TOSHIBA TA32305FNG

TA32305FN/FNG
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA32305FN/TA32305FNG*
RF 1chip Receiver and Transmitter for low power wireless
The TA32305FN is an RF 1 chip receiver and transmitter IC.
Receiver is for AM/FM radio.
The IC incorporates an RF amp, 2-level comparator, and local
×8 circuit.
This IC’s main use is remote control.
Features
•
RF frequency: 240 to 450 MHz (multiplication is used)
•
IF frequency: 80 kHz
•
Operating voltage range: 2.2 to 5.5 V
•
Current dissipation: TX 4.3 mA/ RX 5.6 mA (FM), 5.3 mA (AM)
SSOP30-P-300-0.65
Weight: 0.17 g (typ)
(except current at oscillator circuit)
•
Current dissipation at BS: 0 µA (typ.)
•
Small package: 30-pin SSOP (0.65 mm pitch)
Block Diagram
SAW
30
29
TX
RX
DATA DATA
28
RX
26
25
24
23
22
21
20
19
27
18
17
16
RF CHARGE RF RF
TX
LPF LPF
AF RSSI
MIX
REF GND1
OUT
OUT
IN
DEC IN
IN
OUT
RSSI
Comparator
×8
OSC
VCC1
IN
1
2
MIX
U/L OUT
4
3
IFF
IN
IFF
OUT
5
Detector
TX AM/
TX
IF
Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM
OUT
6
7
8
9
10
11
12
13
14
15
*: TA32305FNG Package is Pb-Free.
1
2003-12-04
TA32305FN/FNG
Pin Description
(the values of resistor and capacitor in the internal equivalent circuit are typical.)
1
1
OSC IN
Local oscillator input pin.
2
VCC1
Local’ power supply pin.
3
U/L
U/L switch pin.
OPEN : Upper Local
L : Lower Local
Do not connect Vcc.
4
MIX OUT
The output impedance of the pin is typically
225 Ω.
5
IFF IN
IF filter input pin.

3
100 kΩ
200 Ω
4
VCC2
Power supply pin 2.
8
IF IN
IF amp input pin.

10k Ω
7
10k Ω
IFfilter output pin.
200 Ω
10
8
10
IF OUT
IF amp output pin.
9
GND2
GND pin 2.
100 Ω
6
5
IFF OUT
15 kΩ
2 pF
Mixer output pin.
6
10 kΩ
10 kΩ
Internal Equivalent Circuit
15 kΩ
Function
10 kΩ
Pin Name
50 kΩ
Pin No.

2
2003-12-04
TA32305FN/FNG
Function
Internal Equivalent Circuit
11
QUAD
Phase-shift input terminal for the FSK
Demodulator.
12
Vcc3
Power supply pin 3.
13
TX Power
Regulating TX output power pin.
15
TX OUT
TXsignal output pin.
32 kΩ
Pin Name
32 kΩ
Pin No.
10k Ω
11
―
15
14
AM/FM
Changeover switch for AM/ FM.
OPEN : AM
L : FM
Do not connect Vcc.
16
RF IN
RF signal input pin.
10 kΩ
13
14
120 kΩ
19
10 kΩ
17
RF DEC
Emitter pin for internal transistor.
3 kΩ
16
18
RF OUT
RF amp output pin.
CHARGE
Control terminal for quick charge circuit.
To use the quick charge circuit, attach a
capacitor.
17
3
250 Ω
18
100 kΩ
19
5 kΩ
2003-12-04
TA32305FN/FNG
Pin Name
Function
20
MIX IN
Mixer input pin.
21
GND1
GND pin 1.
Internal Equivalent Circuit
20
2.4 kΩ
Pin No.
―
22
22
REF
Threshold input terminal for 2-level FM/AM
comparator.
250 Ω
100 kΩ
26
COMP
DATA
5 kΩ
23
RSSI
RSSI output pin.
This pin is connected internal circuit.
MONI pin during transmitting.
23
24
AF OUT
Output terminal for FM demodulator.
24
25
LPF IN
FM/AM LPF input pin.
24 kΩ
100 kΩ
33 kΩ
25
330 Ω
250 Ω
5 kΩ
25
26
LPF OUT
FM/AM LPF output pin.
27
TX
Battery saving pin for transmitter.
26
27
4
41 kΩ
2003-12-04
TA32305FN/FNG
Pin No.
Pin Name
Function
Internal Equivalent Circuit
28
RX
Battery saving pin for receiver.
28
29
TX DATA
AM modulation switch for transmitter.
L : Output ON
H : Output FF
28
30
RX DATA
FM/AM waveform shaping output pin for
receiver.
Open collector output.
Connect a pull-up resistor.
30
30 kΩ
97 kΩ
2 kΩ
Equivalent circuits are given to help understand design of the external circuits to be connected. They do not
accurately represent the internal circuits.
5
2003-12-04
TA32305FN/FNG
Functions
1. Waveform Shaper Circuit (comparator)
The output data (pin 30) are inverted.
2. RSSI Function
After R is
23
connected
R
24 kΩ
DC potential corresponding to the input level of IF IN (pin 8) is output to RSSI (pin 23). Output to
RSSI (pin 23) is converted to a voltage by the internal resistance. Thus, connecting external resistance R
to pin 21 varies the gradient of the RSSI output as shown below. Note that due to the displacement of
temperature coefficients between external resistor R and the internal IC resistor IC resistor, the
temperature characteristic of the RSSI output may change. Also, the maximum RSSI value should be
VCC − 0.8 V or less.
IF input level
Figure 1
Figure 2
3. S Curve Characteristics
Changing external capacitance C27 varies the gradient of the S curve characteristics as shown below.
In case of widening the detection range, heightening IF frequency or lowering demodulation output,
make the gradient of the S curve characteristics gentle less than typical (120pF).
When using this IC by about 2.2V (low supply), set the constant of C27 100pF or add attenuator to AF
OUT (24 pin).
After C is
lessened
IF frequency
Figure 3
4. VCC Pin and GND Pin
Use the same voltage supply for VCC1 (2 pin) and VCC2 (7 pin) and VCC3 (12 pin) (or connect them).
Also, use the same voltage supply source for GND1 (21 pin) and GND2 (9 pin) (or connect them).
5. Local Oscillator Circuit
The local oscillator circuit is external-input-only. The device incorporates no transistor for oscillation.
Input to pin 1 at a level from 92 to 105dBµV.
Adjust the values of constants C shown in the application circuit diagram so that the input level will
become approximately 100dBµV.
6. U/L switch pin
It is possible to switch Mixer output frequency to upper local or lower local comparing RF input
frequency.
6
2003-12-04
TA32305FN/FNG
7. RF Amp Current Adjustment
R
The RF amp current dissipation can be regulated by varying resistor R as shown in the figure below.
When R = 560 Ω, the current dissipation is approximately 600 µA.
17
RF DEC
Figure 4
8. Battery-Saving (BS) Function
The IC incorporates a battery-saving function. These functions offer the following selection.
Receiver
FM Mode (FM/AM pin: GND)
RX Pin
Circuit Status in the IC
H
Circuits in operation:
・×8 circuit
・Mixer
・RF amp
・Comparator
・IF amp
・Detector circuit
・RSSI
・Comparator capacitor charger circuit
L
All circuits
IC Current
Dissipation
(at no signal)
5.6 mA (typ.)
0 mA (typ.)
AM Mode (FM/AM pin: OPEN)
RX Pin
Circuit Status in the IC
H
ircuits in operation:
・×8 circuit
・Mixer
・RF amp
・Comparator
・IF amp
・RSSI
・Comparator capacitor charger circuit
L
All circuits
IC Current
Dissipation
(at no signal)
5.3 mA (typ)
0 mA (typ)
Transmitter
TX Pin
Circuit Status in the IC
H
Circuits in operation:
・×8 circuit
・TX amp
L
All circuits
IC Current
Dissipation
(at no signal)
4.3 mA (typ)
0 mA (typ)
7
2003-12-04
TA32305FN/FNG
9.
RF Amp Gain 2
RF amp gain 2 (Gv (RF) 2) is a reference value calculated as follows. Measure GRF in the following figure.
Gv (RF) 2 is calculated as follows:
Gv (RF) 2 = GRF − Gv (MIX)
1000 pF
16
19
6 pF
SG
30dBµV
33 nH
20
6 pF
1 kΩ
27 nH
0.01 µF
4
GRF
Figure 5
10. Waveform-Shaping Output Duty Cycle
The specified range of electrical characteristics is only available for single-tone.
11. Treatment of FM Terminal when Using AM
C19
C18
R13
C18
R14
R13
When using AM, it is not necessary to treat the QUAD pin (pin 11). Leave it open or connected to an
FM external circuit. To use the bit rate filter, connect the RSSI pin (pin 23) to the bit rate filter through a
resistor. The AF-OUT pin (pin 24) should be left open.
R15
R
24
23
AF
RSSI
OUT
Bit rate filter for FM
24
23
AF
RSSI
OUT
Bit rate filter for AM
Figure 6
Figure 7
8
2003-12-04
TA32305FN/FNG
12. Control Terminal for Quick Charge Circuit (CHARGE)
CHARGE (18 pin) is control terminal for quick charge circuit. REF (22 pin) control terminal for quick
charge a given period by time constant of internal resistance and outside capacitance. Enabling the
CHARGE pin requires an external capacitor. In normal operation, connect a capacitor having the same
capacitance as that of the capacitor connected to the REF pin (pin 22).
If the connected external capacitor (C30) is 0.1 µF, the quick charge time is 7 ms (typically).
13. Bit Rate Filter for FM
The current FM bit rate filter is used as a tertiary filter.
If the filter is to be used at a rate other than 1200 bps, please change the filter constant.
Quadratic Filter (NRZ)
R12
R13
R14
C14
C15
C18
1200 bps
68 kΩ
68 kΩ
68 kΩ
0.01 µF
560 pF
3300 pF
2400 bps
68 kΩ
68 kΩ
68 kΩ
4700 pF
270 pF
1500 pF
4800 bps
68 kΩ
68 kΩ
68 kΩ
2200 pF
150 pF
680 pF
9600 bps
68 kΩ
68 kΩ
68 kΩ
1200 pF
68 pF
390 pF
14. Bit Rate Filter for AM
The current AM bit rate filter is used as a quadratic filter.
If the filter is to be used at a rate other than 1200 bps, please change the filter constant.
Quadratic Filter (NRZ)
(the bit rate filter time constant takes into account the internal resistance RSSI (24 kΩ))
R15
R12
C14
C15
1200 bps
43 kΩ
68 kΩ
4700 pF
1500 pF
2400 bps
43 kΩ
68 kΩ
2200 pF
680 pF
4800 bps
43 kΩ
68 kΩ
1000 pF
390 pF
9600 bps
43 kΩ
68 kΩ
470 pF
180 pF
In addition, the current AM bit rate filter can be used as a tertiary filter.
If the filter is to be used at a rate other than 1200 bps, please change the filter constant.
Quadratic Filter (NRZ)
(the bit rate filter time constant takes into account the internal resistance RSSI (24 kΩ))
R15
R13
R12
C14
C15
C18
1200 bps
43 kΩ
68 kΩ
68 kΩ
0.01 µF
560 pF
3300 pF
2400 bps
43 kΩ
68 kΩ
68 kΩ
4700 pF
270 pF
1500 pF
4800 bps
43 kΩ
68 kΩ
68 kΩ
2200 pF
150 pF
680 pF
9600 bps
68 kΩ
68 kΩ
68 kΩ
1200 pF
68 pF
390 pF
For the cutoff frequency of the bit rate filter, specify a sufficiently high value for the bit rate to be used.
Specifying a relatively high cutoff frequency for the bit rate filter enables a low capacitor to be used at
the REF pin, therefore making the pulse rise quickly.
When AM is used, the internal resistance of RSSI is used. So, take the output resistance into account
when specifying a cutoff frequency.
9
2003-12-04
TA32305FN/FNG
15. Simple Image Cancel Mixer for Receiver
The IC incorporates simple image cancel mixer for receiver.
16. TX Amp Current Adjustment
R
The RF amp current dissipation can be regulated by varying resistor R as shown in the figure below.
When R = 560 Ω, the current dissipation is approximately 680 µA..
13
TX_POW
Figure 8
10
2003-12-04
TA32305FN/FNG
Cautions for Designing Circuit Board Patterns
Observe the following cautions when designing circuit patterns for this product.
Local Oscillator Circuit (pin 1)
Isolate the local oscillator circuit block sufficiently from the RF amp block.
Isolate the local oscillator circuit block securely so that its output will not get in the IF input, IF filter, or
mixer input.
Do not place the local oscillator circuit block too close to the ceramic filter.
Subdivide the ground pattern for the local oscillator circuit block, and connect the subdivisions with thin
lines.
IF Input and Output Block (pin 8, 10)
Isolate the input from output patterns of the IF filter and detector block securely from each other.
Demodulator Circuit Block (pin 11)
Isolate the demodulator circuit block sufficiently from the IF input block (pin 8).
Do not place the LC too close to the IC device.
Data Output Block (pin 30)
Isolate the data output block sufficiently from the IF input block (pin 8).
Isolate the output pattern of the data output block from other circuits as much as possible, so any noise from
a stage subsequent to the output will not affect them.
RF Amp Circuit Block
1)
Preventing RF amp oscillation
Do not place the patterns connected to pins 16 and 17 too close to each other.
Isolate the patterns connected to the input block (pin 16) and output block (pin 19) from each other.
Make the RF input signal line relatively thin.
Place a relatively wide ground pattern between the RF-IN pin (pin 16) and RF-DEC pin (pin 17).
Connect the RF-OUT pin (pin 19) and MIX-IN pin (pin 20) with the shortest possible pattern.
2)
Attaining a sufficient gain
To attain a sufficient RF amp gain, select an optimum value for the input matching circuit block (pin 16)
according to the board circuit pattern.
3)
Sharing antenna with receiver and transmitter
Using hi power application, place the patterns connected to SAW filter and pin 15 close.
IC Mounting Area
Provide a ground pattern under the IC device, and prepare relatively many through holes.
Cautions for mounting
Mount better accurate constants of capacitance in IF filter block and detector block.
11
2003-12-04
TA32305FN/FNG
Maximum Ratings
(unless otherwise specified, Ta = 25°C. the voltage is with reference to the ground level.)
Characteristics
Symbol
Rating
Unit
VCC
6
V
Power dissipation
PD
860
mW
Operating temperature range
Topr
−40~85
°C
Storage temperature range
Tstg
−55~150
°C
Supply voltage
The maximum ratings must not be exceeded at any time. Do not operate the device under conditions outside the
above ratings.
Operable Range
(unless otherwise specified, Ta = 25°C. the voltage is with reference to the ground level.)
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Operating voltage range
VCC


2.2
3.0
5.5
V
RF operating frequency
fRF

250

450
MHz
Characteristics
Operating ranges indicate the conditions for which the device is intended to be functional even with the electrical
changes.
Electrical Characteristics (unless otherwise specified: Ta = 25°C, VCC = 3 V, U/L = OPEN,
fin (RF) = fin (MIX) = 314.96 MHz, fin (IF) = 80 kHz))
Receiver Block
Symbol
Test
Circuit
Icco
3
RF amp gain 1
Gv (RF) 1
1 (5)
Mixer conversion gain
Gv (MIX)

RSSI output voltage 1
VRSSI1

RSSI output voltage 2
VRSSI2

RSSI output voltage 3
VRSSI3

RSSI output resistance
RRSSI

Comparator input resistance
RCOMP

RX data output voltage (L level)
VRXDATAL
1 (3)
RX data output leakage current (H level)
IRXDATAH
1 (4)
RX pin H-level input voltage
VRXH
RX pin L-level input voltage
VRXL
Characteristics
Current dissipation at battery saving
Test Condition
Min
Typ.
Max
Unit
―
0
5
µA
-9.0
-6.5
-4.0
dB
18
21
24
dB
0.25
0.5
0.75
V
Vin (MIX) = 50dBµVEMF
in AM mode
0.7
1.0
1.3
V
Vin (MIX) = 80dBµVEMF
in AM mode
1.35
1.7
2.05
V

18
24
30
kΩ

75
100
125
kΩ

0.04
0.4
V


0
2
µA


2.0

5.5
V


0

0.2
V
RX = “L”,TX= “L”
The input and output
impedances are 50 Ω.

Vin (MIX) = 25dBµVEMF
in AM mode
IRXDATAL = 200 µA
12
2003-12-04
TA32305FN/FNG
FM Mode (Ta = 25°C, Vcc = 3.0 V, fin (RF) = fin (MIX) = 314.96 MHz, U/L = OPEN,
fin (IF) = 80 kHz, dev = ±8 kHz, fmod = 600 Hz ((single wave))
Characteristics
Symbol
Test
Circuit
Iccqfm
2 (1)
Vod

1 (2)
Quiescent current consumption
(for FM)
Demodulated output level
DRfm
Waveform shaping duty ratio
Test Condition
Min
Typ.
Max
Unit
4.2
5.6
7.0
mA
Vin (MIX) = 60dBµVEMF
95
130
165
mVrms
Vin (MIX) = 60dBµVEMF
For single tone
45
50
55
%
RX/FMAM = “H/ L”
Fin (Lo) = 39.38 MHz
AM Mode (Ta = 25°C, Vcc = 3.0 V, fin (RF) = fin (MIX) = 314.96 MHz, U/L = OPEN,
fin (IF) = 80 kHz, AM = 90%, fmod = 600 Hz (square wave) )
Symbol
Test
Circuit
Iccqam
Test Condition
Min
Typ.
Max
Unit
2 (2)
RX/FMAM = “H/ OPEN”
Fin (Lo) =39.38 MHz
3.9
5.3
6.7
mA
Dram
1 (2)
Vin (MIX) = 60dBµVEMF
For single tone
45
50
55
%
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Iccqtx
2 (3)
3.0
4.3
5.6
mA
TXDATA pin H-level input voltage
VTXDATAH


2.0

5.5
V
TXDATA pin L-level input voltage
VTXDATAL


0

0.2
V
TX pin H-level input voltage
VTXBSH


2.0

5.5
V
TX pin L-level input voltage
VTXBSL


0

0.2
V
VTX1

-22.5
-19.5
dBm
Characteristics
Quiescent current consumption
(for AM)
Reference characteristic data
Transmitter Block
Characteristics
Quiescent current consumption
(for Transmitter Mode)
TXoutput signal level 1
Reference Characteristic Data
TX= “H”
The output impedances are 50 Ω -25.5
*
Symbol
Test
Circuit
Test Condition
Typ.
Unit
Gv (RF) 2


30
dB
RF amp input resistance
R (RF) IN


1.0
kΩ
RF amp input capacitance
C (RF) IN


2.0
pF
C (RF) OUT


2.0
pF
Mixer input resistance
R (MIX) IN


1.2
kΩ
Mixer input capacitance
C (MIX) IN


1.6
pF
IP3


96
dBµV
Gv (RF)


65
dB
Signal-to-noise ratio 1
S/N1
1 (8)
Vin (MIX) = 20dBµVEMF
19
dB
Signal-to-noise ratio 2
S/N2
1 (8)
Vin (MIX) = 60dBµVEMF
56
dB
C (TX) OUT

2.0
pF
VTX2

-14
dBm
Characteristics
RF amp gain 2
RF amp output capacitance
Mixer intercept point
IFamp gain
TX amp output capacitance
TX output signal level 2

* : These characteristic data values are listed just for reference purposes. They are not guaranteed values.
13
2003-12-04
TA32305FN/FNG
6 pF
SAW
1000 pF
L3
33 nH
C35 R21 560 Ω
C37
C32
L1
1000 pF
C30≧C22 27nH
68 kΩ
R14
C22
R12 68 kΩ
C15 560 pF
0.01 µF
C14
R7 100 kΩ
R6 100 kΩ
68 kΩ
R19 1 kΩ
R13
0.1 µF
C18 3300 pF
VCC
VCC
VCC
C19 1000 pF
VCC
0.1 µF C25 6 pF
1000 pF
C24 0.01 µF
Typical Test Circuit (FSK)
C26
26
25
24
23
22
21
20
19
27
18
17
16
RF CHARGE RF RF
TX
LPF LPF
AF RSSI
REF GND1
MIX
OUT
OUT
IN
OUT
IN
DEC IN
RSSI
Comparator
28
RX
30
29
TX
RX
DATA DATA
×8
VCC
6 pF
C34
22nH
L2
C36 5 pF
C33
0.01 µF
120 pF
1000 pF
R22 560 Ω
C29 10 µF
C28
0.1 µF
C27
C31 1000 pF
R20 560 Ω
C16
VCC
C20
VCC
R18 20 kΩ
120 pF
330 pF
5
Detector
IF
TX AM/
TX
Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM
OUT
9
6
7
8
10
11
12
13
14
15
C13
C17
IFF
OUT
10 µF
C12
2
IFF
IN
R11 4.7 kΩ
VCC1
1
R10 4.3 kΩ
MIX
U/L OUT
4
3
0.1 µF
OSC
IN
VCC
Test Circuit 1
(1) VRSSI
(2) DR
0.01 µF
SG
1000 pF
V
51 Ω
SG
20
1.5 V
R = 100 kΩ
22
V
2.0 V
30
V
22
30
VCC
100 kΩ
V
I = V/100 × 10
2.0 V
V
VCC
(4) IDATA H
(3) VDATA L
V
30
1000 pF
20
SG
1
51 Ω
1000 pF
51 Ω
SG
100 kΩ
23
1
51 Ω
0.01 µF
3
1.5 V
25
V
14
25
2003-12-04
TA32305FN/FNG
(6) Gv (MIX)
19
4
1
4.7 kΩ
51 Ω
SG
51 Ω
SG
0.01 µF
1000 pF
16
1000 pF
20
(7) Gv (MIX) vs VLO
330 pF
Buff
6
1000 pF
20
SG
8
51 Ω
26
51 Ω
20
1
SG
51 Ω
5
120 pF
51 Ω
4.7 kΩ
1000 pF
4
1
4.3 kΩ
0.01 µF
1000 pF
SG
8
(8) S/N1, 2
0.01 µF
SG
6
51 Ω
SG
5
120 pF
1000 pF
1000 pF
(5) Gv (RF) 1
330 pF
Test Circuit 2
27
28
17
21
14
7
2
SG
560 Ω
560 Ω
9
1
12
27
9
28
19
A
Vcc
0.01 µF 51 Ω
(2) Iccqam
0.01 µF 51 Ω
(1) Iccqfm
21
17
7
2
SG
1
12
19
A
VCC
Test Circuit 3
Icco
28
27
VCC
21
2
0.01 µF 51 Ω
13
7
9
560 Ω
SG
560 Ω
560 Ω
(3) Icctx
21
27
28
13
17
2
7
12
15
19
1
12
15
A
A
VCC
15
2003-12-04
TA32305FN/FNG
Reference Data (This is characteristics data when it used evaluation boards. This is not
guarantee on condition that it is stating except electrical characteristics.)
Quiescent Current Consumption –
Supply Voltage Characteristics
Quiescent Current Consumption –
Supply Voltage Characteristics
FM Mode
8
TX
3
f (Lo) in = 39.38 MHz
V (Lo) in = 100dBV
**スイッチ端子
No switching pin current
is電流含まず
included.
2
1
6
(mA)
4
ICCqfm
AM
25℃
5
4
-40℃
3
1
BS
0
0
1
2
3
Supply voltage
4
VCC
5
6
0
(V)
Quiescent current consumption
ICCqtx (mA)
125℃
6
25℃
(mA)
3
4
VCC
5
6
(V)
6
7
ICCqam
2
Quiescent Current Consumption –
Supply Voltage Characteristics
TX Mode
8
5
4
-40℃
3
f (Lo) in = 39.38 MHz
V (Lo) in = 100dBV
**スイッチ端子
No switching pin current
is電流含まず
included.
2
1
0
125℃
5
25℃
4
3
f (Lo) in = 39.38 MHz
V (Lo) in = 100dBV
-40℃
**スイッチ端子
No switching pin current
is
included.
電流含まず
2
1
0
0
1
2
3
Supply voltage
4
VCC
5
6
0
(V)
1
2
3
Supply voltage
RF Amp Gain –
Supply Voltage Characteristics
4
VCC
5
6
(V)
RF Amp Frequency Characteristics
-5
(dB)
0
-10
-40℃
RF amp conversion gain
Quiescent current consumption
1
Supply voltage
Quiescent Current Consumption –
Supply Voltage Characteristics
AM Mode
(dB)
f (Lo) in = 39.38 MHz
V (Lo) in = 100dBV
**スイッチ端子
No switching pin current
is電流含まず
included.
2
0
RF amp conversion gain
125℃
7
FM
5
Quiescent current consumption
Quiescent current consumption
ICC (mA)
6
-20
125℃
-30
f(RF)in=314.96MHz
V(RF)in=50dBuV
25℃
-40
<Meas Point>
RFOUT
at Spectrum Analyzer
-50
* Input/output impedance =
※入出力50Ω
50 Ω
-60
0
1
2
3
Supply voltage
4
VCC
5
6
(V)
-6
125℃
-7
-40℃
-8
Vcc=3V
V(RF)in=50dBuV
25℃
-9
<Meas Point>
RFOUT
-10 at Spectrum
Analyzer
*Input/output
※入出力 50Ω mpedance = 50 Ω
-11
100
RF IN input frequency f (RF) in
16
1000
(MHz)
2003-12-04
TA32305FN/FNG
Reference Data (This is characteristics data when it used evaluation boards. This is not
guarantee on condition that it is stating except electrical characteristics.)
RSSI Output Voltage Characteristics
(MIX, and RF inputs)
RSSI Output Voltage Characteristics
(MIX inputs)
2
125℃
(V)
VRSSI
1.6
1.4
RF IN
1.2
MIX IN
25℃
1.5
-40℃
RSSI output voltage
RSSI output voltage
VRSSI
(V)
2
1.8
1
0.8
VCC = 3 V
f (MIX) in = 314.96 MHz
f (Lo) in = 39.38 MHz
AM
<Meas point>
FILOUT at audio analyzer
0.6
0.4
0.2
0
-20
0
20
40
Input level
60
Vin
80
100
1
VCC = 3 V
f (MIX) in = 314.96 MHz
f (Lo) in = 39.38 MHz
AM
<Meas point>
FILOUT at audio analyzer
0.5
0
-20
120
(dBµVEMF)
S/N Characteristics (MIX input) in the
FM Mode
20
40
60
100
120
(dBµVEMF)
10
S+N
S
-40℃
-40℃
25℃
125℃
-10
-10
125℃
-20
-30
VCC = 3 V
f (MIX) in = 314.96 MHz
Dev = 8 kHz
fmod = 600 Hz
<Meas point>
AMR
FILOUT at audio analyzer
25℃
-40
25℃
25℃ -40℃
125℃
-50
-40℃
-60
N
-70
-20
0
20
40
MIX IN input level
S+N
S
0
S + N, N (dB)
0
60
V (MIX) in
80
100
120
-20
125℃
-30
-40
-50 VCC = 3 V
f (MIX) in = 314.96 MHz
-60 AM = 90%
fmod = 600 Hz
-70 <Meas point>
FILOUT at audio analyzer
-80
-20
0
20
40
(dBµVEMF)
MIX IN input level
S/N Characteristics (RF input) in the
FM Mode
125℃
25℃
N
-40℃
60
V (MIX) in
2.5
-20
S + N, N (dB)
VCC = 3 V
f (RF) in = 314.96 MHz
Dev = 8 kHz
fmod = 600 Hz
<Meas point>
FILOUT at audio analyzer
-10
100
120
(dBµVEMF)
Vcc=3V
f(MIX)in=314.9MHz +∆f
V(MIX)in=50dBuVemf
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
<Meas Point>
AFOUT
at Multi Meter
S
S+N
0
80
S Curve Characteristics (MIX IN)
3
10
S + N, N (dB)
80
V (MIX) in
S/N Characteristics (MIX input) in the
AM Mode
10
S + N, N (dB)
0
MIX IN input level
-30
AMR
-40
2
-40℃
1.5
125℃
1
-50
25℃
N
0.5
-60
-70
-20
0
20
RF IN input level
40
60
V (RF) in
80
100
0
-70
120
(dBµVEMF)
-50
-30
MIX IN input level
17
-10
10
V (MIX) in
30
50
70
(dBµVEMF)
2003-12-04
TA32305FN/FNG
Reference Data (This is characteristics data when it used evaluation boards. This is not
guarantee on condition that it is stating except electrical characteristics.)
Mixer Conversion Gain Frequency
Characteristics
5
25
125℃
f(MIX)in=314.96MHz
V(MIX)in=60dBuV
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
10
-40℃
0
<Meas Point>
MIXOUT at
Spectrum Analyzer
25℃
-5
(MIX)
15
Mixer conversion gain GV
(MIX)
20
(dB)
25
Mixer conversion gain GV
(dB)
Mixer Conversion Gain –
Supply Voltage Characteristics
-10
-15
-20
-25
-30
1
2
3
4
Supply voltage
5
VCC
6
20
15
Vcc=3V
V(RF)in=60dBuV
V(Lo)in=100dBuV
10 U/L=OPEN
<Meas Point>
5 MIXOUT
at Spectrum Analyzer
0
100
(V)
1000
MIX IN input frequency f (MIX) in
Mixer Intercept Point
120
25
20
Mixer output level V (MIX) out
(dBµV)
Mixer conversion gain GV
(MIX)
(dB)
Mixer Conversion Gain –
Local Input Level Characteristics
15
10
5
Vcc=3V
f(MIX)in=314.96MHz
V(RF)in=60dBuV
f(Lo)in=39.38MHz
U/L=OPEN
0
-5
-10
<Meas Point>
MIXOUT
at Spectrum Analyzer
-15
100
Desired
wave
希望波
80
Interference
wave
妨害波
Vcc=3V
Desired
<
希望 > wave
f(SG1,SG2)in=314.96MHz
60
<妨害>
Interference
wave
f(SG1)in=315.06MHz
f(SG2)in=315.16MHz
40
20
<Meas Point>
MIXOUT at Spectrum
Analyzer
0
-20
60
70
80
Lo input level
90
V (Lo) in
100
110
40
120
(dBµV)
140
(mVrms)
0
-5
-10
-25
-30
-35
-40
-60
Demodulation output
(dB)
160
-20
60
70
80
90
V (MIX) in
100
110
120
(dBµV)
Demodulation Output –
Supply Voltage Characteristics (FM)
5
-15
50
SG input level
Detuning Characteristics
Attenuation level
(MHz)
Vcc=3V
f(MIX)in=314.96MHz+∆f
V(MIX)in=50dBuV
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
Dev=±8kHz
fmod=600Hz
<Meas Point>
AFOUT at Audio Analyzer
125℃
120
-40℃
100
f(MIX)in=314.96MHz
V(Lo)in=50dBuVemf
Dev=±8kHz
fmod=600Hz
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
80
25℃
60
40
<Meas Point>
FILOUT
at Audio Analyzer
20
0
-40
-20
0
20
40
60
1
Detuning frequency (kHz)
2
3
Supply voltage
18
4
VCC
5
6
(V)
2003-12-04
TA32305FN/FNG
Reference Data (This is characteristics data when it used evaluation boards. This is not
guarantee on condition that it is stating except electrical characteristics.)
Waveform Shaping Output Duty Ratio –
Supply Voltage Characteristics
Demodulation Distortion Characteristics
60
-10
<Meas Point>
AFOUT
at Audio Analyzer
-15
-20
-25
-30
-35
-80
-60
-40
-20
0
20
Detuning frequency (MIX IN)
40
58
56
54
(%)
-5
52
AM
50
DR
Vcc=3V
f(MIX)in=314.96MHz +∆f
V(MIX)in=50dBuV
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
Waveform shaping output duty ratio
Demodulation distortion
(dB)
0
46
Dec=±4kHz
FM Dev=±4kHz
44
40
60
1
f(MIX)in=314.96MHz
V(MIX)in=50dBuVemf
Dev=±8kHz
fmod=600Hz
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
<Meas Point>
DATA at OSC
42
40
1
2
3
Supply voltage
4
VCC
5
52
46
44
42
40
1
2
(V)
3
4
Supply voltage
VCC
5
6
(V)
TX Output Power Frequency Characteristics
-15
25℃
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
<Meas Point>
TX OUT at
Spectrum Analyzer
-80
25℃
-100
*Input/output
※入出力50Ω
impedance = 50 Ω
(dB)
-40℃
-20
VTX1
125℃
125℃
-25
TX Output level
(dB)
VTX1
TX Output level
-60
f(MIX)in=314.96MHz
V(MIX)in=50dBuVemf
AM=90%
fmod=600Hz((Retangle)
矩形波 )
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
<Meas Point>
DATA at OSC
25℃
48
6
0
-40
125℃
50
TX Output Power –
Supply Voltage Characteristics
-20
6
54
(%)
25℃
50
44
5
(V)
-40℃
56
DR
Waveform shaping output duty ratio
(%)
54
DR
Waveform shaping output duty ratio
58
56
46
4
VCC
Waveform Shaping Output Duty Ratio –
Supply Voltage Characteristics AM mode
58
-40℃
3
Supply voltage
60
125℃
2
(kHz)
60
48
<Meas Point>
DATA at OSC
FM
FM Dev=±8kHz
Dec=±8kHz
42
Waveform Shaping Output Duty Ratio –
Supply Voltage Characteristics FM mode
52
f(RF)in=314.96MHz
V(RF)in=20dBuVemf
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
48
-30
-40℃
Vcc=3V
V(Lo)in=100dBuV
-35
<Meas Point>
TX OUT at
Spectrum Analyzer
-40
*Input/output
※入出力 50Ω
impedance
= 50 Ω
-120
-45
1
2
3
Supply voltage
4
VCC
5
6
0
(V)
100
200
300
400
500
600
TX output frequency f (TX)out
19
700
800
(MHz)
2003-12-04
TA32305FN/FNG
Reference Data (This is characteristics data when it used evaluation boards. This is not
guarantee on condition that it is stating except electrical characteristics.)
Sensitivity Detuning Characteristics
(AM and FM modulation)
TX out power frequency Characteristics
15
(dBµVEMF)
-10
(dB)
-14
25℃
-40℃
12dB SINAD sensitivity
TX Output level
-12
VTX1
125℃
-16
Vcc=3V
V(Lo)in=100dBuV
<Meas Point>
TX OUT at
Spectrum Analyzer
-18
-20
-22
200
*output adjusted
※出力マッチング
250
300
350
400
450
TX output frequency f (TX)out
Vcc=3V
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
10
U/L=OPEN
fmod=600Hz
5 <Meas Point>
FILOUT at
Audio Analyzer
-5
FM
Dev=±4kHz
FM
Dev=±8kHz
-10
AM
-15
-120 -100
500
(MHz)
-2
FM Dev=±4kHz
12dB SINAD sensitivity
-40
-20
0
20
40
60
(MHz)
60
f(RF)in=314.96MHz
f(Lo)in=39.38MHz
V(Lo)in=100dBuV
<Meas Point>
FILOUT
at Audio Analyzer
-4
-6
Dev=±4kHz
FMFM
Dev=±8kHz
-8
-60
RF Amp Gain + Mixer Conversion Gain –
Supply Voltage Characteristics
RF Amp + Mixer conversion gain
GV (dB)
(dBµVEMF)
0
-80
RF IN input frequency f (RF) in
12dB SINAD sensitivity –
Supply Voltage Characteristics
2
FM Dev=±4kHz
0 *No
SAW
filter
※ SAW
フィルタ無
-10
AM
-12
50
40
30
Vcc=3V
f (RF)in=314.96MHz
V(RF)in=50dBuV
20
<Meas Point>
MIX OUTat
Spectrum Analyzer
10
50Ω = 50 Ω
* Input/output
impedance
※入出力
0
-14
1
2
3
Supply voltage
4
VCC
5
1
6
(V)
2
3
Supply voltage
4
VCC
5
6
(V)
2 signal interference Characteristics
(IF Filter band)
Interference control ratio
(dB)
60
50
40
30
20
f(RF)in = 314.96MHz
V(RF)in = 5.7dBuVEMF
Dev = ±8kHz
10
fmod = 600Hz
f(Lo)in = 39.38MHz
0
V(Lo)in = 100dBuV
<基準>
<St> 314.96MHz,
-10
314.6
1.3dBuVEMF
314.7
314.8
314.9
315
315.1
315.2
315.3
Interference wave input frequency (MHz)
20
2003-12-04
TA32305FN/FNG
Application Circuit (ASK) *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well.
L3
33 nH
C26
26
25
24
23
22
21
20
19
27
18
17
16
RF CHARGE RF RF
TX
LPF LPF
AF RSSI
MIX
REF GND1
OUT
OUT
IN
OUT
DEC IN
IN
RSSI
Comparator
28
RX
1000 pF
L1
SAW
C37
C32
1000 pF
C30≧C22 27nH
68 kΩ 43 kΩ
C22
R12 68 kΩ
R15
6 pF
C35 R21 560 Ω
30
29
TX
RX
DATA DATA
C15 560 pF
C14
R6 100 kΩ
R7 100 kΩ
0.01 µF
R13
R19 1 kΩ
VCC
0.1 µF
VCC
3300 pF
VCC
C18
VCC
0.1 µF C25 6 pF
1000 pF
C24 0.01 µF
For Receiver and Transceiver
×8
6 pF
L2
22nH
330 pF
VCC
C34
1000 pF
C36 5 pF
C33
0.01 µF
C16
R22 560 Ω
VCC
C20
120 pF
C17
5
Detector
TX
AM/
TX
IF
Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM
OUT
6
7
8
9
10
11
12
13
14
15
C13
10 µF
IFF
OUT
C31 1000 pF
R20 560 Ω
VCC
IFF
IN
R11 4.7 kΩ
2
R10 4.3 kΩ
10 pF
5 pF
C10
VCC1
C12
1
C9
3.6 kΩ
33 pF
R5
33 pF
Q
MIX
U/L OUT
4
3
0.1 µF
OSC
IN
33 kΩ
C7
120 kΩ
C8
39.38MHz 0.1 µF
R3
R4
X2
C3
0.01 µF
10 µF
C2
C1
Lo VCC
SAW: SAFCH315MAM0T00 (Murata Manufacturing)
X2: TR-1 (TEW)
Q: 2SC2499 (TOSHIBA)
16
2003-12-04
TA32305FN/FNG
Application Circuit (FSK) *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well.
SAW
1000 pF
C26
26
25
24
23
22
21
20
19
27
18
17
16
RF CHARGE RF RF
TX
LPF LPF
AF RSSI
MIX
REF GND1
OUT
OUT
IN
OUT
IN
DEC IN
RSSI
Comparator
28
RX
L3
33 nH
C37
C32
L1
C30≧C22 27nH
R19 1 kΩ
C19 1000 pF
0.1 µF
1000 pF
C22
R14
R12 68 kΩ
68 kΩ
6 pF
C35 R21 560 Ω
30
29
TX
RX
DATA DATA
C15 560 pF
C14
R6 100 kΩ
0.01 µF
R13
68 kΩ
VCC
VCC
C18 3300 pF
VCC
0.1 µF C25 6 pF
1000 pF
C24 0.01 µF
For Receiver only
×8
VCC
1000 pF
C28
0.1 µF
C27
120 pF
C29 10 µF
C16
R18 20 kΩ
VCC
330 pF
120 pF
C17
5
Detector
TX AM/
TX
IF
Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM
OUT
6
7
8
9
10
11
12
13
14
15
C13
10 µF
IFF
OUT
C20
10 pF
C10
5 pF
IFF
IN
R11 4.7 kΩ
C12
C9
3.6 kΩ
33 pF
33 pF
R5
2
R10 4.3 kΩ
VCC1
1
MIX
U/L OUT
4
3
0.1 µF
OSC
IN
33 kΩ
120 kΩ
C8
R4
X2
0.01 µF
C7
R3
0.1 µF
C3
10 µF
C2
C1
Lo VCC
VCC
SAW: SAFCH315MAM0T00 (Murata Manufacturing)
X2: TR-1 (TEW)
Q: 2SC2499 (TOSHIBA)
17
2003-12-04
TA32305FN/FNG
Application Circuit (FSK) *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well.
SAW
C37
L3
33 nH
C26
26
25
24
23
22
21
20
19
27
18
17
16
RF CHARGE RF RF
TX
LPF LPF
AF RSSI
REF GND1
MIX
OUT
OUT
IN
OUT
IN
DEC IN
RSSI
Comparator
28
RX
1000 pF
C32
L1
R19 1 kΩ
0.1 µF
C30≧C22 27nH
R14
R12 68 kΩ
1000 pF
6 pF
C35 R21 560 Ω
30
29
TX
RX
DATA DATA
C15 560 pF
0.01 µF
Transceiver 2
39.39MHz
150 kΩ
C14
R7 100 kΩ
Transceiver 1
39.38MHz
120 kΩ
R6 100 kΩ
Constant
X1
R23
68 kΩ
C22
R13
VCC
C19 1000 pF
VCC
68 kΩ
VCC
C18 3300 pF
VCC
0.1 µF C25 6 pF
1000 pF
C24 0.01 µF
For Transceiver only: Change the constants (X1 and R23) at oscillator circuit like the table below to be shifted oscillator frequency 10 kHz.
×8
6 pF
C34
L2
VCC
22nH
R22 560 Ω
C28
0.1 µF
VCC
C36 5 pF
C33
5 pF
1000 pF
C27
120 pF
C29 10 µF
C16
R18 20 kΩ
VCC
330 pF
120 pF
10 µF
R11 4.7 kΩ
5
Detector
IF
TX AM/
TX
Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM
OUT
9
6
7
8
10
11
12
13
14
15
C13
C17
IFF
OUT
C31 1000 pF
R20 560 Ω
VCC
IFF
IN
C20
C10
5 pF
R10 4.3 kΩ
C12
C9
3.6 kΩ
47 pF
R5
47 pF
Q
MIX
U/L OUT
4
3
0.1 µF
OSC
VCC1
IN
1
2
10 pF
33 kΩ
C7
120 kΩ
C5
R4 X1
200 kΩ
C4 5 pF
R23
C3
0.1 µF
R1
TX FM
C8
R3
10 µF
0.01 µF
C2
C1
Lo VCC
SAW: SAFCH315MAM0T00 (Murata Manufacturing)
X2: TR-1 (TEW)
Q: 2SC2499 (TOSHIBA)
C5: 1SV325 (TOSHIBA)
18
2003-12-04
TA32305FN/FNG
Application Circuit *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well.
C24 0.01 µF
SAW
L3
33 nH
1000 pF
C35
560 Ω
C37
R21
0.1 µF C25 6 pF
C32 1000 pF
L1
1000 pF
C30≧C22 27nH
R19 1 kΩ
0.1 µF
R12 68 kΩ
68 kΩ
6 pF
C26
26
25
24
23
22
21
20
19
27
18
17
16
RF CHARGE RF RF
TX
LPF LPF
AF RSSI
REF GND1
MIX
OUT
OUT
IN
OUT
IN
DEC IN
RSSI
Comparator
28
RX
R24
300 Ω
C33
0.01 µF
L2
0.01 µF
30
29
TX
RX
DATA DATA
6 pF
C15 560 pF
22nH
SAW
C14
15
VCC
R7 100 kΩ
R6 100 kΩ
TX
OUT
C22
R13
VCC
C19 1000 pF
VCC
68 kΩ
R15
VCC
R14
16
RF
IN
VCC
43 kΩ
C35
C18
3300 pF
For Transceiver, one antenna version: Adjust the circuit expect antenna block. In case of Hi power output application, set the circuit like left figure.
×8
Hi Power Output
19
C33
0.01 µF
VCC
5 pF
6 pF
L2 22nH
C28
0.1 µF
VCC
C36
C34
1000 pF
C31 1000 pF
R20 560 Ω
C16
C27
120 pF
C29 10 µF
VCC
R18 20 kΩ
120 pF
330 pF
R11 4.7 kΩ
5
Detector
IF
TX AM/
TX
Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM
OUT
9
6
7
8
10
11
12
13
14
15
C13
10 µF
IFF
OUT
C17
IFF
IN
C20
C10
VCC
R10 4.3 kΩ
C12
C9
5 pF
3.6 kΩ
47 pF
R5
47 pF
Q
MIX
U/L OUT
4
3
0.1 µF
OSC
VCC1
IN
1
2
10 pF
33 kΩ
C7
120 kΩ
C8
R3
39.38MHz
C5
200 kΩ
C4 5 pF
R23 120 kΩ
C3
0.1 µF
R1
TX FM
R4 X1
10 µF
0.01 µF
C2
C1
Lo VCC
2003-12-04
TA32305FN/FNG
Package Dimensions
SSOP30-P-300-0.65A
Unit::mm
Weight: 0.17 g (typ)
20
2003-12-04
TA32305FN/FNG
Notice for Pb free product
About solderability, following conditions were confirmed
¾ Solderability
(1) Use of Sn-36Pb solder bath
・
solder bath temperature = 230℃
・
dipping time = 5seconds
・
the number of times = once
・
use of R-type flux
(2) Use of Sn-3.0Ag-0.5Cu solder bath
・
solder bath temperature = 245℃
・
dipping time = 5seconds
・
the number of times = once
・
use of R-type flux
RESTRICTIONS ON PRODUCT USE
000707EBA
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
• The products described in this document are subject to the foreign exchange and foreign trade laws.
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
• The information contained herein is subject to change without notice.
21
2003-12-04