ACS8515 Rev2.1 LC/P ADVANCED COMMUNICATIONS Line Card Protection Switch for SONET or SDH Network Elements FINAL Description Features The ACS8515 is a highly integrated, single-chip solution for hit-less protection switching of SEC clocks from Master and Slave SETS clockcards in a SONET or SDH Network Element. The ACS8515 has fast activity monitors on the inputs and will implement automatic system protection switching against master clock failure. A further input is provided for an optional standby SEC clock. The ACS8515 is fully compliant with the required specifications and standards. The ACS8515 can perform frequency translation from a SEC input clock distributed along a back plane to a different local line card clock, e.g. 8 kHz distributed on the back plane and 19.44 MHz generated on the line cards. An SPI(1) compatible serial port is incorporated, providing access to the configuration and status registers for device setup. The ACS8515 can utilise either a low cost XO oscillator module, or a TCXO with full temperature calibration - as required by the application. Rev2.1 adds choice of edge alignment for 8kHz input, as well as a low jitter n x E1/DS1 output mode. Other minor changes are made, with all described in Appendix A. Suitable for Stratum 3, 4E and 4 SONET or SDH Equipment Clock (SEC) applications Meets AT&T, ITU-T, ETSI and Telcordia specifications Three SEC input clocks, from 2 kHz to 155.52 MHz Generates two SEC output clocks, up to 311.04 MHz Frequency translation of SEC input clock to a different local line card clock Robust input clock source frequency and activity monitoring on all inputs Supports Free-run, Locked and Holdover modes of operation Automatic hit-less source switchover on loss of input External force fast switch between SEC inputs Phase build out for output clock phase continuity during input switchover SPI(1) compatible serial microprocessor interface Programmable wander and jitter tracking attenuation 0.1 Hz to 20 Hz Single +3.3 V operation. +5 V I/O compatible Operating temperature (ambient) -40°C to +85°C Available in 64 pin LQFP package (1) SPI is a trademark of Motorola Corporation Block Diagram Figure 1. Simple Block Diagram 3 x S EC Input Mas ter/Slave + Standby: N x 8kHz 1.544/2.048MHz 6.48M Hz 19.44MHz 38.88MHz 51.84MHz 77.76MHz 155.52MHz MFrSync 3xSEC Input Ports 2xSEC APLL Monitors DPLL Frequency Synthes is Frequency Dividers MFrSync Chip C lock Generator Priority T able Register Set Output Ports FrSync MFrSync 2 x S EC Output including: 1.544/2.048MH z 3.088/4.096MH z 6.176/8.192MH z 12.352/16.384MH z 19.44MH z 38.88MH z 155.52MH z 311.04MH z 2kHz MF rSync 8kHz FrSync SPI Compatible Serial Microprocessor Port TCXO or XO Revision 1.05/December 2002 ãSemtech Corp. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table of Contents List of Sections Description ................................................................................................................................................................................................ 1 Block Diagram ........................................................................................................................................................................................... 1 Features ..................................................................................................................................................................................................... 1 Table of Contents ...................................................................................................................................................................................... 2 Pin Diagram ............................................................................................................................................................................................... 4 Pin Descriptions ........................................................................................................................................................................................ 5 Functional Description ............................................................................................................................................................................. 7 Local Oscillator Clock ..................................................................................................................................................................................... 7 Crystal Frequency Calibration ........................................................................................................................................................ 7 Input Reference Clock Ports ......................................................................................................................................................................... 8 Input Wander and Jitter Tolerance ............................................................................................................................................................ 10 Output Clock Ports ........................................................................................................................................................................................ 11 Low Speed Output Clock ................................................................................................................................................................ 11 High Speed Output Clock .............................................................................................................................................................. 12 Frame Sync and Multi-Frame Sync Clocks ................................................................................................................................ 12 Low Jitter Multiple E1/DS1 Outputs ........................................................................................................................................... 12 Output Wander and Jitter ............................................................................................................................................................................ 13 Phase Variation ............................................................................................................................................................................................. 14 Phase Build Out ............................................................................................................................................................................................. 16 Microprocessor Interface ............................................................................................................................................................................. 16 Register Set ..................................................................................................................................................................................... 16 Configuration Registers ................................................................................................................................................................. 16 Status Registers .............................................................................................................................................................................. 16 Register Access ............................................................................................................................................................................... 17 Interrupt Enable and Clear ......................................................................................................................................................................... 17 Register Map .................................................................................................................................................................................................. 18 Register Map Description ........................................................................................................................................................................... 21 Selection of Input Reference Clock Source ............................................................................................................................................. 29 Automatic Control Selection ........................................................................................................................................................ 29 Ultra Fast Switching ....................................................................................................................................................................... 30 External Protection Switching ..................................................................................................................................................... 30 Activity Monitoring ....................................................................................................................................................................................... 30 Modes of Operation ...................................................................................................................................................................................... 32 Free-run Mode ................................................................................................................................................................................. 32 Pre-Locked Mode ............................................................................................................................................................................ 32 Locked Mode .................................................................................................................................................................................... 32 Lost-Phase Mode ............................................................................................................................................................................. 33 Holdover Mode ................................................................................................................................................................................ 33 Pre-Locked(2) Mode ........................................................................................................................................................................ 33 Power On Reset - PORB ............................................................................................................................................................................... 33 Electrical Specification .......................................................................................................................................................................... 35 Serial Microprocessor Interface Timing ............................................................................................................................................... 44 Package Information .............................................................................................................................................................................. 46 Thermal Conditions ....................................................................................................................................................................................... 47 Application Information .......................................................................................................................................................................... 48 Appendix A Rev2.1 Changes Described ............................................................................................................................................... 49 Revision History ...................................................................................................................................................................................... 49 Ordering Information .............................................................................................................................................................................. 50 Disclaimers ..................................................................................................................................................................................................... 50 Revision 1.05/December 2002 ãSemtech Corp. 2 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS List of Figures Figure 1. Simple Block Diagram .............................................................................................................................................................. 1 Figure 2. ACS8515 Pin Diagram ............................................................................................................................................................. 4 Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1) .................................................................................................................... 11 Figure 4. Minimum Input Jitter Tolerance (DS1/E1) ........................................................................................................................... 12 Figure 5. Wander and Jitter Transfer Measured Characteristics ........................................................................................................ 14 Figure 6. Maximum Time Interval Error of TOUT0 Output Port ........................................................................................................... 15 Figure 7. Time Deviation of TOUT0 Output Port ................................................................................................................................... 15 Figure 8. Phase Error Accumulation of TOUT0 Output Port in Holdover Mode ................................................................................. 15 Figure 9. Inactivity and Irregularity Monitoring .................................................................................................................................... 30 Figure 10. Automatic Mode Control State Diagram ............................................................................................................................ 34 Figure 11. Recommended Line Termination for PECL Input/Output Ports ....................................................................................... 38 Figure 12. Recommended Line Termination for LVDS Input/Output Ports ....................................................................................... 39 Figure 13. Input/Output Timing ............................................................................................................................................................. 43 Figure 14. Serial Interface Read Access Timing .................................................................................................................................. 44 Figure 15. Serial Interface Write Access Timing ................................................................................................................................. 45 Figure 16. LQFP Package ....................................................................................................................................................................... 46 Figure 17. Typical 64 Pin LQFP Footprint .............................................................................................................................................. 47 Figure 18. Simplified Application Schematic ....................................................................................................................................... 48 List of Tables Table 1. Power Pins .................................................................................................................................................................................... 5 Table 2. No Connections ............................................................................................................................................................................ 5 Table 3. Other Pins ..................................................................................................................................................................................... 6 Table 4. Input Reference Source Selection and Group Allocation ....................................................................................................... 9 Table 5. Input Reference Source Jitter Tolerance ................................................................................................................................ 10 Table 6. Amplitude and Frequency values for Jitter Tolerance ............................................................................................................ 11 Table 7. Amplitude and Frequency values for Jitter Tolerance ............................................................................................................ 12 Table 8. Output Reference Source Selection Table ............................................................................................................................. 13 Table 9. Multiple E1/DS1 Output in Relation to Normal Outputs ..................................................................................................... 13 Table 10. Register Map ........................................................................................................................................................................... 18 Table 11. Register Map Description ...................................................................................................................................................... 21 Table 12. Absolute Maximum Ratings ................................................................................................................................................... 35 Table 13. Operating Conditions .............................................................................................................................................................. 35 Table 14. DC Characteristics: TTL Input Pad ......................................................................................................................................... 35 Table 15. DC Characteristics: TTL Input Pad with Internal Pull-up ..................................................................................................... 36 Table 16. DC Characteristics: TTL Input Pad with Internal Pull-down ................................................................................................ 36 Table 17. DC Characteristics: TTL Output Pad ...................................................................................................................................... 36 Table 18. DC Characteristics: PECL Input/Output Pad ....................................................................................................................... 37 Table 19. DC Characteristics: LVDS Input/Output Pad ....................................................................................................................... 38 Table 20. DC Characteristics: Output Jitter Generation (Test definition G.813) .............................................................................. 39 Table 21. DC Characteristics: Output Jitter Generation (Test definition G.812) .............................................................................. 40 Table 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3) .............................................................. 40 Table 23. DC Characteristics: Output Jitter Generation (Test definition GR-253-CORE) ................................................................ 41 Table 24. DC Characteristics: Output Jitter Generation (Test definition AT&T 62411) ................................................................... 41 Table 25. DC Characteristics: Output Jitter Generation (Test definition G.742) .............................................................................. 42 Table 26. DC Characteristics: Output Jitter Generation (Test definition TR-NWT-000499) ........................................................... 42 Table 27. DC Characteristics: Output Jitter Generation (Test definition GR-1244-CORE) .............................................................. 42 Table 28. Serial Interface Read Access Timing .................................................................................................................................... 45 Table 29. Serial Interface Write Access Timing ................................................................................................................................... 45 Table 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16) ...................................................................................... 47 Table 31. Revision History ...................................................................................................................................................................... 49 Revision 1.05/December 2002 ãSemtech Corp. 3 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Pin Diagram Figure 2. ACS8515 Pin Diagram 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 AGND IC AGND VA1+ INTREQ REFCLK DGND VD+ VD+ DGND DGND VD+ SRCSW VA2+ AGND IC FrSync MFrSync O1POS O1NEG GND_DIFF VDD_DIFF SEC1_POS SEC1_NEG SEC2_POS SEC2_NEG VDD5 Sync2k SEC1 SEC2 DGND VDD 1 ACS8515 LC/P Rev 2.1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SONSDHB IC IC IC IC NC DGND VDD O2 NC VDD DGND SDO IC IC IC PORB SCLK VDD VDD CSB SDI CLKE IC DGND VDD VDD IC VDD IC SEC3 IC NC - Not Connected, IC - Internally Connected Revision 1.05/December 2002 ãSemtech Corp. 4 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Pin Descriptions Table 1. Power Pins PIN SYM B OL IO T YPE N A M E /DE SCR I P T I O N 8, 9, 12 VD+ P - S u p p l y v ol t ag e: Digital sup p ly to gates in analog section, +3.3 Volts. +/- 10% 22 VDD_DIFF P - S u p p l y v ol t ag e: Digital sup p ly for differential outp ut p ins 19 & 20, +3.3 Volts. +/- 10% 27 VDD5 P - V D D 5: Digital sup p ly for +5 Volts tolerance to inp ut p ins. Connect to +5 volts (+/- 10%) for clamp ing to +5 v. Connect to VDD for clamp ing to +3.3 v. Leave floating for no clamp ing, inp ut p ins tolerant up to +5.5 v. 32, 36, 38, 39, 45, 46, 54, 57 VDD P - S u p p l y v ol t ag e: Digital sup p ly to logic, +3.3 Volts. +/- 10% 4 VA1+ P - S u p p l y v ol t ag e: Analog sup p ly to clock multip ying APLL, +3.3 Volts. +/- 10% 14 VA2+ P - S u p p l y v ol t ag e: Analog sup p ly to outp ut APLL, +3.3 Volts. +/- 10% 7, 10, 11, 31, 40, 53, 58 DGN D P - S u p p l y G r ou n d : Digital ground for logic 21 GN D_DIFF P - S u p p l y G r ou n d : Digital ground for differential outp ut p ins 19 & 20 1, 3, 15 AGN D P - S u p p l y G r ou n d : Analog ground Table 2. No Connections PIN SYM B OL IO T YPE 55, 59 NC - - N o t C o n n e ct e d : Leave to Float 2, 16, 33, 35, 60, 61, 62, 63 IC - - I n t e r n al l y C o n n e ct e d : Leave to Float 37 IC - - I n t e r n al l y co n n e ct e d : Leave to Float. Reserved for JTA G control reset inp ut on next revision 41 IC - - I n t e r n al l y co n n e ct e d : Leave to Float. Reserved for JTA G test mod e select inp ut on next revision 49 IC - - I n t e r n al l y co n n e ct e d : Leave to Float. Reserved for JTA G b ound ary scan clock inp ut on next revision 50 IC - - I n t e r n al l y co n n e ct e d : Leave to Float. Reserved for JTA G serial test d ata outp ut on next revision 51 IC - - I n t e r n al l y co n n e ct e d : Leave to Float. Reserved for JTA G serial test d ata inp ut on next revision Revision 1.05/December 2002 ãSemtech Corp. N A M E /DE SCR I P T I O N 5 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 3. Other Pins PIN SYM B OL IO T YPE N A M E /DE SCR I P T I O N 5 IN T R E Q O - 6 REFCLK I TTL R ef er en ce cl ock : 12.8 MHz (refer to section headed Local Oscillator Clock) 13 SRCSW I T T LD S ou r ce sw i t ch i n g : Force fast source sw itching on SEC1 and SEC2 17 FrSync O TTL O u t p u t r ef er en ce: 8 kHz Frame Sync, 50:50 mark/sp ace ratio outp ut 18 MFrSync O TTL O u t p u t r ef er en ce: 2 kHz Multi-Frame Sync, 50:50 mark/sp ace ratio outp ut 19 20 O1POS O1N EG O LVDS/ PECL O u t p u t r ef er en ce: Programmab le, default 38.88 MHz LVDS 23 24 SEC1_POS SEC1_N EG I LVDS/ PECL I n p u t r ef er en ce: Programmab le, default 19.44 MHz LVDS 25 26 SEC2_POS SEC2_N EG I PECL/ LVDS I n p u t r ef er en ce: Programmab le, default 19.44 MHz PECL 28 Sync2k I T T LD M u l t i - Fr am e S y n c 2 k H z : Multi-Frame Sync inp ut 29 SEC1 I T T LD I n p u t r ef er en ce: Programmab le, default 8 kHz 30 SEC2 I T T LD I n p u t r ef er en ce: Programmab le, default 8 kHz 34 SEC3 I T T LD I n p u t r ef er en ce: External standb y reference clock source, p rogrammab le, default 19.44 MHz 42 CLKE I T T LD S C L K ed g e sel ect : SCLK active edge select, CLKE=1 selects falling edge of SCLK to b e active, CLKE = 0 for rising edge 43 SDI I T T LD M i cr op r ocessor i n t er f ace ad d r ess: Serial data inp ut 44 CSB I T T LU C h i p sel ect ( act i v e l ow ) : This p in is asser ted Low b y the microp rocessor to enab le the microp rocessor inter face 47 SCLK I T T LD A d d r ess L at ch E n ab l e: default Serial data clock. When this p in transitions from low to high, the address b us inp uts are latched into the internal registers 48 PORB I T T LU P ow er on r eset : Master reset. If PORB is forced Low, all internal states are reset b ack to default values I n t er r u p t r eq u est : Softw are Interrup t enab le Note: I = input, O = output, P = power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor Revision 1.05/December 2002 ãSemtech Corp. 6 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 3 (continued). PIN SYM B OL IO T YPE 52 SDO O T T LD M i cr o p r o ce sso r i n t e r f ace ad d r e ss: Serial d ata outp ut 56 O2 O TTL O u t p u t r e f e r e n ce : 19.44 MHz fixed T T LD S O N E T S D H B : SON ET or SDH freq uency select: sets th e initial p ow er-up state (or state after a PORB) of th e SON ET/SDH freq uency selection registers, ad d r 34h , b it 2 and ad d r 38, b its 5 and 6. Wh en low SDH rates are selected (2.048 MHz etc) and w h en set h igh SON ET rates are selected (1.544 MHz etc). Th e register states can b e ch anged after p ow er up b y softw are. 64 SON SDHB I N A M E /DE SCR I P T I O N Functional Description The ACS8515 is a highly integrated, single-chip solution for hit-less protection switching of SEC clocks from Master and Slave SETS clock cards in a SONET or SDH Network Element. The ACS8515 has fast activity monitors on the inputs and will implement automatic system protection switching for Master/Slave SEC clock failure. The standby SEC clock will be selected if both the Master and Slave input clocks fail. The selection of the Master/Slave input can also be forced by a Force Fast Switch pin. The ACS8515 can perform frequency translation from a SEC input clock distributed along a back plane to a different local line card - e.g. 8 kHz distributed on the back plane and 19.44 MHz generated on the line cards. The ACS8515 has three SEC clock inputs (Master, Slave and Standby) and a single MultiFrame Sync input, for synchronising the frame and multi-frame sync outputs. The ACS8515 generates two SEC clock outputs via PECL/LVDS and TTL ports, with spot frequencies from 1.544/2.048 MHz up to 311.04 MHz. The ACS8515 also provides an 8 kHz Frame Sync and 2 kHz Multi-Frame Sync output clock. The ACS8515 has a high tolerance to input jitter and wander. The jitter/wander transfer is programmable (0.1 Hz up to 20 Hz cut-off points). Revision 1.05/December 2002 ãSemtech Corp. 7 The ACS8515 includes an SPI compatible serial microprocessor port, providing access to the configuration and status registers for device setup. Local Oscillator Clock The Master system clock on the ACS8515 requires an external clock oscillator of frequency 12.80 MHz. The exact clock specification is dependent on the quality of Holdover performance required in the application. In most Line Card protection switching applications where there is a high chance that at least one SEC reference input will be available, the long term stability requirement for Holdover is not appropriate and an inexpensive crystal local oscillator can be used. In other applications where there may be a requirement for longer term Holdover stability to meet the ITU standards for Stratum 3, a higher quality oscillator can be used. Please contact Semtech for information on crystal oscillator suppliers. Crystal Frequency Calibration The absolute crystal frequency accuracy is less important than the stability since any frequency offset can be compensated by adjustment of register values in the IC. This allows for calibration and compensation of any crystal frequency variation away from its nominal value. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS +/- 50 ppm adjustment would be sufficient to cope with most crystals, in fact the range is an order of magnitude larger due to the use of two 8 bit register locations. The setting of the conf_nominal_frequency register allows for this adjustment. An increase in the register value increases the output frequencies by 0.02 ppm for each LSB step. The default value (in decimal) is 39321. The minimum being 0 and the maximum 65535, giving a -700 ppm to +500 ppm adjustment range of the output frequencies. For example, if the crystal was oscillating at 12.8 MHz + 5 ppm, then the calibration value in the register to give a - 5 ppm adjustment in output frequencies to compensate for the crystal inaccuracy, would be : 39321 - (5 / 0.02) = 39071 (decimal) The TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. Clock speeds above 100 MHz should not be applied to the TTL ports. The PECL/LVDS ports support the full range of clock speeds, up to 155.52 MHz. The actual spot frequencies supported are: 2 kHz 4 kHz 8 kHz (and N x 8 kHz), 1.544 MHz (SONET)/2.048 MHz (SDH), 6.48 MHz, The ACS8515 supports up to three individual input reference clock sources via TTL/CMOS and PECL/ LVDS technologies. These interface technologies support +3.3 V and +5 V operation. Input Reference Clock Ports The input reference clock ports are arranged in groups. Group one comprises a TTL port (SEC1) and a PECL/LVDS port (SEC1POS and SEC1NEG). Group two comprises a TTL port (SEC2) and a PECL/LVDS port (SEC2POS and SEC2NEG). Group three comprises a TTL port (SEC3). For group one and group two, only one of the two input ports types must be active at any time, the other must not be driven by a reference input. Unused PECL/LVDS differential inputs should be fixed with one input high (VDD) and the other low (GND), or set in LVDS mode and left floating (in which case one input is internally pulled high and the other low). SDH and SONET networks use different default frequencies; the network type is selectable using the config_mode register 34 Hex, bit 2. For SONET, config_mode register 34 Hex, bit 2 = 1, for SDH config_mode register 34 Hex, bit Revision 1.05/December 2002 ãSemtech Corp. 2 = 0. On power-up or by reset, the default will be set by the state of the SONSDHB pin (pin 64). Specific frequencies and priorities are set by configuration. 8 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz. The frequency selection is programmed via the cnfg_ref_source_frequency register. The internal DPLL will normally lock to the selected input at the frequency of the input, eg. 19.44 MHz will lock the DPLL phase comparisons at 19.44 MHz. It is, however, possible to utilise an internal pre-divider to the DPLL to divide the input frequency before it is used for phase comparisons in the DPLL. This pre-divider can be used in one of 2 ways; 1. Any of the supported spot frequencies can be divided to 8 kHz by setting the lock8K bit (bit 6) in the appropriate cnfg_ref_source_frequency register location. For good jitter tolerance for all frequencies and for operation at 19.44 MHz and above, use lock8K. It is possible to choose which edge of the 8kHz input to lock to, by setting the appropriate bit of the cnfg_control1 register. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 4. Input Reference Source Selection and Group Allocation S E C S o u r ce G r o u p D e f au l t P ri ori t y 1 1 (4) 2 3 (5) Up to 155.52MHz (N ote 2) Default (SON ET/SDH): 19.44MHz 1 2 (6) Up to 155.52MHz (N ote 2) Default (SON ET/SDH): 19.44MHz 2 4 (7) TTL/CMOS Up to 100MHz (N ote 1) Default (SON ET/SDH): 3 5 (10) TTL/CMOS 2kHz Multi Frame Sync - - P o r t N am e I n p u t P or t Te c h n o l o g y SEC1 TTL/CMOS Up to 100MHz (N ote 1) Default (SON ET/SDH): 8kHz SEC2 TTL/CMOS Up to 100MHz (N ote 1) Default (SON ET/SDH): 8kHz SEC1 LVDS/PECL LVDS default SEC2 PECL/LVDS PECL default SEC3 SYN C1 Fr eq u en ci es S u p p or t ed 19.44MHz (N ote 3) Notes for Table 4. Note 1. TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. The actual spot frequencies are 2 kHz, 4 kHz, 8 kHz, N x 8 kHz, 1.544/2.048 MHz, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz and 77.76 MHz. Note 2. PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz. There are different output clock frequencies available for SONET and SDH applications. Note 3. The default priority values in brackets are the default numbers reported in the register map, which match up with the ACS8510. On power up, or by reset, the default will be set by the SONSDHB pin. Specific frequencies and priorities are set by configuration. For SONET, config_mode register 34 Hex, bit 2 = 1. For SDH config_mode register 34 Hex, bit 2 = 0. 2. Any multiple of any supported frequency can be supported by using the "DivN" feature (bit 7 of the cnfg_ref_source_frequency register). Any reference input can be set to lock at 8 kHz independently of the frequencies and configurations of the other inputs. Any reference input with the DivN bit set in the cnfg_ref_source_frequency register will employ the internal pre-divider prior to the DPLL locking. The cnfg_freq_divn register contains the divider ratio N where the reference input will get divided by (N+1) where 0<N<214-1. The cnfg_ref_source_frequency register must be set to the closest supported spot frequency to the input frequency, but must be lower than the Revision 1.05/December 2002 ãSemtech Corp. 9 input frequency. When using the DivN feature the post-divider frequency must be 8 kHz, which is indicated by setting the lock8k bit high (bit 6 in cnfg_ref_source_frequency register). Any input set to DivN must have the frequency monitors disabled (if the frequency monitors are disabled, they are disabled for all inputs regardless of the input configurations, in this case only activity monitoring will take place). Whilst any number of inputs can be set to use the DivN feature, only one N can be programmed, hence all inputs using the DivN feature must require the same division to get to 8 kHz. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz. The choice of PECL or LVDS compatibility is programmed via the cnfg_differential_inputs register. Unused PECL/LVDS differential inputs should be fixed with one input high (VDD) and the other input low (GND), or set in LVDS mode and left floating, in which case one input is internally pulled high and the other low. Input Wander and Jitter Tolerance The ACS8515 is compliant to the requirements of all relevant standards, principally ITU Recommendation G.825, ANSI DS1.101-1994 and ETS 300 462-5 (1997). All reference clock inputs have a tight frequency tolerance but a generous jitter tolerance. Pullin, hold-in and pull-out ranges are specified for each input port in Table 5. Minimum jitter tolerance masks are specified in Figures 3 and 4, and Tables 6 and 7, respectively. The ACS8515 will tolerate wander and jitter components greater than those shown in Figure 3 and Figure 4, up to a limit determined by a combination of the apparent long-term frequency offset caused by wander and the eye-closure caused by jitter (the input source will be rejected if the offset pushes the frequency outside the hold-in range for long enough to be detected, whilst the signal will also be rejected if the eye closes sufficiently to affect the signal purity). The 8klocking mode should be engaged for high jitter tolerance according to these masks. All reference clock ports are monitored for quality, including frequency offset and general activity. Single short-term interruptions in selected reference clocks may not cause rearrangements, whilst longer interruptions, or multiple, short-term interruptions, will cause rearrangements, as will frequency offsets which are sufficiently large or sufficiently long to cause loss-of-lock in the phase-locked loop. The failed reference source will be removed from the priority table and declared as unserviceable, until its perceived quality has been restored to an acceptable level. Table 5. Input Reference Source Jitter Tolerance J i t t er To l e r a n c e Fr eq u en cy M on i t or A c c e p t an c e R an g e G.703 G.783 G.823 +/- 16.6 p p m GR-1244-CORE Fr eq u en cy A c c e p t an c e R an g e ( Pull-in) Fr eq u en cy A c c e p t an c e R an g e ( H o l d - i n ) Fr eq u en cy A c c e p t an c e R an g e ( P u l l - ou t ) +/- 4.6 p p m (see N ote 1) +/- 4.6 p p m (see N ote 1) +/- 4.6 p p m (see N ote 1) +/- 9.2 p p m (see N ote 2) +/- 9.2 p p m (see N ote 2) +/- 9.2 p p m (see N ote 2) Notes for Table 5. Note 1. The frequency acceptance and generation range will be +/-4.6 ppm around the required frequency when the external crystal frequency accuracy is within a tolerance of +/- 4.6 ppm. Note 2. The default acceptance range and generation range is +/- 9.2 ppm with an exact external crystal frequency of 12.8 MHz. This range is also programmable from 0 to 80 ppm in 0.08 ppm steps. Revision 1.05/December 2002 ãSemtech Corp. 10 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS The registers sts_curr_inc_offset (address 0C, 0D, 07) report the frequency of the DPLL with respect to the external TCXO frequency. This is a 19 bit signed number with one LSB representing 0.0003 ppm (range of +/- 80 ppm). Reading this regularly can show how the currently locked source is varying in value e.g. due to wander on its input. Output Clock Ports The ACS8515 supports two SEC output clocks, on TTL and PECL/LVDS ports, and a pair of secondary output clocks, Frame-Sync and Multi-Frame-Sync. The two output clocks are individually controllable. The Frame-Sync and Multi-Frame-Sync are derived from the main SEC clock. The frequencies of the output clock are selectable from a range of pre-defined spot frequencies, with a variety of output technologies supported, as defined in Table 8. The ACS8515 performs automatic frequency monitoring with an acceptable input frequency offset range of +/- 16.6 ppm. The ACS8515 DPLL has a programmable frequency limit of +/- 80 ppm. If the range is programmed to be > 16.6 ppm, the frequency monitors should be disabled so the input reference source is not automatically rejected as out of frequency range. Low Speed Output Clock The O2 SEC clock is supplied on a TTL port with a fixed frequency of 19.44 MHz. Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1) (for inputs supporting G.783 compliant sources) $ $ $ $ $ -LWWHUDQGZDQGHUIUHTXHQF\ORJVFDOH I I I I I I I I I Table 6. Amplitude and Frequency values for Jitter Tolerance (for inputs supporting G.783 compliant sources) ST M l evel STM-1 P e ak t o p e ak am p l i t u d e ( u n i t I n t e r v al ) Fr eq u en cy ( H z ) A0 A1 A2 A3 A4 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 2800 311 39 1.5 0.15 12u 178u 1.6m 15.6m 0.125 19.3 500 6.5k 65k 1.3m Revision 1.05/December 2002 ãSemtech Corp. 11 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Figure 4. Minimum Input Jitter Tolerance (DS1/E1) (for inputs supporting G.783 compliant sources) 3HDNWRSHDNMLWWHUDQGZDQGHUDPSOLWXGHORJ VFDOH $ $ -LWWHUDQGZDQGHUIUHTXHQF\ORJVFDOH I I I I Table 7. Amplitude and Frequency values for Jitter Tolerance (for inputs supporting G.783 compliant sources) Ty p e S p ec. A mp litud e ( U I p k-p k) Fr e q u e n cy ( Hz ) A1 A2 F1 F2 F3 F4 DS1 G R - 1244- C O R E 5 0.1 10 500 8k 40k E1 I T U G. 823 1.5 0.2 20 2.4k 18k 100k High Speed Output Clock Frame Sync and Multi-Frame Sync Clocks The O1 SEC clock is supplied on a PECL/LVDS port with spot frequencies of; Frame Sync (8 kHz) and Multi-Frame Sync (2 kHz) clocks will be provided on outputs FrSync and MFrSync. The FrSync and MFrSync clocks have a 50:50 mark/space ratio. 19.44 MHz, 38.88 MHz, Low Jitter Multiple E1/DS1 Outputs 155.52 MHz, 311.04 MHz, Dig 1. (where Dig 1 is 1.544 MHz (SONET)/2.048 MHz (SDH), and multiples of 2, 4 and 8 depending on SONET/SDH mode setting). The actual frequency is selectable via the cnfg_differential_outputs register. The O1 port can also support 311.04 MHz, which is enabled via the cnfg_T0_output_enable register. The O1 port can be made LVDS or PECL compatible via the cnfg_differential_outputs register. Revision 1.05/December 2002 ãSemtech Corp. 12 This feature added to Rev2.1 is activated using the cnfg_control1 register. This sends a frequency of twice the Dig2 rate (see reg addr 39h, bits 7:6) to the APLL instead of the normal 77.76MHz. For this feature to be used, the Dig2 rate must only be set to 12352kHz/16384kHz using the cnfg_T0_output_frequencies register. The normal OC3 rate outputs are then replaced with E1/DS1 multiple rates. The E1(SONET)/ DS1(SDH) selection is made in the same way as for Dig2 using the cnfg_T0_output_enable register. Table 9 shows the relationship between primary output frequencies and the corresponding output in E1/DS1 mode, and which output they are available from. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS the application and operating state. Wander and jitter attenuation is performed by using a digital phase-locked loop (DPLL) with a programmable bandwidth. This gives a transfer characteristic of a low pass filter, with a programmable pole. It is sometimes necessary to change the filter dynamics to suit particular circumstances - one example being when locking to a new source, the filter can be opened up to reduce locking time and can then be gradually tightened again to remove wander. Since wander represents a relatively long-term deviation from the nominal operating frequency, it affects the rate of supply of data to the network element. Strong wander attenuation limits the rate of consumption of data to within a smaller range, so a larger buffer store is required to prevent data loss. But, since Output Wander and Jitter Wander and jitter present on the output clocks are dependent on: 1. The magnitude of wander and jitter on the selected input reference clock (in locked mode); 2. The internal wander and jitter transfer characteristic (in Locked mode); 3. The jitter on the local oscillator clock; 4. The wander on the local oscillator clock (in Holdover mode). Wander and jitter are treated in different ways to reflect their differing impacts on network design. Jitter is always strongly attenuated, whilst wander attenuation can be varied to suit Table 8. Output Reference Source Selection Table P or t N am e O u t p u t P or t Te c h n o l o g y O1 LVDS/PECL LVDS default O2 TTL/CMOS 19.44 MHz fixed FrSync TTL/CMOS FrSync, 8 kHz. 50:50 mark/sp ace ratio MFrSync TTL/CMOS MFrSync, 2 kHz. 50:50 mark/sp ace ratio Fr eq u en ci es S u p p or t ed 19.44 MHz, 38.88 MHz (default), 155.52 MHz, 311.04 MHz, Dig1 Dig1 is 1.544 MHz/2.048 MHz and multip les of 2, 4 and 8 Notes for Table 8. Dig 1 is shown as either 1.544 MHz or 2.048 MHz, where 1.544 MHz is SONET and 2.048 MHz is SDH. Pin SONSDHB controls the default frequency output. When SONSDHB pin is High SONET is default, and when SONSDHB pin is Low SDH is default. Table 9. Multiple E1/DS1 Ouputs in relation to Standard Outputs M od e Default Fr eq t o A PLL A P L L M u l t i p l i er 77.76 4 A PLL Fr eq cl k _ f i l t cl k _ f i l t /2 cl k _ f i l t /4 cl k _ f i l t /6 cl k _ f i l t /8 cl k _ f i l t / 12 cl k _ f i l t / 16 cl k _ f i l t / 48 DP L L Fr eq 311.04 311.04 155.52 77.76 51.84 38.88 25.92 19.44 6.48 77.76 n value 16 8 4 n x E1 32.768 4 131.072 131.072 65.536 32. 768 21.84533 16. 384 10.92267 8.192 2.730667 77.76 n x T1 24.704 4 98.816 6.176 2.058667 77.76 98.816 49.408 24. 704 16.46933 12. 352 8.234667 Frequencies Availab le b y Outp ut O1 O1 O1 O2 Revision 1.05/December 2002 ãSemtech Corp. 13 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Figure 5. Wander and Jitter Transfer Measured Characteristics % G Q L D * +] +] +] +] +] +] +] +] )UHTXHQF\+] any buffer store potentially increases latency, wander may often only need to be removed at specific points within a network where buffer stores are acceptable, such as at digital cross connects. Otherwise, wander is sometimes not required to be attenuated and can be passed through transparently. The ACS8515 has programmable wander transfer characteristics in a range from 0.1 Hz to 20 Hz. The wander and jitter transfer characteristic is shown in Figure 5. Wander on the local oscillator clock will not have significant effect on the output clock whilst in locked mode, so long as the DPLL bandwidth is set high enough so that the DPLL can compensate quickly enough for any frequency changes in the crystal. In Free-run or Holdover mode wander on the crystal is more significant. Variation in crystal temperature or supply voltage both cause drifts in operating frequency, as does ageing. These effects must be limited by careful selection of a suitable component for the local oscillator, as specified in the section Local Oscillator Clock. Revision 1.05/December 2002 ãSemtech Corp. 14 Phase Variation There will be a phase shift across the ACS8515 between the selected input reference source and the output clock. This phase shift may vary over time but will be constrained to lie within specified limits. The phase shift is characterized using two parameters, MTIE (Maximum Time Interval Error), and TDEV (Time Deviation), which, although being specified in all relevent specifications, differ in acceptable limits in each one. Typical measurements for the ACS8515 are shown in Figures 6 and 7, for locked mode operation. Figure 8 shows a typical measurement of Phase Error accumulation in Holdover mode operation. The required performance for phase variation during Holdover is specified in several ways depending upon the particular circumstances pertaining: 1. ETSI 300 462-5, Section 9.1, requires that the shortterm phase error during switchover (i.e., Locked to Holdover to Locked) be limited to an accumulation rate no greater than 0.05 ppm during a 15 second interval. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Figure 6. Maximum Time Interval Error of T OUT0 Output Port 1 00 G .8 1 3 o p tion 1 , co n sta n t te m p e rature w an de r lim it T im e (n s) 10 1 M T IE m e a su re m e n t o n 1 5 5 M H z o u tp u t, 1 9.44 M H z i/p (8 kH z lo ckin g), V e c tro n 6 6 6 4 x tal 0 .1 0 .0 1 0 .01 1 0.1 10 100 1000 10000 O b s erv a tio n in terva l (s) Figure 7. Time Deviation of T OUT0 Output Port 10 G .813 op tio n 1 con stan t tem perature w ander lim it T im e (ns ) 1 0.1 T D E V m ea su rem e nt on 1 55 M H z output, 1 9.4 4 M H z i/p (8kH z lock ing), V ectron 6 664 xtal 0 .01 0.01 0 .1 1 10 100 10 00 10 000 O b s erv ation in terv al (s) Figure 8. Phase Error Accumulation of T OUT0 Output Port in Holdover Mode 10000000 Phase Error (ns) 1000000 P e rm itte d P h a s e E rro r L im it 100000 10000 1000 100 Revision 1.05/December 2002 ãSemtech Corp. T y p ic a l m e a s u re m e n t, 2 5 °C c o n s ta n t te m p e ra tu re 10000 1000 15 100000 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS 2. ETSI 300 462-5, Section 9.2, requires that the longterm phase error in the Holdover mode should not exceed {(a1+a2)S+0.5bS2+c} where a1 = 50 ns/s (allowance for initial frequency offset) a2 = 2000 ns/s (allowance for temperature variation) b = 1.16x10-4 ns/s2 (allowance for ageing) c = 120 ns (allowance for entry into Holdover mode). 3. ANSI Tin1.101-1994, Section 8.2.2, requires that the phase variation be limited so that no more than 255 slips (of 125 µs each) occur during the first day of Holdover. This requires a frequency accuracy better than: ((24x60x60)+(255x125µs))/(24x60x60) = 0.37 ppm Temperature variation is not restricted, except to within the normal bounds of 0 to 50 Celsius. 4. Bellcore GR.1244.CORE, Section 5.2., Table 4, shows that an initial frequency offset of 50 ppb is permitted on entering Holdover, whilst a drift over temperature of 280 ppb is allowed; an allowance of 40 ppb is permitted for all other effects. 5. ITU G.822, Section 2.6, requires that the slip rate during category(b) operation (interpreted as being applicable to Holdover mode operation) be limited to less than 30 slips (of 125 µs each) per hour ((((60 x 60)/30)+125µs)/(60x60)) = 1.042 ppm on the output will still be less than the 120 ns allowed for in the G.813 spec. The actual value is dependant on the frequency being locked to. The PBO requirement, as specified in Telcordia GR1244-CORE, Section 5.7, in that a phase transient of greater than 3.5 µs occuring in less than 0.1 seconds should be absorbed, will be implemented on a future version. ITU-T G.813 states that the max allowable short term phase transient response, resulting from a switch from one clock source to another, with Holdover mode entered in between, should be a maximum of 1 µs over a 15 second interval. The maximum phase transient or jump should be less than 120 ns at a rate of change of less than 7.5 ppm and the Holdover performance should be better than 0.05 ppm. On the ACS8515, PBO can be enabled, disabled or frozen using the µP interface. By default, it is enabled. When PBO is enabled, it can also be frozen, which will disable the PBO operation on the next input reference switch, but will remain with the current offset. If PBO is disabled while the device is in the Locked mode, there will be a phase jump on the output SEC clocks as the DPLL locks back to 0 degree phase error. Phase Build Out Microprocessor Interface Phase Build Out (PBO) is the function to minimise phase transients on the output SEC clock during input reference switching or mode switching. If the currently selected input reference clock source is lost (due to a short interruption, out of frequency detection, or complete loss of reference), the second, next highest priority reference source will be selected. During this transition, the Lost_Phase mode is entered. The ACS8515 incorporates a serial microprocessor interface that is compatible with the Serial Peripheral Interface (SPI) for device setup. The typical phase disturbance on clock reference source switching will be less than 10 ns on the ACS8515. For clock reference switching caused by the main input failing or being disconnected, then the phase disturbance Revision 1.05/December 2002 ãSemtech Corp. 16 Register Set All registers are 8-bits wide, organised with the most-significant bit positioned in the left-most bit, with bit-significance decreasing towards the right-most bit. Some registers carry several individual data fields of various sizes, from single-bit values (e.g., flags) upwards. Several data fields are spread across multiple registers; their organisation is shown in the register map. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Configuration Registers Interrupt Enable and Clear Each configuration register reverts to a default value on power-up or following a reset. Most default values are fixed, but some will be pinsettable. All configuration registers can be read out over the microprocessor port. Interrupt requests are flagged on pin INTREQ (active High). Status Registers The Status Registers contain readable registers. They may all be read from outside the chip but are not writable from outside the chip (except for a clearing operation). All status registers are read via shadow registers to avoid data hits due to dynamic operation. Each individual status register has a unique location. Register Access Most registers are of one of two types, configuration registers or status registers, the exceptions being the chip_revision register. Configuration registers may be written to or read from at any time (the complete 8-bit register must be written, even if only one bit is being modified). All status registers may be read at any time and, in some status registers (such as the sts_interrupts register), any individual data field may be cleared by writing a 1 into each bit of the field (writing a 0 value into a bit will not affect the value of the bit). Details of each register are given in the Register Map and Register Map Description sections. Revision 1.05/December 2002 ãSemtech Corp. 17 Bits in the interrupt status register are set (high) by the following conditions; 1. Any reference source becoming valid or going invalid 2. A change in the operating state (eg. Locked, Holdover etc.) 3. A brief loss of the currently selected reference source All interrupt sources are maskable via the mask register cnfg_interrupt_mask, each one being enabled by writing a '1' to the appropriate bit. Any unmasked bit set in the interrupt status register will cause the interrupt request pin to be asserted (high). All interrupts are cleared by writing a '1' to the bit(s) to be cleared in the status register. When all pending unmasked interrupts are cleared the interrupt pin will go inactive (low). The loss of the currently selected reference source will eventually cause the input to be considered invalid, triggering an interrupt. The time taken to raise this interrupt is dependent on the leaky bucket configuration of the activity monitors. The very fastest leaky bucket setting will still take up to 128 ms to trigger the interrupt. The interrupt caused by the brief loss of the currently selected reference source is provided to facilitate very fast source failure detection if desired. It is triggered after missing just a couple of cycles of the reference source. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Register Map Shaded areas in the map are dont care and writing either 0 or 1 will not affect any function of the device. Bits labelled Set to 0 or Set to 1 must be set as stated during initialisation of the device, either following power up, or after a power on reset (PORB). Failure to correctly set these bits may result in the device operating in an unexpected way. Some registers do not appear in this list, for example 07 and 08. These are either not used, or have test functionality. Do not write to any undefined registers as this may cause the device to operate in a test mode. If an undefined register has been inadvertently addressed, the device should be reset to ensure the undefined registers are at default values. Table 10. Register Map A d d r. P ar am e t e r N am e ( Hex ) D at a B i t 7 ( m sb ) 02 ch ip _revision (read only) 03 cnfg_control1 (read /w rite) 04 cnfg_control2 (read /w rite) 05 sts_interrup ts (read /w rite) 09 0A 4 A nalog d iv sync Set to '0' 3 Set to '0' Ph ase loss flag limit SEC2DIFF 1 0 ( l sb ) 8k Ed ge Polarity Set to '0' Set to '0' Set to '0' Set to '1' Set to '0' SEC1DIFF SEC2 SEC1 Main ref failed SEC3 Op erating mod e (2:0) sts_p riority_tab le (read only) High est p riority valid source Currently selected reference source 3rd h igh est p riority valid source 2nd h igh est p riority valid source sts_curr_inc_offset (read only) Current increment offset (7:0) 0D Current increment offset (15:8) Current increment offset (18:16) 07 0E 2 sts_op erating_mod e (read only) 0B 0C 5 Ch ip revision numb er (7:0) Op erating mod e 06 6 sts_sources_valid (read only) SEC2DIFF SEC1DIFF SEC2 SEC1 0F 11 SEC3 sts_reference_sources (read /w rite) 12 status <SEC2> status <SEC1> status <SEC2DIFF> status <SEC1 DIFF> status <SEC3> 14 18 cnfg_ref_selection_p riority (read /w rite) Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' 19 p rogrammed _p riority <SEC2> p rogrammed _p riority <SEC1> 1A p rogrammed _p riority <SEC2DIFF> p rogrammed _p riority <SEC1DIFF> Revision 1.05/December 2002 ãSemtech Corp. 18 Set to '0' www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 10. Register Map (continued). A d d r. P ar am e t e r N am e ( Hex ) D at a B i t 7 ( m sb ) 6 5 4 3 2 1 0 ( l sb ) Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' 1D Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' 1E Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' d ivn lock8k b ucket_id <SEC1> (1:0) reference_source_freq uency <SEC1> (3:0) 23 d ivn lock8k b ucket_id <SEC2> (1:0) reference_source_freq uency <SEC2> (3:0) 24 d ivn lock8k b ucket_id <SEC1DIFF> (1:0) reference_source_freq uency <SEC1DIFF> (3:0) 25 d ivn lock8k b ucket_id <SEC2DIFF> (1:0) reference_source_freq uency <SEC2DIFF> (3:0) 28 d ivn lock8k b ucket_id <SEC3> (1:0) reference_source_freq uency <SEC3> (3:0) 1B 1C 22 cnfg_ref_selection_p riority (read /w rite) (continued ) cnfg_ref_source_freq uency (read /w rite) 32 cnfg_op erating_mod e (read /w rite) 33 cnfg_ref_selection (read /w rite) 34 cnfg_mod e (read /w rite) 35 cnfg_control3 (read /w rite) 36 cnfg_d ifferential_inp uts (read /w rite) 38 cnfg_outp ut_enab le (read /w rite) 39 cnfg_O1_outp ut_freq uencies (read /w rite) 3A cnfg_d ifferential_outp ut (read /w rite) 3B 3C 3D 40 41 cnfg_b and w id th (read /w rite) Forced op erating mod e force_select_reference_source A u to external 2k enab le 311.04 MHz on O1 Ph ase alarm timeout enab le Clock ed ge Set to '0' Set to '1' Set to '0' 1=SON ET 0=SDH for Dig1 Set to '0' External 2k Sync enab le Rever tive mod e SON ET/ SDH I/P SEC2DIFF PECL SEC1DIFF PECL Set to '0' O2 enab le Set to '0' Set to '0' Set to '0' Set to '0' O1 LV DS enab le O1 PECL enab le Digital 1 O1 freq uency selection A uto b /w sw itch acq /lock A cq uisition b and w id th cnfg_nominal_freq uency (read /w rite) cnfg_h old over_offset (read /w rite) p rogrammed _p riority <SEC3> Set to '0' N ormal/locked b and w id th N ominal freq uency (7:0) N ominal freq uency (15:8) Set to '0' cnfg_freq _limit (read /w rite) DPLL Freq uency offset limit (7:0) DPLL Freq uency offset limit (9:8) 42 Revision 1.05/December 2002 ãSemtech Corp. 19 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 10. Register Map (continued). A d d r. P ar am et er N am e ( Hex ) 43 cnfg_interrup t_mask (read/w rite) 44 D at a B i t 7 ( m sb ) 6 5 4 3 2 1 0 ( l sb ) Set to '0' Set to '0' status SEC2DIFF status SEC1DIFF status SEC2 status SEC1 Set to '0' Set to '0' Op er. mode Main ref Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' status SEC3 Set to '0' Set to '0' Set to '0' Set to '0' Set to '0' 45 46 cnfg_freq_divn (read/w rite) Divide-inp ut-b y-n ratio (7:0) Divide-inp ut-b y-n ratio (13:8) 47 48 cnfg_monitors (read/w rite) Ultra-fast sw itching External source sw itch enab le Freeze p hase b uildout Phase b uildout enab le 50 cnfg_activ_up p er_threshold 0 (read/w rite) Configuration 0: Activity alarm set threshold (7:0) 51 cnfg_activ_low er_threshold 0 (read/w rite) Configuration 0: Activity alarm reset threshold (7:0) 52 cnfg_b ucket_size 0 (read/w rite) 53 cnfg_decay_rate 0 (read/w rite) 54 cnfg_activ_up p er_threshold 1 (read/w rite) Configuration 1: Activity alarm set threshold (7:0) 55 cnfg_activ_low er_threshold 1 (read/w rite) Configuration 1: Activity alarm reset threshold (7:0) 56 cnfg_b ucket_size 1 (read/w rite) 57 cnfg_decay_rate 1 (read/w rite) 58 cnfg_activ_up p er_threshold 2 (read/w rite) Configuration 2: Activity alarm set threshold (7:0) 59 cnfg_activ_low er_threshold 2 (read/w rite) Configuration 2: Activity alarm reset threshold (7:0) 5A cnfg_b ucket_size 2 (read/w rite) 5B cnfg_decay_rate 2 (read/w rite) 5C cnfg_activ_up p er_threshold 3 (read/w rite) Configuration 3: Activity alarm set threshold (7:0) 5D cnfg_activ_low er_threshold 3 (read/w rite) Configuration 3: Activity alarm reset threshold (7:0) 5E cnfg_b ucket_size 3 (read/w rite) 5F cnfg_decay_rate 3 (read/w rite) Revision 1.05/December 2002 ãSemtech Corp. Frequency monitors configuration (1:0) Configuration 0: Activity alarm b ucket size (7:0) Configuration 0: decay_rate (1:0) Configuration 1: Activity alarm b ucket size (7:0) Configuration 1: decay_rate (1:0) Configuration 2: Activity alarm b ucket size (7:0) Configuration 2: decay_rate (1:0) Configuration 3: Activity alarm b ucket size (7:0) Configuration 3: decay_rate (1:0) 20 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Register Map Description Table 11. Register Map Description A d d r. P ar am e t e r N am e ( Hex ) 02 D e scr i p t i o n ch ip _revision Th is read -only register contains th e ch ip revision numb er Th is revision = 1 Last revision (engineering samp les) = 0 cnfg_control1 Bi ts (7:6) D e f au l t Val u e ( b i n ) 00000001 Unused Bit 5 =1 32/24MHz to APLL: Feeds 2x D i g2 frequency to the APLL i nstead of the normal 77.76Mhz. Thus the normal OC 3/STM1 outputs are replaced wi th multi ple E1/T1 rates. Note: D i g2 set bi ts (Reg. 39h Bi ts (7:6)) must be set to 11 for thi s mode. =0 77.76MHz to APLL Bit 4 =1 Synchroni zes the di vi ders i n the output APLL secti on to the di vi ders i n the D PLL secti on such that thei r phases ali gn. Thi s i s necessary i n order to have phase ali gnment between i nputs and output clocks at OC 3 deri ved rates (6.48 MHz to 77.76 MHz). Keepi ng thi s bi t hi gh may be necessary to avoi d the di vi ders getti ng out of synchroni zati on when qui ck changes i n frequency occur such as a force i nto Free-Run. =0 The di vi ders may get out of phase followi ng step changes i n frequency, but i n thi s mode the correct number of hi gh frequency edges i s guarenteed wi thi n any synchroni zati on peri od. The output wi ll frequency lock (default). The devi ce wi ll always remai n i n synchroni zati on 2 seconds from a reset, before the default setti ng appli es. 03 Bi ts 3 X X 000000 Test control - leave unchanged, or set to '0' Bit 2 =1 When i n 8k locki ng mode the system wi ll lock to the ri si ng i nput clock edge. =0 When i n 8k locki ng mode the system wi ll lock to the falli ng i nput clock edge. 04 cnfg_control2 Bi ts (1:0) Test controls - leave unchanged, or set to '00' Bits (7:6) Unused. XX100010 Bits (5:3) d efine th e p h ase loss flag limit. By d efault set to 4 (100) w h ich corresp ond s to ap p roximately 140°. A low er value sets a corresp ond ing low er p h ase limit. Th e flag limit d etermines th e value at w h ich th e DPLL ind icates p h ase lost as a result of inp ut jitter, a p h ase jump , or a freq uency jump on th e inp ut. Bits (2:0) sts_interrup ts Test controls - leave unch anged or set to '010'. Th is register contains one b it for each b it of sts_sources_valid , one for loss of reference th e d evice w as locked to, and anoth er for th e op erating mod e. A ll b its are active h igh . A ll b its excep t th e 'main ref failed ' b it (b it 14) are set on a 'ch ange' in th e state of th e relevent status b it, i.e. if a source b ecomes valid , or goes invalid it w ill trigger an interrup t. If th e Op erating Mod e (register 9) ch anges state th e interrup t w ill b e generated . Bit 14 (main ref failed ) of th e interrup t status register is used to flag inactivity on th e reference th at th e d evice is locked to much more q uickly th an th e activity monitors can sup p or t. If b it 6 of th e cnfg_monitors register (register 48) (flag ref loss on TDO) is set, th en th e state of th is b it is d riven onto th e TDO p in of th e d evice. A ll b its are maskab le b y th e b its in th e cnfg_interrup t_mask register. Each b it may b e cleared ind ivid ually b y w riting a '1' to th at b it, th us resetting th e interrup t. A ny numb er of b its can b e cleared w ith a single w rite op eration. Writing '0's w ill h ave no effect. Revision 1.05/December 2002 ãSemtech Corp. 21 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 11. Register Map Description (continued). A d d r. P ar am et er N am e ( Hex ) 05 sts_interrup ts (continued) 06 09 sts_op erating_mode sts_p riority_tab le D e scr i p t i o n Bits (7:6) Unused B it 5 SEC2DIFF (sts_interrup ts b it 5) B it 4 SEC1DIFF (sts_interrup ts b it 4) B it 3 SEC2 (sts_interrup ts b it 3) B it 2 SEC1 (sts_interrup ts b it 2) Bits (1:0) Unused B i ts 7 Op erating mode (sts_interrup ts b it 15) B it 6 Main ref failed (sts_interrup ts b it 14) Bits (5:1) Unused B it 0 SEC 3 (sts_interrup ts b it 8) D e f au l t Val u e ( b i n ) XX0000XX 00XXXXX0 This read-only register holds the current op erating state of the main state machine. Figure 10 show how the values of the 'op erating state' variab le match w ith the individual states. Bits (7:3) Unused Bits (2:0) 001 010 100 110 101 111 State Freerun (default) Holdover Locked Pre-locked Pre-locked2 Phase lost XXXXX001 This is a 16-b it read-only register. Bits (15:12) Third-highest p riority valid source: this is the channel numb er of the inp ut reference source w hich is valid and has the next-highest p riority to the second-highest-p riority valid source. Bits (11:8) Second-highest p riority valid source: this is the channel numb er of the inp ut reference source w hich is valid and has the next-highest p riority to the highest-p riority valid source. Bits (7:4) Highest-p riority valid source: this is the channel numb er of the inp ut reference source w hich is valid and has the highest p riority; it may not b e the same as the currently-selected reference source (due to failure history or changes in p rogrammed p riority). Bits (3:0) Currently-selected reference source: this is the channel numb er of the inp ut reference source w hich is currently inp ut to the DPLL. N ote that these registers are up dated b y the state machine in resp onse to the contents of the cnfg_ref_selection_p riority register and the ongoing status of individual channels; channel numb er '0000', ap p earing in any of these registers, indicates that no channel is availab le for that p riority. 0A Bits (7:4) Bits (3:0) Highest-p riority valid source (sts_p riority_tab le b its (7:4)) Currently selected reference source (sts_p riority_tab le b its (3:0)) 00000000 0B Bits (7:4) Bits (3:0) 3rd-highest-p riority valid source (sts_p riority_tab le b its (15:12)) 2nd-highest-p riority valid source (sts_p riority_tab le b its (11:8)) 00000000 sts_curr_inc_offset This read-only register contains a signed-integer value rep resenting the 19 significant b its of the current increment offset of the digital PLL. The register may b e read p eriodically to b uild up a historical datab ase for later use during holdover p eriods (this w ould only b e necessary if an external oscillator w hich did not meet the stab ility criteria describ ed in Local Oscillator Clock section is used). The register w ill read 00000000 immediately after reset. 0C Bits (7:0) sts_curr_inc_offset b its (7:0) 00000000 0D Bits (7:0) sts_curr_inc_offset b its (15:8) 00000000 07 Bits (7:3) Unused Bits (2:0) sts_curr_inc_offset b its (18:16) Revision 1.05/December 2002 ãSemtech Corp. 22 XXXXX000 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 11. Register Map Description (continued). A d d r. P ar am et er N am e ( Hex ) sts_sources_valid 0E 0F sts_reference_sources D e scr i p t i o n This register contains a b it to show validity for every reference source. =1 Valid source =0 Invalid source (default) Bits (7:6) Unused B it 5 SEC2DIFF B it 4 SEC1DIFF B it 3 SEC2 B it 2 SEC1 Bits (1:0) Unused Bits (7:1) Unused B it 0 SEC3 12 14 cnfg_ref_selection_p riority XX0000XX XXXXXXX0 This register holds the status of each of the inp ut reference sources. The status of each reference source is show n in a 4-b it field. Each b it is active high. To aid status checking, a cop y of each status b it 3 is p rovided in the sts_sources_valid register. The status is rep or ted as follow s: (Each b it may b e cleared individually) Status b it Status b it Status b it Status b it 11 D e f au l t Val u e ( b i n ) 3 = Source valid (no alarms) (b it 3 is comb ination of b its 0-2) (default 0) 2 = Out-of-b and alarm (default 1) 1 = N o activity alarm (default 1) 0 = Phase lock alarm (default 0) Bits (7:4) Status of inp ut reference source SEC2 Bits (3:0) Status of inp ut reference source SEC1 Bits (7:4) Status of inp ut reference source SEC2DIFF Bits (3:0) Status of inp ut reference source SEC1DIFF Bits (7:4) Unused Bits (3:0) Status of inp ut reference source SEC3 01100110 01100110 XXXX0110 This register holds the p riority of each of the inp ut reference sources. The p riority values are all relative to each other, w ith low er-valued numb ers taking higher p riorities. Only the values 1 to 15 (dec) are valid - '0' disab les the reference source. Each reference source must b e given a unique p riority, how ever tw o sources given the same p riority numb er w ill b e assigned on a first in first out b asis. It is recommended to reserve the p riority value '1' as this is used w hen forcing reference selection via the cnfg_ref_selection register. If the user does not intend to use the cnfg_ref_selection register then p riority value '1' need not b e reserved. 18 Bits (7:0) Must b e set to '00000000' during initialisation Bits (7:4) Programmed p riority of inp ut reference source SEC2 Bits (3:0) Programmed p riority of inp ut reference source SEC1 Bits (7:4) Programmed p riority of inp ut reference source SEC2DIFF Bits (3:0) Programmed p riority of inp ut reference source SEC1DIFF Bits (7:0) Must b e set to '00000000' during initialisation Bits (7:4) Must b e set to '0000' during initialisation Bits (3:0) Programmed p riority of inp ut reference source SEC3 1D Bits (7:0) Must b e set to '00000000' during initialisation 11010001 1E Bits (7:0) Must b e set to '00000000' during initialisation 11111110 19 1A 1B 1C Revision 1.05/December 2002 ãSemtech Corp. 23 00110010 01010100 01110110 10011000 10111010 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 11. Register Map Description (continued). A d d r. P ar am et er N am e ( Hex ) cnfg_ref_source_frequency D e scr i p t i o n D e f au l t Val u e ( b i n ) This register is used to set up each of the inp ut reference sources. Bits (7:6) of each b yte define the op eration under taken on the inp ut frequency, in accordance w ith the follow ing key: 00 01 10 11 The inp ut frequency is fed directly into the DPLL (default). The inp ut frequency is internally divided dow n to 8 kHz, b efore b eing fed into the DPLL. (For high jitter tolerance). Unsup p or ted configuration - do not use Uses the division coefficient stored in registers 46 & 47 (cnfg_freq_divn) to divide the inp ut b y this value p rior to b eing fed into the DPLL. The frequency monitors must b e disab led. The divided dow n frequency should equal 8 kHz. The frequency (3:0) should b e set to the nearest sp ot frequency just b elow the actual inp ut frequency. The DivN feature w orks for inp ut frequencies b etw een 1.544 MHz and 100 MHz. Bits (5:4) together define w hich leaky b ucket settings (0-3) are used, as defined in registers 50 to 5F. (default 00). Bits (3:0) define the frequency of the reference source in accordance w ith the follow ing key: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 8 kHz (default SEC1, SEC2) 1544 kHz(SON ET)/2048 kHz(SDH) (As defined b y Register 34, b it 2) 6.48 MHz 19.44 MHz (default SEC1DIFF, SEC2DIFF, SEC3) 25.92 MHz 38.88 MHz 51.84 MHz 77.76 MHz 155.52 MHz 2 kHz 4 kHz 22 Frequency of reference source SEC1 00000000 23 Frequency of reference source SEC2 00000000 24 Frequency of reference source SEC1DIFF 00000011 25 Frequency of reference source SEC2DIFF 00000011 28 Frequency of reference source SEC3 00000011 cnfg_op erating_mode 32 cnfg_ref_selection This register is used to force the device into a desired op erating state, rep resented b y the b inary values show n in Figure 10. Value 0 (hex) allow s the control state machine to op erate automatically. Bits (7:3) Unused Bits (2:0) Desired op erating state (as p er Figure 10) This register is used to force the device to select a p ar ticular inp ut reference source, irresp ective of its p riority. Writing to this register temp orarily raises the selected inp ut to p riority '1'. Provided no other inp ut is already p rogrammed w ith p riority '1', and rever tive mode is on, this source w ill b e selected. Bits (7:4) 33 XXXXX000 Unused Bits (3:0) 0000 Automatic selection 0011 SEC1 0100 SEC2 0101 SEC1DIFF 0110 SEC2DIFF 1001 SEC3 1111 Automatic selection (default) Other values should not b e used. Revision 1.05/December 2002 ãSemtech Corp. 24 XXXX1111 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 11. Register Map Description (continued). A d d r. P ar am e t e r N am e ( Hex ) cnfg_mod e D e scr i p t i o n D e f au l t Val u e ( b i n ) Th is register contains several ind ivid ual configuration field s, as d etailed b elow : B it 7 =1 A uto 2 kHz Sync Enab le: External 2 kHz Sync w ill b e enab led only w h en th e source is locked to 6.48 MHz. Oth erw ise it w ill b e d isab led . (d efault). =0 A uto 2 kHz Sync Disab le: Th e user controls th is function using b it 3 of th is register, as d escrib ed b elow. B it 6 =1 Ph ase A larm Timeout enab le: Th e p h ase alarm w ill timeout after 100 second s. (d efault). =0 Ph ase A larm Timeout d isab le: Th e p h ase alarm w ill not timeout and must b e reset b y softw are. B it 5 =1 Rising Clock Ed ge selected : Th e d evice w ill reference to th e rising ed ge of th e external oscillator signal. =0 Falling Clock Ed ge selected : Th e d evice w ill reference to th e falling ed ge of th e external oscillator signal (d efault). B it 4 34 Unused . Must b e set to '0' d uring initialisation. B it 3 =1 External 2 kHz Sync Enab le: Th e d evice w ill align th e p h ase of its internally generated Frame Sync signal (8 kHz) and Multi-Frame Sync signal (2 kHz) w ith th at of th e signal sup p lied to th e Sync2k p in. Th is inp ut sh ould b e from th e 2 kHz Multi-Frame Sync of an A CS8510. =0 External 2 kHz Sync Disab le: Th e d evice w ill ignore th e Sync2k p in (d efault). 110X00X0 (SON SDHB=0) 110X01X0 (SON SDHB=1) B it 2 =1 SON ET mod e: Th e d evice exp ects th e inp ut freq uency of any inp ut ch annel given th e value '0001' in th e cnfg_ref_source_freq uency register to b e 1544 kHz. =0 SDH mod e: Th e d evice exp ects th e inp ut freq uency of any inp ut ch annel given th e value '0001' in th e cnfg_ref_source_freq uency register to b e 2048 kHz. A t star t up or reset th e b it value w ill b e d efaulted to th e setting of p in SON SDHB. Th is setting can sub seq uently b e altered b y ch anging th is b it value. B it 1 Unused B it 0 = 1 Rever tive Mod e: Th e d evice w ill sw itch to th e h igh est p riority source sh ow n in sts_p riority_tab le register, b its (7:4). = 0 N on-rever tive Mod e: Th e d evice w ill retain th e p resently selected source (d efault). cnfg_control3 35 cnfg_d ifferential_inp uts 36 Bits (7:6) Unused Bits (5:4) Must b e set to '10' d uring initialisation. Bits (3:0) Unused XX00XXXX Th is register contains tw o ind ivid ual configuration field s Bits (7:2) Unused B it 1 =1 =0 Inp ut SEC2DIFF is PECL comp atib le (d efault) Inp ut SEC2DIFF is LV DS comp atib le B it 0 =1 =0 Inp ut SEC1DIFF is PECL comp atib le Inp ut SEC1DIFF is LV DS comp atib le (d efault) Revision 1.05/December 2002 ãSemtech Corp. 25 XXXXXX10 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 11. Register Map Description (continued). A d d r. P ar am e t e r N am e ( Hex ) 38 cnfg_outp ut_enab le D e scr i p t i o n D e f au l t Val u e ( b i n ) Th is register contains several ind ivid ual configuration field s, as follow s: B it 7 =1 =0 O1 outp ut freq uency set to 311.04 MHz O1 outp ut freq uency set b y A d d ress 3A (5:4) (d efault) B it 6 Unused . Must b e set to '0' d uring initialisation. B it 5 =1 =0 0X0XX1XX SON ET mod e selected for Dig1 SDH mod e selected for Dig1 (d efault) - see register cnfg_O1_outp ut_freq uencies Bits (4:3) Unused . Must b e set to '0' d uring initialisation. B it 2 =1 =0 Outp ut p or t O2 enab led (19.44 MHz) (d efault) Outp ut p or t O2 d isab led Bits (1:0) Unused . Must b e set to '0' d uring initialisation. N ote: "Disab led " means th e outp ut p or t h old s a static logic value (th e p or t is not Tri-stated ). 39 cnfg_O1_outp ut_freq uencies Th is register h old s th e freq uency selections for each outp ut p or t, as d etailed b elow. Bits (7:6) Unused Bits (5:4) 00 01 10 11 Dig1 1544 kHz/2048 kHz (d efault) 3088 kHz/4096 kHz 6176 kHz/8192 kHz 12352 kHz/16384 kHz Bits (3:2) Unused Bits (1:0) Unused XX00XXXX For Dig1 th e freq uency values are sh ow n for SON ET/SDH. Th ey are selected via th e SON ET/SDH b its in register cnfg_outp ut_enab le. 3A 3B cnfg_d ifferential_outp ut cnfg_b and w id th Th is register h old s th e freq uency selections and th e p or t-tech nology typ e for th e d ifferential outp ut O1, as d etailed b elow. Bits (7:6) Unused Bits (3:2) Unused Bits (5:4) 00 01 10 11 O1 38.88 MHz (d efault) 19.44 MHz 155.52 MHz Dig1 Bits (1:0) 00 01 10 11 O1 Por t d isab led PECL-comp atib le LV DS-comp atib le (d efault) Unused XX00XX10 Th is register contains information used to control th e op eration of th e d igital PLL. Wh en b and w id th selection is set to automatic, th e DPLL w ill use th e acq uisition b and w id th setting w h en out of lock, and th e normal/locked b and w id th setting w h en in lock. Wh en set to manual, th e DPLL w ill alw ay use th e normal/locked b and w id th setting. B it 7 =1 =0 A utomatic op eration Manual op eration (d efault) Bits (6:4) 000 001 010 011 100 101 110 111 A cq uisition b and w id th 0.1 Hz 0.3 Hz 0.5Hz 1.0 Hz 2.0 Hz 4.0 Hz 8.0 Hz 17 Hz (d efault) B it 3 Unused Revision 1.05/December 2002 ãSemtech Corp. 26 Bit (2:0) 000 001 010 011 100 101 110 111 0111X101 Loop b and w id th 0.1 Hz 0.3 Hz 0.5 Hz 1.0 Hz 2.0 Hz 4.0 Hz (d efault) 8.0 Hz 17 Hz www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 11. Register Map Description (continued). A d d r. P ar am e t e r N am e ( Hex ) cnfg_nomi nal_frequency D e scr i p t i o n D e f au l t Val u e ( b i n ) Thi s regi ster holds a 16 bi t unsi gned i nteger allowi ng compensati on for offset of the crystal osci llator from the nomi nal 12.8 MHz. See secti on C rystal Frequency C ali brati on. D efault results i n 0 ppm adjustment. 3C Bi ts (7:0) cnfg_nomi nal_frequency bi ts (7:0) 10011001 3D Bi ts (7:0) cnfg_nomi nal_frequency bi ts (15:8) 10011001 cnfg_h old over_offset Th is register h old s 1 b it w h ich must b e set to '0' d uring initialization. B it 7 40 Bits (6:0) cnfg_freq _limit Must b e set to '0' d uring initialization 1XXXXXXX Unused Th is register h old s a 10 b it unsigned integer rep resenting th e p ull-in range of th e DPLL. It sh ould b e set accord ing to th e accuracy of crystal imp lemented in th e ap p lication, using th e follow ing formula; Freq uency range +/- (p p m) = (cnfg_freq _limit x 0.0785)+0.01647 or cnfg_freq _limit = (Freq uency range +/- (p p m) - 0.01647) / 0.0785 Default value w h en SRCSW is left unconnected or tied low is ±9.3 p p m. Default value w h en SRCSW is h igh is th e full range of around ±80 p p m. 41 42 cnfg_interrup t_mask Bits (7:0) cnfg_freq _limit b its (7:0) Bits (7:2) Unused Bits (1:0) cnfg_freq _limits b its (9:8) 01110110 (SRCSW low ) 11111111 (SRCSW h igh ) XXXXXX00 (SRCSW low ) XXXXXX11 (SRCSW h igh ) Each b it, if set '0' w ill d isab le th e ap p rop riate interrup t source in th e interrup t status register. Bit (7:6) Must b e set to '00' d uring initialisation 43 B it 5 Status SEC2DIFF B it 4 Status SEC1DIFF B it 3 Status SEC2 B it 2 Status SEC1 11111111 Bit (1:0) Must b e set to '00' d uring initialisation 44 B it 7 Op er. mod e B it 6 Main ref 11111111 Bit (5:1) Must b e set to '00000' d uring initialisation B it 0 Interrup t source Bit (7:5) Unused 45 XXX11111 Bit (4:0) Must b e set to '00000' d uring initialisation cnfg_freq _d ivn Th is 14 b it integer is used as th e d ivisor for any inp ut to get th e p h ase locking freq uency d esired . Only active for inp uts w ith th e DivN b it set to 1. Th is w ill cause th e inp ut freq uency to b e d ivid ed b y (n+1) p rior to p h ase comp arison, e.g. p rogram N to: ((inp ut freq )/8kHz)-1 Th e reference_source_freq uency b its sh ould b e set to reflect th e closest sp ot freq uency to th e inp ut freq uency, b ut must b e low er th an th e inp ut freq uency. 46 47 Bits (7:0) cnfg_freq _d ivn b its (7:0) Bits (7:6) Unused Bits (5:0) cnfg_freq _d ivn b its (13:8) Revision 1.05/December 2002 ãSemtech Corp. 27 00000000 XX000000 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 11. Register Map Description (continued). A d d r. P ar am e t e r N am e ( Hex ) cnfg_monitors D e scr i p t i o n D e f au l t Val u e ( b i n ) Th is register allow s glob al configuration of monitors and control of p h ase b uild out. Bit 7 Unused Bit 6 Unused B it 5 =1 Enab les ultra fast sw itch ing: A llow s th e DPLL to raise an activity alarm on th e currently selected source after missing only a few cycles. See section on Ultra Fast Sw itch ing. =0 N ormal op eration (d efault) B it 4 =1 Forces locking to SEC1 (p in 29) if p in SRCSW h igh , or SEC2 (p in 30) if p in SRCSW low =0 Pin SRCSW ignored , and automatic control enab led 48 B it 3 =1 Will freeze th e outp ut p h ase relationsh ip w ith th e current inp ut to outp ut p h ase offset =0 A llow s ch anges in inp ut to outp ut p h ase offset to take p lace (N ormal p h ase b uild out mod e) (d efault) X0000101 (SRCSW low ) X0010101 (SRCSW h igh ) B it 2 =1 Enab les p h ase b uiltd out (d efault) =0 DPLL w ill allow s lock to 0° Bits (1:0) are for configuring freq uency monitors- 00 = off, 01 = 15p p m, oth ers are reserved for future use. 50 cnfg_activ_up p er_th resh old 0 Bits (7:0) set th e value in th e leaky b ucket th at causes th e activity alarm to b e raised . 00000110 51 cnfg_activ_low er_th resh old 0 Bits (7:0) set th e value in th e leaky b ucket th at causes th e activity alarm to b e cleared . 00000100 52 cnfg_b ucket_size 0 Bits (7:0) set th e maximum value th at th e leaky b ucket can reach given an inactive inp ut. 00001000 cnfg_d ecay_rate 0 Bits (7:2) Unused Bits (1:0) control th e leak rate of th e leaky b ucket. Th e fill-rate of th e b ucket is +1 for every 128 ms interval th at h as exp erienced some level of inactivity. Th e d ecay rate is p rogrammab le in ratios of th e fill rate. Th e ratio can b e set to 1:1, 2:1, 4:1, 8:1 b y using values of 00, 01, 10, 11 resp ectively. How ever, th ese b uckets are not true leaky b uckets in nature. Th e b ucket stop s leaking w h en it is b eing filled . Th is means th at th e fill and d ecay rates can b e th e same (00 = 1:1) w ith th e net effect th at an active inp ut can b e recognised at th e same rate as an inactive one. 53 XXXXXX01 54 cnfg_activ_up p er_th resh old 1 A s for register 50 b ut for b ucket 1. 00000110 55 cnfg_activ_low er_th resh old 1 A s for register 51 b ut for b ucket 1. 00000100 56 cnfg_b ucket_size 1 A s for register 52 b ut for b ucket 1. 00001000 57 cnfg_d ecay_rate 1 A s for register 53 b ut for b ucket 1. XXXXXX01 58 cnfg_activ_up p er_th resh old 2 A s for register 50 b ut for b ucket 2. 00000110 59 cnfg_activ_low er_th resh old 2 A s for register 51 b ut for b ucket 2. 00000100 5A cnfg_b ucket_size 2 A s for register 52 b ut for b ucket 2. 00001000 5B cnfg_d ecay_rate 2 A s for register 53 b ut for b ucket 2. XXXXXX01 5C cnfg_activ_up p er_th resh old 3 A s for register 50 b ut for b ucket 3. 00000110 5D cnfg_activ_low er_th resh old 3 A s for register 51 b ut for b ucket 3. 00000100 5E cnfg_b ucket_size 3 A s for register 52 b ut for b ucket 3. 00001000 5F cnfg_d ecay_rate 3 A s for register 53 b ut for b ucket 3. XXXXXX01 Revision 1.05/December 2002 ãSemtech Corp. 28 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Selection of Input Reference Clock Source Under normal operation, the input reference sources are selected automatically by an order of priority, where SEC1 is the highest priority, SEC2 is the second highest priority and SEC3 is the lowest priority. The priorities can be re-assigned with external software. The SEC1 reference source has inputs via either a low speed TTL input port or a high speed PECL/ LVDS input port. Similarly, the SEC2 reference source has both a low speed TTL or a high speed PECL/LVDS input port. The SEC3 (standby) reference source only has provision via a low speed TTL input port. There is provision for one sync clock input via a TTL port. Whilst SEC1, SEC2 and SEC3 reference source inputs can all be active at the same time, only one of the TTL or PECL/LVDS input ports for the SEC1 and SEC2 reference sources may be used at any time, the inactive port is ignored, by setting the priority of that port to zero. Restoration of repaired reference sources is handled carefully to avoid inadvertent disturbance of the output clock. The ACS8515 has two modes of operation; Revertive and Non-Revertive. In Revertive mode, if a revalidated (or newly validated) source has a higher priority than the reference source which is currently selected, a switch over will take place. Many applications prefer to minimise the clock switching events and choose NonRevertive mode. In Non-Revertive mode , when a re-validated (or newly validated) source has a higher priority then the selected source will be maintained. The re-validation of the reference source will be flagged in the sts_sources_valid register and, if not masked, will generate an interrupt. Selection of the re-validated source can only take place under software control the software should briefly enable Revertive mode to affect a switch-over to the higher priority source. If the selected source fails under these conditions the device will still not select the higher priority source until instructed to do Revision 1.05/December 2002 ãSemtech Corp. 29 so by the software, by briefly setting the Revertive mode bit. When there is a reference available with higher priority than the selected reference, there will be NO change of reference source as long as the Non-Revertive mode remains on. This is the case even if there are lower priority references available or the currently selected reference fails. When the ONLY valid reference sources that are available have a lower priority than the selected reference, a failure of the selected reference will always trigger a switch-over regardless of whether Revertive or Non-Revertive mode has been chosen. Automatic Control Selection When automatic selection is required, the cnfg_ref_selection registers must be set to allzero or all-one. The configuration registers, cnfg_ref_selection_priority, held in the µP port are organised as 5, 4-bit registers with each representing an input reference port. Unused ports should be given the value '0000' in the relevant register to indicate they are not to be included in the priority table. On power-up, or following a reset, the whole of the configuration file will be defaulted to the values defined by Table 4. The selection priority values are all relative to each other, with lower-valued numbers taking higher priorities. Each reference source should be given a unique number, the valid values are 1 to 15 (dec). A value of 0 disables the reference source. However if two or more inputs are given the same priority number those inputs will be selected on a first in, first out basis. If the first of two same priority number sources goes invalid the second will be switched in. If the first then becomes valid again, it becomes the second source on the first in, first out basis, and there will not be a switch. If a third source with the same priority number as the other two becomes valid, it joins the priority list on the same first in, first out basis. There is no implied priority based on the channel numbers. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Ultra Fast Switching A reference source is normally disqualified after the leaky bucket monitor thresholds have been crossed. An option for a faster disqualification has been implemented, whereby if register 48H, bit 5 (Ultra Fast Switching), is set then a loss of activity of just a few reference clock cycles will set the no activity alarm and cause a reference switch. This can be chosen to cause an interrupt to occur instead of, or as well as, causing the reference switch. Any of these registers can be subsequently set by external s/w if required. When external protection switching is enabled, the device will operate as a simple switch. All clock monitoring is disabled and the DPLL will simply be forced to try to lock on to the indicated reference source. The operating state (sts_operating_mode register) will always indicate locked in the mode. External Protection Switching Activity Monitoring Fast external switching between inputs SEC1 and SEC2 can also be triggered directly from a dedicated pin (SRCSW). This mode can be activated either by holding this pin high during reset, or by writing to bit 4 of register address 48Hex. The ACS8515 has a combined inactivity and irregularity monitor. The ACS8515 uses a leaky bucket accumulator, which is a digital circuit which mimics the operation of an analog integrator, in which input pulses increase the output amplitude but die away over time. Such integrators are used when alarms have to be triggered either by fairly regular defect events, which occur sufficiently close together, or by defect events which occur in bursts. Events which are sufficiently spread out should not trigger the alarm. By controlling the alarmsetting threshold, the point at which the alarm is triggered can be controlled. The point at which Once external protection switching is enabled, then the value of this pin directly selects either SEC1 (SRCSW high) or SEC2 (SRCSW low). If this mode is activated at reset by pulling the SRCSW pin high, then it configures the default frequency tolerance of SEC1 and SEC2 to +/80 ppm (register address 41Hex and 42Hex). Figure 9. Inactivity and Irregularity Monitoring inactivities/irregularities reference source bucket_size leaky bucket response upper_threshold lower_threshold programmable fall slopes (all programmable) alarm Revision 1.05/December 2002 ãSemtech Corp. 30 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS the alarm is cleared depends upon the decay rate and the alarm-clearing threshold. On the alarm-setting side, if several events occur close together, each event adds to the amplitude and the alarm will be triggered quickly; if events occur a little more spread out, but still sufficiently close together to overcome the decay, the alarm will be triggered eventually. If events occur at a rate which is not sufficient to overcome the decay, the alarm will not be triggered. On the alarm-clearing side, if no defect events occur for a sufficient time, the amplitude will decay gradually and the alarm will be cleared when the amplitude falls below the alarmclearing threshold. The ability to decay the amplitude over time allows the importance of defect events to be reduced as time passes by. This means that, in the case of isolated events, the alarm will not be set, whereas, once the alarm becomes set, it will be held on until normal operation has persisted for a suitable time (but if the operation is still erratic, the alarm will remain set). See Figure 9. The leaky bucket accumulators are programmable for size, alarm set & reset thresholds and decay rate. Each source is monitored over a 128 ms period. If, within a 128 ms period, an irregularity occurs that is not deemed to be due to allowable jitter/wander, then the accumulator is incremented. The accumulator will continue to increment up to the point that it reaches the programmed bucket size. The fill rate of the leaky bucket is, therefore, 8 units/second. The "leak rate" of the leaky bucket is programmable to be in multiples of the fill rate (x1, x0.5, x0.25 and x0.125) to give a programmable leak rate from 8 units/sec down to 1 unit/sec. A conflict between trying to leak at the same time as a fill is avoided by preventing a leak when a fill event occurs. Disqualification of a non-selected reference source is based on inactivity, or on an out of band result from the frequency monitors. The currently selected reference source can be Leaky bucket timing The time taken to raise an inactivity alarm on a reference source that has previously been fully active (leaky bucket empty) will be: (cnfg_activ_upper_threshold N) secs 8 where N is the number of the relevent leaky bucket configuration. If an input is intermittently inactive then this time can be longer. The default setting of cnfg_activ_upper_threshold is 6, therefore the default time is 0.75 s. The time taken to cancel the activity alarm on a previously completely inactive reference source is calculated as: (cnfg_decay_rate N) 2 x ((cnfg_bucket_size N) - (cnfg_activ_lower_threshold N)) secs 8 where N is the number of the relevent leaky bucket configuration in each case. The default settings are shown in the following: 1 2 x (8-4) = 1.0 s 8 Revision 1.05/December 2002 ãSemtech Corp. 31 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS disqualified for phase, frequency, inactivity or if the source is outside the DPLL lock range. If the currently selected reference source is disqualified, the next highest priority, active reference source is selected. Restoration of repaired reference sources is handled carefully to avoid inadvertant disruption of the output clock. The ACS8515 operates in a Non-Revertive mode by default. In this mode, if the restored reference source has a higher priority than the reference source which is currently selected, a switch-over to the restored source will not tale place automatically. A restored reference source will assume its correct place in the priority table but a switchover will only take place automatically upon failure of the currently selected source. It is possible to invoke a switch-over by external control or by enabling Revertive mode. Modes of Operation The transition from Free-run to Pre-locked occurs when the ACS8515 selects a reference source. Pre-Locked Mode The ACS8515 will enter the Locked state in a maximum of 100 seconds, as defined by GR1244-CORE specification, if the selected reference source is of good quality. If the device cannot achieve lock within 100 seconds, it reverts to Free-run mode and another reference source is selected. Locked Mode The ACS8515 has three primary modes of operation (Free-run, Locked and Holdover) supported by three secondary, temporary modes (Pre-Locked, Lost_Phase and PreLocked2). These are shown in the State Transition Diagram, Figure 10. The ACS8515 can operate in Forced or Automatic control. On reset, the ACS8515 reverts to Automatic Control, where transitions between states are controlled completely automatically. Forced Control can be invoked by configuration, allowing transitions to be performed under external control. This is not the normal mode of operation, but is provided for special occasions such as testing, or where a high degree of hands-on control is required. Free-run Mode The Free-run mode is typically used following a power-on-reset or a device reset before network synchronization has been achieved. In Revision 1.05/December 2002 ãSemtech Corp. the Free-run mode, the timing and synchronization signals generated from the ACS8515 are based on the Master clock frequency provided from the external oscillator and are not synchronized to an input reference source. The frequency of the output clock is a fixed multiple of the frequency of the external oscillator, and the accuracy of the output clock is equal to the accuracy of the Master clock. 32 The Locked mode is used when an input reference source has been selected and the PLL has had time to lock. When the Locked mode is achieved, the output signal is in phase and locked to the selected input reference source. The selected input reference source is determined by the priority table. When the ACS8515 is in Locked mode, the output frequency and phase follows that of the selected input reference source. Variations of the external crystal frequency have a minimal effect on the output frequency. Only the minimum to maximum frequency range is affected. Note that the term, 'in phase', is not applied in the conventional sense when the ACS8515 is used as a frequency translator (e.g., when the input frequency is 2.048 MHz and the output frequency is 19.44 MHz) as the input and output cycles will be constantly moving past each other; however, this variation will itself be cyclical over time unless the input and output are not locked. www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Lost-Phase Mode Pre-Locked(2) Mode Lost-phase mode is entered when the current phase error, as measured within the DPLL, is larger than a preset limit (see register 04, bits 5:3), as a result of a frequency or phase transient on the selected reference source. This mode is similar in behavior to the Pre-locked or Pre-locked(2) modes, although in this mode the DPLL is attempting to regain lock to the same reference rather than attempt lock to a new reference. If the DPLL cannot regain lock within 100 s, the source is disqualified, and one of the following transitions takes place: This state is very similar to the Pre-Locked state. It is entered from the Holdover state when a reference source has been selected and applied to the phase locked loop. It is also entered if the device is operating in Revertive mode and a higher-priority reference source is restored. 1. Go to Pre-Locked(2); - If a known-good standby source is available. 2. Go to Holdover; - If no standby sources are available. Holdover Mode The Holdover mode is used when the circuit was in Locked mode but the selected reference source has become unavailable and a replacement has not yet been selected. Power On Reset - PORB The Power On Reset (PORB) pin resets the device if forced Low for a power-on-reset to be initiated. The reset is asynchronous, the minimum low pulse width is 5 ns. Reset is needed to initialize all of the register values to their defaults. Asserting Reset (POR) is required at power on, and may be re-asserted at any time to restore defaults. This is implemented most simplistically by an external capacitor to GND along with the internal pull-up resistor. The ACS8515 is held in a reset state for 250 ms after the PORB pin has been pulled High. In normal operation PORB should be held High. Holdover freezes the DPLL at the current frequency (as reported by the sts_curr_inc_offset register). The proportional DPLL path is ignored so that recent signal disturbances do not affect the Holdover frequency value. Revision 1.05/December 2002 ãSemtech Corp. 33 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Figure 10. Automatic Mode Control State Diagram (1)Reset free-run select ref (state 001) (2) all refs evaluated & at least one ref valid (3) no valid standby ref & (main ref invalid or out of lock >100s) Reference sources are flagged as ’valid’ when active, ’in-band’ and have no phase alarm set. (4) valid standby ref & [ main ref invalid or (higher-priority ref valid & in revertive mode) or out of lock >100s] pre-locked w ait for up to 100s (state 110) (5) selected ref phase locked All sources are continuously checked for activity and frequency. Only the main source is checked for phase. A phase lock alarm is only raised on a reference when that reference has lost phase whilst being used as the main reference. The micro-processor can reset the phase lock alarm. A source is considered to have phase locked when it has been continuously in phase lock for between 1 and 2 seconds locked keep ref (state 100) (10) selected source phase locked (9) valid standby ref & [ main ref invalid or (higher-priority ref valid & in revertive mode) ] pre-locked2 w ait for up to 100s (state 101) (12) valid standby ref & (main ref invalid or out of lock >100s) (15) valid standby ref & [ main ref invalid or (higher-priority ref valid & in revertive mode) or out of lock >100s] Revision 1.05/December 2002 ãSemtech Corp. (8) phase regained within 100s (6) no valid standby ref & main ref invalid (7) phase lost on main ref Lost phase w ait for up to 100s (state 111) (11) no valid standby ref & (main ref invalid or out of lock >100s) holdover select ref (state 010) (13) no valid standby ref & (main ref invalid or out of lock >100s) (14) all refs evaluated & at least one ref valid 34 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Electrical Specification Important Note: The Absolute Maximum Ratings are stress ratings only, and functional operation of the device at conditions other than those indicated in the Operating Conditions sections of this specification are not implied. Exposure to the absolute maximum ratings for an extended period may reduce the reliability or useful lifetime of the product. Table 12. Absolute Maximum Ratings PA RA MET ER SYM B OL MIN MA X U N IT S Sup p ly Voltage V DD, V D+, V A1+,V A2+ V DD -0.5 3.6 V Inp ut Voltage (non-sup p ly p ins) V in - 5.5 V Outp ut Voltage (non-sup p ly p ins) Vout - 5.5 V TA -40 85 °C Tstor -50 150 °C A mb ient Op erating Temp erature Range Storage Temp erature Table 13. Operating Conditions PA RA MET ER SYM B OL MIN T YP MA X U N IT S Pow er Sup p ly (d c voltage) V DD, V D+,VA 1+, VA 2+, V DD_DIFF V DD 3.0 3.3 3.6 V Pow er Sup p ly (d c voltage) V DD5 V DD5 3.0 3.3/5.0 5.5 V TA -40 - 85 °C Typ ical - one 19 MHz outp ut Maximum - 190 mA b efore s/w initialisation, 150 mA after s/w intialisation IDD - 110 190/150 mA Total p ow er d issip ation PTOT - 360 685 mW A mb ient Temp erature Range Sup p ly Current Table 14. DC Characteristics: TTL Input Pad Across all operating conditions, unless otherwise stated PA R A M E T E R SYM B OL MIN T YP MA X U N IT S V in High V ih 2.0 - - V Vin Low V il - - 0.8 V Inp ut Current Ii n - - 10 µA Revision 1.05/December 2002 ãSemtech Corp. 35 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 15. DC Characteristics: TTL Input Pad with Internal Pull-up Across all operating conditions, unless otherwise stated PA R A M E T E R SYM B OL MIN T YP MA X U N IT S V in High V ih 2.0 - - V Vin Low V il - - 0.8 V Pull-up Resistor PU 30 - 80 kW Inp ut Current Ii n - - 120 µA Table 16. DC Characteristics: TTL Input Pad with Internal Pull-down Across all operating conditions, unless otherwise stated PA R A M E T E R SYM B OL MIN T YP MA X U N IT S V in High V ih 2.0 - - V Vin Low V il - - 0.8 V Pull-d ow n Resistor PD 30 - 80 kW Inp ut Current Ii n - - 120 µA Table 17. DC Characteristics: TTL Output Pad Across all operating conditions, unless otherwise stated PA R A M E T E R SYM B OL MIN T YP MA X U N IT S Vout Low Iol = 4mA Vol 0 - 0.4 V Vout High Ioh = 4mA Voh 2.4 - Drive Current ID - - Revision 1.05/December 2002 ãSemtech Corp. 36 V 4 mA www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 18. DC Characteristics: PECL Input/Output Pad Across operating conditions, unless otherwise stated PA R A M E T E R SYM B OL MIN T YP MA X U N IT S V ILPECL V DD-2.5 - V DD-0.5 V Differential inp uts (N ote 1) V IHPECL V DD-2.4 - V DD-0.4 V Inp ut Differential voltage V IDPECL 0.1 - 1.4 V V ILPECL_S V DD-2.4 - V DD-1.5 V V IHPECL_S V DD-1.3 - V DD-0.5 V IIHPECL -10 - +10 µA IILPECL -10 - +10 µA V OLPECL V DD-2.10 - V DD-1.62 V V OHPECL V DD-1.25 - V DD-0.88 V V ODPECL 580 - 900 mV PECL Inp ut Low voltage Differential inp uts (N ote 1) PECL Inp ut High voltage PECL Inp ut Low voltage Single end ed inp ut (N ote 2) PECL Inp ut High voltage Single end ed inp ut (N ote 2) Inp ut High current Inp ut d ifferential voltage V ID = 1.4v Inp ut Low current Inp ut d ifferential voltage V ID = 1.4v PECL Outp ut Low voltage (N ote 3) PECL Outp ut High voltage (N ote 3) PECL Outp ut Differential voltage (N ote 1) Notes for Table 18 Unused differential input ports should be left floating and set in LVDS mode, or the positive and negative inputs tied to VDD and GND respectively. Note 1. Assuming a differential input voltage of at least 100 mV. Note 2. Unused differential input terminated to VDD-1.4 V. Note 3. With 50 W load on each pin to VDD-2 V . i.e. 82 W to GND and 130 W to VDD. Revision 1.05/December 2002 ãSemtech Corp. 37 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Figure 11. Recommended Line Termination for PECL Input/Output Ports V DD 8kHz, 1.544/2.048, 6.48, 19.44, 38.88, 51.84, 77.76 or 155.52 MHz ZO=50Ω 130R SEC1_POS 130R 82R ZO=50Ω V DD SEC1_NEG 82R ZO=50Ω 130R O1POS GND ZO=50Ω 130R 82R 19.44, 38.88, 155.52, 311.04 MHz & DIG1 O1NEG V DD 82R 8kHz, 1.544/2.048, 6.48, 19.44, 38.88, 51.84, 77.76 or 155.52 MHz ZO=50Ω 130R SEC2_POS ZO=50Ω GND 130R 82R SEC2_NEG VDD = +3.3 V 82R GND Table 19. DC Characteristics: LVDS Input/Output Pad Across all operating conditions, unless otherwise stated PA R A M E T E R LV DS Inp ut voltage range Differential inp ut voltage = 100 mV LV DS Differential inp ut th resh old LV DS Inp ut Differential voltage SYM B OL MIN T YP MA X U N IT S V VRLVDS 0 - 2.40 V VDITH -100 - +100 mV VIDLVDS 0.1 - 1.4 V R T E RM 95 100 105 W V OHLVDS - - 1.585 V V OLLVDS 0.885 - - V V ODLVDS 250 - 450 mV V DOSLVDS - - 25 mV V OSLVDS 1.125 - 1.275 V LV DS Inp ut termination resistance Must b e p laced externally across th e LV DS+/- inp ut p ins of A CS8515. Resistor sh ould b e 100 oh m w ith 5% tolerance LV DS Outp ut h igh voltage (N ote 1) LV DS Outp ut low voltage (N ote 1) LV DS Differential outp ut voltage (N ote 1) LV DS Ch arge in magnitud e of d ifferential outp ut voltage for comp limentary states (N ote 1) LV DS outp ut offset voltage Temp erature = 25°C (N ote 1) Note 1. With 100 W load between the differential outputs. Revision 1.05/December 2002 ãSemtech Corp. 38 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Figure 12. Recommended Line Termination for LVDS Input/Output Ports 8kHz, 1.544/2.048, 6.48, 19.44, 38.88, 51.84, 77.76 or 155.52 MHz ZO=50Ω SEC1_POS ZO=50Ω 100R SEC1_NEG ZO=50Ω O1POS ZO=50Ω 8kHz, 1.544/2.048, 6.48, 19.44, 38.88, 51.84, 77.76 or 155.52 MHz 100R 19.44, 38.88, 155.52, 311.04 MHz & DIG1 O1NEG ZO=50Ω SEC2_POS ZO=50Ω 100R SEC2_NEG Table 20. DC Characteristics: Output Jitter Generation (Test definition G.813) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. U I SP E C U I M E A S U R E M E N T O N A C S 8515 REV 2 TE S T D E F I N I T I O N FI L T E R U SE D G.813 for 155.52 MHz op tion 1 500 Hz to 1.3 MHz UIpp = 0.5 0.058 (N ote 2) G.813 for 155.52 MHz op tion 1 65 kHz to 1.3 MHz UIpp = 0.1 0.048 (N ote 3) 0.048 (N ote 2) 0.053 (N ote 4) 0.053 (N ote 5) 0.058 (N ote 6) 0.053 (N ote 7) G.813 for 155.52 MHz op tion 2 12 kHz to 1.3 MHz UIpp = 0.1 0.053 (N ote 2) 0.058 (N ote 3) 0.057 (N ote 8) 0.055 (N ote 9) 0.057 (N ote 10) 0.057 (N ote 11) 0.057 (N ote 12) 0.053 (N ote 13) G.813 & G.812 for 2.048 MHz op tion 1 UIpp = 0.05 20 Hz to 100 kHz Revision 1.05/December 2002 ãSemtech Corp. 39 0.046 (N ote 14) www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 21. DC Characteristics: Output Jitter Generation (Test definition G.812) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. TE S T D E F I N I T I O N FI L T E R U SE D U I SP E C U I M E A S U R E M E N T O N A C S 8515 REV 2 G.812 for 1.544 MHz 10 Hz to 40 kHz UIpp = 0.05 0.036 (N ote 14) G.812 for 155.52 MHz electrical 500 Hz to 1.3 MHz UIpp = 0.5 0.058 (N ote 3) G.812 for 2.048 MHz electrical 65 kHz to 1.3 MHz U Ip p = 0.075 0.048 (N ote 3) Table 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. TE S T D E F I N I T I O N FI L T E R U SE D U I SP E C U I M E A S U R E M E N T O N A C S 8515 REV 2 ETS-300-462-3 for 2.048 MHz SEC 20 Hz to 100 kHz UIpp = 0.5 0.046 (N ote 14) ETS-300-462-3 for 2.048 MHz SEC (Filter sp ec 49 Hz to 100 kHz) 20 Hz to 100 kHz UIpp = 0.2 0.046 (N ote 14) ETS-300-462-3 for 2.048 MHz SSU 20 Hz to 100 kHz UIpp = 0.05 0.046 (N ote 14) ETS-300-462-3 for 155.52 MHz 500 Hz to 1.3 MHz UIpp = 0.5 0.058 (N ote 3) ETS-300-462-3 for 155.52 MHz 65 kHz to 1.3 MHz UIpp = 0.1 0.048 (N ote 3) Revision 1.05/December 2002 ãSemtech Corp. 40 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 23. DC Characteristics: Output Jitter Generation (Test definition GR-253-CORE) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. TE S T D E F I N I T I O N FI L T E R U SE D U I SP E C U I M E A S U R E M E N T O N A C S 8515 REV 2 GR-253-CORE net i/f, 51.84 MHz 100 Hz to 400 kHz UIpp = 1.5 0.022 (N ote 3) GR-253-CORE net i/f, 51.84 MHz (Filter sp ec 20 kHz to 400 kHz) 18 kHz to 400 kHz UIpp = 0.15 0.019 (N ote 3) GR-253-CORE net i/f, 155.52 MHz 500 Hz to 1.3 MHz UIpp = 1.5 0.058 (N ote 3) GR-253-CORE net i/f, 155.52 MHz 65 kHz to 1.3 MHz UIpp = 0.15 0.048 (N ote 3) UIpp = 0.1 0.058 (N ote 3) UIrms = 0.01 0.006 (N ote 3) UIpp = 0.1 0.017 (N ote 3) UIrms = 0.01 0.003 (N ote 3) UIpp = 0.1 0.036 (N ote 14) UIrms = 0.01 0.0055 (N ote 14) GR-253-CORE cat II elect i/f, 155.52 MHz 12 kHz to 1.3 MHz GR-253-CORE cat II elect i/f, 51.84 MHz 12 kHz to 400 kHz GR-253-CORE DS1 i/f, 1.544 MHz 10 Hz to 40 kHz Table 24. DC Characteristics: Output Jitter Generation (Test definition AT&T 62411) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. TE S T D E F I N I T I O N FI L T E R U SE D U I SP E C U I M E A S U R E M E N T O N A C S 8515 REV 2 AT&T 62411 for 1.544 MHz (Filter sp ec 10 Hz to 8 kHz) 10 Hz to 40 kHz UIrms = 0.02 0.0055 (N ote 14) AT&T 62411 for 1.544 MHz 10 Hz to 40 kHz UIrms = 0.025 0.0055 (N ote 14) AT&T 62411 for 1.544 MHz 10 Hz to 40 kHz UIrms = 0.025 0.0055 (N ote 14) AT&T 62411 for 1.544 MHz Broad b and UIrms = 0.05 0.0055 (N ote 14) Revision 1.05/December 2002 ãSemtech Corp. 41 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 25. DC Characteristics: Output Jitter Generation (Test definition G.742) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. TE S T D E F I N I T I O N FI L T E R U SE D U I SP E C U I M E A S U R E M E N T O N A C S 8515 REV 2 G.742 for 2.048 MHz DC to 100 kHz UIpp = 0.25 0.047 (N ote 14) G.742 for 2.048 MHz (Filter sp ec 18 kHz to 100 kHz) 20 Hz to 100 kHz UIpp = 0.05 0.046 (N ote 14) G.742 for 2.048 MHz 20 Hz to 100 kHz UIpp = 0.05 0.046 (N ote 14) Table 26. DC Characteristics: Output Jitter Generation (Test definition TR-NWT-000499) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. TE S T D E F I N I T I O N FI L T E R U SE D U I SP E C U I M E A S U R E M E N T O N A C S 8515 REV 2 TR-N WT-000499 & G.824 for 1.544 MHz 10 Hz to 40 kHz UIpp = 5.0 0.036 (N ote 14) TR-N WT-000499 & G.824 for 1.544 MHz (Filter sp ec 8 kHz to 40 kHz) 10 Hz to 40 kHz UIpp = 0.1 0.036 (N ote 14) Table 27. DC Characteristics: Output Jitter Generation (Test definition GR-1244-CORE) Across all operating conditions, unless otherwise stated Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905. TE S T D E F I N I T I O N GR-1244-CORE for 1.544 MHz FI L T E R U SE D U I SP E C >10 Hz Revision 1.05/December 2002 ãSemtech Corp. UIpp = 0.05 42 U I M E A S U R E M E N T O N A C S 8515 REV 2 0.036 (N ote 14) www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Notes for tables 20 - 227 Note 1. Filter used is that defined by test definition unless otherwise stated Note 2. 5 Hz bandwidth, 19.44 MHz input, direct lock Note 3. 5 Hz bandwidth, 19.44 MHz input, 8 kHz lock Note 4. 20 Hz bandwidth, 19.44 MHz input, direct lock Note 5. 20 Hz bandwidth, 19.44 MHz input, 8 kHz lock Note 6. 10 Hz bandwidth, 19.44 MHz input, direct lock Note 7. 10 Hz bandwidth, 19.44 MHz input, 8 kHz lock Note 8. 2.5 Hz bandwidth, 19.44 MHz input, direct lock Note 9. 2.5 Hz bandwidth, 19.44 MHz input, 8 kHz lock Note 10. 1.2 Hz bandwidth, 19.44 MHz input, direct lock Note 11. 1.2 Hz bandwidth, 19.44 MHz input, 8 kHz lock Note 12. 0.6 Hz bandwidth, 19.44 MHz input, direct lock Note 13. 0.6 Hz bandwidth, 19.44 MHz input, 8 kHz lock Note 14. 5 Hz bandwidth, 2.048 MHz input, 8 kHz lock Figure 13. Input/Output Timing 7\SLFDO ,QSXW2XWSXW 'HOD\ 7\SLFDO N+]LQSXW 2XWSXW QV 3KDVH $OLJQPHQW N+]RXWSXW N+] 0+]LQSXW N+] QV WRQV 0+]RXWSXW 7 WRQV 0XOWLSOHVKDYHWKH VDPHRIIVHW 0+]LQSXW ( WRQV 0XOWLSOHVKDYHWKH VDPHRIIVHW WRQV 0+]RXWSXW 0+] WRQV 0+] WRQV 0+] WRQV 0+] WRQV 0+] WRQV 0+]LQSXW WRQV 0+]RXWSXW 0+]LQSXW WRQV 0+]RXWSXW $GGLWLRQDOGHOD\ IRUWKLVRXWSXW 0+]LQSXW 0+] WRQV WRQV 0+]RXWSXW 0+] QV 0+] QV 0+]LQSXW WRQV 0+]RXWSXW Revision 1.05/December 2002 ãSemtech Corp. 43 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Microprocessor Interface Timing The device has a Serial microprocessor interface. The combined minimum High and Low times for SCLK define the maximum clock rate. For Write access this is 2.77 MHz (360 ns). For Read access the maximum SCLK rate is slightly slower and is affected by the setting of CLKE, being either 2.0 MHz (500 ns) or 1 MHz (1 us). This mismatch in rates is caused by the sampling technique used to detect the end of the address field in Read mode. It takes up to 3 cycles of an internal 6.40 MHz clock to start the Read process following receipt of the final address bit. This is 468 ns. The Read data is then decoded and clocked out onto SDO directly using SCLK. With CLKE=1, the falling edge of SCLK is used to clock out the SDO. With CLKE=0, the rising edge of SCLK is used to clock out the SDO. A minimum period of 500 ns (468 capture plus 32 decode) is required between the final address bit and clocking it out onto SDO. This means that to guarantee the correct operation of the Serial interface, with CLKE=0, SCLK has a maximum clock rate of 2 MHz. With CLKE=1, SCLK has a maximum clock rate of 1 MHz. SCLK is not required to run between accesses (i.e., when CSB = 1). The following Figures show the timing diagrams for Write and Read access for this mode. Figure 14. Read Access Timing CLKE = 0; SDO data is clocked out on the rising edge of SCLK CSB tsu2 tpw2 th2 SCLK th1 tsu1 _ SDI R/W tpw1 A0 A1 A2 A3 A4 A5 A6 td1 SDO Output not driven, pulled low by internal resistor td2 D0 D1 D2 D3 D4 D5 D6 D7 CLKE = 1; SDO data is clocked out on the falling edge of SCLK CSB th2 SCLK _ SDI R/W A0 A1 A2 A3 A4 A5 A6 td1 SDO Output not driven, pulled low by internal resistor td2 D0 D1 D2 D3 D4 D5 D6 D7 F8525D_013ReadAccSerial_01 Revision 1.05/December 2002 ãSemtech Corp. 44 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 28. Read Access Timing S y m b ol P ar am e t e r MIN T YP MA X 0 ns - - 160 ns - - tsu1 Setup SDI valid to SCLKrising edge tsu2 Setup CSBfalling edge to SCLKrising edge td 1 Delay SCLKrising edge ( SCLKfalling edge for CLKE = 1) to SDO valid - - 17 ns td 2 Delay CSBrising edge to SDO h igh -Z - - 10 ns tp w 1 SCLK low time CLKE = 0 CLKE = 1 250 ns 500 ns - - tp w 2 SCLK h igh time CLKE = 0 CLKE = 1 250 ns 500 ns - - th 1 Hold SDI valid after SCLKrising edge 170 ns - - th 2 Hold CSB low after SCLKrising edge, for CLKE = 0 Hold CSB low after SCLKfalling edge, for CLKE = 1 5 ns - - tp Time b etw een consecutive accesses ( CSBrising edge to CSBfalling edge) 160 ns - - Figure 15. Write Access Timing CSB tsu2 tpw2 th2 SCLK th1 tsu1 _ SDI SDO R/W tpw1 A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7 Output not driven, pulled low by internal resistor F8525D_014WriteAccSerial_01 Table 29. Write Access Timing S y m b ol P ar am e t e r MIN T YP MA X 0 ns - - tsu1 Setup SDI valid to SCLKrising edge tsu2 Setup CSBfalling edge to SCLKrising edge 160 ns - - tp w 1 SCLK low time 180 ns - - tp w 2 SCLK high time 180 ns - - th 1 Hold SDI valid after SCLKrising edge 170 ns - - th 2 Hold CSB low after SCLKrising edge 5 ns - - tp Time b etw een consecutive accesses (CSBrising edge to CSBfalling edge) 160 ns - - Revision 1.05/December 2002 ãSemtech Corp. 45 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Package Information Figure 16. LQFP Package D 2 D1 1 3 AN2 AN3 1 Section A-A R1 S E 2 R2 B AN1 E1 1 A A B 3 AN4 L 4 L1 5 1 2 3 b Section B-B 7 e A A2 c c1 7 7 Seating plane A1 6 b1 7 b 8 Notes 1 The top package body may be smaller than the bottom package body by as much as 0.15 mm. 2 To be determined at seating plane. 3 Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch. 4 Details of pin 1 identifier are optional but will be located within the zone indicated. 5 Exact shape of corners can vary. 6 A1 is defined as the distance from the seating plane to the lowest point of the package body. 7 These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 8 Shows plating. Revision 1.05/December 2002 ãSemtech Corp. 46 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Table 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16) 64 L Q F P P ac k ag e D i m e n si o n s in mm D/E D 1/ E 1 Mi n N om Max 12.00 10.00 A A1 A2 1.40 0.05 1.35 1.50 0.10 1.40 1.60 0.15 1.45 e 0.50 AN1 AN2 AN3 AN4 R1 R2 L 11° 11° 0° 0° 0.08 0.08 0.45 12° 12° - 3.5° - - 0.60 13° 13° - 7° - 0.20 0.75 L1 1.00 (ref) S b b1 c c1 0.20 0.17 0.17 0.09 0.09 - 0.22 0.20 - - - 0.27 0.23 0.20 0.16 Thermal Conditions The device is rated for full temperature range when this package is used with a 4 layer or more PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum operating temperature must be reduced when the device is used with a PCB with less than these requirements. Figure 17. Typical 64 Pin LQFP Footprint 14.3 mm 13.0 mm (1) 10.6 mm 1.85 mm Pitch 0.5 mm Width 0.3 mm Notes (1) Solderable to this limit. Square package - dimensions apply in both X and Y directions. Typical example - the user is responsible for ensuring compatibility with PCB manufacturing process, etc. Revision 1.05/December 2002 ãSemtech Corp. 47 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Application Information Figure 18. Simplified Application Schematic Revision 1.05/December 2002 ãSemtech Corp. 48 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Appendix A Rev2.1 Changes Described Summary This section summarizes the minor changes and improvements made to the ACS8515 from Rev2.0 to Rev2.1. The bulk of these changes are designed to remove the need for software work arounds associated with Phase Build Out. Two new features have been added, necessitating changes to the control software. These are described in detail below. Input Edge Alignment for 8k locking mode An additional bit in the register cnfg_control1 (Bit 2) has been allocated to select which edge of the input reference to lock to when the device is configured in 8k locking mode. This bit, when set to one ensures that the rising edge of the output clock phase locks to the rising edge of the input clock, when 8k locking mode is used on the input. Low Jitter n x E1/DS1 Mode A second bit of the cnfg_control1 register has been allocated to controlling what frequency is fed into the APLL. This allows the user to switch from the normal 77.76MHz to twice the dig2 output frequency. This has the effect of replacing the normal OC/STM outputs with multiples of the E1 or DS1 rate. The E1/DS1 choice is controlled by the SONET/SDH bit in the cnfg_mode register. Revision History Table 31. Changes from Revision 1.04 to 1.05 December 2002. I t em S e ct i o n P ag e D e scr i p t i o n 1 Serial Mode 44 Up d ated Serial mod e d escrip tion 2 8k Ed ge Polarity 18, 49 Up d ated Register 03 b it 2 and Summary section Revision 1.05/December 2002 ãSemtech Corp. 49 www.semtech.com ACS8515 Rev2.1 LC/P FINAL ADVANCED COMMUNICATIONS Ordering Information PA R T N U M B E R DE SCR I P T I O N A CS8515 Rev2.1 SON ET/SDH Line Card Protection, 64 p in LQFP Disclaimers Life support - This product is not designed or intended for use in life suport equipment, devices or systems, or other critical applications. This product is not authorized or warranted by Semtech Corporation for such use. Right to change - Semtech Corporation reserves the right to make changes, without notice, to this product. Customers are advised to obtain the latest version of the relevant information before placing orders. Compliance to relevant standards - Operation of this device is subject to the users implementation, and design practices. The user is responsible to ensure equipment using this device is compliant to any relevant standards. For additional information, contact the following: Semtech Corporation Advanced Communications Products E-Mail: [email protected] [email protected] Internet: http://www.semtech.com USA: Mailing Address: P.O. Box 6097, Camarillo, CA 93011-6097 Street Address: 200 Flynn Road, Camarillo, CA 93012-8790 Tel: +1 805 498 2111, Fax: +1 805 498 3804 FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, Taiwan, R.O.C. Tel: +886 2 2748 3380, Fax: +886 2 2748 3390 EUROPE: Units 2 & 3 Park Court, Premier Way, Abbey Park Industrial Estate, Romsey, Hampshire, SO51 9DN, UK Tel: +44 1794 527 600, Fax: +44 1794 527 601 ISO9001 CERTIFIED Revision 1.05/December 2002 ãSemtech Corp. 50 www.semtech.com