7 3.3 2.8 2.9 VCC (V) 6 3.0 3.1 3.2 3.3 VCC (V) PCS Mixer Noise Figure @ LO = -10 dBm PCS Mixer Noise Figure @ LO = -3 dBm 15.0 17.0 MIXERS 16.5 14.5 16.0 NF, -30º Noise Figure (dB) Noise Figure (dB) 15.5 NF, -30º 15.0 NF, 25º 14.5 NF, 85º 14.0 14.0 NF, 25º NF, 85º 13.5 13.0 13.5 13.0 12.5 12.5 12.0 12.0 2.7 2.8 2.9 3.0 3.1 3.2 2.7 3.3 2.8 2.9 VCC (V) 3.0 3.1 3.2 3.3 VCC (V) PCS Mixer Conversion Gain @ 25°C PCS Mixer OIP3 @ 25°C 0.0 12.6 2.7 V 12.4 -0.1 3V 3.3 V 12.2 12.0 OIP3 (dBm) Conversion Gain (dB) -0.2 -0.3 -0.4 11.8 11.6 -0.5 11.4 2.7 V -0.6 3V 11.2 3.3 V -0.7 -10.0 -9.0 -8.0 -7.0 -6.0 LO (dBm) 6-50 -5.0 -4.0 -3.0 -2.0 11.0 -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 LO (dBm) Rev A1 010717 RF2643 Preliminary PCS Mixer Noise Figure @ 25°C PCS Gain Driver @ 25°C 14.3 10.0 2.7 V 14.2 2.7 V 3V 3V 5.0 3.3 V 14.1 3.3 V 0.0 13.9 Gain (dB) Noise Figure (dB) 14.0 13.8 13.7 13.6 -5.0 -10.0 13.5 13.4 -15.0 13.3 13.2 -10.0 -20.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 0.7 0.9 1.1 LO (dBm) 1.3 1.5 1.7 1.9 2.1 VGC (V) PCS IIP3 Driver @ 25°C 6 PCS Noise Figure Driver @ 25°C 14.0 18.0 3V 16.0 3V 12.0 MIXERS 2.7 V 2.7 V 3.3 V 3.3 V 14.0 Noise Figure (dB) IIP3 (dBm) 10.0 8.0 6.0 12.0 10.0 8.0 6.0 4.0 4.0 2.0 2.0 0.0 0.0 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 0.7 0.9 1.1 VGC (V) 1.5 1.7 1.9 2.1 1.7 1.9 2.1 VGC (V) PCS Gain Driver @ 2.7 V PCS IIP3 Driver @ 2.7 V 10.0 12.0 IIP3, -30º Gain, -30º IIP3, 25º Gain, 25º 5.0 10.0 Gain, 85º IIP3, 85º 8.0 IIP3 (dBm) 0.0 Gain (dB) 1.3 -5.0 6.0 -10.0 4.0 -15.0 2.0 -20.0 0.0 0.7 0.9 1.1 1.3 1.5 VGC (V) Rev A1 010717 1.7 1.9 2.1 0.7 0.9 1.1 1.3 1.5 VGC (V) 6-51 RF2643 Preliminary PCS Noise Figure Driver @ 2.7 V 18.0 NF, -30º 16.0 NF, 25º NF, 85º Noise Figure (dB) 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 VGC (V) MIXERS 6 6-52 Rev A1 010717