AD ADL5812

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced,
Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADL5812
Multiband/multistandard cellular base station diversity
receivers
Wideband radio link diversity downconverters
Multimode cellular extenders and broadband receivers
NC
IFOP1
IFON1
NC
IFGD1
V1LO4
V1LO3
V1LO2
39
38
37
36
35
34
33
32
31
30
V1LO1
RFCT1 2
29
NC
28
NC
27
NC
26
LOIP
25
LOIN
NC 7
24
LE
NC 8
23
DATA
22
CLK
21
V2LO1
ADL5812
NC 3
NC 4
NC 5
BIAS
GEN
NC 6
SERIAL
PORT
INTERFACE
RFCT2 9
16
17
18
19
20
V2LO3
V2LO2
IFOP2
15
V2LO4
14
NC
13
IFGD2
12
IFON2
11
NC
RF2 10
09913-001
IFGM1
40
RF1 1
IFGM2
APPLICATIONS
FUNCTIONAL BLOCK DIAGRAM
VPIF1
RF frequency: 700 MHz to 2800 MHz continuous
LO frequency: 250 MHz to 2800 MHz, high-side or
low-side inject
IF range: 30 MHz to 450 MHz
Power conversion gain of 6.7 dB at 1900 MHz
SSB noise figure of 11.6 dB at 1900 MHz
Input IP3 of 27.2 dBm at 1900 MHz
Input P1dB of 12.5 dBm at 1900 MHz
Typical LO drive of 0 dBm
Single-ended, 50 Ω RF port
Single-ended or balanced LO input port
Single-supply operation: 3.6 V to 5.0 V
Serial port interface control on all functions
Exposed paddle 6 mm × 6 mm, 40-lead LFCSP package
VPIF2
FEATURES
Figure 1.
GENERAL DESCRIPTION
The ADL5812 uses revolutionary new broadband, square wave
limiting, local oscillator (LO) amplifiers to achieve an
unprecedented radio frequency (RF) bandwidth of 700 MHz
to 2800 MHz. Unlike conventional narrow-band sine wave LO
amplifier solutions, this permits the LO to be applied either
above or below the RF input over an extremely wide bandwidth.
Because energy storage elements are not used, the dc current
consumption also decreases with decreasing LO frequency.
The ADL5812 uses highly linear, doubly balanced, passive mixer
cores along with integrated RF and LO balancing circuits to
allow single-ended operation. The ADL5812 incorporates
programmable RF baluns, allowing optimal performance over
a 700 MHz to 2800 MHz RF input frequency. The balanced
passive mixer arrangement provides outstanding LO-to-RF and
LO-to-IF leakages, excellent RF-to-IF isolation, and excellent
intermodulation performance over the full RF bandwidth.
The balanced mixer cores also provide extremely high input
linearity, allowing the device to be used in demanding
wideband applications where in-band blocking signals may
otherwise result in the degradation of dynamic range. Blocker
noise figure performance is comparable to narrow-band passive
mixer designs. High linearity IF buffer amplifiers follow the
passive mixer cores, yielding typical power conversion gains of
6.7 dB, and can be used with a wide range of output
impedances. For low voltage applications, the ADL5812 is
capable of operation at voltages down to 3.6 V with
substantially reduced current. Two logic bits are provided to
individually power down (1.5 mA for both channels) the two
channels as desired.
All features of the ADL5812 are controlled via a 3-wire serial
port interface, resulting in optimum performance and
minimum external components.
The ADL5812 is fabricated using a BiCMOS high performance
IC process. The device is available in a 40-lead, 6mm × 6mm,
LFCSP package and operates over a −40°C to +85°C
temperature range. An evaluation board is also available.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2011 Analog Devices, Inc. All rights reserved.
ADL5812
TABLE OF CONTENTS
Features .............................................................................................. 1
RF Subsystem.............................................................................. 20
Applications....................................................................................... 1
LO Subsystem ............................................................................. 21
Functional Block Diagram .............................................................. 1
Applications Information .............................................................. 22
General Description ......................................................................... 1
Basic Connections...................................................................... 22
Revision History ............................................................................... 2
IF Port .......................................................................................... 22
Specifications..................................................................................... 3
Bias Resistor Selection ............................................................... 22
Timing Characteristics ................................................................ 4
VGS Programming..................................................................... 23
Absolute Maximum Ratings............................................................ 5
Low-Pass Filter Programming.................................................. 23
ESD Caution.................................................................................. 5
RF Balun Programming ............................................................ 23
Pin Configuration and Function Descriptions............................. 6
Register Structure ........................................................................... 24
Typical Performance Characteristics ............................................. 7
Evaluation Board ............................................................................ 25
3.6 V Performance...................................................................... 16
Outline Dimensions ....................................................................... 27
Spurious Performance................................................................ 17
Ordering Guide .......................................................................... 27
Circuit Description......................................................................... 20
REVISION HISTORY
7/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 28
ADL5812
SPECIFICATIONS
VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 1200 Ω, ZO = 50 Ω, optimum
SPI settings, unless otherwise noted.
Table 1.
Parameter
RF INPUT INTERFACE
Return Loss
Input Impedance
RF Frequency Range
OUTPUT INTERFACE
Output Impedance
IF Frequency Range
DC Bias Voltage 1
LO INTERFACE
LO Power
Return Loss
Input Impedance
LO Frequency Range
DYNAMIC PERFORMANCE
Power Conversion Gain
Voltage Conversion Gain
SSB Noise Figure
SSB Noise Figure Under Blocking
Input Third-Order Intercept
Input Second-Order Intercept
Input 1 dB Compression Point
LO-to-IF Output Leakage
LO-to-RF Input Leakage
RF-to-IF Output Isolation
IF/2 Spurious
IF/3 Spurious
POWER INTERFACE
Supply Voltage, VS
Quiescent Current
Power-Down Current
1
Test Conditions/Comments
Min
Tunable to >20 dB broadband via serial port
Typ
Max
Unit
2800
dB
Ω
MHz
10
50
700
Differential impedance, f = 200 MHz
260||1.2
30
Externally generated
450
VS
−6
Low-side or high-side LO
250
Including 4:1 IF port transformer and PCB loss
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential
5 dBm blocker present ±10 MHz from wanted RF input,
LO source filtered
fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz, each RF tone
at −10 dBm
fRF1 = 1900 MHz, fRF2 = 2000 MHz, fLO = 1697 MHz, each RF tone
at −10 dBm
Unfiltered IF output
−10 dBm input power
−10 dBm input power
3.6
Resistor programmable IF current
Supply voltage must be applied from external circuit through choke inductors.
Rev. 0 | Page 3 of 28
0
13.3
50
+10
2800
Ω||pF
MHz
V
dBm
dB
Ω
MHz
6.7
13.1
11.6
21
dB
dB
dB
dB
27.2
dBm
55
dBm
12.5
−37
−46
26
−70
−78
dBm
dBm
dBm
dB
dBc
dBc
5
412
1.5
5.5
V
mA
mA
ADL5812
TIMING CHARACTERISTICS
Low logic level ≤ 0.4 V, and high logic level ≥ 1.4 V.
Table 2. Serial Interface Timing
Parameter
t1
t2
t3
t4
t5
t6
t7
Limit
20
10
10
25
25
10
20
Unit
ns minimum
ns minimum
ns minimum
ns minimum
ns minimum
ns minimum
ns minimum
Test Conditions/Comments
LE setup time
DATA-to-CLK setup time
DATA-to-CLK hold time
CLK high duration
CLK low duration
CLK-to-LE setup time
LE pulse width
Timing Diagram
t4
t5
CLK
t2
DATA
DB23 (MSB)
t3
DB22
DB2
(CONTROL BIT C3)
DB1
(CONTROL BIT C2)
DB0 (LSB)
(CONTROL BIT C1)
t7
t1
09913-002
t6
LE
Figure 2. Timing Diagram
Rev. 0 | Page 4 of 28
ADL5812
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
Supply Voltage, VPOS
CLK, DATA, LE
IF Output Bias
RF Input Power
LO Input Power
Internal Power Dissipation
θJA (Exposed Paddle Soldered Down)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
5.5 V
5.5 V
6.0 V
20 dBm
13 dBm
2.5 W
30°C
150°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. 0 | Page 5 of 28
ADL5812
40
39
38
37
36
35
34
33
32
31
VPIF1
IFGM1
NC
IFOP1
IFON1
NC
IFGD1
V1LO4
V1LO3
V1LO2
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
RF1 1
RFCT1 2
NC 3
NC 4
NC 5
NC 6
NC 7
NC 8
RFCT2 9
RF2 10
ADL5812
V1LO1
NC
NC
NC
LOIP
LOIN
LE
DATA
CLK
V2LO1
NOTES
1. NC = NO CONNECT. CAN BE GROUNDED.
2. EXPOSED PAD MUST BE CONNECTED
TO GROUND.
09913-003
VPIF2
IFGM2
NC
IFOP2
IFON2
NC
IFGD2
V2LO4
V2LO3
V2LO2
11
12
13
14
15
16
17
18
19
20
TOP VIEW
(Not to Scale)
30
29
28
27
26
25
24
23
22
21
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1, 10
2, 9
3 to 8, 13, 16, 27 to 29, 35, 38
11, 40
12, 39
14, 15, 36, 37
Mnemonic
RF1, RF2
RFCT1, RFCT2
NC
VPIF1, VPIF2
IFGM1, IFGM2
IFOP1, IFOP2, IFON1, IFON2
17, 34
18 to 21, 30 to 33
IFGD1, IFGD2
V1LO1, V1LO2, V1LO3, V1LO4,
V2LO1, V2LO2, V2LO3, V2LO4
CLK, DATA, LE
LOIN
LOIP
EPAD
22, 23, 24
25
26
Description
RF Input. Should be ac-coupled.
RF Balun Center Tap (AC Ground).
No Connect. Can be grounded.
Supply Voltage for IF Amplifier.
IF Amplifier Bias Control.
Differential Open-Collector IF Outputs. Should be pulled up to VCC via
external inductors.
Supply Return for IF Amplifier. Must be grounded.
Positive Supply Voltages for LO Amplifiers.
Serial Port Interface Control.
Ground Return for LO Input. Must be ac coupled.
LO Input. Should be ac-coupled.
Exposed pad must be connected to ground.
Rev. 0 | Page 6 of 28
ADL5812
TYPICAL PERFORMANCE CHARACTERISTICS
VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 1200 Ω, ZO = 50 Ω, optimum
SPI settings, unless otherwise noted.
450
70
TA = –40°C
TA = +25°C
TA = +85°C
TA = –40°C
TA = +25°C
TA = +85°C
65
60
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
400
350
300
55
50
45
40
250
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
30
700
09913-008
RF FREQUENCY (MHz)
Figure 4. Supply Current vs. RF Frequency
11
10
Figure 7. Input IP2 vs. RF Frequency
20
TA = –40°C
TA = +25°C
TA = +85°C
19
18
17
CONVERSION GAIN (dB)
9
16
INPUT P1dB (dBm)
8
7
6
5
4
15
14
13
12
11
10
9
3
8
2
7
1
6
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
5
700
09913-011
0
700
31
30
Figure 8. Input P1dB vs. RF Frequency
16
TA = –40°C
TA = +25°C
TA = +85°C
15
SSB NOISE FIGURE (dB)
28
27
26
25
24
23
22
21
13
12
11
10
9
8
20
7
19
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
09913-019
INPUT IP3 (dBm)
TA = –40°C
TA = +25°C
TA = +85°C
14
29
18
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 5. Power Conversion Gain vs. RF Frequency
32
TA = –40°C
TA = +25°C
TA = +85°C
09913-020
12
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Figure 6. Input IP3 vs. RF Frequency
6
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 9. SSB Noise Figure vs. RF Frequency
Rev. 0 | Page 7 of 28
09913-025
200
700
09913-016
35
ADL5812
450
65
VPOS = 4.75V
VPOS = 5.00V
VPOS = 5.25V
63
61
400
59
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
VPOS = 4.75V
VPOS = 5.00V
VPOS = 5.25V
350
300
57
55
53
51
250
49
40
60
80
TEMPERATURE (°C)
45
–40
15
40
60
80
60
80
80
VPOS = 4.75V
VPOS = 5.00V
VPOS = 5.25V
14
7.0
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
16
6.5
6.0
13
12
11
5.5
10
–20
0
20
40
60
80
TEMPERATURE (°C)
9
–40
09913-027
5.0
–40
30
0
20
40
Figure 14. Input P1dB vs. Temperature
14
VPOS = 4.75V
VPOS = 5.00V
VPOS = 5.25V
29
–20
TEMPERATURE (°C)
Figure 11. Power Conversion Gain vs. Temperature
13
SSB NOISE FIGURE (dB)
28
27
26
25
24
23
22
VPOS = 4.75V
VPOS = 5.00V
VPOS = 5.25V
12
11
10
9
21
20
–40
–20
0
20
40
TEMPERATURE (°C)
60
80
8
–40
09913-028
INPUT IP3 (dBm)
20
Figure 13. Input IP2 vs. Temperature
VPOS = 4.75V
VPOS = 5.00V
VPOS = 5.25V
7.5
0
TEMPERATURE (°C)
Figure 10. Supply Current vs. Temperature
8.0
–20
09913-030
20
09913-031
0
09913-026
–20
09913-029
47
200
–40
–20
0
20
40
60
TEMPERATURE (°C)
Figure 15. SSB Noise Figure vs. Temperature
Figure 12. Input IP3 vs. Temperature
Rev. 0 | Page 8 of 28
ADL5812
70
450
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
65
60
350
INPUT IP2 (dBm)
300
50
45
40
250
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
80
130
35
180
230
280
330
380
430
IF FREQUENCY (MHz)
30
30
09913-032
200
30
55
80
130
330
380
430
380
430
380
430
14
8
12
7
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
280
16
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
9
230
Figure 19. Input IP2 vs. IF Frequency
Figure 16. Supply Current vs. IF Frequency
10
180
IF FREQUENCY (MHz)
09913-035
SUPPLY CURRENT (mA)
400
6
5
4
3
10
8
6
4
2
2
30
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
0
09913-033
0
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
30
180
230
280
330
Figure 20. Input P1dB vs. IF Frequency
16
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
33
130
IF FREQUENCY (MHz)
Figure 17. Power Conversion Gain vs. IF Frequency
35
80
09913-036
1
14
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
SSB NOISE FIGURE (dB)
31
27
25
23
21
12
10
8
6
4
19
15
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
Figure 18. Input IP3 vs. IF Frequency
0
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
Figure 21. SSB Noise Figure vs. IF Frequency
Rev. 0 | Page 9 of 28
09913-037
2
17
09913-034
INPUT IP3 (dBm)
29
ADL5812
7
6
5
4
14
13
12
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
10
–6
–40
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
–45
IF/2 SPURIOUS (dB)
INPUT IP3 (dBm)
27
26
25
24
–2
0
2
4
6
8
10
10
TA = –40°C
TA = +25°C
TA = +85°C
–55
–60
–65
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
–50
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
–55
TA = –40°C
TA = +25°C
TA = +85°C
–60
IF/3 SPURIOUS (dB)
65
60
55
50
–65
–70
–75
45
–80
40
–85
–4
–2
0
2
4
6
LO POWER (dBm)
8
10
09913-040
INPUT IP2 (dBm)
8
Figure 26. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm
Figure 23. Input IP3 vs. LO Power
35
–6
6
–50
–75
700
09913-039
–4
LO POWER (dBm)
70
4
–70
23
75
2
Figure 25. Input P1dB vs. LO Power
28
22
–6
0
09913-012
29
–2
LO POWER (dBm)
Figure 22. Power Conversion Gain vs. LO Power
30
–4
09913-041
11
09913-038
3
–6
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
15
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
8
16
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
–90
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY(MHz)
Figure 27. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm
Figure 24. Input IP2 vs. LO Power
Rev. 0 | Page 10 of 28
09913-013
9
ADL5812
RESISTANCE (Ω)
PERCENTAGE (%)
60
40
20
7.2
7.4
7.6
7.8
CONVERSION GAIN (dBm)
8
300
6
200
4
100
2
0
30
09913-065
0
7.0
400
130
180
230
280
330
380
430
480
0
IF FREQUENCY (MHz)
Figure 31. IF Output Impedance (R Parallel C Equivalent)
Figure 28. Conversion Gain Distribution
–5
MEAN: 26.43
SD: 0.55%
–6
–7
–8
RF RETURN LOSS (dB)
80
PERCENTAGE (%)
80
CAPACITANCE (pF)
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
80
100
10
500
MEAN: 7.37
SD: 0.12%
09913-057
100
60
40
–9
–10
–11
–12
–13
–14
–15
–16
–17
20
–18
26
28
30
INPUT IP3 (dBm)
–20
700
09913-066
24
900
RF FREQUENCY (MHz)
Figure 32. RF Port Return Loss, Fixed IF
Figure 29. Input IP3 Distribution
100
–5
MEAN: 11.82
SD: 0.30%
–6
–7
–8
LO RETURN LOSS (dB)
80
60
40
20
–9
–10
–11
–12
–13
–14
–15
–16
–17
–18
11.3
11.8
12.3
INPUT P1dB (dBm)
12.8
–20
500
700
900 1100 1300 1500 1700 1900 2100 2300 2500
LO FREQUENCY (MHz)
Figure 33. LO Return Loss
Figure 30. Input P1dB Distribution
Rev. 0 | Page 11 of 28
09913-060
–19
0
10.8
09913-064
PERCENTAGE (%)
1100 1300 1500 1700 1900 2100 2300 2500 2700
09913-062
–19
0
22
ADL5812
–10
2 × LO TO RF
2 × LO TO IF
–15
–20
2× LO LEAKAGE (dBm)
RF-TO-IF ISOLATION (dB)
–15
–10
TA = –40°C
TA = +25°C
TA = +85°C
–20
–25
–25
–30
–35
–40
–45
–30
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
–55
500
09913-023
–15
Figure 37. 2XLO Leakage vs. LO Frequency
–10
TA = –40°C
TA = +25°C
TA = +85°C
–15
3× LO LEAKAGE (dBm)
LO-TO-IF LEAKAGE (dBm)
–25
–30
–35
–40
–45
–50
900 1100 1300 1500 1700 1900 2100 2300 2500
09913-021
700
TA = –40°C
TA = +25°C
TA = +85°C
–20
–25
–30
–35
–40
–45
–50
–55
700
900 1100 1300 1500 1700 1900 2100 2300 2500
LO FREQUENCY (MHz)
09913-022
LO-TO-RF LEAKAGE (dBm)
–35
–40
–45
–50
–55
–70
500
700
900 1100 1300 1500 1700 1900 2100 2300 2500
LO FREQUENCY (MHz)
Figure 38. 3XLO Leakage vs. LO Frequency
Figure 35. LO-to-IF Leakage vs. LO Frequency
–60
500
–30
–65
LO FREQUENCY (MHz)
–15
–25
–60
–55
–10
3 × LO TO RF
3 × LO TO IF
–20
–20
–60
500
900 1100 1300 1500 1700 1900 2100 2300 2500
LO FREQUENCY (MHz)
Figure 34. RF-to-IF Isolation vs. RF Frequency
–10
700
Figure 36. LO-to-RF Leakage vs. LO Frequency
Rev. 0 | Page 12 of 28
09913-005
–35
700
09913-004
–50
ADL5812
VGS = 0
VGS = 1
VGS = 2
VGS = 3
VGS = 4
VGS = 5
550
VGS = 6
VGS = 7
SUPPLY CURRENT (mA)
NOISE FIGURE
12
10
8
450
400
350
300
6
600
20
15
10
5
0
700
VGS = 0
VGS = 1
VGS = 2
VGS = 3
VGS = 4
VGS = 5
VGS = 6
VGS = 7
INPUT P1dB
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
18
16
14
18
NOISE FIGURE
12
15
10
12
8
GAIN
10
5
–25
–20
–15
–10
–5
0
5
RF BLOCKER LEVEL (dBm)
10
9
6
6
4
3
2
500
CHANNEL-TO-CHANNEL ISOLATION (dB)
15
24
21
600
700
800
0
900 1000 1100 1200 1300 1400 1500 1600
70
RF = 956MHz
RF = 1950MHz
RF = 2583MHz
20
0
–30
27
INPUT IP3
IF BIAS RESISTOR VALUE (Ω)
09913-061
NOISE FIGURE (dB)
25
30
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
20
Figure 43. Power Conversion Gain, Noise Figure, and Input IP3 vs.
IF Bias Resistor Value
Figure 40. Input IP3 and Input P1dB vs. RF Frequency for All VGS Settings,
RFB and LPF Use Optimum Settings
30
22
CONVERSION GAIN (dB) AND NOISE FIGURE (dB)
25
900 1000 1100 1200 1300 1400 1500 1600
Figure 42. Supply Current vs. IF Bias Resistor Value
09913-043
INPUT IP3 (dBm), INPUT P1dB (dBm)
INPUT IP3
800
IF BIAS RESISTOR VALUE (Ω)
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency
for All VGS Settings, RFB and LPF Use Optimum Settings
30
700
INPUT IP3
RF FREQUENCY (MHz)
250
500
09913-059
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09913-058
GAIN
TA = –40°C
TA = +25°C
TA = +85°C
60
50
40
30
20
10
0
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 44. IF Channel-to-Channel Isolation vs. RF Frequency
Figure 41. SSB Noise Figure vs. 10 MHz Offset Blocker Level
Rev. 0 | Page 13 of 28
09913-006
4
700
RF = 900MHz
RF = 1900MHz
RF = 2500MHz
500
14
09913-042
CONVERSION GAIN AND NOISE FIGURE (dB)
16
ADL5812
9
8
16
15
14
7
6
5
4
13
12
11
10
9
3
8
2
7
1
6
0
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
5
700
09913-049
CONVERSION GAIN (dB)
10
17
RFB = 0
RFB = 1
RFB = 2
RFB = 3
RFB = 4
RFB = 5
RFB = 6
RFB = 7
RFB = 0
RFB = 1
RFB = 2
RFB = 3
RFB = 4
RFB = 5
RFB = 6
RFB = 7
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 45. Conversion Gain vs. RF Frequency for All RFB Settings,
VGS and LPF Use Optimum Settings
09913-051
11
INPUT P1dB (dBm)
12
Figure 47. Input P1dB vs. RF Frequency for All RFB Settings,
VGS and LPF Use Optimum Settings
18
30
29
16
28
25
24
23
22
21
20
700
RFB = 0
RFB = 1
RFB = 2
RFB = 3
RFB = 4
RFB = 5
RFB = 6
RFB = 7
14
12
10
8
6
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
4
700
RFB =
RFB =
RFB =
RFB =
RFB =
RFB =
RFB =
RFB =
0
1
2
3
4
5
6
7
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 48. Noise Figure vs. RF Frequency for All RFB Settings,
VGS and LPF Use Optimum Settings
Figure 46. Input IP3 vs. RF Frequency for All RFB Settings,
VGS and LPF Use Optimum Settings
Rev. 0 | Page 14 of 28
09913-052
NOISE FIGURE (dB)
26
09913-050
INPUT IP3 (dBm)
27
ADL5812
16
10
9
14
12
INPUT P1dB (dBm)
7
6
5
4
3
8
6
=0
=1
=2
=3
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
0
700
28
15
26
14
24
13
NOISE FIGURE (dB)
16
22
20
18
16
12
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
LPF
LPF
LPF
LPF
=0
=1
=2
=3
12
11
10
9
8
=0
=1
=2
=3
7
09913-054
LPF
LPF
LPF
LPF
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Figure 51. Input P1dB vs. RF Frequency for All LPF Settings,
RFB and VGS Use Optimum Settings
30
14
=0
=1
=2
=3
RF FREQUENCY (MHz)
Figure 49. Conversion Gain vs. RF Frequency for All LPF Settings,
RFB and VGS Use Optimum Settings
10
700
LPF
LPF
LPF
LPF
2
09913-055
0
700
LPF
LPF
LPF
LPF
6
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 52. Noise Figure vs. RF Frequency for All LPF Settings,
RFB and VGS Use Optimum Settings.
Figure 50. Input IP3 vs. RF Frequency for All LPF Settings,
RFB and VGS Use Optimum Settings
Rev. 0 | Page 15 of 28
09913-056
1
INPUT IP3 (dBm)
10
4
2
09913-053
CONVERSION GAIN (dB)
8
ADL5812
3.6 V PERFORMANCE
VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 800 Ω, ZO = 50 Ω, optimum
SPI settings, unless otherwise noted.
285
70
TA = –40°C
TA = +25°C
TA = +85°C
60
275
50
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
280
270
265
260
255
40
30
20
250
245
10
240
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
0
700
09913-044
235
700
TA = –40°C
TA = +25°C
TA = +85°C
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
09913-047
290
Figure 56. Input IP2 vs. RF Frequency at 3.6 V
Figure 53. Supply Current vs. RF Frequency at 3.6 V
9
12
8
10
6
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
7
5
4
3
8
6
4
2
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
0
700
25
-
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 54. Power Conversion Gain vs. RF Frequency at 3.6 V
30
TA = –40°C
TA = +25°C
TA = +85°C
09913-048
0
700
2
TA = –40°C
TA = +25°C
TA = +85°C
09913-045
1
Figure 57. Input P1dB vs. RF Frequency at 3.6 V
24
TA = –40°C
TA = +25°C
TA = +85°C
TA = –40°C
TA = +25°C
TA = +85°C
22
20
NOISE FIGURE (dB)
15
10
16
14
12
10
8
6
4
5
0
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
0
700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 58. SSB Noise Figure vs. RF Frequency at 3.6 V
Figure 55. Input IP3 vs. RF Frequency at 3.6 V
Rev. 0 | Page 16 of 28
09913-063
2
09913-046
INPUT IP3 (dBm)
18
20
ADL5812
SPURIOUS PERFORMANCE
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured
in dBc from the IF output power level. Data was only measured for frequencies less than 6 GHz. Typical noise floor of the measurement
system = −100 dBm.
5 V Performance
VS = 5 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 1200 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.
Table 5. RF = 900 MHz, LO = 697 MHz
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−30.4
−60.9
−86.0
−100.0
<−100
<−100
1
−38.6
0.0
−54.1
−81.3
<−100
<−100
<−100
<−100
2
−19.2
−36.3
−78.0
−97.8
−94.9
<−100
<−100
<−100
<−100
3
−37.5
−19.2
−54.1
−90.8
<−100
<−100
<−100
<−100
<−100
4
−22.2
−52.5
−67.2
<−100
<−100
<−100
<−100
<−100
<−100
<−100
5
−48.1
−41.5
−77.8
−90.2
<−100
<−100
<−100
<−100
<−100
<−100
<−100
6
−42.0
−60.6
−76.1
−98.0
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
M
7
−63.0
−53.8
−97.7
−99.3
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
4
5
6
7
8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
8
−59.2
−78.7
−91.5
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
9
−64.8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
10
11
12
13
14
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
10
11
12
13
14
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
Table 6. RF = 1900 MHz, LO = 1697 MHz
M
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−26.1
−70.8
<−100
1
−26.1
0.0
−68.3
−91.4
<−100
2
−25.2
−46.0
−71.9
−88.9
<−100
3
−55.4
−54.5
−66.0
−76.3
<−100
<−100
−78.8
−80.4
−97.8
<−100
<−100
<−100
−97.7
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
Rev. 0 | Page 17 of 28
9
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
ADL5812
Table 7. RF = 2500 MHz, LO = 2297 MHz
M
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
0
−26.2
−84.5
1
−29.3
0.0
−72.0
<−100
2
−41.2
−45.0
−57.9
−87.7
<−100
3
−46.1
−67.1
−83.4
<−100
<−100
4
5
−96.5
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
6
<−100
<−100
<−100
<−100
7
8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
9
<−100
<−100
<−100
<−100
<−100
10
<−100
<−100
<−100
<−100
<−100
11
<−100
<−100
<−100
<−100
<−100
12
<−100
<−100
<−100
<−100
<−100
13
<−100
<−100
<−100
<−100
<−100
14
<−100
<−100
<−100
<−100
<−100
3.6 V Performance
VS = 5 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = R2 = 800 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.
Table 8. RF = 900 MHz, LO = 697 MHz
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−30.9
−69.9
−84.9
<−100
<−100
<−100
1
−44.7
0.0
−56.7
−78.6
<−100
<−100
<−100
<−100
2
−24.2
−34.6
−79.4
−95.9
−94.6
<−100
<−100
<−100
<−100
3
−35.2
−19.9
−57.4
−82.8
<−100
<−100
<−100
<−100
<−100
4
−25.5
−57.5
−65.0
−96.0
<−100
<−100
<−100
<−100
<−100
<−100
5
−46.6
−39.2
−76.9
−80.8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
6
−45.9
−59.8
−77.5
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
M
7
−64.1
−50.8
−92.8
−96.7
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
Rev. 0 | Page 18 of 28
8
−65.9
−76.1
−85.8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
9
10
11
12
−60.0
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
13
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
14
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
ADL5812
Table 9. RF = 1900 MHz, LO = 1697 MHz
M
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−34.0
−72.9
<−100
1
−32.6
0.0
−72.4
<−100
<−100
2
−29.0
−53.6
−82.0
<−100
<−100
3
−60.9
−56.6
−73.1
−73.5
<−100
<−100
4
−86.3
−76.8
−95.9
<−100
<−100
<−100
5
<−100
<−100
<−100
<−100
<−100
<−100
6
<−100
<−100
<−100
<−100
<−100
<−100
7
8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
9
<−100
<−100
<−100
<−100
<−100
<−100
<−100
10
11
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
10
11
12
<−100
<−100
<−100
<−100
<−100
<−100
13
<−100
<−100
<−100
<−100
<−100
<−100
14
<−100
<−100
<−100
<−100
<−100
<−100
Table 10. RF = 2500 MHz, LO = 2297 MHz
M
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−30.5
−92.7
1
−24.9
0.0
−78.3
<−100
2
−49.5
−46.6
−60.1
−96.3
<−100
3
−52.0
−68.5
−71.2
<−100
<−100
4
5
−95.6
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
6
<−100
<−100
<−100
<−100
7
8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
Rev. 0 | Page 19 of 28
9
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
12
<−100
<−100
<−100
<−100
<−100
13
<−100
<−100
<−100
<−100
<−100
14
<−100
<−100
<−100
<−100
<−100
ADL5812
CIRCUIT DESCRIPTION
The ADL5812 consists of two primary components: the RF
subsystem and the LO subsystem. The combination of design,
process, and packaging technology allows the functions of these
subsystems to be integrated into a single die, using mature
packaging and interconnection technologies to provide a high
performance device with excellent electrical, mechanical, and
thermal properties. The wideband frequency response and
flexible frequency programming simplifies the receiver design,
saves on-board space, and minimizes the need for external
components.
The RF subsystem consists of an integrated, tunable, low loss RF
balun; a double balanced, passive MOSFET mixer; a tunable sum
termination network; and an IF amplifier.
IFGM1
NC
IFOP1
IFON1
NC
IFGD1
V1LO4
V1LO3
V1LO2
40
39
38
37
36
35
34
33
32
31
RF1 1
30
V1LO1
RFCT1 2
29
NC
28
NC
27
NC
26
LOIP
25
LOIN
NC 7
24
LE
NC 8
23
DATA
22
CLK
21
V2LO1
ADL5812
NC 3
NC 4
NC 5
BIAS
GEN
NC 6
SERIAL
PORT
INTERFACE
RFCT2 9
16
17
18
19
20
NC
V2LO4
V2LO3
V2LO2
15
IFGD2
14
IFOP2
IFGM2
13
IFON2
12
NC
11
VPIF2
RF2 10
09913-067
VPIF1
The LO subsystem consists of a multistage limiting LO amplifier.
The purpose of the LO subsystem is to provide a large, fixed
amplitude, balanced signal to drive the mixer independent of
the level of the LO input. A block diagram of the device is shown
in Figure 59.
Figure 59. Simplified Schematic
RF SUBSYSTEM
The single-ended, 50 Ω RF input is internally transformed to a
balanced signal using a tunable, low loss, unbalanced-to-balanced
(balun) transformer. This transformer is made possible by an
extremely low loss metal stack, which provides both excellent
balance and dc isolation for the RF port. Although the port can
be dc connected, it is recommended that a blocking capacitor be
used to avoid running excessive dc current through the part.
The RF balun can easily support an RF input frequency range of
700 MHz to 2800 MHz. This balun is tuned over the frequency
range by SPI controlled switched capacitor networks at the
input and output of the RF balun.
The resulting balanced RF signal is applied to a passive mixer
that commutates the RF input in accordance with the output of the
LO subsystem. The passive mixer is essentially a balanced, low
loss switch that adds minimum noise to the frequency translation.
The only noise contribution from the mixer is due to the resistive
loss of the switches, which is in the order of a few ohms.
Because the mixer is inherently broadband and bidirectional, it
is necessary to properly terminate all idler (M × N product)
frequencies generated by the mixing process. Terminating the
mixer avoids the generation of unwanted intermodulation
products and reduces the level of unwanted signals at the input of
the IF amplifier, where high peak signal levels can compromise the
compression and intermodulation performance of the system. This
termination is accomplished by the addition of a programmable
low-pass filter network between the IF amplifier and the mixer
and in the feedback elements in the IF amplifier.
The IF amplifier is a balanced feedback design that simultaneously
provides the desired gain, noise figure, and input impedance
that is required to achieve the overall performance. The balanced
open-collector output of the IF amplifier, with an impedance
modified by the feedback within the amplifier, permits the
output to be connected directly to a high impedance filter, a
differential amplifier, or an analog-to-digital converter (ADC)
input while providing optimum second-order intermodulation
suppression. The differential output impedance of the IF amplifier
is approximately 200 Ω. If operation in a 50 Ω system is desired,
the output can be transformed to 50 Ω by using a 4:1 transformer
or an LC impedance matching network.
The intermodulation performance of the design is generally limited
by the IF amplifier. The IP3 performance can be optimized by
adjusting the low-pass filter between the mixer and the IF amplifier.
Further optimization can be made by adjusting the IF current
with an external resistor. Figure 42 and Figure 43 illustrate how
various IF resistors affect the performance with a 5 V supply.
Additionally, dc current can be saved by increasing the IF resistor.
It is permissible to reduce the IF amplifier’s dc supply voltage
to as low as 3.3 V, further reducing the dissipated power of the
part. (Note that no performance enhancement is obtained by
reducing the value of these resistors, and excessive dc power
dissipation may result.)
Because the mixer is bidirectional, the tuning of the RF and IF
ports is linked, and it is possible for the user to optimize gain,
noise figure, IP3, and impedance match via the SPI. This feature
permits high performance operation and is achieved entirely
using SPI control. Additionally, the performance of the mixer
can be improved by setting the optimum gate voltage on the
passive mixer, which is also controlled by the SPI to enable
optimum performance of the part. See the Applications
Information section for examples of this tuning.
Rev. 0 | Page 20 of 28
ADL5812
LO SUBSYSTEM
The LO amplifier is designed to provide a large signal level to
the mixer to obtain optimum intermodulation and compression
performance. The resulting LO amplifier provides very high
performance over a wide range of LO input frequencies.
The ideal waveshape for switching the passive mixer is a square
wave at the LO frequency to cause the mixer to switch through
its resistive region (from on to off and off to on) as rapidly as
possible. While it has always been possible to generate such a
square wave, the amount of dc current required to generate a
large amplitude square wave at high frequencies has made it
impractical to create such a mixer. Novel circuitry within the
ADL5812 permits the generation of a near-square wave output
at frequencies up to 2800 MHz with dc current that compares
favorably with that employed by narrow-band passive mixers.
The input stages of the LO amplifier provide common-mode
rejection, permitting the LO input to be driven either single ended
or balanced. For a single-ended input, either LOIP or LOIN can
be grounded. It is desirable to dc block the LO inputs to avoid
damaging the part by the accidental application of a large dc
voltage to the part. In addition, the LO inputs are internally dc
blocked.
Because the LO amplifier is inherently wideband, the ADL5812
can be driven with either high-side or low-side LO by simply
setting the optimum RF balun and LPF inputs to the SPI.
The performance of this amplifier is critical in achieving a high
intercept passive mixer without degrading the noise floor of the
system. This is a critical requirement in an interferer rich
environment, such as cellular infrastructure, where blocking
interferers can limit mixer performance. Blocking dynamic
range can benefit from a higher level of LO drive, which pushes
the LO amplifier stages harder into compression and causes them
to switch harder and to limit the small signal gain of the chain.
Both of these conditions are beneficial to low noise figure under
blocking. NF under blocking can be improved several decibels
for LO input power levels above 0 dBm.
The LO amplifier topology inherently minimizes the dc current
based on the LO operating voltage and the LO operating frequency.
It is permissible to reduce the LO supply voltage down as low as
3.6 V, which drops the dc current rapidly. The mixer dynamic
range varies accordingly with the LO supply voltage. No external
biasing resistor is required for optimizing the LO amplifier.
In addition, the ADL5812 has a power-down mode. This powerdown mode can be used with any supply voltage applied to the part.
All of the SPI inputs are designed to work with any logic family that
provides a Logic 0 input level of less than 0.4 V and a Logic 1 input
level that exceeds 1.4 V.
All pins, including the RF pins, are ESD protected and have been
tested up to a level of 2000 V HBM and 1250 V CDM.
The LO amplifier converts a variable level, single or balanced input
signal (−6 dBm to +10 dBm) to a hard voltage limited, balanced
signal internally to drive the mixer. Excellent performance can be
obtained with a 0 dBm input level; however, the circuit continues to
function at considerably lower levels of LO input power.
Rev. 0 | Page 21 of 28
ADL5812
APPLICATIONS INFORMATION
BASIC CONNECTIONS
The ADL5812 mixer is designed to downconvert radio
frequencies (RF) primarily between 700 MHz and 2800 MHz
to lower intermediate frequencies (IF) between 30 MHz and
450 MHz. Figure 60 depicts the basic connections of the mixer.
It is recommended to ac couple RF and LO input ports to
prevent nonzero dc voltages from damaging the RF balun or LO
input circuit. A RFIN capacitor value of 22 pF is recommended.
The real part of the output impedance is approximately 200 Ω,
as seen in Figure 31, which matches many commonly used SAW
filters without the need for a transformer. This results in a voltage
conversion gain that is approximately 6 dB higher than the power
conversion gain. When a 50 Ω output impedance is needed, use a
4:1 impedance transformer, as shown in Figure 60.
IF PORT
External resistors, R1 and R2, are used to adjust the bias current
of the integrated amplifier at the IF terminal. It is necessary to have
a sufficient amount of current to bias both the internal IF amplifier
to optimize dc current vs. optimum input IP3 performance.
Figure 42 and Figure 43 provide the reference for the bias
resistor selection when lower power consumption is considered at
the expense of conversion gain and input IP3 performance.
BIAS RESISTOR SELECTION
The mixer differential IF interface requires pull-up choke inductors
to bias the open-collector outputs and to set the output match.
The shunting impedance of the choke inductors used to couple
dc current into the IF amplifier should be selected to provide
the desired output return loss.
VCC
C1
0.1µF
L1
470nH
C3
T1
120pF TC4-1W+
L2
470nH
3
4
2
1
R20
OPEN
6
C5
120pF
C4
120pF
C2
0.1µF
IFOP
VCC
C11
10pF
IFON
R21
0Ω
R1
910Ω
VCC
C12
10pF
C8
0.1µF
AGND
VCC
40
39
38
37
36
35
34
33
V1LO3 32
31
V1LO2
C13
10pF
PAD
C6
22pF
1
2
3
C7
22pF
C25
22pF
V1LO1
NC
NC
NC
LOIP
LOIN
LE
DATA
CLK
V2LO1
ADL5812
30
29
28
27
26
25
24
23
22
21
C2.3
10pF
RFIN2
C17
LE
22pF
DATA
CLK
VCC
C15
10pF
12
11
C24
22pF
VCC
C14
10pF
VPIF2
IFGM2
13
NC
14
IFOP2
15
IFON2
16
NC
17
IFGD2
18
V2LO4
19
V2LO3
20
V2LO2
RFIN2
4
5
6
7
8
9
10
RF1
RFCT1
NC
NC
NC
NC
NC
NC
RFCT2
RF2
RED
VCC
VPIF1
IFGM1
NC
IFOP1
IFON1
NC
IFGD1
V1LO4
RFIN1
BLK
VPOS
C16
22pF
VCC
C18
10pF
R2
910Ω
VCC
C19
10pF
VCC
VCC
C26
0.1µF
C3
T1
120pF TC4-1W+
L4
470nH
C27
0.1µF
C4
120pF
3
4
2
1
6
IFOP
R23
OPEN
C30
120pF
IFON
R22
0Ω
Figure 60. Evaluation Board Schematic
Rev. 0 | Page 22 of 28
C20
10pF
09913-070
L3
470nH
ADL5812
VGS PROGRAMMING
RF BALUN PROGRAMMING
The ADL5812 allows programmability for internal gate-to-source
voltages for optimizing mixer performance over the desired
frequency bands. The ADL5812 defaults the VGS setting to 0. Both
channels of the ADL5812 are programmed together using the
same VGS setting. Power conversion gain, input IP3, NF, and input
P1dB can be optimized, as shown in Figure 39 and Figure 40.
The ADL5812 allows programmability for the RF balun by
allowing capacitance to be switched into both the input and the
output, which allows the balun to be tuned to cover the entire
frequency band (700 MHz to 2800 MHz). Under most circumstances, the input and output can be tuned together though
sometimes it may be advantageous for matching reasons to tune
them separately. The ADL5812 defaults the RFB setting to 0. Both
channels of the ADL5812 are programmed together using the same
RFB settings. Power conversion gain, input IP3, NF, and input
P1dB can be optimized, as shown in Figure 45 and Figure 48.
LOW-PASS FILTER PROGRAMMING
The ADL5812 allows programmability for the low-pass filter
terminating the mixer output. This filter helps to block sum term
mixing products at the expense of some noise figure and gain
and can significantly increase input IP3. The ADL5812 defaults the
LPF setting to 0. Both channels of the ADL5812 are programmed
together using the same LPF settings. Power conversion gain,
input IP3, NF, and input P1dB can be optimized, as shown in
Figure 49 to Figure 52.
Rev. 0 | Page 23 of 28
ADL5812
REGISTER STRUCTURE
output of the RF balun separately and that ability is provided.
The LPF bits control the low-pass filter settings at the IF output.
The ability to tune the low-pass filter allows some trade-off
between gain, noise figure, and input IP3 with higher settings,
3, providing higher input IP3 at the cost of some gain and noise
figure and lower settings, 0, providing higher gain and lower NF
at the cost of lower input IP3. The VGS bits control the VGS
settings of the mixer core and allow further tuning of the device.
Figure 61 illustrates the register map of the ADL5812. The
ADL5812 uses only Register 5. Because of this, set all of the
control bits to five. When set to 0, the MAIN ENB and DIV
ENB bits, DB7 and DB6, respectively, enable the part. By setting
one of these bits to 1, its channel is powered down. Either
channel can be powered down independently of the other. The
RFB IN CAP DAC and RFB OUT CAP DAC bits are used to
tune the RF balun. In most cases, they are tuned together with
the higher settings, 7, tuning for the low frequencies, and with
the lower settings, 0, tuning for the high frequencies. There are
times where it becomes advantageous to tune the input and
RESERVED
VGS
LPF
RFB OUT CAP DAC
Table 11 lists the optimum settings characterized for each
frequency band. All register bits default to 0.
RFB IN CAP DAC
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9
0
0
VGS2 VGS1 VGS0 LPF1 LPF0
0 CDO2 DCDO1 CDO0
0
CDI2 CDI1 CDI0
VGS2 VGS1 VGS0
0
0
0
'
'
'
1
1
1
DB8
0
MAIN
ENB
DIV
ENB
DB7
MEN
DB6
DEN
RESERVED
DB5
0
DB4
0
CONTROL BITS
DB3
0
DB2 DB1
C3(1) C2(0)
DB0
C1(1)
DEN DIVERSITY ENABLE
0
DEVICE ENABLED
1
DEVICE DISABLED
VGS SETTING
0
'
7
LPF1 LPF0 LOW PASS FILTER SETTING
0
0
0
'
'
'
1
1
3
MEN
0
1
MAIN ENABLE
DEVICE ENABLED
DEVICE DISABLED
CDI2 CDI1 CDI0 RF BALUN INTPUT TUNING
0
0
0
0
'
'
'
'
1
1
1
7
09913-024
CDO2 CDO1 CDO0 RF BALUN OUTPUT TUNING
0
0
0
0
'
'
'
'
1
1
1
7
Figure 61. ADL5812 Register Maps
Table 11. Optimum Settings
RF Frequency (MHz)
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
LO Frequency (MHz)
497
597
697
797
897
997
1097
1197
1297
1397
1497
1597
1697
1797
1897
1997
2097
2197
2297
2397
2497
2597
VGS
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
LPF
3
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
1
1
3
1
1
2
Rev. 0 | Page 24 of 28
RFB OUT CAP DAC
7
7
4
3
7
7
7
7
5
6
5
5
5
4
4
3
3
3
2
2
2
1
RFB IN CAP DAC
7
7
4
3
7
7
7
7
5
6
5
5
5
4
4
3
3
3
2
2
2
1
ADL5812
EVALUATION BOARD
The evaluation board is fabricated using Rogers® 3003 material.
Table 12 details the configuration for the mixer characterization.
The evaluation board software is available on www.analog.com.
An evaluation board is available for the ADL5812. The standard
evaluation board schematic is presented in Figure 62. The USB
interface circuitry schematic is presented in Figure 65. The
evaluation board layout is shown in Figure 63 and Figure 64.
VCC
C1
0.1µF
L1
470nH
C3
T1
120pF TC4-1W+
L2
470nH
3
4
2
1
R20
OPEN
6
C5
120pF
C4
120pF
C2
0.1µF
IFOP
VCC
C11
10pF
IFON
R21
0Ω
R1
910Ω
VCC
C12
10pF
C8
0.1µF
AGND
VCC
40
39
38
37
36
35
34
33
32
31
C13
10pF
VPIF1
C6
22pF
1
2
3
C7
22pF
C25
22pF
V1LO1
NC
NC
NC
LOIP
LOIN
LE
DATA
CLK
V2LO1
ADL5812
C2.3
10pF
30
29
28
27
26
25
24
23
22
21
RFIN2
C17
LE
22pF
DATA
CLK
VCC
C15
10pF
C16
22pF
16
17
18
19
20
13
14
15
12
11
C24
22pF
VCC
C14
10pF
VPIF2
IFGM2
NC
IFOP2
IFON2
NC
IFGD2
V2LO4
V2LO3
V2LO2
RFIN2
4
5
6
7
8
9
10
RF1
RFCT1
NC
NC
NC
NC
NC
NC
RFCT2
RF2
RED
VCC
IFGM1
NC
IFOP1
IFON1
NC
IFGD1
V1LO4
V1LO3
V1LO2
PAD
RFIN1
BLK
VPOS
VCC
C18
10pF
R2
910Ω
VCC
C19
10pF
VCC
VCC
C26
0.1µF
C3
T1
120pF TC4-1W+
L4
470nH
C27
0.1µF
C4
120pF
3
4
2
1
6
IFOP
R23
OPEN
C30
120pF
C20
10pF
IFON
R22
0Ω
09913-072
L3
470nH
Figure 62. Evaluation Board Schematic
Table 12. Evaluation Board Configuration
Components
C1, C2, C8, C11, C12,
C13, C14, C15, C18,
C19, C20, C23, C26,
C27
C6, C7, C24, C25
C3, C4, C5, C28, C29,
C30, L1, L2, L3, L4,
R20, R21, R22, R23,
T1, T2
C17
R1, R2
Description
Power supply decoupling. Nominal supply decoupling consists of a
0.1 μF capacitor to ground in parallel with a 10 pF capacitor to
ground positioned as close to the device as possible.
Default Conditions
C1, C2, C26, C27 = 0.1 μF (size 0402),
C8, C11, C12, C13, C14, C15, C18, C19,
C20, C23 = 10 pF (size 0402)
RF input interface. The input channels are ac-coupled through C6 and
C24. C7 and C25 provide bypassing for the center tap of the RF input
baluns.
IF output interface. The open-collector IF output interfaces are biased
through pull-up choke inductors L1, L2, L3, and L4. T1 and T2 are 4:1
impedance transformers used to provide single-ended IF output
interfaces, with C5 and C30 providing center-tap bypassing. Remove
R21 and R22 for balanced output operation.
LO interface. C17 provides ac coupling for the LOIP local oscillator input.
Bias control. R1and R2 set the bias point for the internal IF amplifier.
C6, C24 = 22 pF (size 0402),
C7, C25 = 22 pF (size 0402)
Rev. 0 | Page 25 of 28
C3, C4, C5, C28, C29, C30 = 120 pF (size 0402),
L1, L2, L3, L4 = 470 nH (size 0603),
R20, R23 = open,
R21, R22 = 0 Ω (size 0402),
T1, T2 = TC4-1W+ (Mini-Circuits®)
C17 = 22 pF (size 0402)
R1, R2 = 910 Ω (size 0402)
09913-069
09913-068
ADL5812
Figure 63. Evaluation Board Top Layer
Figure 64. Evaluation Board Bottom Layer
Y2
24.000000MHZ
3
1
5V_USB
C41
22PF
CASE
C40 2 4
22PF
DGND
DGND
DGND
J6
C34
1
10PF
C35
2
3
4
5
3V3_USB
10PF
C37
5
DGND
0.1UF
WC_N
GND
24LC64-I-SN
4
AVCC
55
SDA
43
SCL
17
A2
G1
G2
G3
G4
3V3_USB
11
VCC
A0
A1
32
2
3
6
7
27
1
R8
2K
3
R7
2K
3V3_USB
C36
DGND
0.1UF
7
U7 8
VCC
XTALOUT
DPLUS
DMINUS
IFCLK
DGND
CLKOUT
CTL0_FLAGA
CTL1_FLAGB
15
16
R9
3V3_USB
100K
PA0_INT0_N
SDA
PA1_INT1_N
R10
PA2_SLOE
PA3_WU2
100K
C38
0.1UF
CTL2_FLAGC
SCL
5
42
C39
0.1UF
PA4_FIFOADR0
XTALIN
PA5_FIFOADR1
RESET_N
PA6_PKTEND
PA7_FLAGD_SLCS_N
PB0_FD0
44
14
DGND
PB1_FD1
WAKEUP
PB2_FD2
PB3_FD3
RESERVED
PB4_FD4
PB5_FD5
1
2
PB6_FD6
PB7_FD7
RDY0_SLRD
RDY1_SLWR
PD0_FD8
DGND
PD1_FD9
PD2_FD10
PD3_FD11
PD4_FD12
PD5_FD13
PD6_FD14
PAD
56
53
41
28
26
6
10
PD7_FD15
PAD
GND
12
AGND
DGND
U6
GND
PINS
897-43-005-00-100001
P1
4
8
9
13
54
29
30
31
1
2
3
SAMTECTSW10608GS3PIN
33
34
35
36
37
38
39
40
18
19
20
21
22
23
24
25
45
46
47
48
49
50
51
52
R11
R17
0
0
R12
R18
0
0
R13
R19
0
0
R14
1K
DNI
DGND
C49
TBD0402
330PF
DNI
DGND
R15
1K
DNI
DGND
C50
TBD0402
330PF
DNI
DGND
R16
1K
C51
TBD0402
DNI
330PF
DGND
LE
DATA
CLK
DNI
DGND
DGND
CY7C68013A-56LTXC
DGND
3V3_USB
5V_USB
1
3P3V
ORG
3V3_USB
DNI
SML-210MTT86
C
DGND
D1
DGND
U5
7
8
6
IN1
OUT1
IN2 OUT2
SD_N
PAD
PAD
FB
GND
DECOUPLING FOR U6
C33
1.0UF
R6
140K
DGND
C42
0.1UF
5
R5
78.7K
DGND
ADP3334ACPZ
C32
1000PF
1
2
3
DGND
1
C43
0.1UF
DGND
BLK
DNI
DGND
Figure 65. USB Interface Circuitry on the Evaluation Board
Rev. 0 | Page 26 of 28
DGND
C44
0.1UF
C45
0.1UF
C46
0.1UF
C47
0.1UF
C48
0.1UF
09913-071
DGND
A
AGND
C31
1.0UF
R4
2K
R3
0
ADL5812
OUTLINE DIMENSIONS
0.30
0.25
0.20
PIN 1
INDICATOR
40
1
31
30
0.50
BSC
PIN 1 INDEX
AREA
21
TOP VIEW
0.90
0.85
0.80
0.45
0.40
0.35
10
11
20
BOTTOM VIEW
0.21 MAX
0.19 MIN
SEATING
PLANE
*4.19
4.14 SQ
4.09
EXPOSED
PAD
0.02 REF
0.58
0.53
0.48
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
*COMPLIANT TO JEDEC STANDARDS MO-208
EXCEPT FOR EXPOSED PAD DIMENSION
04-24-2008-A
6.00
BSC SQ
Figure 66. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad (CP-40-6)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5812ACPZ-R7
ADL5812-EVALZ
1
Temperature Range
−40°C to +85°C
Package Description
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
Evaluation Board
Z = RoHS Compliant Part.
Rev. 0 | Page 27 of 28
Package Option
CP-40-6
Quantity
750
ADL5812
NOTES
©2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09913-0-7/11(0)
Rev. 0 | Page 28 of 28