PD -93906A IRFP2907 AUTOMOTIVE MOSFET HEXFET® Power MOSFET Typical Applications ● ● D Integrated Starter Alternator 42 Volts Automotive Electrical Systems VDSS = 75V RDS(on) = 4.5mΩ Benefits ● ● ● ● ● ● Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax G ID = 209A S Description Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-247AC Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Max. Units 209 148 840 470 3.1 ± 20 1970 See Fig.12a, 12b, 15, 16 5.0 -55 to + 175 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.24 ––– 0.32 ––– 40 °C/W 1 9/7/00 IRFP2907 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 75 ––– ––– 2.0 130 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– LS Internal Source Inductance ––– Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Typ. ––– 0.085 3.6 ––– ––– ––– ––– ––– ––– 410 92 140 23 190 130 130 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 4.5 mΩ VGS = 10V, ID = 125A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 125A 20 VDS = 75V, VGS = 0V µA 250 VDS = 60V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 620 ID = 125A 140 nC VDS = 60V 210 VGS = 10V ––– VDD = 38V ––– ID = 125A ns ––– RG = 1.2Ω ––– VGS = 10V D Between lead, 5.0 ––– 6mm (0.25in.) nH G from package 13 ––– and center of die contact S 13000 ––– VGS = 0V 2100 ––– pF VDS = 25V 500 ––– ƒ = 1.0MHz, See Fig. 5 9780 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz 1360 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz 2320 ––– VGS = 0V, VDS = 0V to 60V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 209 showing the A G integral reverse ––– ––– 840 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 125A, VGS = 0V ––– 140 210 ns TJ = 25°C, IF = 125A ––– 880 1320 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Starting TJ = 25°C, L = 0.25mH RG = 25Ω, IAS = 125A. (See Figure 12). ISD ≤ 125A, di/dt ≤ 260A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A. Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. www.irf.com IRFP2907 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 100 100 10 4.5V 20µs PULSE WIDTH TJ = 25 °C 1 0.1 1 10 4.5V 100 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 3.0 TJ = 175 ° C 100 TJ = 25 ° C 10 V DS = 25V 20µs PULSE WIDTH 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 1000 5.0 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 1 4.0 20µs PULSE WIDTH TJ = 175 °C 10 0.1 10.0 ID = 209A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFP2907 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) 16000 Coss = Cds + Cgd Ciss 12000 8000 4000 Coss VGS , Gate-to-Source Voltage (V) 20 20000 ID = 125A VDS = 60V VDS = 37V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 1 10 0 100 0 100 200 300 400 500 600 700 Q G , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10000 1000 100 TJ = 175 ° C I D , Drain Current (A) ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 10 100us 100 TJ = 25 ° C 1 0.1 0.0 1ms V GS = 0 V 0.5 1.0 1.5 2.0 2.5 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10us 3.0 TC = 25 ° C TJ = 175 ° C Single Pulse 10 1 10ms 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFP2907 240 200 I D , Drain Current (A) RD VDS LIMITED BY PACKAGE VGS D.U.T. RG + -VDD 160 10V 120 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 80 Fig 10a. Switching Time Test Circuit 40 VDS 90% 0 25 50 75 100 125 TC , Case Temperature 150 175 ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 P DM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP2907 D .U .T RG + - VD D IA S 20V 0 .0 1 Ω tp TOP 4000 D R IV E R L VDS EAS , Single Pulse Avalanche Energy (mJ) 5000 1 5V BOTTOM ID 51A 88A 125A 3000 A 2000 Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS 1000 tp 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) IAS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF VGS(th) , Variace ( V ) 3.5 3.0 ID = 250µA 2.5 2.0 1.5 .3µF D.U.T. + V - DS 1.0 -75 VGS -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRFP2907 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 100 0.05 0.10 10 1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 2000 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 125A 1600 1200 800 400 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·t av 7 IRFP2907 Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test RG VGS * + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. D= Period P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple ≤ 5% [ ISD ] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET® power MOSFETs 8 www.irf.com IRFP2907 TO - 247 Package Outline Dimensions are shown in millimeters (inches) 0.25 (.01 0) M -A5.50 (.21 7) 2 0.30 (.80 0) 1 9.70 (.77 5) 2X 1 2 5.50 (.2 17) 4.50 (.1 77) 3 -C - 1 4.80 (.583 ) 1 4.20 (.559 ) 2 .40 (.094) 2 .00 (.079) 2X 5.45 (.21 5) 2X -D - 3.65 (.143 ) 3.55 (.140 ) 15.90 (.6 26) 15.30 (.6 02) -B - D B M 5.3 0 (.20 9) 4.7 0 (.18 5) 2 .50 (.089) 1 .50 (.059) 4 NOTES: 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7 -A C . 4 .30 (.170 ) 3 .70 (.145 ) 0 .80 (.031) 3X 0 .40 (.016) 1 .40 (.056 ) 3X 1 .00 (.039 ) 0 .25 (.010 ) M 3.4 0 (.1 33) 3.0 0 (.1 18) C A S 2.60 (.10 2) 2.20 (.08 7) L E A D A S S IG N M E N T S 1 2 3 4 - GATE D R A IN SOURCE D R A IN IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice9/00 www.irf.com 9