PD - 94591 AUTOMOTIVE MOSFET HEXFET® Power MOSFET Benefits ● ● ● ● ● ● IRF1302 Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax D VDSS = 20V RDS(on) = 4.0mΩ G S ID = 180A Description Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFET utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. Units 180 130 700 230 1.5 ± 20 350 See Fig.12a, 12b, 15, 16 TBD -55 to + 175 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient (PCB mount) Typ. Max. Units ––– 0.50 ––– 0.65 ––– 62 °C/W 1 10/31/02 IRF1302 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 20 ––– ––– 2.0 59 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.021 3.3 ––– ––– ––– ––– ––– ––– 79 18 31 28 130 47 16 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 3600 2370 520 5710 2370 3540 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 4.0 mΩ VGS = 10V, ID = 104A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 15V, ID = 104A 20 VDS = 20V, VGS = 0V µA 250 VDS = 16V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 120 ID = 104A 27 nC VDS = 16V 46 VGS = 10V ––– VDD = 11V ––– ID = 104A ns ––– RG = 4.5Ω ––– VGS = 10V D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 16V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 16V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 180 showing the A G integral reverse ––– ––– 700 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 104A, VGS = 0V ––– 66 100 ns TJ = 25°C, IF = 104A ––– 130 200 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF1302 10000 10000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1000 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 10 4.5V 1000 100 4.5V 10 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 1 1 0.1 1 10 0.1 100 1 Fig 1. Typical Output Characteristics T J = 175°C 100.00 T J = 25°C VDS = 15V 20µs PULSE WIDTH 5.0 6.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 7.0 I D = 174A 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (Α ) 2.0 4.0 100 Fig 2. Typical Output Characteristics 1000.00 10.00 10 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 TJ , Junction Temperature 100 120 140 160 180 ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF1302 12 100000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) Ciss Coss 1000 Crss VDS = 16V 10 Coss = Cds + Cgd 10000 I D = 104A 7 5 2 100 0 1 10 0 100 20 40 60 80 100 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10000 1000 TJ = 175 ° C 100 I SD , Reverse Drain Current (A) ID , Drain-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 10 TJ = 25 ° C 1 V GS = 0 V 0.1 0.2 0.7 1.2 1.7 V SD,Source-to-Drain Voltage (V) 2.2 1msec 10 10msec Tc = 25°C Tj = 175°C Single Pulse 1 1 10 100 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 Fig 8. Maximum Safe Operating Area www.irf.com IRF1302 200 RD VDS LIMITED BY PACKAGE VGS D.U.T. RG 150 + I D , Drain Current (A) -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 100 Fig 10a. Switching Time Test Circuit 50 VDS 90% 0 25 50 75 100 125 150 175 TC, Case Temperature (°C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJC) 1 D = 0.50 Thermal Response 0.20 0.1 0.10 P DM 0.05 0.02 t1 SINGLE PULSE (THERMAL RESPONSE) t2 0.01 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1 / t 2 J = P DM x Z thJC +T C 0.1 1 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1302 700 15V ID 43A 74A TOP + V - DD IAS 20V 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) D.U.T RG 560 DRIVER L VDS BOTTOM 104A 420 280 140 0 25 50 75 100 125 Starting Tj, Junction Temperature 150 175 ( ° C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 3.0 ID = 250µA 2.0 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF1302 1000 Duty Cycle = Single Pulse Avalanche Current (A) 0.01 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 100 0.05 0.10 10 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 410 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 104A EAR , Avalanche Energy (mJ) 360 310 260 210 160 110 60 10 25 50 75 100 125 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 150 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). t av = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·tav 7 IRF1302 Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test RG VGS * + + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple ≤ 5% [ ISD ] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET® power MOSFETs 8 www.irf.com IRF1302 TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Starting TJ = 25°C, L = 0.063mH R G = 25Ω, IAS = 104A. (See Figure 12). ISD ≤ 104A, di/dt ≤ 100A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This is applied to D2Pak, when mounted on 1" square PCB ( FR4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. TO-220 package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/02 www.irf.com 9