AD ADL5355

1200 MHz to 2500 MHz Balanced Mixer,
LO Buffer, IF Amplifier, and RF Balun
ADL5355
FEATURES
APPLICATIONS
Cellular base station receivers
Transmit observation receivers
Radio link downconverters
FUNCTIONAL BLOCK DIAGRAM
IFGM
IFOP
IFON
PWDN
LEXT
20
19
18
17
16
ADL5355
VPIF 1
15
LOI2
RFIN 2
14
VPSW
RFCT 3
13
VGS1
COMM 4
12
VGS0
COMM 5
11
LOI1
BIAS
GENERATOR
6
7
8
9
10
VLO3
LGM3
VLO2
LOSW
NC
NC = NO CONNECT
Figure 1.
GENERAL DESCRIPTION
The ADL5355 uses a highly linear, doubly balanced passive
mixer core along with integrated RF and LO balancing circuitry
to allow for single-ended operation. The ADL5355 incorporates
an RF balun, allowing for optimal performance over a 1200 MHz
to 2500 MHz RF input frequency range using low-side LO
injection for RF frequencies from 1700 MHz to 2500 MHz and
high-side LO injection for RF frequencies from 1200 MHz to
1700 MHz. The balanced passive mixer arrangement provides
good LO-to-RF leakage, typically better than −39 dBm, and
excellent intermodulation performance. The balanced mixer
core also provides extremely high input linearity, allowing the
device to be used in demanding cellular applications where inband blocking signals may otherwise result in the degradation
of dynamic performance. A high linearity IF buffer amplifier
follows the passive mixer core to yield a typical power conversion
gain of 8.4 dB and can be used with a wide range of output
impedances.
The ADL5355 provides two switched LO paths that can be
used in TDD applications where it is desirable to rapidly switch
between two local oscillators. LO current can be externally set
using a resistor to minimize dc current commensurate with the
desired level of performance. For low voltage applications, the
ADL5355 is capable of operation at voltages down to 3.3 V with
substantially reduced current. Under low voltage operation, an
additional logic pin is provided to power down (<200 μA) the
circuit when desired.
The ADL5355 is fabricated using a BiCMOS high performance
IC process. The device is available in a 5 mm × 5 mm, 20-lead
LFCSP and operates over a −40°C to +85°C temperature range.
An evaluation board is also available.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2009 Analog Devices, Inc. All rights reserved.
08080-001
RF frequency range of 1200 MHz to 2500 MHz
IF frequency range of 30 MHz to 450 MHz
Power conversion gain: 8.4 dB
SSB noise figure of 9.2 dB
SSB noise figure with 5 dBm blocker of 20 dB
Input IP3 of 27 dBm
Input P1dB of 10.4 dBm
Typical LO drive of 0 dBm
Single-ended, 50 Ω RF and LO input ports
High isolation SPDT LO input switch
Single-supply operation: 3.3 V to 5 V
Exposed paddle 5 mm × 5 mm, 20-lead LFCSP
1500 V HBM/500 V FICDM ESD performance
ADL5355
TABLE OF CONTENTS
Features .............................................................................................. 1 3.3 V Performance ...................................................................... 15 Applications ....................................................................................... 1 Circuit Description......................................................................... 16 General Description ......................................................................... 1 RF Subsystem .............................................................................. 16 Functional Block Diagram .............................................................. 1 LO Subsystem ............................................................................. 17 Revision History ............................................................................... 2 Applications Information .............................................................. 18 Specifications..................................................................................... 3 Basic Connections ...................................................................... 18 5 V Performance ........................................................................... 4 IF Port .......................................................................................... 18 3.3 V Performance ........................................................................ 4 Bias Resistor Selection ............................................................... 18 Spur Tables .................................................................................... 5 Mixer VGS Control DAC .......................................................... 18 Absolute Maximum Ratings............................................................ 6 Evaluation Board ............................................................................ 20 ESD Caution .................................................................................. 6 Outline Dimensions ....................................................................... 23 Pin Configuration and Function Descriptions ............................. 7 Ordering Guide .......................................................................... 23 Typical Performance Characteristics ............................................. 8 5 V Performance ........................................................................... 8 REVISION HISTORY
7/09—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADL5355
SPECIFICATIONS
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.
Table 1.
Parameter
RF INPUT INTERFACE
Return Loss
Input Impedance
RF Frequency Range
OUTPUT INTERFACE
Output Impedance
IF Frequency Range
DC Bias Voltage 1
LO INTERFACE
LO Power
Return Loss
Input Impedance
LO Frequency Range
POWER-DOWN (PWDN) INTERFACE 2
PWDN Threshold
Logic 0 Level
Logic 1 Level
PWDN Response Time
PWDN Input Bias Current
1
2
Conditions
Min
Tunable to >20 dB over a limited bandwidth
Typ
Unit
2500
dB
Ω
MHz
450
5.5
Ω||pF
MHz
V
20
50
1200
Differential impedance, f = 200 MHz
Externally generated
Max
230||0.75
30
3.3
−6
5.0
0
15
50
1230
+10
2470
1.0
0.4
1.4
Device enabled, IF output to 90% of its final level
Device disabled, supply current < 5 mA
Device enabled
Device disabled
Apply the supply voltage from the external circuit through the choke inductors.
PWDN function is intended for use with VS ≤ 3.6 V only.
Rev. 0 | Page 3 of 24
160
220
0.0
70
dBm
dB
Ω
MHz
V
V
V
ns
ns
μA
μA
ADL5355
5 V PERFORMANCE
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless
otherwise noted.
Table 2.
Parameter
DYNAMIC PERFORMANCE
Power Conversion Gain
Voltage Conversion Gain
SSB Noise Figure
SSB Noise Figure Under Blocking
Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB)
LO-to-IF Leakage
LO-to-RF Leakage
RF-to-IF Isolation
IF/2 Spurious
IF/3 Spurious
POWER SUPPLY
Positive Supply Voltage
Quiescent Current
Total Quiescent Current
Conditions
Min
Typ
Max
Unit
Including 4:1 IF port transformer and PCB loss
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential
7
8.4
14.7
9.2
20
9.5
dB
dB
dB
dB
22
27
dBm
50
dBm
10.4
−12.6
−39
−33
−69
−73
dBm
dBm
dBm
dBc
dBc
dBc
5 dBm blocker present ±10 MHz from wanted RF input,
LO source filtered
fRF1 = 1949.5 MHz, fRF2 = 1950.5 MHz, fLO = 1750 MHz,
each RF tone at −10 dBm
fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1750 MHz,
each RF tone at −10 dBm
Unfiltered IF output
−10 dBm input power
−10 dBm input power
4.5
LO supply, resistor programmable
IF supply, resistor programmable
VS = 5 V
5
100
90
190
5.5
V
mA
mA
mA
3.3 V PERFORMANCE
VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,
and ZO = 50 Ω, unless otherwise noted.
Table 3.
Parameter
DYNAMIC PERFORMANCE
Power Conversion Gain
Voltage Conversion Gain
SSB Noise Figure
Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB)
POWER INTERFACE
Supply Voltage
Quiescent Current
Power-Down Current
Conditions
Min
Including 4:1 IF port transformer and PCB loss
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential
fRF1 = 1949.5 MHz, fRF2 = 1950.5 MHz, fLO = 1750 MHz,
each RF tone at −10 dBm
fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1750 MHz,
each RF tone at −10 dBm
3.0
Resistor programmable
Device disabled
Rev. 0 | Page 4 of 24
Typ
Max
Unit
9
15.3
8.75
22
dB
dB
dB
dBm
52
dBm
7
dBm
3.3
125
150
3.6
V
mA
μA
ADL5355
SPUR TABLES
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured
in dBc from the IF output power level. Data was only measured for frequencies less than 6 GHz. Typical noise floor of the measurement
system = −100 dBm.
5 V Performance
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω,
unless otherwise noted.
Table 4.
M
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−42.3
−66.7
<−100
1
−10.0
0.0
−65.3
<−100
<−100
2
−21.1
−57.1
−57.0
−97.6
<−100
3
−53.8
−51.4
−67.0
−61.6
<−100
<−100
4
−75.9
−88.4
<−100
−97.9
<−100
<−100
5
<−100
<−100
<−100
<−100
<−100
<−100
6
<−100
<−100
<−100
<−100
<−100
<−100
7
8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
9
<−100
<−100
<−100
<−100
<−100
<−100
<−100
10
11
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
12
<−100
<−100
<−100
<−100
<−100
<−100
13
<−100
<−100
<−100
<−100
<−100
<−100
14
<−100
<−100
<−100
<−100
<−100
<−100
3.3 V Performance
VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,
and ZO = 50 Ω, unless otherwise noted.
Table 5.
M
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−42.9
−64.4
<−100
1
−15.3
0.0
−67.3
<−100
<−100
2
−27.3
−58.3
−56.6
−95.5
<−100
3
−65.5
−52.2
−73.6
−60.4
<−100
<−100
4
−78.0
−75.7
<−100
−97.0
<−100
<−100
5
<−100
<−100
<−100
<−100
<−100
<−100
6
<−100
<−100
<−100
<−100
<−100
<−100
7
8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
Rev. 0 | Page 5 of 24
9
<−100
<−100
<−100
<−100
<−100
<−100
<−100
10
11
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
12
<−100
<−100
<−100
<−100
<−100
<−100
13
<−100
<−100
<−100
<−100
<−100
<−100
14
<−100
<−100
<−100
<−100
<−100
<−100
ADL5355
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter
Supply Voltage, VS
RF Input Level
LO Input Level
IFOP, IFON Bias Voltage
VGS0, VGS1, LOSW, PWDN
Internal Power Dissipation
θJA
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range (Soldering, 60 sec)
Rating
5.5 V
20 dBm
13 dBm
6.0 V
5.5 V
1.2 W
25°C/W
150°C
−40°C to +85°C
−65°C to +150°C
260°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. 0 | Page 6 of 24
ADL5355
20
19
18
17
16
IFGM
IFOP
IFON
PWDN
LEXT
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
PIN 1
INDICATOR
ADL5355
TOP VIEW
(Not to Scale)
15 LOI2
14 VPSW
13 VGS1
12 VGS0
11 LOI1
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD. MUST BE SOLDERED
TO GROUND.
08080-002
VLO3 6
LGM3 7
VLO2 8
LOSW 9
NC 10
VPIF
RFIN
RFCT
COMM
COMM
Figure 2. Pin Configuration
Table 7. Pin Function Descriptions
Pin No.
1
2
3
4, 5
6, 8
7
9
10
11, 15
12, 13
14
16
17
18, 19
20
Mnemonic
VPIF
RFIN
RFCT
COMM
VLO3, VLO2
LGM3
LOSW
NC
LOI1, LOI2
VGS0, VGS1
VPSW
LEXT
PWDN
IFON, IFOP
IFGM
EPAD (EP)
Description
Positive Supply Voltage for IF Amplifier.
RF Input. Must be ac-coupled.
RF Balun Center Tap (AC Ground).
Device Common (DC Ground).
Positive Supply Voltages for LO Amplifier.
LO Amplifier Bias Control.
LO Switch. LOI1 selected for 0 V, and LOI2 selected for 3 V.
No Connect.
LO Inputs. Must be ac-coupled.
Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting.
Positive Supply Voltage for LO Switch.
IF Return. This pin must be grounded.
Power Down. Connect this pin to ground for normal operation and connect this pin to 3.0 V for disable mode.
Differential IF Outputs (Open Collectors). Each requires an external dc bias.
IF Amplifier Bias Control.
Exposed pad. Must be soldered to ground.
Rev. 0 | Page 7 of 24
ADL5355
TYPICAL PERFORMANCE CHARACTERISTICS
5 V PERFORMANCE
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,
and ZO = 50 Ω, unless otherwise noted.
70
240
TA = –40°C
220
TA = +85°C
160
40
30
140
20
120
10
1.75
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
2.15
2.20
0
1.70
1.75
15
18
14
16
13
14
12
INPUT P1dB (dBm)
20
12
TA = –40°C
10
TA = +25°C
8
6
2
6
1.85
1.90
1.95
2.00
2.05
2.10
2.20
TA = +85°C
2.15
2.20
RF FREQUENCY (GHz)
TA = +25°C
9
7
1.80
2.15
10
4
1.75
2.10
11
TA = –40°C
8
TA = +85°C
0
1.70
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
Figure 6. Input IP2 vs. RF Frequency
5
1.70
08080-011
CONVERSION GAIN (dB)
Figure 3. Supply Current vs. RF Frequency
1.80
1.75
Figure 4. Power Conversion Gain vs. RF Frequency
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
2.15
2.20
2.15
2.20
08080-023
100
1.70
TA = +85°C
08080-015
INPUT IP2 (dBm)
180
50
TA = +25°C
TA = –40°C
200
08080-007
SUPPLY CURRENT (mA)
TA = +25°C
60
Figure 7. Input P1dB vs. RF Frequency
35
20
TA = –40°C
TA = +25°C
18
30
SSB NOISE FIGURE (dB)
16
TA = +85°C
20
15
10
14
TA = +85°C
12
TA = +25°C
10
8
6
TA = –40°C
4
5
2
1.75
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
2.15
2.20
0
1.70
1.75
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
Figure 8. SSB Noise Figure vs. RF Frequency
Figure 5. Input IP3 vs. RF Frequency
Rev. 0 | Page 8 of 24
08080-033
0
1.70
08080-019
INPUT IP3 (dBm)
25
ADL5355
250
60
VPOS = 5.25V
50
VPOS = 4.75V
45
VPOS = 4.75V
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
200
VPOS = 5.25V
55
VPOS = 5.0V
150
100
VPOS = 5.0V
40
35
30
25
20
50
0
20
40
TEMPERATURE (°C)
60
80
10
–40
08080-008
–20
VPOS = 4.75V
VPOS = 5.0V
VPOS = 5.25V
60
80
VPOS = 5.25V
10
VPOS = 4.75V
10
INPUT P1dB (dBm)
9
8
7
VPOS = 5.0V
8
6
4
2
6
0
20
40
TEMPERATURE (°C)
60
80
0
–40
08080-012
–20
Figure 10. Power Conversion Gain vs. Temperature
–20
0
20
40
TEMPERATURE (°C)
60
80
08080-024
CONVERSION GAIN (dB)
20
40
TEMPERATURE (°C)
12
12
5
–40
0
Figure 12. Input IP2 vs. Temperature
Figure 9. Supply Current vs. Temperature
11
–20
08080-016
15
0
–40
Figure 13. Input P1dB vs. Temperature
12
35
VPOS = 5.25V
30
SSB NOISE FIGURE (dB)
VPOS = 4.75V
VPOS = 5.0V
20
15
10
VPOS = 5.25V VPOS = 5.0V
9
VPOS = 4.75V
8
–20
0
20
40
TEMPERATURE (°C)
60
80
6
–40
–20
0
20
40
TEMPERATURE (°C)
60
Figure 14. SSB Noise Figure vs. Temperature
Figure 11. Input IP3 vs. Temperature
Rev. 0 | Page 9 of 24
80
08080-034
0
–40
10
7
5
08080-020
INPUT IP3 (dBm)
25
11
230
70
220
60
TA = –40°C
210
200
TA = +25°C
TA = –40°C
190
180
TA = +85°C
TA = +85°C
40
30
20
170
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
0
08080-006
30
30
80
Figure 15. Supply Current vs. IF Frequency
12
430
TA = +85°C
TA = +25°C
TA = –40°C
8
INPUT P1dB (dBm)
TA = +85°C
6
4
TA = +25°C
8
6
4
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
0
08080-009
0
30
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
08080-021
2
Figure 19. Input P1dB vs. IF Frequency
Figure 16. Power Conversion Gain vs. IF Frequency
15
40
TA = –40°C
35
14
TA = +25°C
13
SSB NOISE FIGURE (dB)
30
25
TA = +85°C
20
15
10
12
11
10
9
8
7
5
6
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
5
30
08080-017
0
Figure 17. Input IP3 vs. IF Frequency
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
Figure 20. SSB Noise Figure vs. IF Frequency
Rev. 0 | Page 10 of 24
430
08080-035
CONVERSION GAIN (dB)
380
10
TA = –40°C
2
INPUT IP3 (dBm)
180
230
280
330
IF FREQUENCY (MHz)
Figure 18. Input IP2 vs. IF Frequency
12
10
130
08080-013
10
160
150
TA = +25°C
50
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
ADL5355
ADL5355
10
14
TA = +25°C
TA = –40°C
9
TA = +85°C
7
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
TA = +85°C
12
8
6
5
4
3
10
TA = +25°C
TA = –40°C
8
6
4
2
2
0
2
4
6
8
10
–6
LO POWER (dBm)
–4
Figure 21. Power Conversion Gain vs. LO Power
0
2
4
LO POWER (dBm)
6
8
10
2.15
2.20
2.15
2.20
Figure 24. Input P1dB vs. LO Power
35
–50
TA = –40°C
30
TA = +25°C
25
–55
TA = +85°C
IF/2 SPURIOUS (dBc)
INPUT IP3 (dBm)
–2
08080-025
–2
08080-027
0
–4
08080-010
0
–6
08080-022
1
20
15
10
–60
–65
TA = –40°C
TA = +25°C
–70
5
TA = +85°C
–6
–4
–2
0
2
4
LO POWER (dBm)
6
8
10
–75
1.70
08080-018
0
Figure 22. Input IP3 vs. LO Power
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
–50
60
–55
TA = +25°C
IF/3 SPURIOUS (dBc)
TA = –40°C
55
50
TA = +85°C
40
–60
–65
TA = –40°C
–70
TA = +25°C
–75
35
TA = +85°C
30
–6
–4
–2
0
2
4
LO POWER (dBm)
6
8
10
–80
1.70
08080-014
INPUT IP2 (dBm)
1.80
Figure 25. IF/2 Spurious vs. RF Frequency
65
45
1.75
Figure 23. Input IP2 vs. LO Power
1.75
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
Figure 26. IF/3 Spurious vs. RF Frequency
Rev. 0 | Page 11 of 24
ADL5355
100
500
10
400
8
300
6
200
4
100
2
70
60
50
40
30
20
CAPACITANCE (pF)
80
RESISTANCE (Ω)
DISTRIBUTION PERCENTAGE (%)
90
10
7.5
8.0
8.5
9.0
9.5
10.0
CONVERSION GAIN (dB)
0
30
80
130
180
230
280
330
380
430
0
08080-043
7.0
08080-046
0
IF FREQUENCY (MHz)
Figure 27. Conversion Gain Distribution
Figure 30. IF Port Return Loss
0
100
5
80
RF RETURN LOSS (dB)
DISTRIBUTION PERCENTAGE (%)
90
70
60
50
40
30
20
10
15
20
25
26
28
30
32
34
30
1.70
INPUT IP3 (dBm)
1.75
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
2.15
2.20
08080-036
24
08080-047
0
22
2.00
08080-037
10
Figure 31. RF Port Return Loss, Fixed IF
Figure 28. Input IP3 Distribution
0
100
5
LO RETURN LOSS (dB)
80
70
60
50
40
30
20
10
SELECTED
15
20
UNSELECTED
25
10
0
8
9
10
11
12
INPUT P1dB (dBm)
13
14
30
1.50
08080-048
DISTRIBUTION PERCENTAGE (%)
90
1.55
1.60
1.65 1.70 1.75 1.80 1.85
LO FREQUENCY (GHz)
1.90
1.95
Figure 32. LO Return Loss, Selected and Unselected
Figure 29. Input P1dB Distribution
Rev. 0 | Page 12 of 24
ADL5355
70
0
–5
60
LO-TO-RF LEAKAGE (dBm)
LO SWITCH ISOLATION (dB)
65
TA = +25°C
TA = –40°C
55
TA = +85°C
50
–10
–15
–20
–25
–30
TA = +25°C
TA = +85°C
–35
45
–40
1.70
1.75
1.80
1.85
1.90
1.95
2.00
LO FREQUENCY (GHz)
1.60
1.65 1.70 1.75 1.80 1.85
LO FREQUENCY (GHz)
1.90
2.00
1.95
2.00
1.95
2.00
1.95
Figure 36. LO-to-RF Leakage vs. LO Frequency
Figure 33. LO Switch Isolation vs. LO Frequency
0
0
–5
–10
–10
2LO LEAKAGE (dBm)
RF-TO-IF ISOLATION (dBc)
1.55
08080-030
1.65
08080-026
1.60
TA = –40°C
08080-028
1.55
–45
1.50
08080-041
40
1.50
–20
TA = +25°C
–30
TA = +85°C
–40
TA = –40°C
–20
2LO TO IF
–25
2LO TO RF
–30
–50
–35
1.75
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
2.15
2.20
–40
1.50
08080-032
–60
1.70
–15
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
LO FREQUENCY (GHz)
Figure 37. 2LO Leakage vs. LO Frequency
Figure 34. RF-to-IF Isolation vs. RF Frequency
0
0
3LO LEAKAGE (dBm)
TA = –40°C
–10
TA = +25°C
–15
TA = +85°C
–20
–30
3LO TO RF
–40
–50
–20
3LO TO IF
–60
–25
1.50
1.55
1.60
1.65 1.70 1.75 1.80 1.85
LO FREQUENCY (GHz)
1.90
1.95
2.00
08080-029
LO-TO-IF LEAKAGE (dBm)
–10
–5
–70
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
LO FREQUENCY (GHz)
Figure 38. 3LO Leakage vs. LO Frequency
Figure 35. LO-to-IF Leakage vs. LO Frequency
Rev. 0 | Page 13 of 24
ADL5355
14
8
13
CONVERSION GAIN
12
6
11
5
10
9
4
SSB NOISE FIGURE
2
7
VGS = 00
VGS = 01
VGS = 10
VGS = 11
1
0
1.70
8
1.75
1.80
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
5
2.20
2.15
15
10
5
6
0
–30
08080-039
3
20
30
18
28
16
26
–20
–15
–10
–5
BLOCKER POWER (dBm)
0
5
10
Figure 42. SSB Noise Figure vs.10 MHz Offset Blocker Level
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency
20
–25
08080-031
7
25
SSB NOISE FIGURE (dB)
9
30
SSB NOISE FIGURE (dB)
15
CONVERSION GAIN (dB)
10
160
150
12
22
6
1.70
1.80
18
1.85 1.90 1.95 2.00 2.05
RF FREQUENCY (GHz)
2.10
2.15
SSB NOISE FIGURE
15
9
CONVERSION GAIN
8
10
7
5
1.0
1.2
1.4
1.6
1.8
LO BIAS RESISTOR VALUE (kΩ)
1000
1200
1400
1600
1800
BIAS RESISTOR VALUE (Ω)
CONVERSION GAIN AND SSB NOISE FIGURE (dB)
20
10
0
INPUT IP3 (dBm)
25
11
800
Figure 43. LO and IF Supply Current vs. IF and LO Bias Resistor Value
30
INPUT IP3
0.8
R14 IF SET RESISTOR
60
600
08080-044
CONVERSION GAIN AND SSB NOISE FIGURE (dB)
12
0.6
90
70
16
2.20
Figure 40. Input IP3 and Input P1dB vs. RF Frequency
6
R9 LO SET RESISTOR
100
80
VGS = 00
VGS = 01
VGS = 10
VGS = 11
1.75
110
12
30
INPUT IP3
11
25
10
20
SSB NOISE FIGURE
9
15
CONVERSION GAIN
8
10
7
5
6
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
0
1.5
IF BIAS RESISTOR VALUE (kΩ)
Figure 44. Power Conversion Gain, SSB Noise Figure, and
Input IP3 vs. IF Bias Resistor Value
Figure 41. Power Conversion Gain, SSB Noise Figure, and
Input IP3 vs. LO Bias Resistor Value
Rev. 0 | Page 14 of 24
INPUT IP3 (dBm)
8
20
INPUT P1dB
120
08080-045
10
130
08080-040
24
SUPPLY CURRENT (mA)
14
INPUT IP3 (dBm)
INPUT IP3
08080-038
INPUT P1dB (dBm)
140
ADL5355
3.3 V PERFORMANCE
VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,
and ZO = 50 Ω, unless otherwise noted.
150
70
145
TA = +25°C
60
TA = –40°C
135
50
TA = –40°C
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
140
130
TA = +25°C
125
120
TA = +85°C
115
TA = +85°C
40
30
20
110
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
RF FREQUENCY (GHz)
0
1.70
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.15
2.20
2.20
RF FREQUENCY (GHz)
Figure 45. Supply Current vs. RF Frequency at 3.3 V
Figure 48. Input IP2 vs. RF Frequency at 3.3 V
12
14
TA = –40°C
TA = +25°C
10
12
10
8
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
1.75
08080-050
1.80
08080-052
1.75
08080-053
100
1.70
08080-054
10
105
TA = +85°C
6
4
TA = +85°C
TA = +25°C
8
6
TA = –40°C
4
2
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
RF FREQUENCY (GHz)
0
1.70
08080-049
0
1.70
2
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
RF FREQUENCY (GHz)
Figure 46. Power Conversion Gain vs. RF Frequency at 3.3 V
Figure 49. Input P1dB vs. RF Frequency at 3.3 V
30
14
TA = –40°C
12
SSB NOISE FIGURE (dB)
TA = +25°C
20
TA = +85°C
15
10
5
0
1.70
TA = +85°C
10
TA = +25°C
8
TA = –40°C
6
4
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
RF FREQUENCY (GHz)
2.15
2.20
08080-051
INPUT IP3 (dBm)
25
Figure 47. Input IP3 vs. RF Frequency at 3.3 V
2
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
RF FREQUENCY (GHz)
Figure 50. SSB Noise Figure vs. RF Frequency at 3.3 V
Rev. 0 | Page 15 of 24
ADL5355
CIRCUIT DESCRIPTION
The ADL5355 consists of two primary components: the radio
frequency (RF) subsystem and the local oscillator (LO) subsystem.
The combination of design, process, and packaging technology
allows the functions of these subsystems to be integrated
into a single die, using mature packaging and interconnection
technologies to provide a high performance, low cost design
with excellent electrical, mechanical, and thermal properties.
In addition, the need for external components is minimized,
optimizing cost and size.
RF SUBSYSTEM
The single-ended, 50 Ω RF input is internally transformed to a
balanced signal using a low loss (<1 dB) unbalanced-to-balanced
(balun) transformer. This transformer is made possible by an
extremely low loss metal stack, which provides both excellent
balance and dc isolation for the RF port. Although the port can
be dc connected, it is recommended that a blocking capacitor be
used to avoid running excessive dc current through the part.
The RF balun can easily support an RF input frequency range
of 1200 MHz to 2500 MHz.
The RF subsystem consists of an integrated, low loss RF balun,
passive MOSFET mixer, sum termination network, and IF
amplifier.
The resulting balanced RF signal is applied to a passive mixer
that commutates the RF input with the output of the LO subsystem.
The passive mixer is essentially a balanced, low loss switch that
adds minimum noise to the frequency translation. The only
noise contribution from the mixer is due to the resistive loss
of the switches, which is in the order of a few ohms.
The LO subsystem consists of an SPDT-terminated FET switch
and a three-stage limiting LO amplifier. The purpose of the LO
subsystem is to provide a large, fixed amplitude, balanced signal
to drive the mixer independent of the level of the LO input.
A block diagram of the device is shown in Figure 51.
IFGM
IFOP
IFON
PWDN
LEXT
20
19
18
17
16
As the mixer is inherently broadband and bidirectional, it
is necessary to properly terminate all the idler (M × N product)
frequencies generated by the mixing process. Terminating the
mixer avoids the generation of unwanted intermodulation
products and reduces the level of unwanted signals at the input
of the IF amplifier, where high peak signal levels can compromise
the compression and intermodulation performance of the system.
This termination is accomplished by the addition of a sum
network between the IF amplifier and the mixer and also in
the feedback elements in the IF amplifier.
ADL5355
VPIF 1
15 LOI2
RFIN 2
14 VPSW
RFCT 3
13 VGS1
BIAS
GENERATOR
12 VGS0
COMM 5
11 LOI1
6
7
8
9
10
VLO3
LGM3
VLO2
LOSW
NC
NC = NO CONNECT
Figure 51. Simplified Schematic
08080-001
COMM 4
The IF amplifier is a balanced feedback design that simultaneously
provides the desired gain, noise figure, and input impedance that is
required to achieve the overall performance. The balanced opencollector output of the IF amplifier, with impedance modified
by the feedback within the amplifier, permits the output to be
connected directly to a high impedance filter, differential amplifier,
or an analog-to-digital input while providing optimum secondorder intermodulation suppression. The differential output
impedance of the IF amplifier is approximately 200 Ω. If operation
in a 50 Ω system is desired, the output can be transformed to
50 Ω by using a 4:1 transformer.
The intermodulation performance of the design is generally
limited by the IF amplifier. The IP3 performance can be optimized
by adjusting the IF current with an external resistor. Figure 41,
Figure 43, and Figure 44 illustrate how various IF and LO bias
resistors affect the performance with a 5 V supply. Additionally,
dc current can be saved by increasing either or both resistors. It
is permissible to reduce the dc supply voltage to as low as 3.3 V,
further reducing the dissipated power of the part. (Note that no
performance enhancement is obtained by reducing the value of
these resistors and excessive dc power dissipation may result.)
Rev. 0 | Page 16 of 24
ADL5355
LO SUBSYSTEM
The LO amplifier is designed to provide a large signal level to
the mixer to obtain optimum intermodulation performance.
The resulting amplifier provides extremely high performance
centered on an operating frequency of 1700 MHz. The best
operation is achieved with either low-side LO injection for RF
signals in the 1700 MHz to 2500 MHz range or high-side injection
for RF signals in the 1200 MHz to 1700 MHz range. Operation
outside these ranges is permissible, and conversion gain is
extremely wideband, easily spanning 1200 MHz to 2500 MHz,
but intermodulation is optimal over the aforementioned ranges.
The ADL5355 has two LO inputs permitting multiple synthesizers
to be rapidly switched with extremely short switching times
(<40 ns) for frequency agile applications. The two inputs are
applied to a high isolation SPDT switch that provides a constant
input impedance, regardless of whether the port is selected, to
avoid pulling the LO sources. This multiple section switch also
ensures high isolation to the off input, minimizing any leakage
from the unwanted LO input that may result in undesired IF
responses.
The single-ended LO input is converted to a fixed amplitude
differential signal using a multistage, limiting LO amplifier.
This results in consistent performance over a range of LO input
power. Optimum performance is achieved from −6 dBm to
+10 dBm, but the circuit continues to function at considerably
lower levels of LO input power.
The performance of this amplifier is critical in achieving a
high intercept passive mixer without degrading the noise floor
of the system. This is a critical requirement in an interferer rich
environment, such as cellular infrastructure, where blocking
interferers can limit mixer performance. The bandwidth of the
intermodulation performance is somewhat influenced by the
current in the LO amplifier chain. For dc current sensitive
applications, it is permissible to reduce the current in the
LO amplifier by raising the value of the external bias control
resistor. For dc current critical applications, the LO chain
can operate with a supply voltage as low as 3.3 V, resulting in
substantial dc power savings.
In addition, when operating with supply voltages below 3.6 V,
the ADL5355 has a power-down mode that permits the dc
current to drop to <200 μA.
All of the logic inputs are designed to work with any logic family
that provides a Logic 0 input level of less than 0.4 V and a Logic 1
input level that exceeds 1.4 V. All logic inputs are high impedance
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection
circuitry permits operation up to 5.5 V, although a small bias
current is drawn.
All pins, including the RF pins, are ESD protected and have
been tested up to a level of 1500 V HBM and 500 V CDM.
Rev. 0 | Page 17 of 24
ADL5355
APPLICATIONS INFORMATION
BASIC CONNECTIONS
BIAS RESISTOR SELECTION
The ADL5355 mixer is designed to downconvert radio
frequencies (RF) primarily between 1200 MHz and 2500 MHz
to lower intermediate frequencies (IF) between 30 MHz and
450 MHz. Figure 52 depicts the basic connections of the mixer.
It is recommended to ac-couple RF and LO input ports to
prevent non-zero dc voltages from damaging the RF balun or LO
input circuit. The RFIN capacitor value of 3 pF is recommended
to provide the optimized RF input return loss for the desired
frequency band.
Two external resistors, RBIAS IF and RBIAS LO, are used to adjust the
bias current of the integrated amplifiers at the IF and LO terminals.
It is necessary to have a sufficient amount of current to bias both
the internal IF and LO amplifiers to optimize dc current vs.
optimum IIP3 performance. Figure 41, Figure 43, and Figure 44
provide the reference for the bias resistor selection when lower
power consumption is considered at the expense of conversion
gain and IP3 performance.
IF PORT
The ADL5355 features two logic control pins, VGS0 (Pin 12) and
VGS1 (Pin 13), that allow programmability for internal gate-tosource voltages for optimizing mixer performance over desired
frequency bands. The evaluation board defaults both VGS0 and
VGS1 to ground. Power conversion gain, IIP3, NF, and IP1dB
can be optimized, as is shown in Figure 39 and Figure 40.
The mixer differential IF interface requires pull-up choke inductors
to bias the open-collector outputs and to set the output match.
The shunting impedance of the choke inductors used to couple
dc current into the IF amplifier should be selected to provide
the desired output return loss.
MIXER VGS CONTROL DAC
The real part of the output impedance is approximately
200 Ω, as seen in Figure 30, which matches many commonly
used SAW filters without the need for a transformer. This results in
a voltage conversion gain that is approximately 6 dB higher than
the power conversion gain, as shown in Table 2. When a 50 Ω
output impedance is needed, use a 4:1 impedance transformer,
as shown in Figure 52.
Rev. 0 | Page 18 of 24
ADL5355
+5V
100pF
150pF
470nH
470nH
4:1
RBIAS IF
+5V
20
10kΩ
19
18
17
10pF
4.7µF
16
ADL5355
+5V
IF OUT
22pF
1
15
2
14
LO2 IN
3pF
RF IN
+5V
10pF
3
13
0.1µF
BIAS
GENERATOR
4
12
5
11
22pF
6
7
8
9
RBIAS LO
10
10kΩ
+5V
10pF
LO1 IN
10pF
Figure 52. Typical Application Circuit
Rev. 0 | Page 19 of 24
08080-005
10pF
ADL5355
EVALUATION BOARD
An evaluation board is available for the family of double balanced
mixers. The standard evaluation board schematic is shown in
Figure 53. The evaluation board is fabricated using Rogers®
RO3003 material. Table 8 describes the various configuration
options of the evaluation board. Evaluation board layout is shown
in Figure 54 to Figure 57.
L5
470nH
T1
C19
100pF
L4
470nH
R24
0Ω
R14
910Ω
VPOS
LEXT
PWDN
IFON
IFOP
ADL5355
RFCT
COMM
VGS0
COMM
LOI1
C6
10pF
VPOS
C20
10pF
C22
1nF
VGS1
R22
10kΩ
R23
15kΩ
VGS1
VGS0
LO1_IN
NC
C4
10pF
VPSW
VLO3
C5
0.01µF
RFIN
LOSW
C1
3pF
LO2_IN
LOI2
VLO2
RF-IN
C12
22pF
VPIF
LGM3
C21
10pF
PWR_UP
R21
10kΩ
L3
0Ω
IFGM
C2
10µF
R1
0Ω
C17
150pF
R25
0Ω
VPOS
IF1-OUT
C18
100pF
C10
22nF
LOSEL
R9
1.1kΩ
C8
10pF
VPOS
Figure 53. Evaluation Board Schematic
Rev. 0 | Page 20 of 24
R4
10kΩ
08080-042
VPOS
ADL5355
Table 8. Evaluation Board Configuration
Components
C2, C6, C8, C18, C19,
C20, C21
C1, C4, C5
T1, C17, L4, L5,
R1, R24, R25
C10, C12, R4
R21
C22, L3, R9, R14, R22,
R23, VGS0, VGS1
Description
Power Supply Decoupling. Nominal supply decoupling consists of
a 10 μF capacitor to ground in parallel with a 10 pF capacitor to
ground positioned as close to the device as possible.
RF Input Interface. The input channels are ac-coupled through C1.
C4 and C5 provide bypassing for the center taps of the RF input baluns.
IF Output Interface. The open-collector IF output interfaces are
biased through pull-up choke inductors L4 and L5. T1is a 4:1
impedance transformer used to provide a single-ended IF output
interface, with C17 providing center-tap bypassing. Remove R1 for
balanced output operation.
LO Interface. C10 and C12 provide ac coupling for the LO1_IN and
LO2_IN local oscillator inputs. LOSEL selects the appropriate LO
input for both mixer cores. R4 provides a pull-down to ensure that
LO1_IN is enabled when the LOSEL test point is logic low.
LO2_IN is enabled when LOSEL is pulled to logic high.
PWDN Interface. R21 pulls the PWDN logic low and enables the
device. The PWR_UP test point allows the PWDN interface to be
exercised using the external logic generator. Grounding the
PWDN pin for nominal operation is allowed. Using the PWDN pin
when supply voltages exceed 3.3 V is not allowed.
Bias Control. R22 and R23 form a voltage divider to provide 3 V
for logic control, bypassed to ground through C22. VGS0 and VGS1
jumpers provide programmability at the VGS0 and VGS1 pins. It is
recommended to pull these two pins to ground for nominal
operation. R9 sets the bias point for the internal LO buffers.
R14 sets the bias point for the internal IF amplifier.
Rev. 0 | Page 21 of 24
Default Conditions
C2 = 10 μF (size 0603),
C6, C8, C20, C21 = 10 pF (size 0402),
C18, C19 = 100 pF (size 0402)
C1 = 3 pF (size 0402), C4 = 10 pF (size 0402),
C5 = 0.01 μF (size 0402)
T1 = TC4-1W+ (Mini-Circuits),
C17 = 150 pF (size 0402),
L4, L5 = 470 nH (size 1008),
R1, R24, R25 = 0 Ω (size 0402)
C10, C12 = 22 pF (size 0402),
R4 = 10 kΩ (size 0402)
R21 = 10 kΩ (size 0402)
C22 = 1 nF (size 0402), L3 = 0 Ω (size 0603),
R9 = 1.1 kΩ (size 0402), R14 = 910 Ω (size 0402),
R22 = 10 kΩ (size 0402), R23 = 15 kΩ (size 0402),
VGS0 = VGS1 = 3-pin shunt
08080-055
08080-057
ADL5355
Figure 56. Evaluation Board Power Plane, Internal Layer 2
Figure 55. Evaluation Board Ground Plane, Internal Layer 1
08080-058
08080-056
Figure 54. Evaluation Board Top Layer
Figure 57. Evaluation Board Bottom Layer
Rev. 0 | Page 22 of 24
ADL5355
OUTLINE DIMENSIONS
0.60 MAX
5.00
BSC SQ
0.60 MAX
15
PIN 1
INDICATOR
20
16
1
PIN 1
INDICATOR
4.75
BSC SQ
0.65
BSC
3.20
3.10 SQ
3.00
EXPOSED
PAD
(BOTTOM VIEW)
5
0.90
0.85
0.80
12° MAX
SEATING
PLANE
0.70
0.65
0.60
0.35
0.28
0.23
0.75
0.60
0.50
0.05 MAX
0.01 NOM
COPLANARITY
0.05
0.20 REF
10
6
2.60 BSC
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VHHC
042209-B
TOP VIEW
11
Figure 58. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad (CP-20-5)
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADL5355ACPZ-R7 1
ADL5355ACPZ-WP1
ADL5355-EVALZ1
1
Temperature
Range
−40°C to +85°C
−40°C to +85°C
Package Description
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
Evaluation Board
Z = RoHS Compliant Part.
Rev. 0 | Page 23 of 24
Package
Option
CP-20-5
CP-20-5
Ordering
Quantity
1,500, 7” Tape and Reel
36, Waffle Pack
1
ADL5355
NOTES
©2009 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08080-0-7/09(0)
Rev. 0 | Page 24 of 24