ETC CXA3067AM

CXA3067AM
Wide Band FSK Receiver
Description
The CXA3067AM is an integrated circuit designed
for CATV wide band FSK receiver. This monolithic
IC is composed of local oscillator, double balanced
mixer, limiter, FM detector, data shaper and PLL
circuit in a single chip.
Features
• Built in PLL
• 3 bits 3 states frequency selection
• Applied for 4 reference frequency
(7.15625/7.15909/14.3125/14.31818 MHz)
• Compatible with external reference clock and X’tal
oscillator
• Balanced oscillator and double balanced mixer for
low L.O. leakage
• Low power consumption
• SOP 30 pin package
30 pin SOP (Plastic)
Absolute Maximum Ratings (Ta=25 °C)
• Supply voltage
VCC
–0.3 to +5.5
• Storage temperature
Tstg –55 to +150
Operating Conditions
• Supply voltage
• Operating temperature
VCC
Topr
4.75 to 5.3
–25 to +75
V
°C
V
°C
Function
• Oscillator
• Mixer
• PLL
• Limiter
• FSK detector
• Data shaper
Applications
FSK receiver for CATV
Structure
Bipolar silicon monolithic IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
—1—
E99Y21A22
CXA3067AM
FSET2
FSET3
REFSW
MIXIN
RFVCC
RFEM
RFIN
RFGND
IFGND
IFVCC
POUT
NOUT
HP2
HP1
DETIN
Pin configuration and Block diagram
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
V.REG
Bais for pll buf;
buf of pll and mix
DATA
SHAPER
AMP
FREQ
SELECT
MIX
MAIN
DIVIDER
LPF
REF
DIVIDER
PHASE
DET
PHASE
DET
CHARGE
PUMP
SCALER
OSC
LIM
FSET1
RDSW
CPLF
VT
OSC1
9
10
11
12
13
14
15
LIMOUT
XTAL
8
GND
7
BYP
6
LIMIN
5
DVCC
4
MIXOUT
3
DGND
2
OSC2
1
REFIN
REF
OSC
—2—
CXA3067AM
Pin Description and Equivalent Circuit
Pin
No.
1
Symbol
REFIN
Typical
voltage (V)
Equivalent circuit
Description
DVCC
11
3.4
External clock input
and X’tal connection for
reference oscillator.
1
500
2
2
XTAL
4.0
9
X’tal connection for
reference oscillator.
DGND
11 DVCC
20k
3
FSET1
2.5
(OPEN)
3
20k
9 DGND
11 DVCC
20k
4
RDSW
3.0
(OPEN)
4
25k
30k
9 DGND
11
5
CPLF
The pin for channel selection.
The condition of pin 3 has
3 states.
Connect to 5 V source for “Hi”
selection and connect to GND for
“Low” selection and leave open.
Reference frequency selection.
Connect to GND when reference
frequency is 14.3125 MHz or
14.31818 MHz and leave open
when reference frequency is
7.15625 MHz or 7.15909 MHz.
DVCC
Charge pump output.
Connect to loop filter.
10k
2.0
100
5
100
6
6
VT
Connect to loop filter.
OSC tuning voltage output.
0.3 to VCC
9
DGND
—3—
CXA3067AM
Pin
No.
Symbol
Typical
voltage (V)
Equivalent circuit
7
7
OSC1
Description
8
4.0
26 RFVCC
500
500
3k
Oscillator.
3k
8
OSC2
4.0
23 RFGND
9
DGND
0
PLL circuit GND.
26 RFVCC
330
330
10
10
MIXOUT
Mixer output.
Output impedance is 330 Ω.
4.0
23 RFGND
11
DVCC
5
PLL circuit power supply.
21
12
LIMIN
IFVCC
2.4
12
330
Limiter input.
Input impedance is 330 Ω.
13
10k
13
BYP
10k
2.4
22
IFGND
14
GND
0
GND.
21 IFVCC
15
LIMOUT
3.1
15
22 IFGND
—4—
Limiter output.
CXA3067AM
Pin
No.
Symbol
Typical
voltage (V)
Equivalent circuit
Description
21 IFVCC
32k
16
16
DETIN
Detector input.
Connect to a discriminator.
5.0
22 IFGND
21 IFVCC
1k
17
HP1
2.1
17
10k
22 IFGND
21 IFVCC
18
10k
18
HP2
A capacitor for DC decoupling
and LPF are connected between
pins 17 and 18.
2.3
10k
2k
22 IFGND
4.1
(Hi)
19
21 IFVCC
50
19
NOUT
0.22
(Low)
4.1
(Hi)
20
22 IFGND
21 IFVCC
20
POUT
IFVCC
Pins 19 and 20 are each
other reversal condition.
50
0.22
(Low)
21
FSK data output.
22 IFGND
Power supply for limiter, detector,
data shaper circuit.
5.0
—5—
CXA3067AM
Pin
No.
Symbol
Typical
voltage (V)
22
IFGND
0
23
RFGND
0
24
RFIN
1.5
Equivalent circuit
Description
GND for limiter, detector,
data shaper circuit.
GND for RFamp, Mixer,
oscillator circuit.
26
RFamp input.
RFVCC
27
MIX
25
RFEM
0.7
24
25
5k
Gain adjustment.
Normally, by-pass capacitor is
connected at pin 25 to GND.
100
23
27
MIXIN
5.0
26
RFVCC
5.0
RFGND
11 DVCC
28
REFSW
0.7
(OPEN)
28
9
DGND
11 DVCC
20k
29
FSET3
2.5
(OPEN)
29
20k
9 DGND
11 DVCC
20k
30
FSET2
2.5
(OPEN)
30
20k
9 DGND
—6—
RFamp output and mixer input.
Power supply for RFamp, mixer,
oscillator circuit.
Reference frequency selection.
Decoupling capacitor is
connected at pin 28 to GND
when reference frequency is
7.15909 MHz or 14.31818 MHz
and pin 28 is connected to GND
directly when reference
frequency is 7.15625 MHz or
14.3125 MHz.
The pin of channel selection.
The condition of pin 29 has
3 states.
Connect to 5 V source for “Hi”
selection and connect to GND for
“Low” selection and leave open.
The pin of channel selection.
The condition of pin 30 has
3 states.
Connect to 5 V source for “Hi”
selection and connect to GND for
“Low” selection and leave open.
CXA3067AM
Electrical Characteristics
See Electrical Characteristics Test Circuit (VCC=5.0 V, Ta=+25 °C)
Item
RFVCC
Current consumption
IFVCC
Current consumption
DVCC
Current consumption
Circuit
Symbol
Pin No.
RFICC
26, 27
1
IFICC
21
1
DICC
11
1
Input sensitivity
Vi1
2
Input level
Vil
2
Duty cycle
DATA SHAPER
input level
Local OSC leakage
from RF input 1
Local OSC leakage
from RF input 2
∗1
Conditions
No.
|TD|
V18
18
2
LOleak1
24
2
RFVCC
V1=5 V
IFVCC
V2=5 V
DVCC V4=1 V
V3=5 V
fMOD=10 kHz,
fDEV=±75 k, ±50 kHz
Jitter is 1 % for fMOD
50 Ω Termination
RF=53.35 M to 302 MHz
frequency offset=±50 kHz
fMOD=10 kHz,
fDEV=±75 k, ±50 kHz
Jitter is 1 % for fMOD
50 Ω Termination
RF=53.35 M to 302 MHz
frequency offset=±50 kHz
fMOD=10 kHz
fDEV=±75 k, ±50 kHz
Frequency offset=±50 kHz
fMOD=10 kHz
fDEV=±75 k, ±50 kHz
Frequency offset=±50 kHz
Measurement on RFIN pin
Min.
Typ.
Max.
Unit
17
28
39
mA
4
9
14
mA
3.5
7
10
mA
–32
130
dBmV
+20
dBmV
0
6
%
260
1000
mVpp
–10
dBmV
–5
dBmv
SW1 : ON
RF=53.35 M to 169.5 MHz
Measurement on RFIN pin
LOleak2
24
2
SW1 : ON
RF=221.95 M to 302 MHz
27
1
RFVCC V1=5 V
4.5
7
10
mA
Grf1
24→27
3
RF=108.5 M
28
34
37
dB
RFamp input resistance
rπ (rf)
24
RFamp input capacitance
Cπ (rf)
24
Mixer input resistance
rπ (mix)
27
Mixer input capacitance
Cπ (mix)
27
Mixer voltage gain
Gmix
27→10
4
∗2 NF
RFamp+Mixer noise figure
rfmix
24→10
5
RFamp bias current
Irf
RFamp voltage gain
Note)
0 dBmV=1 mV, 0 dBµV=1 µV
I=7.5 mA, RF=100 MHz
1.46
kΩ
3.4
pF
RF=100 MHz
2.3
kΩ
RF=100 MHz
3.4
pF
Load Resistance=0 Ω
l=7.5 mA, RF=100 MHz
Load Resistance=0 Ω
RF=108.5 MHz→
9
IF=10.7 MHz
RF=108.5 MHz→
6
IF=10.7 MHz
∗1)
T2
0 dBmV=60 dBµV
T1
0 dBm=47 dBmV
13
T1–T2
T1+T2
∗2) Noise figure is uncorrected for image.
—7—
17
dB
dB
× 100 (%)
CXA3067AM
Item
Symbol
Pin No.
Mixer output resistance
rL (mix)
10
Limiter input resistance
rπ (lim)
12
Limiter voltage gain
Glim
15
FSK Data
Circuit
6
OUTH
19, 20
2
OUTL
19, 20
2
FSK Data output rise time
Tr
19, 20
2
FSK Data output fall time
Tf
19, 20
2
Oscillation frequency
OSC
VT output voltage range
VT
output voltage “H”
FSK Data
output voltage “L”
Conditions
Min.
Typ.
Max.
Unit
IF=10.7 MHz
222
332
442
Ω
IF=10.7 MHz
222
332
442
Ω
No.
IF=10.7 MHz
Load Capacitance=2 pF
Load Resistance=10 kΩ,
fMOD=10 kHz, fDEV=±75 kHz,
±50 kHz
Load Capacitance=2 pF
Load Resistance=10 kΩ,
fMOD=10 kHz, fDEV=±75 kHz,
±50 kHz
Load Capacitance=2 pF
Load Resistance=10 kΩ,
fMOD=10 kHz, fDEV=±75 kHz,
±50 kHz
Load Capacitance=2 pF
Load Resistance=10 kΩ,
fMOD=10 kHz, fDEV=±75 kHz,
±50 kHz
3.8
70
dB
4.1
V
0.22
0.6
V
12
30
nsec
12
30
nsec
315
MHz
7, 8
40
6
0.3
2.5
VCC
V
±25
±50
±75
µA
Source current→ SW2 : OFF
Charge pump current
Icp
5
7
SW3 : OFF
Sink current → SW2 : ON
SW3 : ON
REFCLOCK input level 1
CLK 1
1
Sin wave input
0.3
0.4
3.0
Vp-p
REFCLOCK input level 2
CLK 2
1
Square wave input
0.3
0.4
3.0
Vp-p
REFOSC loop gain
Gref
FSET1/2/3 “Hi” level
input voltage
FSET1/2/3 “Low” level
input voltage
FSET1/2/3 “Hi” level
input current
FSET1/2/3 “Low” level
input current
RDSW “Low” level
input voltage
RDSW “Low” level
input current
REFSW “Low” level
input voltage
1, 2
3
Vin2=14 MHz
30
dB
FSETVH 3, 29, 30
1
3.8
VCC
V
FSETVL 3, 29, 30
1
0
0.4
V
FSETIH
3, 29, 30
1
FSET “Hi”=V5=5 V
100
250
380
µA
FSETIL
3, 29, 30
1
FSET “Low”=V5=0 V
–380
–250
–100
µA
RDVL
4
1
0.4
V
RDIL
4
1
–43
µA
REFVL
28
1
0.4
V
0
RDSW “L”=V6=0 V
–122
0
—8—
–83
CXA3067AM
Electrical Characteristics Test Circuit
V1
5V
V2
5V
A
A
V5
A
19
18
17
16
RFGND
IFGND
OSC2
DGND
MIXOUT
DVCC
LIMIN
BYP
GND
LIMOUT
2
3
4
5
6
7
8
9
10
11
12
13
14
15
HP1
POUT
HP2
RFIN
OSC1
1
IFVCC
RFEM
VT
DETIN
20
RFVCC
21
CPLF
22
MIXIN
23
RDSW
24
REFSW
25
FSET1
26
FSET3
27
XTAL
28
FSET2
29
REFIN
30
NOUT
A
V4
1V
A
V6
A
V3
5V
Measurement : Current consumption
Measurement circuit 1
2p
1n
10n
10k
10k
2p
LIMIN
BYP
GND
LIMOUT
7
8
9
10
11
12
13
14
15
51k
HP1
NOUT
10n
2.7µ
10n
56p
1T362
51p 30
51
DETIN
DVCC
6
HP2
MIXOUT
5
POUT
IFGND
DGND
4
IFVCC
RFGND
OSC2
3
51p 30
2
10n
1
SELECTION
330
16
RFIN
17
OSC1
18
RFEM
19
VT
20
RFVCC
21
CPLF
22
MIXIN
23
RDSW
24
REFSW
25
FSET1
26
FSET3
27
XTAL
28
FSET2
29
10n
REFIN
30
Oscilloscope
10k
330n
51
10n
1n
SELECTION
10n
POS
NEG
10n
SW1
22µ
Passive
probe
10.8P
10M Oscilloscope
10 : 1
4.7n
Spectrum
analyzer
Vin
5V
10µ
51k
fref
Measurement : Input sensitivity, local osc leakage,
DATA SHAPER input level
Measurement circuit 2
FSK DATA output voltage,
rise time, fall time
—9—
CXA3067AM
10µ
5V
GV=Vout1/Vin1 (RFamp voltage gain)
GV=Vout2/Vin2 (REFOSC loop gain)
1n
10n
51
10n
Vin1
Vout1
LIMIN
BYP
GND
LIMOUT
5
6
7
8
9
10
11
12
13
14
15
51
10n
HP1
POUT
5V
Vout2
DETIN
DVCC
4
HP2
MIXOUT
3
NOUT
IFGND
DGND
2
IFVCC
RFGND
1
10n
OSC2
16
RFIN
17
OSC1
18
RFEM
19
VT
20
RFVCC
21
CPLF
22
MIXIN
23
RDSW
24
REFSW
25
FSET1
26
FSET3
27
XTAL
28
FSET2
29
REFIN
30
Vin2
Measurement : RFamp voltage gain
: REFOSC loop gain
Measurement circuit 3
Number of
5V
10µ
GV=Vout2/Vout1
windings
1.5 T
L2
0.5
3.8 φ
6.5 T
Vin
22µ
10n
1n
120p
510
10n
20
17
16
DVCC
LIMIN
BYP
GND
LIMOUT
5
6
7
8
9
10
11
12
13
14
15
10n
51p 30
1T362
51k
51
100p
3.3n
10n
Vout2
330
51k
fref
27k 30n
DETIN
MIXOUT
4
HP2
IFGND
DGND
3
NOUT
RFGND
OSC2
2
IFVCC
RFIN
OSC1
1
51p 30
RFEM
18
VT
19
RFVCC
21
CPLF
22
MIXIN
23
RDSW
24
REFSW
25
FSET1
26
FSET3
27
XTAL
28
FSET2
29
REFIN
30
10n
10n
Vout1
POUT
3φ
10n
0.5
51
L1
HP1
Coil
L1
Wire
diameter diameter
L2
Measurement : Mixer voltage gain
Measurement circuit 4
—10—
CXA3067AM
Coil
Number of
windings
L1
0.5
3φ
1.5 T
L2
0.5
3.8 φ
6.5 T
Noise Figure meter
5V
10µ
10n
Noise Source
19
17
16
IFGND
DGND
MIXOUT
DVCC
LIMIN
BYP
GND
LIMOUT
4
5
6
7
8
9
10
11
12
13
14
15
1T362
51k
51
40p
2.2µ
10n
27k 30n
10n
110p
51k
fref
HP2
10n
10n
51p 30
51p 30
10n
100p
3.3n
DETIN
RFGND
OSC2
3
NOUT
RFIN
OSC1
2
IFVCC
RFEM
VT
1
10n
RFVCC
18
HP1
20
POUT
21
CPLF
22
MIXIN
23
RDSW
24
REFSW
25
FSET1
26
FSET3
27
XTAL
28
10n
FSET2
29
10n
1n
120p
510
51
10n
22µ
REFIN
30
L1
L2
Measurement : RFamp +Mixer NF
Measurement circuit 5
10n
10µ
5V
GV=Vout/Vin
10n
22µ
10n
19
17
RFGND
IFGND
OSC2
DGND
MIXOUT
DVCC
LIMIN
BYP
GND
LIMOUT
2
3
4
5
6
7
8
9
10
11
12
13
14
15
HP2
10n
10n
330
DETIN
RFIN
OSC1
1
NOUT
RFEM
VT
16
RFVCC
18
HP1
20
POUT
21
CPLF
22
MIXIN
23
RDSW
24
REFSW
25
FSET1
26
FSET3
27
XTAL
28
FSET2
29
REFIN
30
IFVCC
10n
Vout
51
Wire
diameter diameter
Vin
Measurement : Limiter voltage gain
Measurement circuit 6
—11—
CXA3067AM
windings
10µ
5V
10n
6.5 T
BYP
GND
LIMOUT
4
5
6
7
8
9
10
11
12
13
14
15
10n
1T362
A
DETIN
10n
51p 30
100P
V4
4V
HP1
LIMIN
3
NOUT
DVCC
2
POUT
MIXOUT
1
51p 30
IFGND
16
DGND
17
RFGND
HP2
18
OSC2
19
RFIN
20
OSC1
IFVCC
21
VT
22
RFVCC
23
CPLF
24
MIXIN
25
RDSW
26
REFSW
27
FSET1
28
FSET3
29
51k
SW2
30
RFEM
1n
10n
22µ
XTAL
3.8 φ
FSET2
0.5
REFIN
L2
Number of
10n
Coil
51
Wire
diameter diameter
fref
14MHz
51k
V5
2.5V
V6
0V
L2
SW3
V7
10V
Measurement : Charge pump current
Measurement circuit 7
—12—
CXA3067AM
Function Explanation
The CXA3067AM is an integrated circuit designed for CATV wide band FSK receiver. This monolithic IC is
composed of local oscillator, double balanced mixer, limiter, FM detector, data shaper and PLL circuit in a
single chip.
The function of each other section is described below.
1. RFamp circuit
This circuit amplifies RF signal, and RF signal is input to pin 24 (RFIN).
Since pin 27 is an open collector, connect power supply through a coil which composes tune circuit or a
choke coil or a resistor.
RF signal is selected a desired frequency by this tune circuit.
The desired frequency is input to mixer circuit through coupling capacitor.
2. Mixer circuit
This is a double-balanced mixer having small leakage of local signal.
The RF signal is converted to IF signal by the signal supplied from oscillator.
The output impedance is approximately 330 Ω.
Normally, connect a ceramic filter to 10 pin (MIXOUT).
3. Local oscillator circuit
The balanced oscillator circuit with pins 7 and 8 (OSC1, OSC2).
Connect an LC resonance circuit comprising a varicap diode to pins 7 and 8.
4. PLL circuit
The PLL circuit fixes the local oscillator frequency to desired frequency.
It consists of the main divider, reference divider, phase comparator, charge pump, reference oscillator.
As stated in the accompanying document, desired frequency (channel) can be selected through the
combination of the conditions of pins 1, 29 and 30 (FSET 1; 2; 3).
As stated in the accompanying document, reference frequency can be selected through the combination
the conditions of pin 3 (RDSW) and pin 28 (REFSW).
5. Limiter circuit
This circuit amplifies the mixer IF output through ceramic filter.
For quadrature FM detection, this circuit amplifies IF signal by necessary level.
The input impedance is approximately 330 Ω.
6. Detector circuit
For quadrature FM detection, the phase of limiter output (pin 15) is shifted 90° by discriminator as the
output is input to pin 16.
7. Data shaper
This circuit output performs the waveform shaping of the demodulated FSK signal and outputs the resulting
signal as a rectangular wave.
—13—
CXA3067AM
Description of PLL Block
1. The followings “channel No.” can be selected through the combination of the conditions of pins 1, 29 and 30
(FSET 1; 2; 3).
FSET conditions have 3 states (OPEN, Hi, Low).
Channel Selection
Channel No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Local
OSC frequency
[MHz]
42.65
83.70
98.20
100.00
108.20
117.20
117.80
119.20
133.40
139.20
168.70
180.20
211.25
219.10
312.70
Receiving
frequency
[MHz]
53.35
73.00
87.50
89.30
97.50
106.50
128.50
108.50
122.70
128.50
158.00
169.50
221.95
229.80
302.00
Note) OPEN : No connect
L : Connect to GND
H : Connect to VCC
—14—
FSET 1
FSET 2
FSET 3
OPEN
L
H
OPEN
L
H
OPEN
L
H
OPEN
L
H
OPEN
L
H
OPEN
OPEN
OPEN
L
L
L
H
H
H
OPEN
OPEN
OPEN
L
L
L
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
L
L
L
L
L
L
CXA3067AM
2. The followings Reference frequency can be selected through the combination the conditions of pin 3
(RDSW) and pin 28 (REFSW).
When the pin 28 is connected to GND directly, the pin 28 is state of DCGND.
When the pin 28 is connected to GND through decoupling capacitor, the pin 28 is state of ACGND.
Reference Frequency selection
f (ref)
7.15625 MHz
7.15909 MHz
14.3125 MHz
14.31818 MHz
RDSW
OPEN
OPEN
GND
GND
REFSW
DCGND
ACGND
DCGND
ACGND
∗1
∗2
∗1
∗2
Note ∗1) Connect to GND directly.
30
29
28
27
REFSW
Note ∗2) Connect to GND through decoupling capacitor
30
29
28
REFSW
—15—
27
CXA3067AM
3. The comparison frequency is 25.021853 kHz at reference frequency 7.15625 MHz/14.3125 MHz, and
25.031783 kHz at reference frequency 7.15909 MHz/14.31818 MHz.
The frequency division ratio of the reference divider is 286.
The frequency division ratio of the scaler is 1 or 2;
When the reference frequency is 7.15625 MHz/7.15909 MHz, the frequency division ratio of the scaler is 1.
When the reference frequency is 14.3125 MHz/14.31818 MHz, the frequency division ratio of the scaler is 2.
Reference frequency=7.15625 MHz
The comparison frequency=7.15625/286=25.021853 kHz
Ch
fOSC [MHz]
Divider
512
256
128
64
32
16
8
4
2
1
1
42.65
1705
8192 4096 2048 1024
0
0
0
1
1
0
1
0
1
0
1
0
0
1
2
83.7
3345
0
0
1
1
0
1
0
0
0
1
0
0
0
1
3
98.2
3925
0
0
1
1
1
1
0
1
0
1
0
1
0
1
4
100
3997
0
0
1
1
1
1
1
0
0
1
1
1
0
1
5
108.2
4324
0
1
0
0
0
0
1
1
1
0
0
1
0
0
6
117.2
4684
0
1
0
0
1
0
0
1
0
0
1
1
0
0
7
117.8
4708
0
1
0
0
1
0
0
1
1
0
0
1
0
0
8
119.2
4764
0
1
0
0
1
0
1
0
0
1
1
1
0
0
9
133.4
5331
0
1
0
1
0
0
1
1
0
1
0
0
1
1
10
139.2
5563
0
1
0
1
0
1
1
0
1
1
1
0
1
1
11
168.7
6742
0
1
1
0
1
0
0
1
0
1
0
1
1
0
12
180.2
7202
0
1
1
1
0
0
0
0
1
0
0
0
1
0
13
211.25
8443
1
0
0
0
0
0
1
1
1
1
1
0
1
1
14
219.1
8756
1
0
0
0
1
0
0
0
1
1
0
1
0
0
15
312.7
12497
1
1
0
0
0
0
1
1
0
1
0
0
0
1
Reference frequency=7.15909 MHz
The comparison frequency=7.15909/286=25.031783 kHz
Ch
fOSC [MHz]
Divider
8192 4096 2048 1024
512
256
128
64
32
16
8
4
2
1
1
42.65
1704
0
0
0
2
83.7
3344
0
0
1
1
1
0
1
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
3
98.2
3923
0
0
0
1
1
1
1
0
1
0
1
0
0
1
4
100
3995
0
1
0
1
1
1
1
1
0
0
1
1
0
1
1
5
108.2
4323
6
117.2
4682
0
1
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
1
7
117.8
0
4706
0
1
0
0
1
0
0
1
1
0
0
0
1
8
0
119.2
4762
0
1
0
0
1
0
1
0
0
1
1
0
1
0
9
133.4
5329
0
1
0
1
0
0
1
1
0
1
0
0
0
1
10
139.2
5561
0
1
0
1
0
1
1
0
1
1
1
0
0
1
11
168.7
6739
0
1
1
0
1
0
0
1
0
1
0
0
1
1
12
180.2
7199
0
1
1
1
0
0
0
0
0
1
1
1
1
1
13
211.25
8439
1
0
0
0
0
0
1
1
1
1
0
1
1
1
14
219.1
8753
1
0
0
0
1
0
0
0
1
1
0
0
0
1
15
312.7
12492
1
1
0
0
0
0
1
1
0
0
1
1
0
0
—16—
CXA3067AM
Notes on Application
Take care of the followings because the CXA3067AM has limiter voltage gain of approximately 67 dB and uses
high frequency.
1) Separate the input pattern from the output pattern as far as possible and makes wiring short.
2) Ground the decoupling capacitor as close to pin 13 as possible.
Take care of the followings in order to reduce the jitter.
1) Insert the capacitor as close to pin 17 and 18 as possible.
2) Ground the by-pass capacitor as close to IFVCC to supply pin 16 as possible.
Take care of the following, for the purpose of the isolation of local oscillator resonance circuit and X’tal (RFF
CLOCK).
1) Separate the patterns connected pin 1 and pin 2 from the local oscillator resonance circuit.
Take care of the following, in order to reduce the phase noise.
1) Connect the loop filter as close to pins 5 and 6 as possible.
Take care of the following, in order to prevent the parasitic oscillation.
1) Connect the local oscillator resonance circuit as close to pins 7 and 8 as possible.
And compact the local oscillator resonance circuit.
The tuning voltage at the local oscillator resonance circuit.
The output voltage at pin 6 is 0.3 V to VCC.
When the oscillation frequency is the desired frequency, please the output voltage at pin 6 should be been 2.5 V.
Please decide the component value of loop filter by each system.
11
DVCC
10k
100
5
100
6
9
DGND
—17—
ACGND
DCGND
ACGND
OPEN
GND
GND
7.15909 MHz
14.3125 MHz
14.31818 MHz
14MHz
X’tal
22µ
RF INPUT
FSK DATA OUT FSK DATA OUT
10k
4
5
6
51p 30
9
8
LOCAL OSCILLATOR
51k
7
OSC2
11
10.7MHz
CERAFIL
10
12
15
56p
2.7µ
Please refer to another sheets with following circuits.
1) Tuned circuit of RFamp
2) Local osc resonance circuit
3) Loop filter
14
13
330
FIXED DISCRIMINATOR
10.7MHz
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
LOOP FILTER
SELECTION
3
2
REF CLOCK INPUT
1
51p 30
CXA3067AM
16
17
18
19
20
21
22
23
24
25
26
27
28
REFIN
FSET2
XTAL
FSET3
FSET1
REFSW
10n
RDSW
MIXIN
CPLF
RFVCC
51k
VT
29
10n
RFEM
OSC1
RFIN
51
RFGND
2p
MIXOUT
30
10n
10n
DGND
1T362
DVCC
IFGND
10µ
NEG
VCC (5V)
POS
IFVCC
10k
POUT
10k
NOUT
LIMIN
HP2
SELECTION
TUNE CIRCUIT OF RFAMP
REFSW
15p
DCGND
51
OPEN
1n
RDSW
10n
2p
10n
fref
10n
1n
330n
7.15625 MHz
4.7n
HP1
BYP
—18—
GND
DETIN
LIMOUT
Application
10n
CXA3067AM
15p
CXA3067AM
The component value of the tune circuit, local oscillator resonance circuit and loop filter.
Channel
No.
Tune circuit
of RFamp
Local oscillator
resonance circuit
Wire
diameter
1
Number of
windings
Coil
diameter
7
0.5
2.5T
3φ
330p
51p
8
30
30
1T362
510
1n
3.3n
51p
0.5
20.5T
5φ
82p
2
0.5
2.5T
3φ
3.3n
30n
27k
3.3n
30n
27k
3.3n
100p
100p
0.5
1.5T
3φ
27k
510
0.5 6.5T 3.8φ
8
30n
150p
100p
0.5
1.5T
3φ
3.3n
510
0.5 6.5T 3.8φ
7
27k
82p
100p
0.5
1.5T
3φ
30n
510
0.5 8.5T 3.8φ
6
3.3n
120p
100p
0.5
2.5T
3φ
27k
510
0.5 8.5T 3.8φ
5
30n
120p
100p
0.5
2.5T
3φ
3.3n
510
0.5 8.5T 3.8φ
4
24k
180p
100p
0.5
2.5T
3φ
39n
510
0.5 11.5T 3.8φ
3
Loop filter
30n
27k
3.3n
120p
510
0.5 6.5T 3.8φ
—19—
30n
27k
CXA3067AM
Channel
No.
Tune circuit
of RFamp
Local oscillator
resonance circuit
100p
9
1.5T
3φ
3.3n
22n
43k
2.2n
22n
47k
24p
10p
0.5T
3φ
30k
510
3.5T 3.8φ
15
30n
24p
20p
1.5T
3φ
3.3n
510
3.5T 3.8φ
14
27k
56p
27p
1.5T
3φ
30n
510
3.5T 3.8φ
13
3.3n
62p
62p
1.5T
3φ
27k
510
3.5T 3.8φ
12
33n
100p
100p
1.5T
3φ
3.3n
510
6.5T 3.8φ
11
27k
100p
100p
1.5T
3φ
30n
510
5.5T 3.8φ
10
Loop filter
2.2n
15n
68k
24p
510
2.5T 3.8φ
—20—
1.5n
CXA3067AM
Supply voltage vs. Current consumption
Frequency response RF amp voltage gain
35
40
RF BLOCK
35
30
25
RF amp gain [dB]
Current consumption [mA]
30
20
15
IF BLOCK
10
25
20
15
10
5
5
PLL BLOCK
0
4.6
4.7
4.8
4.9
5
5.1
Supply voltage [V]
5.2
5.3
0
10
5.4
Frequency response limiter voltage gain
100
Reception frequency [MHz]
1000
Local oscillation leakage at RFIN pin
90
–55
–50
80
–60
Leakage level [dBm]
Limiter gain [dB]
70
60
50
40
–65
–70
–75
–80
–85
30
–90
20
1
10
Intermediate frequency [MHz]
100
–95
10
100
Local oscillation frequency [MHz]
S curve response
3.5
Output level of “A”
3
measurement
point “A”
2.5
1n
4.7n
10k
2
330n
1.5
1
10.4
10.5
10.6
10.7
10.8
10.9
Intermediate frequency [MHz]
11
—21—
18
17
HP2
HP1
1000
CXA3067AM
RFIN Input Impedance (Resistance, Capacitance)
Reception frequency
50 MHz
100 MHz
200 MHz
300 MHz
Resistance R1
1.69 kΩ
1.46 kΩ
1.08 kΩ
791 Ω
Capacitance C1
3.5 pF
3.4 pF
3.4 pF
3.5 pF
j50
j25
j100
0
50MHz
100MHz
200MHz
300MHz
–j25
–j100
–j50
SMA
Connector
PCB
1nF
VCC
5V
27
1nF
26
25
1nF
S11
Calibration plane
24
IC
CXA3067AM
24
R1
—22—
C1
CXA3067AM
MIXIN Input Impedance (Resistance, Capacitance)
Reception frequency
50 MHz
100 MHz
200 MHz
300 MHz
Resistance R2
2.7 kΩ
2.3 kΩ
1.6 kΩ
940 Ω
Capacitance C2
3.5 pF
3.4 pF
3.4 pF
3.7pF
j50
j25
j100
0
50MHz
100MHz
200MHz
300MHz
–j25
–j100
–j50
SMA
Connector
PCB
1nF
VCC
6.2kΩ
50V
27
26
S11
Calibration plane
25
24
RFVCC
IC
CXA306AM
27
R2
—23—
C2
CXA3067AM
Unit : mm
30PIN SOP(PLASTIC)
+ 0.4
2.3 – 0.15
+ 0.4
18.8 – 0.1
0.1
30
16
(9.3)
A
0.5 ± 0.2
+ 0.3
7.6 – 0.1
10.3 ± 0.4
+ 0.2
0.1 – 0.05
15
1
+ 0.1
0.2 – 0.05
1.27
0.45 ± 0.1
0.2
M
0° to 10°
DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
SOP-30P-L03
LEAD TREATMENT
SOLDER PLATING
EIAJ CODE
SOP030-P-0375
LEAD MATERIAL
COPPER ALLOY
PACKAGE MASS
0.7g
JEDEC CODE
30PIN SOP (PLASTIC)
+ 0.4
2.3 – 0.15
+ 0.4
18.8 – 0.1
0.1
30
+ 0.2
0.1 – 0.05
(9.3)
A
0.5 ± 0.2
10.3 ± 0.4
16
+ 0.3
7.6 – 0.1
Package Outline
15
1
1.27
0.45 ± 0.1
0.2
M
+ 0.1
0.2 – 0.05
0˚ to 10˚
DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
SOP-30P-L03
LEAD TREATMENT
SOLDER PLATING
EIAJ CODE
SOP030-P-0375
LEAD MATERIAL
COPPER ALLOY
PACKAGE MASS
0.7g
JEDEC CODE
LEAD PLATING SPECIFICATIONS
ITEM
LEAD MATERIAL
SPEC.
COPPER ALLOY
SOLDER COMPOSITION
Sn-Bi Bi:1-4wt%
PLATING THICKNESS
5-18µm
—24—
Sony Corporation