TA32305FN/FNG TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA32305FN/TA32305FNG* RF 1chip Receiver and Transmitter for low power wireless The TA32305FN is an RF 1 chip receiver and transmitter IC. Receiver is for AM/FM radio. The IC incorporates an RF amp, 2-level comparator, and local ×8 circuit. This IC’s main use is remote control. Features • RF frequency: 240 to 450 MHz (multiplication is used) • IF frequency: 80 kHz • Operating voltage range: 2.2 to 5.5 V • Current dissipation: TX 4.3 mA/ RX 5.6 mA (FM), 5.3 mA (AM) SSOP30-P-300-0.65 Weight: 0.17 g (typ) (except current at oscillator circuit) • Current dissipation at BS: 0 µA (typ.) • Small package: 30-pin SSOP (0.65 mm pitch) Block Diagram SAW 30 29 TX RX DATA DATA 28 RX 26 25 24 23 22 21 20 19 27 18 17 16 RF CHARGE RF RF TX LPF LPF AF RSSI MIX REF GND1 OUT OUT IN DEC IN IN OUT RSSI Comparator ×8 OSC VCC1 IN 1 2 MIX U/L OUT 4 3 IFF IN IFF OUT 5 Detector TX AM/ TX IF Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM OUT 6 7 8 9 10 11 12 13 14 15 *: TA32305FNG Package is Pb-Free. 1 2003-12-04 TA32305FN/FNG Pin Description (the values of resistor and capacitor in the internal equivalent circuit are typical.) 1 1 OSC IN Local oscillator input pin. 2 VCC1 Local’ power supply pin. 3 U/L U/L switch pin. OPEN : Upper Local L : Lower Local Do not connect Vcc. 4 MIX OUT The output impedance of the pin is typically 225 Ω. 5 IFF IN IF filter input pin. 3 100 kΩ 200 Ω 4 VCC2 Power supply pin 2. 8 IF IN IF amp input pin. 10k Ω 7 10k Ω IFfilter output pin. 200 Ω 10 8 10 IF OUT IF amp output pin. 9 GND2 GND pin 2. 100 Ω 6 5 IFF OUT 15 kΩ 2 pF Mixer output pin. 6 10 kΩ 10 kΩ Internal Equivalent Circuit 15 kΩ Function 10 kΩ Pin Name 50 kΩ Pin No. 2 2003-12-04 TA32305FN/FNG Function Internal Equivalent Circuit 11 QUAD Phase-shift input terminal for the FSK Demodulator. 12 Vcc3 Power supply pin 3. 13 TX Power Regulating TX output power pin. 15 TX OUT TXsignal output pin. 32 kΩ Pin Name 32 kΩ Pin No. 10k Ω 11 ― 15 14 AM/FM Changeover switch for AM/ FM. OPEN : AM L : FM Do not connect Vcc. 16 RF IN RF signal input pin. 10 kΩ 13 14 120 kΩ 19 10 kΩ 17 RF DEC Emitter pin for internal transistor. 3 kΩ 16 18 RF OUT RF amp output pin. CHARGE Control terminal for quick charge circuit. To use the quick charge circuit, attach a capacitor. 17 3 250 Ω 18 100 kΩ 19 5 kΩ 2003-12-04 TA32305FN/FNG Pin Name Function 20 MIX IN Mixer input pin. 21 GND1 GND pin 1. Internal Equivalent Circuit 20 2.4 kΩ Pin No. ― 22 22 REF Threshold input terminal for 2-level FM/AM comparator. 250 Ω 100 kΩ 26 COMP DATA 5 kΩ 23 RSSI RSSI output pin. This pin is connected internal circuit. MONI pin during transmitting. 23 24 AF OUT Output terminal for FM demodulator. 24 25 LPF IN FM/AM LPF input pin. 24 kΩ 100 kΩ 33 kΩ 25 330 Ω 250 Ω 5 kΩ 25 26 LPF OUT FM/AM LPF output pin. 27 TX Battery saving pin for transmitter. 26 27 4 41 kΩ 2003-12-04 TA32305FN/FNG Pin No. Pin Name Function Internal Equivalent Circuit 28 RX Battery saving pin for receiver. 28 29 TX DATA AM modulation switch for transmitter. L : Output ON H : Output FF 28 30 RX DATA FM/AM waveform shaping output pin for receiver. Open collector output. Connect a pull-up resistor. 30 30 kΩ 97 kΩ 2 kΩ Equivalent circuits are given to help understand design of the external circuits to be connected. They do not accurately represent the internal circuits. 5 2003-12-04 TA32305FN/FNG Functions 1. Waveform Shaper Circuit (comparator) The output data (pin 30) are inverted. 2. RSSI Function After R is 23 connected R 24 kΩ DC potential corresponding to the input level of IF IN (pin 8) is output to RSSI (pin 23). Output to RSSI (pin 23) is converted to a voltage by the internal resistance. Thus, connecting external resistance R to pin 21 varies the gradient of the RSSI output as shown below. Note that due to the displacement of temperature coefficients between external resistor R and the internal IC resistor IC resistor, the temperature characteristic of the RSSI output may change. Also, the maximum RSSI value should be VCC − 0.8 V or less. IF input level Figure 1 Figure 2 3. S Curve Characteristics Changing external capacitance C27 varies the gradient of the S curve characteristics as shown below. In case of widening the detection range, heightening IF frequency or lowering demodulation output, make the gradient of the S curve characteristics gentle less than typical (120pF). When using this IC by about 2.2V (low supply), set the constant of C27 100pF or add attenuator to AF OUT (24 pin). After C is lessened IF frequency Figure 3 4. VCC Pin and GND Pin Use the same voltage supply for VCC1 (2 pin) and VCC2 (7 pin) and VCC3 (12 pin) (or connect them). Also, use the same voltage supply source for GND1 (21 pin) and GND2 (9 pin) (or connect them). 5. Local Oscillator Circuit The local oscillator circuit is external-input-only. The device incorporates no transistor for oscillation. Input to pin 1 at a level from 92 to 105dBµV. Adjust the values of constants C shown in the application circuit diagram so that the input level will become approximately 100dBµV. 6. U/L switch pin It is possible to switch Mixer output frequency to upper local or lower local comparing RF input frequency. 6 2003-12-04 TA32305FN/FNG 7. RF Amp Current Adjustment R The RF amp current dissipation can be regulated by varying resistor R as shown in the figure below. When R = 560 Ω, the current dissipation is approximately 600 µA. 17 RF DEC Figure 4 8. Battery-Saving (BS) Function The IC incorporates a battery-saving function. These functions offer the following selection. Receiver FM Mode (FM/AM pin: GND) RX Pin Circuit Status in the IC H Circuits in operation: ・×8 circuit ・Mixer ・RF amp ・Comparator ・IF amp ・Detector circuit ・RSSI ・Comparator capacitor charger circuit L All circuits IC Current Dissipation (at no signal) 5.6 mA (typ.) 0 mA (typ.) AM Mode (FM/AM pin: OPEN) RX Pin Circuit Status in the IC H ircuits in operation: ・×8 circuit ・Mixer ・RF amp ・Comparator ・IF amp ・RSSI ・Comparator capacitor charger circuit L All circuits IC Current Dissipation (at no signal) 5.3 mA (typ) 0 mA (typ) Transmitter TX Pin Circuit Status in the IC H Circuits in operation: ・×8 circuit ・TX amp L All circuits IC Current Dissipation (at no signal) 4.3 mA (typ) 0 mA (typ) 7 2003-12-04 TA32305FN/FNG 9. RF Amp Gain 2 RF amp gain 2 (Gv (RF) 2) is a reference value calculated as follows. Measure GRF in the following figure. Gv (RF) 2 is calculated as follows: Gv (RF) 2 = GRF − Gv (MIX) 1000 pF 16 19 6 pF SG 30dBµV 33 nH 20 6 pF 1 kΩ 27 nH 0.01 µF 4 GRF Figure 5 10. Waveform-Shaping Output Duty Cycle The specified range of electrical characteristics is only available for single-tone. 11. Treatment of FM Terminal when Using AM C19 C18 R13 C18 R14 R13 When using AM, it is not necessary to treat the QUAD pin (pin 11). Leave it open or connected to an FM external circuit. To use the bit rate filter, connect the RSSI pin (pin 23) to the bit rate filter through a resistor. The AF-OUT pin (pin 24) should be left open. R15 R 24 23 AF RSSI OUT Bit rate filter for FM 24 23 AF RSSI OUT Bit rate filter for AM Figure 6 Figure 7 8 2003-12-04 TA32305FN/FNG 12. Control Terminal for Quick Charge Circuit (CHARGE) CHARGE (18 pin) is control terminal for quick charge circuit. REF (22 pin) control terminal for quick charge a given period by time constant of internal resistance and outside capacitance. Enabling the CHARGE pin requires an external capacitor. In normal operation, connect a capacitor having the same capacitance as that of the capacitor connected to the REF pin (pin 22). If the connected external capacitor (C30) is 0.1 µF, the quick charge time is 7 ms (typically). 13. Bit Rate Filter for FM The current FM bit rate filter is used as a tertiary filter. If the filter is to be used at a rate other than 1200 bps, please change the filter constant. Quadratic Filter (NRZ) R12 R13 R14 C14 C15 C18 1200 bps 68 kΩ 68 kΩ 68 kΩ 0.01 µF 560 pF 3300 pF 2400 bps 68 kΩ 68 kΩ 68 kΩ 4700 pF 270 pF 1500 pF 4800 bps 68 kΩ 68 kΩ 68 kΩ 2200 pF 150 pF 680 pF 9600 bps 68 kΩ 68 kΩ 68 kΩ 1200 pF 68 pF 390 pF 14. Bit Rate Filter for AM The current AM bit rate filter is used as a quadratic filter. If the filter is to be used at a rate other than 1200 bps, please change the filter constant. Quadratic Filter (NRZ) (the bit rate filter time constant takes into account the internal resistance RSSI (24 kΩ)) R15 R12 C14 C15 1200 bps 43 kΩ 68 kΩ 4700 pF 1500 pF 2400 bps 43 kΩ 68 kΩ 2200 pF 680 pF 4800 bps 43 kΩ 68 kΩ 1000 pF 390 pF 9600 bps 43 kΩ 68 kΩ 470 pF 180 pF In addition, the current AM bit rate filter can be used as a tertiary filter. If the filter is to be used at a rate other than 1200 bps, please change the filter constant. Quadratic Filter (NRZ) (the bit rate filter time constant takes into account the internal resistance RSSI (24 kΩ)) R15 R13 R12 C14 C15 C18 1200 bps 43 kΩ 68 kΩ 68 kΩ 0.01 µF 560 pF 3300 pF 2400 bps 43 kΩ 68 kΩ 68 kΩ 4700 pF 270 pF 1500 pF 4800 bps 43 kΩ 68 kΩ 68 kΩ 2200 pF 150 pF 680 pF 9600 bps 68 kΩ 68 kΩ 68 kΩ 1200 pF 68 pF 390 pF For the cutoff frequency of the bit rate filter, specify a sufficiently high value for the bit rate to be used. Specifying a relatively high cutoff frequency for the bit rate filter enables a low capacitor to be used at the REF pin, therefore making the pulse rise quickly. When AM is used, the internal resistance of RSSI is used. So, take the output resistance into account when specifying a cutoff frequency. 9 2003-12-04 TA32305FN/FNG 15. Simple Image Cancel Mixer for Receiver The IC incorporates simple image cancel mixer for receiver. 16. TX Amp Current Adjustment R The RF amp current dissipation can be regulated by varying resistor R as shown in the figure below. When R = 560 Ω, the current dissipation is approximately 680 µA.. 13 TX_POW Figure 8 10 2003-12-04 TA32305FN/FNG Cautions for Designing Circuit Board Patterns Observe the following cautions when designing circuit patterns for this product. Local Oscillator Circuit (pin 1) Isolate the local oscillator circuit block sufficiently from the RF amp block. Isolate the local oscillator circuit block securely so that its output will not get in the IF input, IF filter, or mixer input. Do not place the local oscillator circuit block too close to the ceramic filter. Subdivide the ground pattern for the local oscillator circuit block, and connect the subdivisions with thin lines. IF Input and Output Block (pin 8, 10) Isolate the input from output patterns of the IF filter and detector block securely from each other. Demodulator Circuit Block (pin 11) Isolate the demodulator circuit block sufficiently from the IF input block (pin 8). Do not place the LC too close to the IC device. Data Output Block (pin 30) Isolate the data output block sufficiently from the IF input block (pin 8). Isolate the output pattern of the data output block from other circuits as much as possible, so any noise from a stage subsequent to the output will not affect them. RF Amp Circuit Block 1) Preventing RF amp oscillation Do not place the patterns connected to pins 16 and 17 too close to each other. Isolate the patterns connected to the input block (pin 16) and output block (pin 19) from each other. Make the RF input signal line relatively thin. Place a relatively wide ground pattern between the RF-IN pin (pin 16) and RF-DEC pin (pin 17). Connect the RF-OUT pin (pin 19) and MIX-IN pin (pin 20) with the shortest possible pattern. 2) Attaining a sufficient gain To attain a sufficient RF amp gain, select an optimum value for the input matching circuit block (pin 16) according to the board circuit pattern. 3) Sharing antenna with receiver and transmitter Using hi power application, place the patterns connected to SAW filter and pin 15 close. IC Mounting Area Provide a ground pattern under the IC device, and prepare relatively many through holes. Cautions for mounting Mount better accurate constants of capacitance in IF filter block and detector block. 11 2003-12-04 TA32305FN/FNG Maximum Ratings (unless otherwise specified, Ta = 25°C. the voltage is with reference to the ground level.) Characteristics Symbol Rating Unit VCC 6 V Power dissipation PD 860 mW Operating temperature range Topr −40~85 °C Storage temperature range Tstg −55~150 °C Supply voltage The maximum ratings must not be exceeded at any time. Do not operate the device under conditions outside the above ratings. Operable Range (unless otherwise specified, Ta = 25°C. the voltage is with reference to the ground level.) Symbol Test Circuit Test Condition Min Typ. Max Unit Operating voltage range VCC 2.2 3.0 5.5 V RF operating frequency fRF 250 450 MHz Characteristics Operating ranges indicate the conditions for which the device is intended to be functional even with the electrical changes. Electrical Characteristics (unless otherwise specified: Ta = 25°C, VCC = 3 V, U/L = OPEN, fin (RF) = fin (MIX) = 314.96 MHz, fin (IF) = 80 kHz)) Receiver Block Symbol Test Circuit Icco 3 RF amp gain 1 Gv (RF) 1 1 (5) Mixer conversion gain Gv (MIX) RSSI output voltage 1 VRSSI1 RSSI output voltage 2 VRSSI2 RSSI output voltage 3 VRSSI3 RSSI output resistance RRSSI Comparator input resistance RCOMP RX data output voltage (L level) VRXDATAL 1 (3) RX data output leakage current (H level) IRXDATAH 1 (4) RX pin H-level input voltage VRXH RX pin L-level input voltage VRXL Characteristics Current dissipation at battery saving Test Condition Min Typ. Max Unit ― 0 5 µA -9.0 -6.5 -4.0 dB 18 21 24 dB 0.25 0.5 0.75 V Vin (MIX) = 50dBµVEMF in AM mode 0.7 1.0 1.3 V Vin (MIX) = 80dBµVEMF in AM mode 1.35 1.7 2.05 V 18 24 30 kΩ 75 100 125 kΩ 0.04 0.4 V 0 2 µA 2.0 5.5 V 0 0.2 V RX = “L”,TX= “L” The input and output impedances are 50 Ω. Vin (MIX) = 25dBµVEMF in AM mode IRXDATAL = 200 µA 12 2003-12-04 TA32305FN/FNG FM Mode (Ta = 25°C, Vcc = 3.0 V, fin (RF) = fin (MIX) = 314.96 MHz, U/L = OPEN, fin (IF) = 80 kHz, dev = ±8 kHz, fmod = 600 Hz ((single wave)) Characteristics Symbol Test Circuit Iccqfm 2 (1) Vod 1 (2) Quiescent current consumption (for FM) Demodulated output level DRfm Waveform shaping duty ratio Test Condition Min Typ. Max Unit 4.2 5.6 7.0 mA Vin (MIX) = 60dBµVEMF 95 130 165 mVrms Vin (MIX) = 60dBµVEMF For single tone 45 50 55 % RX/FMAM = “H/ L” Fin (Lo) = 39.38 MHz AM Mode (Ta = 25°C, Vcc = 3.0 V, fin (RF) = fin (MIX) = 314.96 MHz, U/L = OPEN, fin (IF) = 80 kHz, AM = 90%, fmod = 600 Hz (square wave) ) Symbol Test Circuit Iccqam Test Condition Min Typ. Max Unit 2 (2) RX/FMAM = “H/ OPEN” Fin (Lo) =39.38 MHz 3.9 5.3 6.7 mA Dram 1 (2) Vin (MIX) = 60dBµVEMF For single tone 45 50 55 % Symbol Test Circuit Test Condition Min Typ. Max Unit Iccqtx 2 (3) 3.0 4.3 5.6 mA TXDATA pin H-level input voltage VTXDATAH 2.0 5.5 V TXDATA pin L-level input voltage VTXDATAL 0 0.2 V TX pin H-level input voltage VTXBSH 2.0 5.5 V TX pin L-level input voltage VTXBSL 0 0.2 V VTX1 -22.5 -19.5 dBm Characteristics Quiescent current consumption (for AM) Reference characteristic data Transmitter Block Characteristics Quiescent current consumption (for Transmitter Mode) TXoutput signal level 1 Reference Characteristic Data TX= “H” The output impedances are 50 Ω -25.5 * Symbol Test Circuit Test Condition Typ. Unit Gv (RF) 2 30 dB RF amp input resistance R (RF) IN 1.0 kΩ RF amp input capacitance C (RF) IN 2.0 pF C (RF) OUT 2.0 pF Mixer input resistance R (MIX) IN 1.2 kΩ Mixer input capacitance C (MIX) IN 1.6 pF IP3 96 dBµV Gv (RF) 65 dB Signal-to-noise ratio 1 S/N1 1 (8) Vin (MIX) = 20dBµVEMF 19 dB Signal-to-noise ratio 2 S/N2 1 (8) Vin (MIX) = 60dBµVEMF 56 dB C (TX) OUT 2.0 pF VTX2 -14 dBm Characteristics RF amp gain 2 RF amp output capacitance Mixer intercept point IFamp gain TX amp output capacitance TX output signal level 2 * : These characteristic data values are listed just for reference purposes. They are not guaranteed values. 13 2003-12-04 TA32305FN/FNG 6 pF SAW 1000 pF L3 33 nH C35 R21 560 Ω C37 C32 L1 1000 pF C30≧C22 27nH 68 kΩ R14 C22 R12 68 kΩ C15 560 pF 0.01 µF C14 R7 100 kΩ R6 100 kΩ 68 kΩ R19 1 kΩ R13 0.1 µF C18 3300 pF VCC VCC VCC C19 1000 pF VCC 0.1 µF C25 6 pF 1000 pF C24 0.01 µF Typical Test Circuit (FSK) C26 26 25 24 23 22 21 20 19 27 18 17 16 RF CHARGE RF RF TX LPF LPF AF RSSI REF GND1 MIX OUT OUT IN OUT IN DEC IN RSSI Comparator 28 RX 30 29 TX RX DATA DATA ×8 VCC 6 pF C34 22nH L2 C36 5 pF C33 0.01 µF 120 pF 1000 pF R22 560 Ω C29 10 µF C28 0.1 µF C27 C31 1000 pF R20 560 Ω C16 VCC C20 VCC R18 20 kΩ 120 pF 330 pF 5 Detector IF TX AM/ TX Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM OUT 9 6 7 8 10 11 12 13 14 15 C13 C17 IFF OUT 10 µF C12 2 IFF IN R11 4.7 kΩ VCC1 1 R10 4.3 kΩ MIX U/L OUT 4 3 0.1 µF OSC IN VCC Test Circuit 1 (1) VRSSI (2) DR 0.01 µF SG 1000 pF V 51 Ω SG 20 1.5 V R = 100 kΩ 22 V 2.0 V 30 V 22 30 VCC 100 kΩ V I = V/100 × 10 2.0 V V VCC (4) IDATA H (3) VDATA L V 30 1000 pF 20 SG 1 51 Ω 1000 pF 51 Ω SG 100 kΩ 23 1 51 Ω 0.01 µF 3 1.5 V 25 V 14 25 2003-12-04 TA32305FN/FNG (6) Gv (MIX) 19 4 1 4.7 kΩ 51 Ω SG 51 Ω SG 0.01 µF 1000 pF 16 1000 pF 20 (7) Gv (MIX) vs VLO 330 pF Buff 6 1000 pF 20 SG 8 51 Ω 26 51 Ω 20 1 SG 51 Ω 5 120 pF 51 Ω 4.7 kΩ 1000 pF 4 1 4.3 kΩ 0.01 µF 1000 pF SG 8 (8) S/N1, 2 0.01 µF SG 6 51 Ω SG 5 120 pF 1000 pF 1000 pF (5) Gv (RF) 1 330 pF Test Circuit 2 27 28 17 21 14 7 2 SG 560 Ω 560 Ω 9 1 12 27 9 28 19 A Vcc 0.01 µF 51 Ω (2) Iccqam 0.01 µF 51 Ω (1) Iccqfm 21 17 7 2 SG 1 12 19 A VCC Test Circuit 3 Icco 28 27 VCC 21 2 0.01 µF 51 Ω 13 7 9 560 Ω SG 560 Ω 560 Ω (3) Icctx 21 27 28 13 17 2 7 12 15 19 1 12 15 A A VCC 15 2003-12-04 TA32305FN/FNG Reference Data (This is characteristics data when it used evaluation boards. This is not guarantee on condition that it is stating except electrical characteristics.) Quiescent Current Consumption – Supply Voltage Characteristics Quiescent Current Consumption – Supply Voltage Characteristics FM Mode 8 TX 3 f (Lo) in = 39.38 MHz V (Lo) in = 100dBV **スイッチ端子 No switching pin current is電流含まず included. 2 1 6 (mA) 4 ICCqfm AM 25℃ 5 4 -40℃ 3 1 BS 0 0 1 2 3 Supply voltage 4 VCC 5 6 0 (V) Quiescent current consumption ICCqtx (mA) 125℃ 6 25℃ (mA) 3 4 VCC 5 6 (V) 6 7 ICCqam 2 Quiescent Current Consumption – Supply Voltage Characteristics TX Mode 8 5 4 -40℃ 3 f (Lo) in = 39.38 MHz V (Lo) in = 100dBV **スイッチ端子 No switching pin current is電流含まず included. 2 1 0 125℃ 5 25℃ 4 3 f (Lo) in = 39.38 MHz V (Lo) in = 100dBV -40℃ **スイッチ端子 No switching pin current is included. 電流含まず 2 1 0 0 1 2 3 Supply voltage 4 VCC 5 6 0 (V) 1 2 3 Supply voltage RF Amp Gain – Supply Voltage Characteristics 4 VCC 5 6 (V) RF Amp Frequency Characteristics -5 (dB) 0 -10 -40℃ RF amp conversion gain Quiescent current consumption 1 Supply voltage Quiescent Current Consumption – Supply Voltage Characteristics AM Mode (dB) f (Lo) in = 39.38 MHz V (Lo) in = 100dBV **スイッチ端子 No switching pin current is電流含まず included. 2 0 RF amp conversion gain 125℃ 7 FM 5 Quiescent current consumption Quiescent current consumption ICC (mA) 6 -20 125℃ -30 f(RF)in=314.96MHz V(RF)in=50dBuV 25℃ -40 <Meas Point> RFOUT at Spectrum Analyzer -50 * Input/output impedance = ※入出力50Ω 50 Ω -60 0 1 2 3 Supply voltage 4 VCC 5 6 (V) -6 125℃ -7 -40℃ -8 Vcc=3V V(RF)in=50dBuV 25℃ -9 <Meas Point> RFOUT -10 at Spectrum Analyzer *Input/output ※入出力 50Ω mpedance = 50 Ω -11 100 RF IN input frequency f (RF) in 16 1000 (MHz) 2003-12-04 TA32305FN/FNG Reference Data (This is characteristics data when it used evaluation boards. This is not guarantee on condition that it is stating except electrical characteristics.) RSSI Output Voltage Characteristics (MIX, and RF inputs) RSSI Output Voltage Characteristics (MIX inputs) 2 125℃ (V) VRSSI 1.6 1.4 RF IN 1.2 MIX IN 25℃ 1.5 -40℃ RSSI output voltage RSSI output voltage VRSSI (V) 2 1.8 1 0.8 VCC = 3 V f (MIX) in = 314.96 MHz f (Lo) in = 39.38 MHz AM <Meas point> FILOUT at audio analyzer 0.6 0.4 0.2 0 -20 0 20 40 Input level 60 Vin 80 100 1 VCC = 3 V f (MIX) in = 314.96 MHz f (Lo) in = 39.38 MHz AM <Meas point> FILOUT at audio analyzer 0.5 0 -20 120 (dBµVEMF) S/N Characteristics (MIX input) in the FM Mode 20 40 60 100 120 (dBµVEMF) 10 S+N S -40℃ -40℃ 25℃ 125℃ -10 -10 125℃ -20 -30 VCC = 3 V f (MIX) in = 314.96 MHz Dev = 8 kHz fmod = 600 Hz <Meas point> AMR FILOUT at audio analyzer 25℃ -40 25℃ 25℃ -40℃ 125℃ -50 -40℃ -60 N -70 -20 0 20 40 MIX IN input level S+N S 0 S + N, N (dB) 0 60 V (MIX) in 80 100 120 -20 125℃ -30 -40 -50 VCC = 3 V f (MIX) in = 314.96 MHz -60 AM = 90% fmod = 600 Hz -70 <Meas point> FILOUT at audio analyzer -80 -20 0 20 40 (dBµVEMF) MIX IN input level S/N Characteristics (RF input) in the FM Mode 125℃ 25℃ N -40℃ 60 V (MIX) in 2.5 -20 S + N, N (dB) VCC = 3 V f (RF) in = 314.96 MHz Dev = 8 kHz fmod = 600 Hz <Meas point> FILOUT at audio analyzer -10 100 120 (dBµVEMF) Vcc=3V f(MIX)in=314.9MHz +∆f V(MIX)in=50dBuVemf f(Lo)in=39.38MHz V(Lo)in=100dBuV <Meas Point> AFOUT at Multi Meter S S+N 0 80 S Curve Characteristics (MIX IN) 3 10 S + N, N (dB) 80 V (MIX) in S/N Characteristics (MIX input) in the AM Mode 10 S + N, N (dB) 0 MIX IN input level -30 AMR -40 2 -40℃ 1.5 125℃ 1 -50 25℃ N 0.5 -60 -70 -20 0 20 RF IN input level 40 60 V (RF) in 80 100 0 -70 120 (dBµVEMF) -50 -30 MIX IN input level 17 -10 10 V (MIX) in 30 50 70 (dBµVEMF) 2003-12-04 TA32305FN/FNG Reference Data (This is characteristics data when it used evaluation boards. This is not guarantee on condition that it is stating except electrical characteristics.) Mixer Conversion Gain Frequency Characteristics 5 25 125℃ f(MIX)in=314.96MHz V(MIX)in=60dBuV f(Lo)in=39.38MHz V(Lo)in=100dBuV 10 -40℃ 0 <Meas Point> MIXOUT at Spectrum Analyzer 25℃ -5 (MIX) 15 Mixer conversion gain GV (MIX) 20 (dB) 25 Mixer conversion gain GV (dB) Mixer Conversion Gain – Supply Voltage Characteristics -10 -15 -20 -25 -30 1 2 3 4 Supply voltage 5 VCC 6 20 15 Vcc=3V V(RF)in=60dBuV V(Lo)in=100dBuV 10 U/L=OPEN <Meas Point> 5 MIXOUT at Spectrum Analyzer 0 100 (V) 1000 MIX IN input frequency f (MIX) in Mixer Intercept Point 120 25 20 Mixer output level V (MIX) out (dBµV) Mixer conversion gain GV (MIX) (dB) Mixer Conversion Gain – Local Input Level Characteristics 15 10 5 Vcc=3V f(MIX)in=314.96MHz V(RF)in=60dBuV f(Lo)in=39.38MHz U/L=OPEN 0 -5 -10 <Meas Point> MIXOUT at Spectrum Analyzer -15 100 Desired wave 希望波 80 Interference wave 妨害波 Vcc=3V Desired < 希望 > wave f(SG1,SG2)in=314.96MHz 60 <妨害> Interference wave f(SG1)in=315.06MHz f(SG2)in=315.16MHz 40 20 <Meas Point> MIXOUT at Spectrum Analyzer 0 -20 60 70 80 Lo input level 90 V (Lo) in 100 110 40 120 (dBµV) 140 (mVrms) 0 -5 -10 -25 -30 -35 -40 -60 Demodulation output (dB) 160 -20 60 70 80 90 V (MIX) in 100 110 120 (dBµV) Demodulation Output – Supply Voltage Characteristics (FM) 5 -15 50 SG input level Detuning Characteristics Attenuation level (MHz) Vcc=3V f(MIX)in=314.96MHz+∆f V(MIX)in=50dBuV f(Lo)in=39.38MHz V(Lo)in=100dBuV Dev=±8kHz fmod=600Hz <Meas Point> AFOUT at Audio Analyzer 125℃ 120 -40℃ 100 f(MIX)in=314.96MHz V(Lo)in=50dBuVemf Dev=±8kHz fmod=600Hz f(Lo)in=39.38MHz V(Lo)in=100dBuV 80 25℃ 60 40 <Meas Point> FILOUT at Audio Analyzer 20 0 -40 -20 0 20 40 60 1 Detuning frequency (kHz) 2 3 Supply voltage 18 4 VCC 5 6 (V) 2003-12-04 TA32305FN/FNG Reference Data (This is characteristics data when it used evaluation boards. This is not guarantee on condition that it is stating except electrical characteristics.) Waveform Shaping Output Duty Ratio – Supply Voltage Characteristics Demodulation Distortion Characteristics 60 -10 <Meas Point> AFOUT at Audio Analyzer -15 -20 -25 -30 -35 -80 -60 -40 -20 0 20 Detuning frequency (MIX IN) 40 58 56 54 (%) -5 52 AM 50 DR Vcc=3V f(MIX)in=314.96MHz +∆f V(MIX)in=50dBuV f(Lo)in=39.38MHz V(Lo)in=100dBuV Waveform shaping output duty ratio Demodulation distortion (dB) 0 46 Dec=±4kHz FM Dev=±4kHz 44 40 60 1 f(MIX)in=314.96MHz V(MIX)in=50dBuVemf Dev=±8kHz fmod=600Hz f(Lo)in=39.38MHz V(Lo)in=100dBuV <Meas Point> DATA at OSC 42 40 1 2 3 Supply voltage 4 VCC 5 52 46 44 42 40 1 2 (V) 3 4 Supply voltage VCC 5 6 (V) TX Output Power Frequency Characteristics -15 25℃ f(Lo)in=39.38MHz V(Lo)in=100dBuV <Meas Point> TX OUT at Spectrum Analyzer -80 25℃ -100 *Input/output ※入出力50Ω impedance = 50 Ω (dB) -40℃ -20 VTX1 125℃ 125℃ -25 TX Output level (dB) VTX1 TX Output level -60 f(MIX)in=314.96MHz V(MIX)in=50dBuVemf AM=90% fmod=600Hz((Retangle) 矩形波 ) f(Lo)in=39.38MHz V(Lo)in=100dBuV <Meas Point> DATA at OSC 25℃ 48 6 0 -40 125℃ 50 TX Output Power – Supply Voltage Characteristics -20 6 54 (%) 25℃ 50 44 5 (V) -40℃ 56 DR Waveform shaping output duty ratio (%) 54 DR Waveform shaping output duty ratio 58 56 46 4 VCC Waveform Shaping Output Duty Ratio – Supply Voltage Characteristics AM mode 58 -40℃ 3 Supply voltage 60 125℃ 2 (kHz) 60 48 <Meas Point> DATA at OSC FM FM Dev=±8kHz Dec=±8kHz 42 Waveform Shaping Output Duty Ratio – Supply Voltage Characteristics FM mode 52 f(RF)in=314.96MHz V(RF)in=20dBuVemf f(Lo)in=39.38MHz V(Lo)in=100dBuV 48 -30 -40℃ Vcc=3V V(Lo)in=100dBuV -35 <Meas Point> TX OUT at Spectrum Analyzer -40 *Input/output ※入出力 50Ω impedance = 50 Ω -120 -45 1 2 3 Supply voltage 4 VCC 5 6 0 (V) 100 200 300 400 500 600 TX output frequency f (TX)out 19 700 800 (MHz) 2003-12-04 TA32305FN/FNG Reference Data (This is characteristics data when it used evaluation boards. This is not guarantee on condition that it is stating except electrical characteristics.) Sensitivity Detuning Characteristics (AM and FM modulation) TX out power frequency Characteristics 15 (dBµVEMF) -10 (dB) -14 25℃ -40℃ 12dB SINAD sensitivity TX Output level -12 VTX1 125℃ -16 Vcc=3V V(Lo)in=100dBuV <Meas Point> TX OUT at Spectrum Analyzer -18 -20 -22 200 *output adjusted ※出力マッチング 250 300 350 400 450 TX output frequency f (TX)out Vcc=3V f(Lo)in=39.38MHz V(Lo)in=100dBuV 10 U/L=OPEN fmod=600Hz 5 <Meas Point> FILOUT at Audio Analyzer -5 FM Dev=±4kHz FM Dev=±8kHz -10 AM -15 -120 -100 500 (MHz) -2 FM Dev=±4kHz 12dB SINAD sensitivity -40 -20 0 20 40 60 (MHz) 60 f(RF)in=314.96MHz f(Lo)in=39.38MHz V(Lo)in=100dBuV <Meas Point> FILOUT at Audio Analyzer -4 -6 Dev=±4kHz FMFM Dev=±8kHz -8 -60 RF Amp Gain + Mixer Conversion Gain – Supply Voltage Characteristics RF Amp + Mixer conversion gain GV (dB) (dBµVEMF) 0 -80 RF IN input frequency f (RF) in 12dB SINAD sensitivity – Supply Voltage Characteristics 2 FM Dev=±4kHz 0 *No SAW filter ※ SAW フィルタ無 -10 AM -12 50 40 30 Vcc=3V f (RF)in=314.96MHz V(RF)in=50dBuV 20 <Meas Point> MIX OUTat Spectrum Analyzer 10 50Ω = 50 Ω * Input/output impedance ※入出力 0 -14 1 2 3 Supply voltage 4 VCC 5 1 6 (V) 2 3 Supply voltage 4 VCC 5 6 (V) 2 signal interference Characteristics (IF Filter band) Interference control ratio (dB) 60 50 40 30 20 f(RF)in = 314.96MHz V(RF)in = 5.7dBuVEMF Dev = ±8kHz 10 fmod = 600Hz f(Lo)in = 39.38MHz 0 V(Lo)in = 100dBuV <基準> <St> 314.96MHz, -10 314.6 1.3dBuVEMF 314.7 314.8 314.9 315 315.1 315.2 315.3 Interference wave input frequency (MHz) 20 2003-12-04 TA32305FN/FNG Application Circuit (ASK) *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well. L3 33 nH C26 26 25 24 23 22 21 20 19 27 18 17 16 RF CHARGE RF RF TX LPF LPF AF RSSI MIX REF GND1 OUT OUT IN OUT DEC IN IN RSSI Comparator 28 RX 1000 pF L1 SAW C37 C32 1000 pF C30≧C22 27nH 68 kΩ 43 kΩ C22 R12 68 kΩ R15 6 pF C35 R21 560 Ω 30 29 TX RX DATA DATA C15 560 pF C14 R6 100 kΩ R7 100 kΩ 0.01 µF R13 R19 1 kΩ VCC 0.1 µF VCC 3300 pF VCC C18 VCC 0.1 µF C25 6 pF 1000 pF C24 0.01 µF For Receiver and Transceiver ×8 6 pF L2 22nH 330 pF VCC C34 1000 pF C36 5 pF C33 0.01 µF C16 R22 560 Ω VCC C20 120 pF C17 5 Detector TX AM/ TX IF Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM OUT 6 7 8 9 10 11 12 13 14 15 C13 10 µF IFF OUT C31 1000 pF R20 560 Ω VCC IFF IN R11 4.7 kΩ 2 R10 4.3 kΩ 10 pF 5 pF C10 VCC1 C12 1 C9 3.6 kΩ 33 pF R5 33 pF Q MIX U/L OUT 4 3 0.1 µF OSC IN 33 kΩ C7 120 kΩ C8 39.38MHz 0.1 µF R3 R4 X2 C3 0.01 µF 10 µF C2 C1 Lo VCC SAW: SAFCH315MAM0T00 (Murata Manufacturing) X2: TR-1 (TEW) Q: 2SC2499 (TOSHIBA) 16 2003-12-04 TA32305FN/FNG Application Circuit (FSK) *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well. SAW 1000 pF C26 26 25 24 23 22 21 20 19 27 18 17 16 RF CHARGE RF RF TX LPF LPF AF RSSI MIX REF GND1 OUT OUT IN OUT IN DEC IN RSSI Comparator 28 RX L3 33 nH C37 C32 L1 C30≧C22 27nH R19 1 kΩ C19 1000 pF 0.1 µF 1000 pF C22 R14 R12 68 kΩ 68 kΩ 6 pF C35 R21 560 Ω 30 29 TX RX DATA DATA C15 560 pF C14 R6 100 kΩ 0.01 µF R13 68 kΩ VCC VCC C18 3300 pF VCC 0.1 µF C25 6 pF 1000 pF C24 0.01 µF For Receiver only ×8 VCC 1000 pF C28 0.1 µF C27 120 pF C29 10 µF C16 R18 20 kΩ VCC 330 pF 120 pF C17 5 Detector TX AM/ TX IF Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM OUT 6 7 8 9 10 11 12 13 14 15 C13 10 µF IFF OUT C20 10 pF C10 5 pF IFF IN R11 4.7 kΩ C12 C9 3.6 kΩ 33 pF 33 pF R5 2 R10 4.3 kΩ VCC1 1 MIX U/L OUT 4 3 0.1 µF OSC IN 33 kΩ 120 kΩ C8 R4 X2 0.01 µF C7 R3 0.1 µF C3 10 µF C2 C1 Lo VCC VCC SAW: SAFCH315MAM0T00 (Murata Manufacturing) X2: TR-1 (TEW) Q: 2SC2499 (TOSHIBA) 17 2003-12-04 TA32305FN/FNG Application Circuit (FSK) *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well. SAW C37 L3 33 nH C26 26 25 24 23 22 21 20 19 27 18 17 16 RF CHARGE RF RF TX LPF LPF AF RSSI REF GND1 MIX OUT OUT IN OUT IN DEC IN RSSI Comparator 28 RX 1000 pF C32 L1 R19 1 kΩ 0.1 µF C30≧C22 27nH R14 R12 68 kΩ 1000 pF 6 pF C35 R21 560 Ω 30 29 TX RX DATA DATA C15 560 pF 0.01 µF Transceiver 2 39.39MHz 150 kΩ C14 R7 100 kΩ Transceiver 1 39.38MHz 120 kΩ R6 100 kΩ Constant X1 R23 68 kΩ C22 R13 VCC C19 1000 pF VCC 68 kΩ VCC C18 3300 pF VCC 0.1 µF C25 6 pF 1000 pF C24 0.01 µF For Transceiver only: Change the constants (X1 and R23) at oscillator circuit like the table below to be shifted oscillator frequency 10 kHz. ×8 6 pF C34 L2 VCC 22nH R22 560 Ω C28 0.1 µF VCC C36 5 pF C33 5 pF 1000 pF C27 120 pF C29 10 µF C16 R18 20 kΩ VCC 330 pF 120 pF 10 µF R11 4.7 kΩ 5 Detector IF TX AM/ TX Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM OUT 9 6 7 8 10 11 12 13 14 15 C13 C17 IFF OUT C31 1000 pF R20 560 Ω VCC IFF IN C20 C10 5 pF R10 4.3 kΩ C12 C9 3.6 kΩ 47 pF R5 47 pF Q MIX U/L OUT 4 3 0.1 µF OSC VCC1 IN 1 2 10 pF 33 kΩ C7 120 kΩ C5 R4 X1 200 kΩ C4 5 pF R23 C3 0.1 µF R1 TX FM C8 R3 10 µF 0.01 µF C2 C1 Lo VCC SAW: SAFCH315MAM0T00 (Murata Manufacturing) X2: TR-1 (TEW) Q: 2SC2499 (TOSHIBA) C5: 1SV325 (TOSHIBA) 18 2003-12-04 TA32305FN/FNG Application Circuit *This circuit is not guaranteed for mass product design. Please evaluate the circuit for mass product design well. C24 0.01 µF SAW L3 33 nH 1000 pF C35 560 Ω C37 R21 0.1 µF C25 6 pF C32 1000 pF L1 1000 pF C30≧C22 27nH R19 1 kΩ 0.1 µF R12 68 kΩ 68 kΩ 6 pF C26 26 25 24 23 22 21 20 19 27 18 17 16 RF CHARGE RF RF TX LPF LPF AF RSSI REF GND1 MIX OUT OUT IN OUT IN DEC IN RSSI Comparator 28 RX R24 300 Ω C33 0.01 µF L2 0.01 µF 30 29 TX RX DATA DATA 6 pF C15 560 pF 22nH SAW C14 15 VCC R7 100 kΩ R6 100 kΩ TX OUT C22 R13 VCC C19 1000 pF VCC 68 kΩ R15 VCC R14 16 RF IN VCC 43 kΩ C35 C18 3300 pF For Transceiver, one antenna version: Adjust the circuit expect antenna block. In case of Hi power output application, set the circuit like left figure. ×8 Hi Power Output 19 C33 0.01 µF VCC 5 pF 6 pF L2 22nH C28 0.1 µF VCC C36 C34 1000 pF C31 1000 pF R20 560 Ω C16 C27 120 pF C29 10 µF VCC R18 20 kΩ 120 pF 330 pF R11 4.7 kΩ 5 Detector IF TX AM/ TX Vcc2 IF IN GND2 OUT QUAD Vcc3 Power FM OUT 9 6 7 8 10 11 12 13 14 15 C13 10 µF IFF OUT C17 IFF IN C20 C10 VCC R10 4.3 kΩ C12 C9 5 pF 3.6 kΩ 47 pF R5 47 pF Q MIX U/L OUT 4 3 0.1 µF OSC VCC1 IN 1 2 10 pF 33 kΩ C7 120 kΩ C8 R3 39.38MHz C5 200 kΩ C4 5 pF R23 120 kΩ C3 0.1 µF R1 TX FM R4 X1 10 µF 0.01 µF C2 C1 Lo VCC 2003-12-04 TA32305FN/FNG Package Dimensions SSOP30-P-300-0.65A Unit::mm Weight: 0.17 g (typ) 20 2003-12-04 TA32305FN/FNG Notice for Pb free product About solderability, following conditions were confirmed ¾ Solderability (1) Use of Sn-36Pb solder bath ・ solder bath temperature = 230℃ ・ dipping time = 5seconds ・ the number of times = once ・ use of R-type flux (2) Use of Sn-3.0Ag-0.5Cu solder bath ・ solder bath temperature = 245℃ ・ dipping time = 5seconds ・ the number of times = once ・ use of R-type flux RESTRICTIONS ON PRODUCT USE 000707EBA • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The products described in this document are subject to the foreign exchange and foreign trade laws. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. • The information contained herein is subject to change without notice. 21 2003-12-04