19-3802; Rev 3; 6/08 16-Channel Buffered CMOS Logic-Level Translators ♦ Wide Supply Voltage Range VCC Range of 1.65V to 5.5V VL Range of 1.2V to VCC ♦ ESD Protection on I/O VCC Lines ±15kV Human Body Model ♦ Up to 20Mbps Throughput ♦ Low 0.03µA Typical Quiescent Current ♦ WLP and TQFN Packages Pin Configurations I/O VCC8 I/O VCC9 I/O VCC10 I/O VCC11 I/O VCC12 GND 29 I/O VCC6 I/O VCC5 30 I/O VCC7 GND TOP VIEW OF BOTTOM LEADS 28 27 26 25 24 23 22 21 20 I/O VCC13 I/O VCC4 31 I/O VCC3 32 19 I/O VCC14 I/O VCC2 33 18 I/O VCC15 I/O VCC1 34 VCC 35 VL 36 17 I/O VCC16 MAX13101E MAX13102E MAX13103E 16 VCC 15 VL I/O VL1 37 14 I/O VL16 I/O VL2 38 13 I/O VL15 I/O VL3 39 I/O VL4 40 *EP 12 I/O VL14 + 5 6 7 8 9 10 I/O VL9 I/O VL10 I/O VL11 I/O VL12 EN 4 I/O VL8 3 I/O VL7 Applications 11 I/O VL13 2 I/O VL6 GND 1 I/O VL5 The MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-bit bidirectional CMOS logic-level translators provide the level shifting necessary to allow data transfer in multivoltage systems. These devices are inherently bidirectional due to their design and do not require the use of a direction input. Externally applied voltages, VCC and VL, set the logic levels on either side of the devices. Logic signals present on the VL side of the device appear as a higher voltage logic signal on the VCC side of the device, and vice-versa. The MAX13101E/MAX13102E/MAX13103E feature an enable input (EN) that, when low, reduces the VCC and VL supply currents to less than 2µA. The MAX13108E features a multiplexing input (MULT) that selects one byte between the two, thus allowing multiplexing of the signals. The MAX13101E/MAX13102E/MAX13103E/ MAX13108E have ±15kV ESD protection on the I/O VCC side for greater protection in applications that route signals externally. Three different output configurations are available during shutdown, allowing the I/O on the VCC side or the VL side to be put in a high-impedance state or pulled to ground through an internal 6kΩ resistor. The MAX13101E/MAX13102E/MAX13103E/MAX13108E accept V CC voltages from +1.65V to +5.5V and V L voltages from +1.2V to VCC, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The MAX13101E/MAX13102E/ MAX13103E/MAX13108E are available in 36-bump WLP and 40-pin TQFN packages, and operate over the extended -40°C to +85°C temperature range. Features *EXPOSED PAD CONNECTED TO GROUND CMOS Logic-Level Translation PDAs Digital Still Cameras Pin Configurations continued at end of data sheet. Portable Equipment Smart Phones Typical Operating Circuit appears at end of data sheet. TQFN Cell Phones Ordering Information/Selector Guide PART PIN-PACKAGE MAX13101EEWX+* 36 WLP** 3.06mm x 3.06mm DATA RATE (Mbps) I/O VL STATE DURING SHUTDOWN I/O VCC STATE DURING SHUTDOWN MULTIPLEXER FEATURE 20 High impedance 6kΩ to GND No 6kΩ to GND No 40 TQFN-EP*** 20 High impedance 5mm x 5mm x 0.8mm Note: All devices are specified over the -40°C to +85°C operating temperature range. +Denotes a lead-free/RoHS-compliant package. *Future product—contact factory for availability. **WLP bumps are in a 6 x 6 array. ***EP = Exposed pad. MAX13101EETL+ Ordering Information/Selector Guide continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX13101E/MAX13102E/MAX13103E/MAX13108E General Description MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators ABSOLUTE MAXIMUM RATINGS (All voltages referenced to GND.) VCC ...........................................................................-0.3V to +6V VL...........................................................................................-0.3V to +6V I/O VCC_......................................................-0.3V to (VCC + 0.3V) I/O VL_ .....................................................................-0.3V to (VL + 0.3V) EN, MULT .................................................................-0.3V to +6V Short-Circuit Duration I/O VL_, I/O VCC_ to GND .......Continuous Continuous Power Dissipation (TA = +70°C) 36-Bump WLP (derate 17.0mW/°C above +70°C).....1361mW 40-Pin TQFN (derate 35.7mW/°C above +70°C) .......2857mW Operating Temperature Range ...........................-40°C to +85°C Maximum Junction Temperature .....................................+150°C Storage Temperature Range ............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +1.65V to +5.5V, VL = +1.2V to VCC, EN = VL (MAX13101E/MAX13102E/MAX13103E), MULT = VL or GND (MAX13108E), TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +1.65V, VL = +1.2V, TA = +25°C.) (Notes 1, 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER SUPPLIES VL Supply Range VCC Supply Range Supply Current from VCC Supply Current from VL VL 1.2 VCC V VCC 1.65 5.50 V IQVCC I/O VCC_ = GND, I/O VL _ = GND or I/O VCC_ = VCC, I/O VL _ = VL, EN = VL, MULT = GND or VL 0.03 10 µA IQVL I/O VCC_ = GND, I/O VL _ = GND or I/O VCC_ = VCC, I/O VL _ = VL, EN = VL, MULT = GND or VL 0.03 20 µA VCC Shutdown Supply Current ISHDN-VCC TA = +25°C, EN = GND, I/O VCC_ = GND, I/O VL _ = GND, MAX13101E/MAX13102E/MAX13103E 0.03 1 µA VL Shutdown Supply Current ISHDN-VL TA = +25°C, EN = GND, I/O VCC_ = GND, I/O VL _ = GND, MAX13101E/MAX13102E/MAX13103E 0.03 2 µA TA = +25°C, EN = GND, MAX13102E/MAX13103E 0.02 1 TA = +25°C, MULT = GND (I/O VCC1 - I/O VCC 8) or MULT = VL (I/O VCC 9 - I/O VCC 16) MAX13108E 0.02 1 TA = +25°C, EN = GND, MAX13101E/ MAX13103E 0.02 1 TA = +25°C, MULT = GND (I/O VL1 - I/O VL8) or MULT = VL (I/OVL9 - I/O VL16) MAX13108E 0.02 1 I/O VCC_ Tri-State Output Leakage Current I/O VL _ Tri-State Output Leakage Current I/O VL _ Pulldown Resistance During Shutdown 2 EN = GND, MAX13102E µA µA 4 _______________________________________________________________________________________ 10 kΩ 16-Channel Buffered CMOS Logic-Level Translators (VCC = +1.65V to +5.5V, VL = +1.2V to VCC, EN = VL (MAX13101E/MAX13102E/MAX13103E), MULT = VL or GND (MAX13108E), TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +1.65V, VL = +1.2V, TA = +25°C.) (Notes 1, 2) PARAMETER SYMBOL CONDITIONS I/O VCC_ Pulldown Resistance During Shutdown EN = GND, MAX13101E EN or MULT Input Leakage Current TA = +25°C MIN TYP 4 MAX UNITS 10 kΩ 1 µA 2/3 x VL V LOGIC-LEVEL THRESHOLDS I/O VL _ Input-Voltage High Threshold VIHL I/O VL _ Input-Voltage Low Threshold VILL I/O VCC_ Input-Voltage High Threshold VIHC I/O VCC_ Input-Voltage Low Threshold VILC 1/3 x VL V 2/3 x VCC 1/3 x VCC EN, MULT Input-Voltage High Threshold VIH-SHDN EN, MULT Input-Voltage Low Threshold VIL-SHDN I/O VL _ Output-Voltage High VOHL I/O VL _ source current = 20µA, I/O VCC_ ≥ VIHC VL - 0.4 I/O VL _ Output-Voltage Low VOLL I/O VL _ sink current = 20µA, I/O VCC_ ≤ VILC I/O VCC_ Output-Voltage High VOHC I/O VCC_ Output-Voltage Low VOLC I/O VCC_ source current = 20µA, I/O VL _ ≥ VIHL VCC - 0.4 I/O VCC_ sink current = 20µA, I/O VL _ ≤ VILL V V VL - 0.4 0.4 V V V 0.4 V V 0.4 V RISE/FALL-TIME ACCELERATOR STAGE Transition-Detect Threshold I/O VCC side I/O VL side VCC / 2 VL / 2 Accelerator Pulse Duration VL = 1.2V, VCC = 1.65V 20 I/O VL _ Output-Accelerator Sink Impedance VL = 1.2V, VCC = 1.65V 60 VL = 5V, VCC = 5V 5 I/O VCC_ Output-Accelerator Sink Impedance VL = 1.2V, VCC = 1.65V 15 VL = 5V, VCC = 5V 5 I/O VL _ Output-Accelerator Source Impedance VL = 1.2V, VCC = 1.65V 30 VL = 5V, VCC = 5V 5 VL = 1.2V, VCC = 1.65V 20 VL = 5V, VCC = 5V 7 I/O VCC_ Output-Accelerator Source Impedance V ns Ω Ω Ω Ω ESD PROTECTION I/O VCC_ Human Body Model ±15 kV _______________________________________________________________________________________ 3 MAX13101E/MAX13102E/MAX13103E/MAX13108E ELECTRICAL CHARACTERISTICS (continued) MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators TIMING CHARACTERISTICS (VCC = +1.65V to +5.5V, VL = +1.2V to VCC, EN = VL (MAX13101E/MAX13102E/MAX13103E), MULT = VL or GND (MAX13108E), TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +1.65V, VL = +1.2V, TA = +25°C.) (Notes 1, 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 15 ns I/O VL _ Rise Time tRVL RS = 50Ω, CI/OVL_ = 15pF, tRISE ≤ 3ns, (Figures 2a, 2b) I/O VL _ Fall Time tFVL RS = 50Ω, CI/OVL_ = 15pF, tFALL ≤ 3ns, (Figures 2a, 2b) 15 ns I/O VCC_ Rise Time tRVCC RS = 50Ω, CI/OVCC_ = 50pF, tRISE ≤ 3ns, (Figures 1a, 1b) 15 ns I/O VCC_ Fall Time tFVCC RS = 50Ω, CI/OVCC_ = 50pF, tFALL ≤ 3ns, (Figures 1a, 1b) 15 ns Propagation Delay (Driving I/O VL _) tPVL-VCC RS = 50Ω, CI/OVCC_ = 50pF, tRISE ≤ 3ns, (Figures 1a, 1b) 20 ns Propagation Delay (Driving I/O VCC_) tPVCC-VL RS = 50Ω, CI/OVL_ = 15pF, tRISE ≤ 3ns, (Figures 2a, 2b) 20 ns tSKEW RS = 50Ω, CI/OVCC_ = 50pF, CI/OVL_ = 15pF, tRISE ≤ 3ns 5 ns Channel-to-Channel Skew Part-to-Part Skew tPPSKEW RS = 50Ω, CI/OVCC_ = 50pF, CI/OVL_ = 15pF, tRISE ≤ 3ns, ΔTA = +20°C (Notes 3, 4) 10 ns Propagation Delay from I/O VL _ to I/O VCC_ After EN tEN-VCC CI/OVCC_ = 50pF (Figure 3) 1 µs Propagation Delay from I/O VCC_ to I/O VL _ After EN tEN-VL CI/OVL_ = 15pF (Figure 4) 1 µs Maximum Data Rate RSOURCE = 50Ω, CI/OVCC_ = 50pF, CI/OVL_ = 15pF, tRISE ≤ 3ns 20 Mbps Note 1: All units are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design and not production tested. Note 2: For normal operation, ensure that VL < (VCC + 0.3V). During power-up, VL > (VCC + 0.3V) does not damage the device. Note 3: VCC from device 1 must equal VCC of device 2. VL from device 1 must equal VL of device 2. Note 4: Guaranteed by design, not production tested. 4 _______________________________________________________________________________________ 16-Channel Buffered CMOS Logic-Level Translators tRISE/FALL ≤ 3ns MAX13101E MAX13102E MAX13103E MAX13108E VL I/O VL_ VCC 90% 50% 50% 10% EN/(MULT) tPLH 6kΩ tPHL I/O VL_ I/O VCC_ I/O VCC_ SOURCE 6kΩ RS CI/OVCC_ 90% 90% 50% 10% 10% ALL UNUSED I/O VCC_ AND I/O VL_ CONNECTED TO GND tFVCC ( ) ARE FOR THE MAX13108E tRVCC tPVL-VCC = tPHL or tPLH Figure 1a. Driving I/O VL_ Figure 1b. Timing for Driving I/O VL_ tRISE/FALL ≤ 3ns MAX13101E MAX13102E MAX13103E MAX13108E VL I/O VCC_ VCC 90% 50% 50% 10% EN/(MULT) tPLH 6kΩ tPHL RS I/O VL_ CI/OVL_ 6kΩ I/O VCC_ SOURCE I/O VL_ 90% 90% 50% 10% 10% ALL UNUSED I/O VCC_ AND I/O VL_ CONNECTED TO GND ( ) ARE FOR THE MAX13108E tPVCC-VL = tPHL or tPLH Figure 2a. Driving I/O VCC_ tFVL tRVL Figure 2b. Timing for Driving I/O VCC_ _______________________________________________________________________________________ 5 MAX13101E/MAX13102E/MAX13103E/MAX13108E Test Circuits/Timing Diagrams MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators Test Circuits/Timing Diagrams (continued) MAX13101E MAX13102E MAX13103E MAX13108E VL EN/(MULT) tEN-VCC EN/(MULT) SOURCE 0 6kΩ VL I/O VCC_ I/O VL_ I/O VL_ 0 6kΩ VL CI/OVCC VCC VCC 100kΩ 2 I/O VCC_ ( ) ARE FOR THE MAX13108E Figure 3. Propagation Delay from I/O VL_ to I/O VCC_ After EN MAX13101E MAX13102E MAX13103E MAX13108E VL EN/(MULT) tEN-VL EN/(MULT) SOURCE VCC 6kΩ I/O VCC_ I/O VCC_ I/O VL_ 6kΩ 100kΩ CI/OVL VCC 0 I/O VL_ VL VL 2 ( ) ARE FOR THE MAX13108E Figure 4. Propagation Delay from I/O VCC_ to I/O VL_ After EN 6 0 _______________________________________________________________________________________ 0 16-Channel Buffered CMOS Logic-Level Translators VL SUPPLY CURRENT vs. VCC SUPPLY VOLTAGE (DRIVING I/0 VL_, VL = 1.8V) FIGURE 1a CI/OVCC_ = 15pF 80 60 40 DRIVING ONE I/O VCC 1500 1000 0 0 2.0 2.5 3.0 3.5 4.0 4.5 VCC SUPPLY VOLTAGE (V) 5.0 1.5 5.5 7000 FIGURE 1a 6000 CI/OVCC_ = 15pF 5000 4000 3000 2000 5.0 8000 DRIVING ONE I/O VCC 7000 FIGURE 2a VCC SUPPLY CURRENT (μA) MAX13101-3/8 toc03 DRIVING ONE I/O VL 2.5 3.0 3.5 4.0 4.5 VL SUPPLY VOLTAGE (V) 5.5 VCC SUPPLY CURRENT vs. VL SUPPLY VOLTAGE (DRIVING I/0 VCC_, VCC = 5.5V) VCC SUPPLY CURRENT vs. VCC SUPPLY VOLTAGE (DRIVING I/0 VL_, VL = 1.8V) 8000 2.0 MAX13101-3/8 toc04 1.5 VCC SUPPLY CURRENT (μA) CI/OVL_ = 15pF 500 20 6000 CI/OVL_ = 15pF 5000 4000 3000 2000 1000 1000 0 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VCC SUPPLY VOLTAGE (V) 5.0 1.5 5.5 VL SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/O VCC_) DRIVING ONE I/O VCC 700 FIGURE 2a CI/OVL_ = 15pF 600 500 400 300 200 2.0 2.5 3.0 3.5 4.0 4.5 VL SUPPLY VOLTAGE (V) 5.0 5.5 VCC SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/O VCC_) 3000 DRIVING ONE I/O VCC FIGURE 2a 2500 VCC SUPPLY CURRENT (μA) MAX13101-3/8E toc05 800 VL SUPPLY CURRENT (μA) FIGURE 2a 2000 MAX13101-3/8 toc06 VL SUPPLY CURRENT (μA) 100 2500 MAX13101-3/8E toc02. DRIVING ONE I/O VL VL SUPPLY CURRENT (μA) MAX13101-3/8E toc01 120 VL SUPPLY CURRENT vs. VL SUPPLY VOLTAGE (DRIVING I/0 VCC_, VCC = 5.5V) CI/OVL_ = 15pF 2000 1500 1000 500 100 0 0 -40 -15 10 35 TEMPERATURE (°C) 60 85 -40 -15 10 35 TEMPERATURE (°C) 60 85 _______________________________________________________________________________________ 7 MAX13101E/MAX13102E/MAX13103E/MAX13108E Typical Operating Characteristics (VCC = 3.3V, VL = 1.8V, data rate = 20Mbps, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = 3.3V, VL = 1.8V, data rate = 20Mbps, TA = +25°C, unless otherwise noted.) 600 400 200 3000 2000 20 30 40 CAPACITIVE LOAD (pF) 50 20 30 40 CAPACITIVE LOAD (pF) RISE/FALL TIME (ns) 5 tFVL 10 tRVL 3 2 10 FIGURES 1a, 1b 8 PROPAGATION DELAY (ns) FIGURES 2a, 2b 50 20 30 40 CAPACITIVE LOAD (pF) PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VCC_ (DRIVING I/O VL_) MAX13101-3/8E toc10 7 4 tFVCC 0 10 RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VL_ (DRIVING I/O VCC_) 6 2 1 0 10 tRVCC 3 1000 0 tPLH 6 4 tPHL 2 1 0 0 10 8 MAX13101-3/8E toc09 FIGURES 1a, 1b RISE/FALL TIME (ns) 800 FIGURE 1a 4000 4 MAX13101-3/8E toc08 FIGURE 2a DRIVING ONE I/O VL VCC SUPPLY CURRENT (μA) DRIVING ONE I/O VCC 1000 5000 MAX13101-3/8E toc07 1200 RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VCC_ (DRIVING I/O VL_) VCC SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VCC_ (DRIVING I/O VL_) MAX13101-3/8E toc11 VL SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VL_ (DRIVING I/O VCC_) VL SUPPLY CURRENT (μA) MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators 20 30 40 CAPACITIVE LOAD (pF) 50 10 20 30 40 CAPACITIVE LOAD (pF) 50 _______________________________________________________________________________________ 50 16-Channel Buffered CMOS Logic-Level Translators 5 FIGURES 2a, 2b tPHL PROPAGATION DELAY (ns) 4 MAX13101-3/8E toc12 PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VL_ (DRIVING I/O VCC_) RAIL-TO-RAIL DRIVING (DRIVING I/O VL) MAX13101E-3/8E toc13 CI/OVCC_= 50pF I/0 VL_ 1V/div tPLH 3 GND 2 I/0 VCC_ 2V/div 1 GND 0 10 20 30 40 CAPACITIVE LOAD (pF) 10ns/div 50 Pin Description—MAX13101E/MAX13102E/MAX13103E PIN NAME FUNCTION TQFN WLP 1, 21, 30 D6 GND 2 C2 I/O VL5 Input/Output 5. Referenced to VL. 3 A3 I/O VL6 Input/Output 6. Referenced to VL. 4 B3 I/O VL7 Input/Output 7. Referenced to VL. 5 C3 I/O VL8 Input/Output 8. Referenced to VL. 6 A4 I/O VL9 Input/Output 9. Referenced to VL. 7 B4 I/O VL10 Input/Output 10. Referenced to VL. 8 C4 I/O VL11 Input/Output 11. Referenced to VL. 9 A5 I/O VL12 Input/Output 12. Referenced to VL. 10 C6 EN 11 B5 I/O VL13 Input/Output 13. Referenced to VL. 12 C5 I/O VL14 Input/Output 14. Referenced to VL. 13 A6 I/O VL15 Input/Output 15. Referenced to VL. 14 B6 I/O VL16 Input/Output 16. Referenced to VL. 15, 36 A1 VL 16, 35 F1 VCC 17 E6 I/O VCC16 Input/Output 16. Referenced to VCC. 18 F6 I/O VCC15 Input/Output 15. Referenced to VCC. Ground Global Enable Input. Pull EN low for shutdown. Drive EN to VCC or VL for normal operation. Logic Supply Voltage, +1.2V ≤ VL ≤ VCC. Bypass VL to GND with a 0.1µF capacitor. VCC Supply Voltage, +1.65V ≤ VCC ≤ +5.5V. Bypass VCC to GND with a 0.1µF capacitor. For full ESD protection, connect a 1.0µF capacitor from VCC to GND, located as close to the VCC input as possible. _______________________________________________________________________________________ 9 MAX13101E/MAX13102E/MAX13103E/MAX13108E Typical Operating Characteristics (continued) (VCC = 3.3V, VL = 1.8V, data rate = 20Mbps, TA = +25°C, unless otherwise noted.) MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators Pin Description—MAX13101E/MAX13102E/MAX13103E (continued) PIN NAME FUNCTION TQFN WLP 19 D5 I/O VCC14 Input/Output 14. Referenced to VCC. 20 E5 I/O VCC13 Input/Output 13. Referenced to VCC. 22 F5 I/O VCC12 Input/Output 12. Referenced to VCC. 23 D4 I/O VCC11 Input/Output 11. Referenced to VCC. 24 E4 I/O VCC10 Input/Output 10. Referenced to VCC. 25 F4 I/O VCC9 Input/Output 9. Referenced to VCC. 26 D3 I/O VCC8 Input/Output 8. Referenced to VCC. 27 E3 I/O VCC7 Input/Output 7. Referenced to VCC. 28 F3 I/O VCC6 Input/Output 6. Referenced to VCC. 29 D2 I/O VCC5 Input/Output 5. Referenced to VCC. 31 E2 I/O VCC4 Input/Output 4. Referenced to VCC. 32 F2 I/O VCC3 Input/Output 3. Referenced to VCC. 33 D1 I/O VCC2 Input/Output 2. Referenced to VCC. 34 E1 I/O VCC1 Input/Output 1. Referenced to VCC. 37 B1 I/O VL1 Input/Output 1. Referenced to VL. 38 C1 I/O VL2 Input/Output 2. Referenced to VL. 39 A2 I/O VL3 Input/Output 3. Referenced to VL. 40 B2 I/O VL4 Input/Output 4. Referenced to VL. — — EP Exposed Pad. Connect EP to GND. Pin Description—MAX13108E PIN NAME FUNCTION TQFN WLP 1, 21, 30 D6 GND 2 C2 I/O VL5 Input/Output 5. Referenced to VL. 3 A3 I/O VL6 Input/Output 6. Referenced to VL. 4 B3 I/O VL7 Input/Output 7. Referenced to VL. 5 C3 I/O VL8 Input/Output 8. Referenced to VL. 6 A4 I/O VL9 Input/Output 9. Referenced to VL. 7 B4 I/O VL10 Input/Output 10. Referenced to VL. 8 C4 I/O VL11 Input/Output 11. Referenced to VL. 9 A5 I/O VL12 Input/Output 12. Referenced to VL. 10 Ground ______________________________________________________________________________________ 16-Channel Buffered CMOS Logic-Level Translators PIN NAME FUNCTION TQFN WLP 10 C6 MULT 11 B5 I/O VL13 Input/Output 13. Referenced to VL. 12 C5 I/O VL14 Input/Output 14. Referenced to VL. 13 A6 I/O VL15 Input/Output 15. Referenced to VL. Input/Output 16. Referenced to VL. Multiplexing Input. Drive MULT low to enable channels 9 to 16. Driving MULT low puts channels 1 to 8 into tri-state. Drive MULT to VCC or VL to enable channels 1 to 8. Driving MULT to VCC or VL puts channels 9 to 16 into tri-state. 14 B6 I/O VL16 15, 36 A1 VL 16, 35 F1 VCC 17 E6 I/O VCC16 Input/Output 16. Referenced to VCC. 18 F6 I/O VCC15 Input/Output 15. Referenced to VCC. 19 D5 I/O VCC14 Input/Output 14. Referenced to VCC. 20 E5 I/O VCC13 Input/Output 13. Referenced to VCC. 22 F5 I/O VCC12 Input/Output 12. Referenced to VCC. 23 D4 I/O VCC11 Input/Output 11. Referenced to VCC. 24 E4 I/O VCC10 Input/Output 10. Referenced to VCC. 25 F4 I/O VCC9 Input/Output 9. Referenced to VCC. 26 D3 I/O VCC8 Input/Output 8. Referenced to VCC. 27 E3 I/O VCC7 Input/Output 7. Referenced to VCC. 28 F3 I/O VCC6 Input/Output 6. Referenced to VCC. 29 D2 I/O VCC5 Input/Output 5. Referenced to VCC. 31 E2 I/O VCC4 Input/Output 4. Referenced to VCC. 32 F2 I/O VCC3 Input/Output 3. Referenced to VCC. 33 D1 I/O VCC2 Input/Output 2. Referenced to VCC. 34 E1 I/O VCC1 Input/Output 1. Referenced to VCC. 37 B1 I/O VL1 Input/Output 1. Referenced to VL. 38 C1 I/O VL2 Input/Output 2. Referenced to VL. 39 A2 I/O VL3 Input/Output 3. Referenced to VL. 40 B2 I/O VL4 Input/Output 4. Referenced to VL. — — EP Logic Supply Voltage, +1.2V ≤ VL ≤ VCC. Bypass VL to GND with a 0.1µF capacitor. VCC Supply Voltage, +1.65V ≤ VCC ≤ +5.5V. Bypass VCC to GND with a 0.1µF capacitor. For full ESD protection, connect a 1.0µF capacitor from VCC to GND, located as close to the VCC input as possible. Exposed Pad. Connect EP to GND. ______________________________________________________________________________________ 11 MAX13101E/MAX13102E/MAX13103E/MAX13108E Pin Description—MAX13108E (continued) MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators Functional Diagrams VCC VL VL VCC MULT EN MAX13101E MAX13102E MAX13103E MAX13108E I/O VL1 I/O VCC1 I/O VL2 I/O VCC2 I/O VL3 I/O VL1 I/O VCC1 I/O VL2 I/O VCC2 I/O VL3 I/O VCC3 I/O VL4 I/O VCC4 I/O VL5 I/O VCC5 I/O VL6 I/O VCC6 I/O VL7 I/O VCC7 I/O VL8 I/O VCC8 I/O VL9 I/O VCC9 I/O VL10 I/O VCC10 I/O VL11 I/O VCC11 I/O VL12 I/O VCC12 I/O VL13 I/O VCC13 I/O VL14 I/O VCC14 I/O VCC15 I/O VCC3 I/O VL4 I/O VCC4 I/O VL5 I/O VCC5 I/O VL6 I/O VCC6 I/O VL7 I/O VCC7 I/O VL8 I/O VCC8 I/O VL9 I/O VCC9 I/O VL10 I/O VCC10 I/O VL11 I/O VCC11 I/O VL12 I/O VCC12 I/O VL13 I/O VCC13 I/O VL14 I/O VCC14 I/O VL15 I/O VCC15 I/O VL15 I/O VL16 I/O VCC16 I/O VL16 GND 12 I/O VCC16 GND ______________________________________________________________________________________ 16-Channel Buffered CMOS Logic-Level Translators The MAX13101E/MAX13102E/MAX13103E/MAX13108E logic-level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. Logic signals present on the VL side of the device appear as a higher voltage logic signal on the VCC side of the device, and vice-versa. The MAX13101E/MAX13102E/MAX13103E/ MAX13108E are bidirectional level translators allowing data translation in either direction (V L ↔ V CC ) on any single data line. The MAX13101E/MAX13102E/ MAX13103E/MAX13108E accept VL from +1.2V to VCC. All devices have a VCC range from +1.65V to +5.5V, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The MAX13101E/MAX13102E/MAX13103E feature an output enable mode that reduces VCC supply current to less than 1µA, and VL supply current to less than 2µA when in shutdown. The MAX13108E features a multiplexing input that selects one byte between the two, thus allowing multiplexing of the signals. The MAX13101E/MAX13102E/MAX13103E/MAX13108E have ±15kV ESD protection on the I/O VCC side for greater protection in applications that route signals externally. The MAX13101E/MAX13102E/MAX13103E/ MAX13108E operate at a guaranteed data rate of 20Mbps. The maximum data rate depends heavily on the load capacitance (see the Typical Operating Characteristics ) and the output impedance of the external driver. Power-Supply Sequencing For proper operation, ensure that +1.65V ≤ VCC ≤ +5.5V, +1.2V ≤ VL ≤ +5.5V, and VL ≤ VCC. During power-up sequencing, VL ≥ VCC does not damage the device. When VCC is disconnected and VL is powering up, up to 10mA of current can be sourced to each load on the VL side, yet the device does not latch up. To guarantee that no excess leakage current flows and that the device does not interfere with the I/O on the VL side, VCC should be connected to GND with a max 50Ω resistor when the VCC supply is not present (Figure 5). Input Driver Requirements The MAX13101E/MAX13102E/MAX13103E/MAX13108E architecture is based on a one-shot accelerator output stage (Figure 6). Accelerator output stages are always in tri-state except when there is a transition on any of the translators on the input side, either I/O V L _ or I/O V CC _. Then a short pulse is generated, during which the accelerator output stages become active and charge/discharge the capacitances at the I/Os. Due to VBATT VCC SUPPLY DISABLE +1.2V TO +5.5V VCC RDSON < 50Ω VL MAX13101E MAX13102E MAX13103E MAX13108E I/O VCC1 I/O VL1 I/O VCC16 I/O VL16 GND Figure 5. Recommended Circuit for Powering Down VCC the bidirectional nature, both input stages become active during the one-shot pulse. This can lead to some current feeding into the external source that is driving the translator. However, this behavior helps to speed up the transition on the driven side. For proper full-speed operation, the output current of a device that drives the inputs of the MAX13101E/ MAX13102E/MAX13103E/MAX13108E should meet the following requirement: i > 108 x V x (C + 10pF) where, i is the driver output current, V is the logic-supply voltage (i.e., VL or VCC) and C is the parasitic capacitance of the signal line. Enable Output Mode (EN) The MAX13101E/MAX13102E/MAX13103E feature an enable input (EN) that, when driven low, places the device into shutdown mode. During shutdown, the MAX13101E I/O VCC_ ports are pulled down to ground with internal 6kΩ resistors and the I/O VL _ ports enter tri-state. MAX13102E I/O VCC_ lines enter tri-state and the I/OVL _ lines are pulled down to ground with internal 6kΩ resistors. All I/O VCC_ and I/O VL _ lines on the MAX13103E enter tri-state while the device is in shutdown mode. During shutdown, the VCC supply current reduces to less than 1µA, and the VL supply current reduces to less than 2µA. To guarantee minimum shutdown supply current, all I/O VL _ need to be driven to GND or V L , or pulled to GND or V L through 100kΩ resistors. All I/O VCC_ need to be driven to GND or VCC, or pulled to GND or VCC through 100kΩ resistors. Drive EN to logic-high (VL or VCC) for normal operation. ______________________________________________________________________________________ 13 MAX13101E/MAX13102E/MAX13103E/MAX13108E Detailed Description MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators Multiplexing Input (MULT) The MAX13108E features a multiplexing input (MULT) that enables 8 of the 16 channels and places the remaining 8 into tri-state. Figure 7 depicts a typical multiplexing configuration using the MAX13108E. Drive MULT high to enable I/O VCC1 through I/O VCC8 and I/O V L 1 through I/O V L 8. Driving MULT high sets I/O VCC9 through I/O VCC16 and I/O VL9 through I/O VL16 into tri-state. Drive MULT low to enable I/O VCC9 through I/O V CC 16 and I/O V L 9 through I/O V L 16. Driving MULT low sets I/O VCC1 through I/O VCC8 and I/O VL1 through I/O VL8 into tri-state. VCC VL RISE-TIME ACCELERATOR I/O VL_ I/O VCC_ FALL-TIME ACCELERATOR ±15kV ESD Protection As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The I/O VCC_ lines have extra protection against static discharge. Maxim’s engineers have developed state-ofthe-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, tri-state output mode, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing products can latch and must be powered down to remove the latchup condition. RISE-TIME ACCELERATOR FALL-TIME ACCELERATOR MAX13101E MAX13102E MAX13103E MAX13108E ESD protection can be tested in various ways. The I/O V CC _ lines of the MAX13101E/ MAX13102E/ MAX13103E/MAX13108E are characterized for protection to ±15kV using the Human Body Model. Figure 6. Simplified Diagram (1 I/O Line) MULT I/O VL1 I/O VL2 PORT A I/O VCC1 I/O VCC2 I/O VL3 I/O VCC3 I/O VL4 I/O VL5 I/O VL6 I/O VCC4 I/O VCC5 I/O VCC6 I/O VL7 I/O VCC7 I/O VL8 I/O VCC8 MAX13108E PORT B I/O VL9 I/O VCC9 I/O VL10 I/O VL11 I/O VCC10 I/O VCC11 I/O VL12 I/O VL13 I/O VL14 I/O VCC12 I/O VCC13 I/O VCC14 I/O VL15 I/O VL16 I/O VCC15 I/O VCC16 Figure 7. MAX13108E Multiplexing Configuration 14 ______________________________________________________________________________________ 16-Channel Buffered CMOS Logic-Level Translators CHARGE-CURRENTLIMIT RESISTOR HIGHVOLTAGE DC SOURCE CS 100pF RD 1500Ω IP 100% 90% DISCHARGE RESISTANCE Ir PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) AMPERES STORAGE CAPACITOR DEVICE UNDER TEST 36.8% 10% 0 0 tRL TIME tDL CURRENT WAVEFORM Figure 8a. Human Body ESD Test Model Figure 8b. Human Body Model Current Waveform ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results. Human Body Model Figure 8a shows the Human Body Model and Figure 8b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5kΩ resistor. Machine Model The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. All pins require this protection during manufacturing, not just inputs and outputs. Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports. Applications Information Power-Supply Decoupling To reduce ripple and the chance of transmitting incorrect data, bypass VL and VCC to ground with 0.1µF capacitors. To ensure full ±15kV ESD protection, bypass VCC to ground with a 1µF ceramic capacitor. Place all capacitors as close to the power-supply inputs as possible. Capacitive Loading Capacitive loading on the I/O lines impacts the rise time (and fall time) of the MAX13101E/MAX13102E/ MAX13103E/MAX13108E when driving the signal lines. The actual rise time is a function of the parasitic capacitance, the supply voltage, and the drive impedance of the MAX13101E/MAX13102E/MAX13103E/MAX13108E. For proper operation, the signal must reach the VOH as required before the rise-time accelerators turn off. ______________________________________________________________________________________ 15 MAX13101E/MAX13102E/MAX13103E/MAX13108E RC 1MΩ Ordering Information/Selector Guide (continued) PART PIN-PACKAGE DATA RATE (Mbps) I/O VL STATE DURING SHUTDOWN I/O VCC STATE DURING SHUTDOWN MULTIPLEXER FEATURE MAX13102EEWX+ 36 WLP** 3.06mm x 3.06mm 20 6kΩ to GND High impedance No MAX13102EETL+ 40 TQFN-EP*** 5mm x 5mm x 0.8mm 20 6kΩ to GND High impedance No MAX13103EEWX+ 36 WLP** 3.06mm x 3.06mm 20 High impedance High impedance No MAX13103EETL+ 40 TQFN-EP*** 5mm x 5mm x 0.8mm 20 High impedance High impedance No MAX13108EEWX+ 36 WLP** 3.06mm x 3.06mm 20 High impedance High impedance Yes MAX13108EETL+ 40 TQFN-EP*** 5mm x 5mm x 0.8mm 20 High impedance High impedance Yes Note: All devices are specified over the -40°C to +85°C operating temperature range. +Denotes a lead-free/RoHS-compliant package. **WLP bumps are in a 6 x 6 array. ***EP = Exposed pad. Pin Configurations (continued) GND I/O VCC5 I/O VCC6 I/O VCC7 I/O VCC8 I/O VCC9 I/O VCC10 I/O VCC11 I/O VCC12 GND TOP VIEW OF BOTTOM LEADS 30 29 28 27 26 25 24 23 22 21 I/O VCC4 31 20 I/O VCC13 I/O VCC3 32 19 I/O VCC14 I/O VCC2 33 18 I/O VCC15 I/O VCC1 34 17 I/O VCC16 VCC 35 16 VCC MA131018E VL 36 15 VL I/O VL1 37 14 I/O VL16 I/O VL2 38 I/O VL3 39 6 7 8 9 10 I/O VL12 MULT 5 I/O VL11 4 I/O VL9 3 I/O VL10 2 I/O VL8 GND 1 11 I/O VL13 I/O VL7 40 12 I/O VL14 + I/O VL6 I/O VL4 13 I/O VL15 *EP I/O VL5 MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators * EXPOSED PAD CONNECTED TO GROUND TQFN 16 ______________________________________________________________________________________ 16-Channel Buffered CMOS Logic-Level Translators MAX13108E MAX13101E/MAX13102E/MAX13103E 1 2 3 4 5 6 VCC I/O VCC3 I/O VCC6 I/O VCC9 I/O VCC12 I/O VCC15 I/O VCC1 I/O VCC4 I/O VCC7 I/O VCC10 I/O VCC13 I/O VCC16 I/O VCC2 I/O VCC5 I/O VCC8 I/O VCC11 I/O VCC14 GND I/O VL2 I/O VL5 I/O VL8 I/O VL11 I/O VL14 EN I/O VL1 I/O VL4 I/O VL7 I/O VL10 I/O VL13 I/O VL16 I/O VL3 I/O VL6 I/O VL9 I/O VL12 I/O VL15 F 1 2 3 4 5 6 VCC I/O VCC3 I/O VCC6 I/O VCC9 I/O VCC12 I/O VCC15 I/O VCC1 I/O VCC4 I/O VCC7 I/O VCC10 I/O VCC13 I/O VCC16 I/O VCC2 I/O VCC5 I/O VCC8 I/O VCC11 I/O VCC14 GND I/O VL2 I/O VL5 I/O VL8 I/O VL11 I/O VL14 MULT I/O VL1 I/O VL4 I/O VL7 I/O VL10 I/O VL13 I/O VL16 I/O VL3 I/O VL6 I/O VL9 I/O VL12 I/O VL15 F E E D D C C B B A A + VL + VL WLP (BOTTOM VIEW) WLP (BOTTOM VIEW) Typical Operating Circuit Chip Information PROCESS: BiCMOS +1.8V +3.3V Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. VCC VL EN/(MULT) MAX13101E MAX13102E MAX13103E MAX13108E +1.8V SYSTEM CONTROLLER DATA I/O VL_ I/O VCC_ PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 36 WLP W363A3-1 21-0024 40 TQFN-EP T4055-1 21-0140 +3.3V SYSTEM DATA GND ( ) ARE FOR MAX13108E ______________________________________________________________________________________ 17 MAX13101E/MAX13102E/MAX13103E/MAX13108E Pin Configurations (continued) MAX13101E/MAX13102E/MAX13103E/MAX13108E 16-Channel Buffered CMOS Logic-Level Translators Revision History REVISION NUMBER REVISION DATE 2 8/06 3 6/08 DESCRIPTION Release of the MAX13101EETL+ Changed UCSP to WLP packaging PAGES CHANGED — 1, 2, 9, 10, 11, 16, 17, 18, 19 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.